
Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

Welcome to the ASP.NET QuickStart
Tutorial

The ASP.NET QuickStart is a series of ASP.NET samples and
supporting commentary designed to quickly acquaint
developers with the syntax, architecture, and power of the
ASP.NET Web programming framework. The QuickStart
samples are designed to be short, easy-to-understand
illustrations of ASP.NET features. By the time you have
completed the QuickStart tutorial, you will be familiar with:

● ASP.NET Syntax. While some of the ASP.NET
syntax elements will be familiar to veteran ASP
developers, several are unique to the new
framework. The QuickStart samples cover each
element in detail.

● ASP.NET Architecture and Features. The
QuickStart introduces the features of ASP.NET that
enable developers to build interactive, world-class
applications with much less time and effort than
ever before.

● Best Practices. The QuickStart samples
demonstrate the best ways to exercise the power of
ASP.NET while avoiding potential pitfalls along the
way.

What Level of Expertise Is Assumed in the
QuickStart?
If you have never developed Web pages before, the
QuickStart is not for you. You should be fluent in HTML and
general Web development terminology. You do not need
previous ASP experience, but you should be familiar with
the concepts behind interactive Web pages, including
forms, scripts, and data access.

Working with the QuickStart Samples
The QuickStart samples are best experienced in the order
in which they are presented. Each sample builds on
concepts discussed in the preceding sample. The sequence
begins with a simple form submittal and builds up to
integrated application scenarios.

Copyright 2001 Microsoft Corporation. All rights reserved.

 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications

 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

What is ASP.NET?

ASP.NET is a programming framework built on the common
language runtime that can be used on a server to build
powerful Web applications. ASP.NET offers several
important advantages over previous Web development
models:

● Enhanced Performance. ASP.NET is compiled
common language runtime code running on the
server. Unlike its interpreted predecessors, ASP.NET
can take advantage of early binding, just-in-time
compilation, native optimization, and caching
services right out of the box. This amounts to
dramatically better performance before you ever
write a line of code.

● World-Class Tool Support. The ASP.NET
framework is complemented by a rich toolbox and
designer in the Visual Studio integrated
development environment. WYSIWYG editing, drag-
and-drop server controls, and automatic
deployment are just a few of the features this
powerful tool provides.

● Power and Flexibility. Because ASP.NET is based
on the common language runtime, the power and
flexibility of that entire platform is available to Web
application developers. The .NET Framework class
library, Messaging, and Data Access solutions are all
seamlessly accessible from the Web. ASP.NET is
also language-independent, so you can choose the
language that best applies to your application or
partition your application across many languages.
Further, common language runtime interoperability
guarantees that your existing investment in COM-
based development is preserved when migrating to
ASP.NET.

● Simplicity. ASP.NET makes it easy to perform
common tasks, from simple form submission and
client authentication to deployment and site
configuration. For example, the ASP.NET page
framework allows you to build user interfaces that
cleanly separate application logic from presentation
code and to handle events in a simple, Visual Basic -
like forms processing model. Additionally, the
common language runtime simplifies development,
with managed code services such as automatic
reference counting and garbage collection.

 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications

● Manageability. ASP.NET employs a text-based,
hierarchical configuration system, which simplifies
applying settings to your server environment and
Web applications. Because configuration information
is stored as plain text, new settings may be applied
without the aid of local administration tools. This
"zero local administration" philosophy extends to
deploying ASP.NET Framework applications as well.
An ASP.NET Framework application is deployed to a
server simply by copying the necessary files to the
server. No server restart is required, even to deploy
or replace running compiled code.

● Scalability and Availability. ASP.NET has been
designed with scalability in mind, with features
specifically tailored to improve performance in
clustered and multiprocessor environments. Further,
processes are closely monitored and managed by
the ASP.NET runtime, so that if one misbehaves
(leaks, deadlocks), a new process can be created in
its place, which helps keep your application
constantly available to handle requests.

● Customizability and Extensibility. ASP.NET
delivers a well-factored architecture that allows
developers to "plug-in" their code at the appropriate
level. In fact, it is possible to extend or replace any
subcomponent of the ASP.NET runtime with your
own custom-written component. Implementing
custom authentication or state services has never
been easier.

● Security. With built in Windows authentication and
per-application configuration, you can be assured
that your applications are secure.

The remainder of the QuickStart presents practical
examples of these concepts.

Copyright 2001 Microsoft Corporation. All rights reserved.

 Links to the Web: Support | Search | microsoft.com

 Welcome | ASP.NET | Windows Forms | How Do I...? Hide TOC | I want my samples in...

Languages
 Declare a variable
 Issue a statement
 Comment my code
 Declare a simple property
 Use an indexed property
 Declare an indexed property
 Declare an enumeration
 Enumerate a collection or array
 Declare and use a method
 Define custom attributes
 Declare and use an array
 Statically initialize a variable
 Write an if statement
 Write a case statement
 Write a for loop
 Write a while loop
 Handle exceptions
 Concatenate a string
 Declare an event
 Declare an event handler
 Add an event handler
 Cast a variable to a type
 Convert a variable to type
 Declare a class or interface
 Inherit from a base class
 Implement an interface
 Class with a main method
 Write a standard module

Back to Index

Get URL for this page

Language Support

The Microsoft .NET Platform currently offers built-in support for three languages: C#, Visual Basic,
and JScript.

The exercises and code samples in this tutorial demonstrate how to use C#, Visual Basic, and
JScript to build .NET applications. For information regarding the syntax of the other languages, refer
to the complete documentation for the .NET Framework SDK.

The following table is provided to help you understand the code samples in this tutorial as well as
the differences between the three languages:

Variable Declarations

Dim x As Integer
Dim s As String
Dim s1, s2 As String
Dim o 'Implicitly Object
Dim obj As New Object()
Public name As String

VB

Statements

Response.Write("foo")

VB

Comments

' This is a comment

' This
' is
' a
' multiline
' comment

VB

Accessing Indexed Properties

Dim s, value As String
s = Request.QueryString("Name")
value = Request.Cookies("Key").Value

'Note that default non-indexed properties
'must be explicitly named in VB

http://www.microsoft.com/support/
http://search.microsoft.com/
http://www.microsoft.com/
http://www.microsoft.com/
http://docs.aspng.com/quickstart/default.htm
http://docs.aspng.com/quickstart/aspplus/default.aspx
http://docs.aspng.com/quickstart/winforms/default.aspx
http://docs.aspng.com/quickstart/howto/default.aspx
javascript:__doPostBack('TOCSelect','')
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#VariableDeclaration
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#Statements
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#Comments
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#SimpleProperty
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#UseIndexedProperty
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#DeclareIndexedProperty
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#Enumeration
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#EnumerateCollection
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#Methods
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#CustomAttr
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#Arrays
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#Initialization
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#IFState
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#CaseState
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#ForLoop
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#WhileLoop
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#Exceptions
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#StringCat
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#DeclareEvent
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#DeclareHandler
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#AddRemoveHandler
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#Casting
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#Convert
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#ClassDef
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#ClassDef
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#InterfaceImpl
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#ClassMain
http://docs.aspng.com/quickstart/howto/doc/Languages.aspx#Module
http://docs.aspng.com/quickstart/howto

VB

Declaring Indexed Properties

' Default Indexed Property
Public Default ReadOnly Property DefaultProperty(Name As String) As String
 Get
 Return CStr(lookuptable(name))
 End Get
End Property

VB

Declaring Simple Properties

Public Property Name As String

 Get
 ...
 Return ...
 End Get

 Set
 ... = Value
 End Set

End Property

VB

Declare and Use an Enumeration

' Declare the Enumeration
Public Enum MessageSize

 Small = 0
 Medium = 1
 Large = 2
End Enum

' Create a Field or Property
Public MsgSize As MessageSize

' Assign to the property using the Enumeration values
MsgSize = small

VB

Enumerating a Collection

Dim S As String
For Each S In Coll
 ...
Next

VB

Declare and Use Methods

' Declare a void return function
Sub VoidFunction()
 ...
End Sub

' Declare a function that returns a value
Function StringFunction() As String
 ...
 Return CStr(val)
End Function

' Declare a function that takes and returns values
Function ParmFunction(a As String, b As String) As String
 ...
 Return CStr(A & B)
End Function

' Use the Functions
VoidFunction()
Dim s1 As String = StringFunction()
Dim s2 As String = ParmFunction("Hello", "World!")

VB

Custom Attributes

' Stand-alone attribute
<STAThread>

' Attribute with parameters
<DllImport("ADVAPI32.DLL")>

' Attribute with named parameters
<DllImport("KERNEL32.DLL", CharSet:=CharSet.Auto)>

VB

Arrays

 Dim a(2) As String
 a(0) = "1"
 a(1) = "2"
 a(2) = "3"

 Dim a(2,2) As String
 a(0,0) = "1"
 a(1,0) = "2"
 a(2,0) = "3"

VB

Initialization

Dim s As String = "Hello World"
Dim i As Integer = 1
Dim a() As Double = { 3.00, 4.00, 5.00 }

VB

If Statements

If Not (Request.QueryString = Nothing)
 ...
End If

VB

Case Statements

Select Case FirstName
 Case "John"
 ...
 Case "Paul"
 ...
 Case "Ringo"
 ...
 Case Else
 ...
End Select

VB

For Loops

 Dim I As Integer
 For I = 0 To 2
 a(I) = "test"
 Next

VB

While Loops

Dim I As Integer
I = 0
Do While I < 3
 Console.WriteLine(I.ToString())
 I += 1
Loop

VB

Exception Handling

Try
 ' Code that throws exceptions
Catch E As OverflowException
 ' Catch a specific exception
Catch E As Exception
 ' Catch the generic exceptions
Finally
 ' Execute some cleanup code
End Try

VB

String Concatenation

' Using Strings
Dim s1, s2 As String
s2 = "hello"
s2 &= " world"
s1 = s2 & " !!!"

' Using StringBuilder class for performance
Dim s3 As New StringBuilder()
s3.Append("hello")
s3.Append(" world")
s3.Append(" !!!")

VB

Event Handler Delegates

Sub MyButton_Click(Sender As Object,
 E As EventArgs)
...
End Sub

VB

Declare Events

' Create a public event
Public Event MyEvent(Sender as Object, E as EventArgs)

' Create a method for firing the event
Protected Sub OnMyEvent(E As EventArgs)
 RaiseEvent MyEvent(Me, E)
End Sub

VB

Add or Remove Event Handlers to Events

AddHandler Control.Change, AddressOf Me.ChangeEventHandler
RemoveHandler Control.Change, AddressOf Me.ChangeEventHandler

VB

Casting

Dim obj As MyObject
Dim iObj As IMyObject
obj = Session("Some Value")
iObj = CType(obj, IMyObject)

VB

Conversion

Dim i As Integer
Dim s As String
Dim d As Double

i = 3
s = i.ToString()
d = CDbl(s)

' See also CDbl(...), CStr(...), ...

VB

Class Definition with Inheritance

Imports System

Namespace MySpace

 Public Class Foo : Inherits Bar

 Dim x As Integer

 Public Sub New()
 MyBase.New()
 x = 4
 End Sub

 Public Sub Add(x As Integer)
 Me.x = Me.x + x
 End Sub

 Overrides Public Function GetNum() As Integer
 Return x
 End Function

 End Class

End Namespace

' vbc /out:libraryvb.dll /t:library
' library.vb

VB

Implementing an Interface

Public Class MyClass : Implements IEnumerable
 ...

 Function IEnumerable_GetEnumerator() As IEnumerator Implements
IEnumerable.GetEnumerator
 ...
 End Function
End Class

VB

Class Definition with a Main Method

Imports System

Public Class ConsoleVB

 Public Sub New()
 MyBase.New()
 Console.WriteLine("Object Created")
 End Sub

 Public Shared Sub Main()

 Console.WriteLine("Hello World")
 Dim cvb As New ConsoleVB
 End Sub

End Class

' vbc /out:consolevb.exe /t:exe console.vb

VB

Standard Module

Imports System

Public Module ConsoleVB

 Public Sub Main()
 Console.WriteLine("Hello World")
 End Sub

End Module

' vbc /out:consolevb.exe /t:exe console.vb

VB

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

Introducing Web Forms

 What is ASP.NET Web Forms?
 Writing Your First Web Forms Page
 Using ASP <%%> Render Blocks
 Introduction to Server Controls
 Handling Server Control Events
 Using Custom Server Controls
 Lists, Data, and Databinding
 Form Validation Controls
 Code-Behind Web Forms
 Section Summary

What is ASP.NET Web Forms?

The ASP.NET Web Forms page framework is a scalable
common language runtime programming model that can be
used on the server to dynamically generate Web pages.

Intended as a logical evolution of ASP (ASP.NET provides
syntax compatibility with existing pages), the ASP.NET Web
Forms framework has been specifically designed to address
a number of key deficiencies in the previous model. In
particular, it provides:

● The ability to create and use reusable UI controls
that can encapsulate common functionality and thus
reduce the amount of code that a page developer
has to write.

● The ability for developers to cleanly structure their
page logic in an orderly fashion (not "spaghetti
code").

● The ability for development tools to provide strong
WYSIWYG design support for pages (existing ASP
code is opaque to tools).

This section of the QuickStart provides a high-level code
walkthrough of some key ASP.NET Web Forms features.
Subsequent sections of the QuickStart drill down into more
specific details.

Writing Your First Web Forms Page

ASP.NET Web Forms pages are text files with an .aspx file

 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications

name extension. They can be deployed throughout an IIS
virtual root directory tree. When a browser client requests
.aspx resources, the ASP.NET runtime parses and compiles
the target file into a .NET Framework class. This class can
then be used to dynamically process incoming requests.
(Note that the .aspx file is compiled only the first time it is
accessed; the compiled type instance is then reused across
multiple requests).

An ASP.NET page can be created simply by taking an
existing HTML file and changing its file name extension to
.aspx (no modification of code is required). For example,
the following sample demonstrates a simple HTML page
that collects a user's name and category preference and
then performs a form postback to the originating page
when a button is clicked:

VB Intro1.aspx

[Run Sample] | [View Source]

Important: Note that nothing happens yet when you click
the Lookup button. This is because the .aspx file contains
only static HTML (no dynamic content). Thus, the same
HTML is sent back to the client on each trip to the page,
which results in a loss of the contents of the form fields
(the text box and drop-down list) between requests.

Using ASP <% %> Render Blocks

ASP.NET provides syntax compatibility with existing ASP
pages. This includes support for <% %> code render
blocks that can be intermixed with HTML content within an
.aspx file. These code blocks execute in a top-down manner
at page render time.

The below example demonstrates how <% %> render
blocks can be used to loop over an HTML block (increasing
the font size each time):

http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/intro1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/intro1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/intro/intro1.src

 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

VB Intro2.aspx

[Run Sample] | [View Source]

Important: Unlike with ASP, the code used within the
above <% %> blocks is actually compiled--not interpreted
using a script engine. This results in improved runtime
execution performance.

ASP.NET page developers can utilize <% %> code blocks
to dynamically modify HTML output much as they can
today with ASP. For example, the following sample
demonstrates how <% %> code blocks can be used to
interpret results posted back from a client.

 VB Intro3.aspx

[Run Sample] | [View Source]

Important: While <% %> code blocks provide a powerful
way to custom manipulate the text output returned from an
ASP.NET page, they do not provide a clean HTML
programming model. As the sample above illustrates,
developers using only <% %> code blocks must custom
manage page state between round trips and custom
interpret posted values.

Introduction to ASP.NET Server
Controls

In addition to (or instead of) using <% %> code blocks to
program dynamic content, ASP.NET page developers can
use ASP.NET server controls to program Web pages. Server
controls are declared within an .aspx file using custom tags
or intrinsic HTML tags that contain a runat="server"
attribute value. Intrinsic HTML tags are handled by one of
the controls in the System.Web.UI.HtmlControls
namespace. Any tag that doesn't explicitly map to one of
the controls is assigned the type of

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/webformsintro.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/intro2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/intro2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/intro/intro2.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/intro3.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/intro3.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/intro/intro3.src

System.Web.UI.HtmlControls.HtmlGenericControl.

The following sample uses four server controls: <form
runat=server>, <asp:textbox runat=server>,
<asp:dropdownlist runat=server>, and <asp:button
runat=server>. At run time these server controls
automatically generate HTML content.

VB Intro4.aspx

[Run Sample] | [View Source]

Important: Note that these server controls automatically
maintain any client-entered values between round trips to
the server. This control state is not stored on the server (it
is instead stored within an <input type="hidden"> form
field that is round-tripped between requests). Note also
that no client-side script is required.

In addition to supporting standard HTML input controls,
ASP.NET enables developers to utilize richer custom
controls on their pages. For example, the following sample
demonstrates how the <asp:adrotator> control can be
used to dynamically display rotating ads on a page.

VB Intro5.aspx

[Run Sample] | [View Source]

Important: A detailed listing of all built-in server controls
can be found in the Web Forms Control Reference section
of this QuickStart.

Handling Server Control Events

http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/intro4.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/intro4.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/intro/intro4.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/intro5.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/intro5.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/intro/intro5.src

Each ASP.NET server control is capable of exposing an
object model containing properties, methods, and events.
ASP.NET developers can use this object model to cleanly
modify and interact with the page.

The following example demonstrates how an ASP.NET page
developer can handle the OnClick event from the
<asp:button runat=server> control to manipulate the
Text property of the <asp:label runat=server> control.

VB Intro6.aspx

[Run Sample] | [View Source]

This simple sample is functionally equivalent to the "Intro3"
sample demonstrated earlier in this section. Note, however,
how much cleaner and easier the code is in this new server-
control-based version.

Using Custom Server Controls

ASP.NET ships with 45 built-in server controls that can be
used out of the box (for details, see Web Forms Controls
Reference). In addition to using the built-in ASP.NET
controls, developers also can use controls developed by
third-party vendors.

The following sample shows a simple calendar control. The
Calendar control is declared within the page using an
<acme:calendar runat=server> tag. Note that the
<% Register %> directive at the top of the page is
responsible for registering the "Acme" XML tag prefix with
the "Acme" code namespace of the control implementation.
The ASP.NET page parser will then utilize this namespace
to load the Calendar control class instance at run time.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/intro6.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/intro6.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/intro/intro6.src

VB Intro7.aspx

[Run Sample] | [View Source]

The Calendar control in this sample has been designed to
perform "uplevel-like" processing on Internet Explorer 5.5
and "downlevel" processing on all other browsers. This
browser sniffing is nowhere near as complex as that
provided by the ASP.NET built-in server controls. For
Internet Explorer 5.5 browsers it generates DHTML output.
This DHTML output does not require round trips back to the
server when doing day selections and month navigations.
For all other browsers the control generates standard HTML
3.2. This HTML 3.2 does require round trips back to the
server to handle client-side user interactions.

Important: The code that a page developer writes is
identical regardless of whether an "uplevel" or "downlevel"
browser is used to access the page. The Calendar control
itself encapsulates all of the logic required to handle the
two scenarios.

Lists, Data, and Data Binding

ASP.NET ships with a built-in set of data grid and list
controls. These can be used to provide custom UI driven
from queries against a database or other data source. For
example, the following sample demonstrates how a
<asp:datagrid runat=server> control can be used to
databind book information collected using a SQL database
query.

VB Intro8.aspx

[Run Sample] | [View Source]

http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/intro7.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/intro7.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/intro/intro7.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/Intro8.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/Intro8.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/intro/Intro8.src

The <asp:datagrid runat=server> DataGrid control
provides an easy way to quickly display data results using a
traditional grid-control UI. Alternatively, ASP.NET
developers can use the <asp:DataList runat=server>
DataList control and a custom ItemTemplate template
to customize data information, as in the following sample.

VB Intro9.aspx

[Run Sample] | [View Source]

Note that the <asp:datalist runat=server> control
enables end users to exactly control the structure and
layout of each item within the list (using the
ItemTemplate template property). The control also
automatically handles the two-column wrapping of content
(users can control the number of columns using the
RepeatColumns property on the data list).

The following sample provides an alternate view of the
<asp:datalist runat=server> control.

VB Intro10.aspx

[Run Sample] | [View Source]

Note that the control, data model, and page user in this
example are exactly the same as those in the previous
sample. The only difference is that, here, alternative
templates are declaratively supplied to the code.

Form Validation Controls

The ASP.NET Web Forms page framework provides a set of
validation server controls that provide an easy-to-use but

http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/Intro9.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/Intro9.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/intro/Intro9.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/Intro10.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/Intro10.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/intro/Intro10.src

powerful way to check input forms for errors, and, if
necessary, display messages to the user.

Validation controls are added to an ASP.NET page like other
server controls. There are controls for specific types of
validation, such as range checking or pattern matching,
plus a RequiredFieldValidator that ensures that a user
does not skip an entry field.

The following example demonstrates how to use two
<asp:requiredfieldvalidator runat=server> controls
on a page to validate the contents of the TextBox and
DropDownList controls.

VB Intro11.aspx

[Run Sample] | [View Source]

Note that the validation controls have both uplevel and
downlevel client support. Uplevel browsers perform
validation on the client (using JavaScript and DHTML) and
on the server. Downlevel browsers perform the validation
only on the server. The programming model for the two
scenarios is identical.

Note that ASP.NET page developers can optionally check
the Page.IsValid property at run time to determine
whether all validation server controls on a page are
currently valid. This provides a simple way to determine
whether or not to proceed with business logic. For
example, the following sample performs a Page.IsValid
check before executing a database lookup on the specified
category.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/Intro11.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/Intro11.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/intro/Intro11.src

VB Intro12.aspx

[Run Sample] | [View Source]

Code-Behind Web Forms

ASP.NET supports two methods of authoring dynamic
pages. The first is the method shown in the preceding
samples, where the page code is physically declared within
the originating .aspx file. An alternative approach--known
as the code-behind method--enables the page code to be
more cleanly separated from the HTML content into an
entirely separate file.

The following sample demonstrates the use of the code-
behind method of writing ASP.NET page code.

VB Intro13.aspx

[Run Sample] | [View Source]

Section Summary

1. ASP.NET Web Forms provide an easy and powerful
way to build dynamic Web UI.

2. ASP.NET Web Forms pages can target any browser
client (there are no script library or cookie
requirements).

3. ASP.NET Web Forms pages provide syntax
compatibility with existing ASP pages.

4. ASP.NET server controls provide an easy way to
encapsulate common functionality.

5. ASP.NET ships with 45 built-in server controls.
Developers can also use controls built by third

http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/Intro12.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/Intro12.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/intro/Intro12.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/intro13.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/intro/VB/intro13.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/intro/intro13.src

parties.
6. ASP.NET server controls can automatically project

both uplevel and downlevel HTML.
7. ASP.NET templates provide an easy way to

customize the look and feel of list server controls.
8. ASP.NET validation controls provide an easy way to

do declarative client or server data validation.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

Working with Server Controls

 Declaring Server Controls
 Manipulating Server Controls
 Handling Control Action Events
 Handling Multiple Control Action Events
 Performing Page Navigation (Scenario 1)
 Performing Page Navigation (Scenario 2)

This section of the QuickStart illustrates some common core
concepts and common actions performed by end users
when using ASP.NET server controls within a page.

Declaring Server Controls

ASP.NET server controls are identified within a page using
declarative tags that contain a runat="server" attribute.
The following example declares three <asp:label
runat="server"> server controls and customizes the text
and style properties of each one individually.

VB Controls1.aspx

[Run Sample] | [View Source]

Manipulating Server Controls

You can programmatically identify an individual ASP.NET
server control within a page by providing it with an id
attribute. You can use this id reference to programmatically
manipulate the server control's object model at run time.
For example, the following sample demonstrates how a
page developer could programmatically set an <asp:label
runat="server"> control's Text property within the
Page_Load event.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/controls/VB/controls1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/controls/VB/controls1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/controls/controls1.src

 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications

VB Controls2.aspx

[Run Sample] | [View Source]

Handling Control Action Events

ASP.NET server controls can optionally expose and raise
server events, which can be handled by page developers. A
page developer may accomplish this by declaratively wiring
an event to a control (where the attribute name of an event
wireup indicates the event name and the attribute value
indicates the name of a method to call). For example, the
following code example demonstrates how to wire an
OnClick event to a button control.

VB Controls3.aspx

[Run Sample] | [View Source]

Handling Multiple Control Action Events

Event handlers provide a clean way for page developers to
structure logic within an ASP.NET page. For example, the
following sample demonstrates how to wire and handle four
button events on a single page.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/controls/VB/controls2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/controls/VB/controls2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/controls/controls2.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/controls/VB/controls3.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/controls/VB/controls3.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/controls/controls3.src

 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

VB Controls4.aspx

[Run Sample] | [View Source]

Performing Page Navigation (Scenario
1)

Page navigation among multiple pages is a common
scenario in virtually all Web applications. The following
sample demonstrates how to use the <asp:hyperlink
runat=server> control to navigate to another page
(passing custom query string parameters along the way).
The sample then demonstrates how to easily get access to
these query string parameters from the target page.

 VB Controls5.aspx

[Run Sample] | [View Source]

Performing Page Navigation (Scenario
2)

Not all page navigation scenarios are initiated through
hyperlinks on the client. Client-side page redirects or
navigations can also be initiated from the server by an
ASP.NET page developer by calling the
Response.Redirect(url) method. This is typically done
when server-side validation is required on some client input
before the navigation actually takes place.

The following sample demonstrates how to use the
Response.Redirect method to pass parameters to
another target page. It also demonstrates how to easily get
access to these parameters from the target page.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/webserverctrls.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/controls/VB/controls4.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/controls/VB/controls4.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/controls/controls4.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/controls/VB/controls5.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/controls/VB/controls5.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/controls/controls5.src

VB Controls6.aspx

[Run Sample] | [View Source]

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/controls/VB/controls6.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/controls/VB/controls6.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/controls/controls6.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding

Applying Styles to Controls

 Applying Styles to HTMLControls
 Applying Styles to Web Controls
 Section Summary

The Web is a flexible environment for user interfaces, with extreme variations in the look and feel of
different Web sites. The widespread adoption of cascading style sheets (CSS) is largely responsible for the
rich designs encountered on the Web. All of ASP.NET's HTML server controls and Web server controls have
been designed to provide first-class support for CSS styles. This section discusses how to use styles in
conjunction with server controls and demonstrates the very fine control over the look and feel of your Web
Forms that they provide.

Applying Styles to HTML Controls

Standard HTML tags support CSS through a style attribute, which can be set to a semicolon-delimited list of
attribute/value pairs. For more information about the CSS attributes supported by the Internet Explorer
browser, see MSDN Web Workshop's CSS Attributes Reference page. All of the ASP.NET HTML server
controls can accept styles in exactly the same manner as standard HTML tags. The following example
illustrates a number of styles applied to various HTML server controls. If you view the source code on the
page returned to the client, you will see that these styles are passed along to the browser in the control's
rendering.

VB Style1.aspx

[Run Sample] | [View Source]

CSS also defines a class attribute, which can be set to a CSS style definition contained in a
<style>...</style> section of the document. The class attribute makes it easy to define styles once and
apply them to several tags without having to redefine the style itself. Styles on HTML server controls also
can be set in this manner, as demonstrated in the following sample.

VB Style2.aspx

[Run Sample] | [View Source]

When an ASP.NET page is parsed, the style information is populated into a Style property (of type
CssStyleCollection) on the System.Web.UI.HtmlControls.HtmlControl class. This property is
essentially a dictionary that exposes the control's styles as a string-indexed collection of values for each
style-attribute key. For example, you could use the following code to set and subsequently retrieve the
width style attribute on an HtmlInputText server control.

<script language="VB" runat="server" >

 Sub Page_Load(Sender As Object, E As EventArgs)
 MyText.Style("width") = "90px"
 Response.Write(MyText.Style("width"))
 End Sub

</script>

<input type="text" id="MyText" runat="server"/>

VB

http://msdn.microsoft.com/workshop/author/css/reference/attributes.asp
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/style1.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/style2.src

 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

This next sample shows how you can programmatically manipulate the style for an HTML server control
using this Style collection property.

VB Style3.aspx

[Run Sample] | [View Source]

Applying Styles to Web Server Controls

Web server controls provide an additional level of support for styles by adding several strongly typed
properties for commonly used style settings, such as background and foreground color, font name and size,
width, height, and so on. These style properties represent a subset of the style behaviors available in HTML
and are represented as "flat" properties exposed directly on the
System.Web.UI.WebControls.WebControl base class. The advantage of using these properties is that
they provide compile-time type checking and statement completion in development tools such as Microsoft
Visual Studio .NET.

The following sample shows a WebCalendar control with several styles applied to it (a calendar without
styles applied is included for contrast). Note that when setting a property that is a class type, such as Font,
you need to use the subproperty syntax PropertyName-SubPropertyName .

VB Style4.aspx

[Run Sample] | [View Source]

The System.Web.UI.WebControls namespace includes a Style base class that encapsulates common
style attributes (additional style classes, such as TableStyle and TableItemStyle, inherit from this
common base class). Many Web server controls expose properties of this type for specifying the style of
individual rendering elements of the control. For example, the WebCalendar exposes many such style
properties: DayStyle, WeekendDayStyle, TodayDayStyle, SelectedDayStyle,
OtherMonthDayStyle, and NextPrevStyle. You can set individual properties of these styles using the
subproperty syntax PropertyName-SubPropertyName, as the following sample demonstrates.

VB Style5.aspx

[Run Sample] | [View Source]

A slightly different syntax allows each Style property to be declared as a child element nested within Web
server control tags.

<ASP:Calendar ... runat="server">
 <TitleStyle BorderColor="darkolivegreen" BorderWidth="3"
 BackColor="olivedrab" Height="50px" />
</ASP:Calendar>

The following sample shows alternative syntax but is functionally equivalent to the preceding one.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/webtemplates.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style3.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style3.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/style3.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style4.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style4.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/style4.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style5.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style5.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/style5.src

VB Style6.aspx

[Run Sample] | [View Source]

As with HTML server controls, you can apply styles to Web server controls using a CSS class definition. The
WebControl base class exposes a String property named CssClass for setting the style class:

VB Style7.aspx

[Run Sample] | [View Source]

If an attribute is set on a server control that does not correspond to any strongly typed property on the
control, the attribute and value are populated in the Attributes collection of the control. By default, server
controls will render these attributes unmodified in the HTML returned to the requesting browser client. This
means that the style and class attributes can be set on Web server controls directly instead of using the
strongly typed properties. While this requires some understanding of the actual rendering of the control, it
can be a flexible way to apply styles as well. It is especially useful for the standard form input controls, as
illustrated in the following sample.

VB Style8.aspx

[Run Sample] | [View Source]

Web server control styles can also be set programmatically, using the ApplyStyle method of the base
WebControl class, as in the following code.

<script language="VB" runat="server">
 Sub Page_Load(Src As Object, E As EventArgs)
 Dim MyStyle As New Style
 MyStyle.BorderColor = Color.Black
 MyStyle.BorderStyle = BorderStyle.Dashed
 MyStyle.BorderWidth = New Unit(1)

 MyLogin.ApplyStyle (MyStyle)
 MyPassword.ApplyStyle (MyStyle)
 MySubmit.ApplyStyle (MyStyle)
 End Sub
</script>

Login: <ASP:TextBox id="MyLogin" runat="server" />/<p/>
Password: <ASP:TextBox id="MyPassword" TextMode="Password" runat="server" />
View: <ASP:DropDownList id="MySelect" runat="server"> ... </ASP:DropDownList>

VB

The following sample demonstrates the code above.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style6.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style6.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/style6.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style7.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style7.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/style7.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style8.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style8.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/style8.src

VB Style9.aspx

[Run Sample] | [View Source]

Section Summary

1. ASP.NET's HTML server control and Web server control families provide first-class support for CSS
styles.

2. Styles may be applied by setting either the style or the class attributes of a control. These settings
are accessible programmatically through the control's Attributes collection. In the case of HTML
server controls, individual values for style-attribute keys can be retrieved from the control's Style
collection.

3. Most commonly used style settings are exposed on Web server controls as strongly typed properties
of the control itself.

4. The System.Web.UI.WebControls namespace includes a Style base class that encapsulates
common style attributes. Many Web server controls expose properties of this type to control
individual rendering elements.

5. Styles may be set programmatically on Web server controls using the ApplyStyle method of the
WebControl base class.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style9.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/style9.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/style9.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Server Control Form Validation

 Introduction to Validation
 Types of Validation Controls
 Client-Side Validation
 Displaying Validation Errors
 Working with CompareValidator
 Working with RangeValidator
 Working with Regular Expressions
 Performing Custom Validation
 Bringing It All Together
 Section Summary

Introduction to Validation

The Web Forms framework includes a set of validation server controls that provide an easy-to-use but powerful way to check
input forms for errors and, if necessary, display messages to the user.

Validation controls are added to a Web Forms page like other server controls. There are controls for specific types of
validation, such as range checking or pattern matching, plus a RequiredFieldValidator that ensures that a user does not
skip an entry field. You can attach more than one validation control to an input control. For example, you might specify both
that an entry is required and that it must contain a specific range of values.

Validation controls work with a limited subset of HTML and Web server controls. For each control, a specific property contains
the value to be validated. The following table lists the input controls that may be validated.

Control Validation Property

HtmlInputText Value

HtmlTextArea Value

HtmlSelect Value

HtmlInputFile Value

TextBox Text

ListBox SelectedItem.Value

DropDownList SelectedItem.Value

RadioButtonList SelectedItem.Value

Types of Validation Controls

The simplest form of validation is a required field. If the user enters any value in a field, it is valid. If all of the fields in the
page are valid, the page is valid. The following example illustrates this using the RequiredFieldValidator.

VB Validator1.aspx

[Run Sample] | [View Source]

There are also validation controls for specific types of validation, such as range checking or pattern matching. The following
table lists the validation controls.

Control Name Description

RequiredFieldValidator Ensures that the user does not skip an entry.

CompareValidator Compares a user's entry with a constant value or a property
value of another control using a comparison operator (less
than, equal to, greater than, and so on).

RangeValidator Checks that a user's entry is between specified lower and
upper boundaries. You can check ranges within pairs of
numbers, alphabetic characters, or dates. Boundaries can be
expressed as constants.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/validate/validator1.src

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

RegularExpressionValidator Checks that the entry matches a pattern defined by a regular
expression. This type of validation allows you to check for
predictable sequences of characters, such as those in social
security numbers, e-mail addresses, telephone numbers,
postal codes, and so on.

CustomValidator Checks the user's entry using validation logic that you code
yourself. This type of validation allows you to check for
values derived at run time.

ValidationSummary Displays the validation errors in summary form for all of the
validators on a page.

Client-Side Validation

The validation controls always perform validation checking in server code. However, if the user is working with a browser
that supports DHTML, the validation controls can also perform validation using client script. With client-side validation, any
errors are detected on the client when the form is submitted to the server. If any of the validators are found to be in error,
the submission of the form to the server is cancelled and the validator's Text property is displayed. This permits the user to
correct the input before submitting the form to the server. Field values are revalidated as soon as the field containing the
error loses focus, thus providing the user with a rich, interactive validation experience.

Note that the Web Forms page framework always performs validation on the server, even if the validation has already been
performed on the client. This helps prevent users from being able to bypass validation by impersonating another user or a
preapproved transaction.

Client-side validation is enabled by default. If the client is capable, uplevel validation will be performed automatically. To
disable client-side validation, set the page's ClientTarget property to "Downlevel" ("Uplevel" forces client-side validation).

VB Validator2.aspx

[Run Sample] | [View Source]

Displaying Validation Errors

When the user's input is processed (for example, when the form is submitted), the Web Forms page framework passes the
user's entry to the associated validation control or controls. The validation controls test the user's input and set a property to
indicate whether the entry passed the validation test. After all validation controls have been processed, the IsValid property
on the page is set; if any of the controls shows that a validation check failed, the entire page is set to invalid.

If a validation control is in error, an error message may be displayed in the page by that validation control or in a
ValidationSummary control elsewhere on the page. The ValidationSummary control is displayed when the IsValid
property of the page is false. It polls each of the validation controls on the page and aggregates the text messages exposed
by each. The following example illustrates displaying errors with a ValidationSummary control.

VB Validator3.aspx

[Run Sample] | [View Source]

Working with CompareValidator

The CompareValidator server control compares the values of two controls. CompareValidator uses three key properties
to perform its validation. ControlToValidate and ControlToCompare contain the values to compare. Operator defines
the type of comparison to perform--for example, Equal or Not Equal. CompareValidator performs the validation by
evaluating these properties as an expression, as follows:

 (ControlToValidate <Operator> ControlToCompare)

If the expression evaluates true, the validation result is valid.

The following sample shows how to use the CompareValidator control.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/webvalidation.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/validate/validator2.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator3.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator3.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/validate/validator3.src

VB Validator4.aspx

[Run Sample] | [View Source]

Working with RangeValidator

The RangeValidator server control tests whether an input value falls within a given
range.
RangeValidator uses three key properties to perform its validation.
ControlToValidate contains the value
to validate. MinimumValue and MaximumValue define the minimum and maximum values of
the valid
range.

This sample shows how to use the RangeValidator control.

VB Validator5.aspx

[Run Sample] | [View Source]

Working with Regular Expressions

The RegularExpressionValidator server control checks that the entry matches a pattern
defined by a
regular expression. This type of validation allows you to check for predictable
sequences of characters,
such as those in social security numbers, e-mail addresses, telephone numbers, postal
codes, and so on.

RegularExpressionValidator uses two key properties to perform its validation.
ControlToValidate contains
the value to validate. ValidationExpression contains the regular expression to
match.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator4.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator4.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/validate/validator4.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator5.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator5.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/validate/validator5.src

These samples illustrates using the RegularExpressionValidator control.

VB Validator6.aspx

[Run Sample] | [View Source]

VB Validator7.aspx

[Run Sample] | [View Source]

Performing Custom Validation

The CustomValidator server control calls a user-defined function to perform
validations that the standard
validators can't handle. The custom function can execute on the server or in client-
side script, such as JScript or VBScript.
For client-side custom validation, the name of the custom function must be identified
in the ClientValidationFunction
property. The custom function must have the form

 function myvalidator(source, arguments)
Note that source is the client-side CustomValidator object, and arguments is an
object with two properties,
Value and IsValid. The Value property is the value to be validated and the IsValid
property is a
Boolean used to set the return result of the validation.

For server-side custom validation, place your custom validation in the validator's
OnServerValidate
delegate.

The following sample shows how to use the CustomValidator control.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator6.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator6.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/validate/validator6.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator7.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator7.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/validate/validator7.src

VB Validator8.aspx

[Run Sample] | [View Source]

Bringing It All Together

This sample shows a typical registration form, using the variations of validation
controls discussed in this topic.

VB Validator9.aspx

[Run Sample] | [View Source]

Section Summary

1. Validator controls can be used to validate input on any Web Forms page.
2. More than one control can be used on a given input field.
3. Client-side validation may be used in addition to server validation to improve form

usability.
4. The CustomValidator control lets the user define custom validation criteria.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator8.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator8.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/validate/validator8.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator9.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/validate/VB/validator9.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/validate/validator9.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles

Web Forms User Controls

 Introduction to User Controls
 Exposing User Control Properties
 Encapsulating Events in a User Control
 Creating User Controls Programmatically
 Section Summary

Introduction to User Controls

In addition to the built-in server controls provided by ASP.NET, you can easily define your own
controls using the same programming techniques that you have already learned for writing
Web Forms pages. In fact, with just a few modifications, almost any Web Forms page can be
reused in another page as a server control (note that a user control is of type
System.Web.UI.UserControl, which inherits directly from System.Web.UI.Control). A
Web Forms page used as a server control is named a user control for short. As a matter of
convention, the .ascx extension is used to indicate such controls. This ensures that the user
control's file cannot be executed as a standalone Web Forms page (you will see a little that
there are a few, albeit important, differences between a user control and a Web Forms page).
User controls are included in a Web Forms page using a Register directive:

<%@ Register TagPrefix="Acme" TagName="Message" Src="pagelet1.ascx" %>

The TagPrefix determines a unique namespace for the user control (so that multiple user
controls with the same name can be differentiated from each other). The TagName is the
unique name for the user control (you can choose any name). The Src attribute is the virtual
path to the user control--for example "MyPagelet.ascx" or "/MyApp/Include/MyPagelet.ascx".
After registering the user control, you may place the user control tag in the Web Forms page
just as you would an ordinary server control (including the runat="server" attribute):

<Acme:Message runat="server"/>

The following example shows a user control imported into another Web Forms page. Note that
the user control in this case is just a simple static file.

VB Pagelet1.aspx

[Run Sample] | [View Source]

Exposing User Control Properties

When a Web Forms page is treated as a control, the public fields and methods of that Web
Form are promoted to public properties (that is, tag attributes) and methods of the control as
well. The following example shows an extension of the previous user control example that
adds two public String fields. Notice that these fields can be set either declaratively or
programmatically in the containing page.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/pagelets/VB/Pagelet1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/pagelets/VB/Pagelet1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/pagelets/Pagelet1.src

 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

VB Pagelet2.aspx

[Run Sample] | [View Source]

In addition to promoting public fields to control properties, the property syntax may be used.
Property syntax has the advantage of being able to execute code when properties are set or
retrieved. The following example demonstrates an Address user control that wraps the text
properties of TextBox controls within it. The benefit of doing this is that the control inherits
the automatic state management of the TextBox control for free.

Notice that there are two Address user controls on the containing Web Forms page that set
the Caption property to "Billing Address" and "Shipping Address", respectively. The real
power of user controls is in this type of reusability.

VB Pagelet3.aspx

[Run Sample] | [View Source]

Another useful user control is a Login control for collecting user names and passwords.

VB Pagelet4.aspx

[Run Sample] | [View Source]

In this example, form validation controls are added to the Login user control.

VB Pagelet5.aspx

[Run Sample] | [View Source]

Encapsulating Events in a User Control

User controls participate in the complete execution lifecycle of the request, much the way
ordinary server controls do. This means that a user control can handle its own events,
encapsulating some of the page logic from the containing Web Forms page. The following
example demonstrates a product-listing user control that internally handles its own postbacks.
Note that the user control itself has no wrapping <form runat="server"> control. Because
only one form control may be present on a page (ASP.NET does not allow nested server

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/webpagelets.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/pagelets/VB/Pagelet2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/pagelets/VB/Pagelet2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/pagelets/Pagelet2.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/pagelets/VB/Pagelet3.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/pagelets/VB/Pagelet3.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/pagelets/Pagelet3.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/pagelets/VB/Pagelet4.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/pagelets/VB/Pagelet4.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/pagelets/Pagelet4.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/pagelets/VB/Pagelet5.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/pagelets/VB/Pagelet5.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/pagelets/Pagelet5.src

forms), it is left to the containing Web Forms page to define this.

VB Pagelet6.aspx

[Run Sample] | [View Source]

Creating User Controls Programmatically

Just as ordinary server controls can be created programmatically, so user controls can be. The
page's LoadControl method is used to load the user control, passing the virtual path to the
user control's source file:

Dim c1 As Control = LoadControl("pagelet7.ascx")
CType(c1, (Pagelet7VB)).Category = "business"
Page.Controls.Add(c1)

VB

The type of the user control is determined by a ClassName attribute on the Control
directive. For example, a user control saved with the file name "pagelet7.ascx" is assigned the
strong type "Pagelet7CS" as follows:

<%@ Control ClassName="Pagelet7CS" %>

Because the LoadControl method returns a type of System.Web.UI.Control, it must be
cast to the appropriate strong type in order to set individual properties of the control. Finally,
the user control is added to the base page's ControlCollection.

VB Pagelet7.aspx

[Run Sample] | [View Source]

Important The strong type for a user control is available to the containing Web Forms page
only if a Register directive is included for the user control (even if there are no user control
tags actually declared).

Section Summary

1. User controls allow developers to easily define custom controls using the same
programming techniques as for writing Web Forms pages.

2. As a matter of convention, an .ascx file name extension is used to indicate such
controls. This ensures that a user control file cannot be executed as a standalone Web
Forms page.

3. User controls are included into another Web Forms page using a Register directive,
which specifies a TagPrefix, TagName, and Src location.

4. After the user control has been registered, a user control tag may be placed in a Web
Forms page as an ordinary server control (including the runat="server" attribute).

5. The public fields, properties, and methods of a user control are promoted to public

http://docs.aspng.com/quickstart/aspplus/samples/webforms/pagelets/VB/Pagelet6.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/pagelets/VB/Pagelet6.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/pagelets/Pagelet6.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/pagelets/VB/Pagelet7.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/pagelets/VB/Pagelet7.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/pagelets/Pagelet7.src

properties (tag attributes) and methods of the control in the containing Web Forms
page.

6. User controls participate in the complete execution lifecycle of every request and can
handle their own events, encapsulating some of the page logic from the containing
Web Forms page.

7. User controls should not contain any form controls but should instead rely on their
containing Web Forms page to include one if necessary.

8. User controls may be created programmatically using the LoadControl method of the
System.Web.UI.Page class. The type of the user control is determined by the
ASP.NET runtime, following the convention filename_extension.

9. The strong type for a user control is available to the containing Web Forms page only if
a Register directive is included for the user control (even if there are no user control
tags actually declared).

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Data Binding Server Controls

 Data Binding Overview and Syntax
 Binding to Simple Properties
 Binding to Collections & Lists
 Binding Expressions or Methods
 DataBinder.Eval()
 Section Summary

Data Binding Overview and Syntax

ASP.NET introduces a new declarative data binding syntax. This extremely flexible syntax permits the developer
to bind not only to data sources, but also to simple properties, collections, expressions, and even results returned
from method calls. The following table shows some examples of the new syntax.

Simple property Customer: <%# custID %>

Collection Orders: <asp:ListBox id="List1" datasource='<%# myArray %>' runat="server">

Expression Contact: <%# (customer.First Name + " " + customer.LastName) %>

Method result Outstanding Balance: <%# GetBalance(custID) %>

Although this syntax looks similar to the ASP shortcut for Response.Write -- <%= %> -- its behavior is quite
different. Whereas the ASP Response.Write shortcut syntax was evaluated when the page was processed, the
ASP.NET data binding syntax is evaluated only when the DataBind method is invoked.

DataBind is a method of the Page and all server controls. When you call DataBind on a parent control, it
cascades to all of the children of the control. So, for example, DataList1.DataBind() invokes the DataBind
method on each of the controls in the DataList templates. Calling DataBind on the Page --
Page.DataBind() or simply DataBind() -- causes all data binding expressions on the page to be evaluated.
DataBind is commonly called from the Page_Load event, as shown in the following example.

Protected Sub Page_Load(Src As Object, E As EventArgs)
 DataBind()
End Sub

VB

You can use a binding expression almost anywhere in the declarative section of an .aspx page, provided it
evaluates to the expected data type at run time. The simple property, expression, and method examples above
display text to the user when evaluated. In these cases, the data binding expression must evaluate to a value of
type String. In the collection example, the data binding expression evaluates to a value of valid type for the
DataSource property of ListBox. You might find it necessary to coerce the type of value in your binding
expression to produce the desired result. For example, if count is an integer:

Number of Records: <%# count.ToString() %>

Binding to Simple Properties

The ASP.NET data binding syntax supports binding to public variables, properties of the Page, and properties of
other controls on the page.

The following example illustrates binding to a public variable and simple property on the page. Note that these
values are initialized before DataBind() is called.

VB DataBind1.aspx

[Run Sample] | [View Source]

The following example illustrates binding to a property of another control.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/DataBind/VB/DataBind1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/DataBind/VB/DataBind1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/DataBind/DataBind1.src

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

VB DataBind2.aspx

[Run Sample] | [View Source]

Binding to Collections and Lists

List server controls like DataGrid, ListBox and HTMLSelect use a collection as a data source. The following
examples illustrate binding to usual common language runtime collection types. These controls can bind only to
collections that support the IEnumerable, ICollection, or IListSource interface. Most commonly, you'll bind
to ArrayList, Hashtable, DataView and DataReader.

The following example illustrates binding to an ArrayList.

VB DataBind3.aspx

[Run Sample] | [View Source]

The following example illustrates binding to a DataView. Note that the DataView class is defined in the
System.Data namespace.

VB DataBind4.aspx

[Run Sample] | [View Source]

The following example illustrates binding to a Hashtable.

VB DataBind5.aspx

[Run Sample] | [View Source]

Binding Expressions or Methods

Often, you'll want to manipulate data before binding to your page or a control. The following example illustrates
binding to an expression and the return value of a method.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/webdatabinding.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/DataBind/VB/DataBind2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/DataBind/VB/DataBind2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/DataBind/DataBind2.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/DataBind/VB/DataBind3.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/DataBind/VB/DataBind3.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/DataBind/DataBind3.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/DataBind/VB/DataBind4.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/DataBind/VB/DataBind4.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/DataBind/DataBind4.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/DataBind/VB/DataBind5.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/DataBind/VB/DataBind5.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/DataBind/DataBind5.src

VB DataBind6.aspx

[Run Sample] | [View Source]

DataBinder.Eval

The ASP.NET framework supplies a static method that evaluates late-bound data binding expressions and
optionally formats the result as a string. DataBinder.Eval is convenient in that it eliminates much of the explicit
casting the developer must do to coerce values to the desired data type. It is particularly useful when data
binding controls within a templated list, because often both the data row and the data field must be cast.

Consider the following example, where an integer will be displayed as a currency string. With the standard
ASP.NET data binding syntax, you must first cast the type of the data row in order to retrieve the data field,
IntegerValue. Next, this is passed as an argument to the String.Format method.

<%# String.Format("{0:c}", (CType(Container.DataItem, DataRowView)("IntegerValue")))
%>

VB

This syntax can be complex and difficult to remember. In contrast, DataBinder.Eval is simply a method with
three arguments: the naming container for the data item, the data field name, and a format string. In a
templated list like DataList, DataGrid, or Repeater, the naming container is always Container.DataItem.
Page is another naming container that can be used with DataBinder.Eval.

<%# DataBinder.Eval(Container.DataItem, "IntegerValue", "{0:c}") %>

VB

The format string argument is optional. If it is omitted, DataBinder.Eval returns a value of type object, as
shown in the following example.

<%# CType(DataBinder.Eval(Container.DataItem, "BoolValue"), Boolean) %>

VB

It is important to note that DataBinder.Eval can carry a noticeable performance penalty over the standard data
binding syntax because it uses late-bound reflection. Use DataBinder.Eval judiciously, especially when string
formatting is not required.

VB DataBind7.aspx

[Run Sample] | [View Source]

Section Summary

1. The ASP.NET declarative data binding syntax uses the <%# %> notation.
2. You can bind to data sources, properties of the page or another control, collections, expressions, and

results returned from method calls.
3. List controls can bind to collections that support the ICollection, IEnumerable, or IListSource

interface, such as ArrayList, Hashtable, DataView, and DataReader.
4. DataBinder.Eval is a static method for late binding. Its syntax can be simpler than the standard data

binding syntax, but performance is slower.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/DataBind/VB/DataBind6.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/DataBind/VB/DataBind6.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/DataBind/DataBind6.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/DataBind/VB/DataBind7.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/DataBind/VB/DataBind7.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/DataBind/DataBind7.src

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Server-Side Data Access

 Introduction to Server-Side Data
 Connections, Commands, and DataSets
 Accessing SQL-based Data
 Binding SQL Data to a DataGrid
 Performing a Parameterized Select
 Inserting Data in a SQL Database
 Updating Data in a SQL Database
 Deleting Data in a SQL Database
 Sorting Data from a SQL Database
 Working with Master-Detail Relationships
 Writing and Using Stored Procedures
 Accessing XML-based Data
 Section Summary

Introduction to Server-Side Data

Data access is the heart of any real-world application, and ASP.NET provides a rich set of controls that are well-
integrated with the managed data access APIs provided in the common language runtime. This section walks
through several iterations of a sample that uses the ASP.NET DataGrid control to bind to the results of SQL
queries and XML data files. This section assumes some familiarity with database fundamentals and the SQL query
language.

Server-side data access is unique in that Web pages are basically stateless, which presents some difficult
challenges when trying to perform transactions such as inserting or updating records from a set of data retrieved
from a database. As you'll see in this section, the DataGrid control can help manage these challenges, allowing
you to concentrate more on your application logic and less on the details of state management and event handling.

Connections, Commands, and Datasets

The common language runtime provides a complete set of managed data access APIs for data-intensive
application development. These APIs help to abstract the data and present it in a consistent way regardless of its
actual source (SQL Server, OLEDB, XML, and so on). There are essentially three objects you will work with most
often: connections, commands, and datasets.

● A connection represents a physical connection to some data store, such as SQL Server or an XML file.
● A command represents a directive to retrieve from (select) or manipulate (insert, update, delete) the data

store.
● A dataset represents the actual data an application works with. Note that datasets are always disconnected

from their source connection and data model and can be modified independently. However, changes to a
dataset can be easily reconciled with the originating data model.

For a more detailed walkthrough of the managed data access solution in the common language runtime, please
read the ADO.NET Overview section of this tutorial.

Accessing SQL-based Data

An application typically needs to perform one or more select, insert, update, or delete queries to a SQL database.
The following table shows an example of each of these queries.

Query Example

Simple Select SELECT * from Employees WHERE FirstName = 'Bradley';

Join Select SELECT * from Employees E, Managers M WHERE
E.FirstName = M.FirstName;

Insert INSERT into Employees VALUES ('123-45-
6789','Bradley','Millington','Program Manager');

Update UPDATE Employees SET Title = 'Development Lead' WHERE
FirstName = 'Bradley';

Delete DELETE from Employees WHERE Productivity < 10;

To give your page access to the classes you will need to perform SQL data access, you must import the
System.Data and System.Data.SqlClient namespaces into your page.

http://docs.aspng.com/quickstart/aspplus/doc/adoplusoverview.aspx

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>

To perform a select query to a SQL database, you create a SqlConnection to the database passing the
connection string, and then construct a SqlDataAdapter object that contains your query statement. To populate
a DataSet object with the results from the query, you call the command's Fill method.

Dim myConnection As New
SqlConnection("server=(local)\NetSDK;database=pubs;Trusted_Connection=yes")
Dim myCommand As New SqlDataAdapter("select * from Authors", myConnection)

Dim ds As New DataSet()
myCommand.Fill(ds, "Authors")

VB

As mentioned earlier in this section, the benefit of using a dataset is that it gives you a disconnected view of the
database. You can operate on a dataset in your application, and then reconcile your changes with the actual
database later. For long-running applications this is often the best approach. For Web applications, you are usually
performing short operations with each request (commonly to simply display the data). You often don't need to hold
a DataSet object over a series of several requests. For situations like these, you can use a SqlDataReader.

A SqlDataReader provides a forward-only, read-only pointer over data retrieved from a SQL database. To use a
SqlDataReader, you declare a SqlCommand instead of a SqlDataAdapter. The SqlCommand exposes an
ExecuteReader method that returns a SqlDataReader. Note also that you must explicitly open and close the
SqlConnection when you use a SqlCommand. After a call to ExecuteReader, the SqlDataReader can be
bound to an ASP.NET server control, as you'll see in the next section.

Dim myConnection As SqlConnection = New
SqlConnection("server=(local)\NetSDK;database=pubs;Trusted_Connection=yes")
Dim myCommand As SqlCommand = New SqlCommand("select * from Authors", myConnection)

myConnection.Open()

Dim dr As SqlDataReader = myCommand.ExecuteReader()

...

myConnection.Close()

VB

When performing commands that do not require data to be returned, such as inserts, updates, and deletes, you
also use a SqlCommand. The command is issued by calling an ExecuteNonQuery method, which returns the
number of rows affected. Note that the connection must be explicitly opened when you use the SqlCommand;
the SqlDataAdapter automatically handles opening the connection for you.

Dim myConnection As New
SqlConnection("server=(local)\NetSDK;database=pubs;Trusted_Connection=yes")
Dim myCommand As New SqlCommand(_
 "UPDATE Authors SET phone='(800) 555-5555' WHERE au_id = '123-45-
6789'", _
 myConnection)

myCommand.Connection.Open()
myCommand.ExecuteNonQuery()
myCommand.Connection.Close()

VB

Important: Always remember to close the connection to the data model before the page finishes executing. If
you do not close the connection, you might inadvertently exhaust the connection limit while waiting for the page
instances to be handled by garbage collection.

Binding SQL Data to a DataGrid

The following sample shows a simple select query bound to a DataGrid control. The DataGrid renders a table
containing the SQL data.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/webdataaccess.aspx

VB DataGrid1.aspx

[Run Sample] | [View Source]

Like the DropDownList shown in the Data Binding section, the DataGrid control supports a DataSource
property that takes an IEnumerable or ICollection, as well as a DataSet. You can use a DataSet by assigning
the DefaultView property of a table contained in the DataSet to the name of the table you wish to use within
the DataSet. The DefaultView property represents the current state of a table within a DataSet, including any
changes which have been made by application code (row deletions or value changes, for example). After setting
the DataSource property, you call DataBind() to populate the control.

MyDataGrid.DataSource=ds.Tables("Authors").DefaultView
MyDataGrid.DataBind()

VB

An alternative syntax is to specify both a DataSource and a DataMember. In this case, ASP.NET automatically
gets the DefaultView for you.

MyDataGrid.DataSource=ds
MyDataGrid.DataMember="Authors"
MyDataGrid.DataBind()

VB

You can also bind directly to a SqlDataReader. In this case you are only displaying data, so the forward-only
nature of the SqlDataReader is perfectly suited to this scenario, and you benefit from the performance boost that
SqlDataReader provides.

VB DataGrid1.1.aspx

[Run Sample] | [View Source]

Note: For the remainder of this section, only the DataSet model of data access is shown; however, any of these
samples could be re-written to take advantage of SQLDataReader as well.

Performing a Parameterized Select

You can also perform a parameterized select using the SqlDataAdapter object. The following sample shows how
you can modify the data selected using the value posted from a select HtmlControl.

VB DataGrid2.aspx

[Run Sample] | [View Source]

The SqlDataAdapter maintains a Parameters collection that can be used to replace variable identifiers (denoted
by an "@" in front of the name) with values. You add a new SqlParameter to this collection that specifies the
name, type, and size of the parameter, and then set its Value property to the value of the select.

myCommand.SelectCommand.Parameters.Add(New SqlParameter("@State", SqlDbType.NVarChar,

http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid1.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid1.1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid1.1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid1.1.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid2.src

2))
myCommand.SelectCommand.Parameters("@State").Value = MySelect.Value

VB

Important: Note that the DataGrid's EnableViewState property has been set to false. If the data will be
populated in each request, there is no benefit to having the DataGrid store state information to be sent through a
round trip with form posts. Because the DataGrid stores all of its data when maintaining state, it is important to
turn it off when appropriate to improve the performance of your pages.

DataGrid2.aspx statically populates the values of the select box, but this will not work well if those values ever
change in the database. Because the select HtmlControl also supports an IEnumerable DataSource property,
you can use a select query to dynamically populate the select box instead, which guarantees that the database and
user interface are always in sync. The following sample demonstrates this process.

VB DataGrid3.aspx

[Run Sample] | [View Source]

Inserting Data in a SQL Database

To insert a row into the database, you can add a simple input form to the page, and execute an insert command in
the form submit event handler. Just as in the previous two samples, you use the command object's Parameters
collection to populate the command's values. Note that you also check to make sure the required values are not
null before attempting to insert into the database. This prevents an accidental violation of the database's field
constraints. You also execute the insert command inside of a try/catch block, just in case the primary key for
inserted row already exists.

VB DataGrid4.aspx

[Run Sample] | [View Source]

Instead of explicitly checking the input values, you could have just as easily used the validator controls provided
with ASP.NET. The following sample shows how to do that. Note that using the RegEx Validator provides the
additional benefit of checking the format for the author ID, zip code, and phone number fields.

VB DataGrid5.aspx

[Run Sample] | [View Source]

Updating Data in a SQL Database

Updating a database can often be tricky in Web applications. The DataGrid control provides some built-in support
for this scenario that makes updates easier. To allow rows to be edited, the DataGrid supports an integer
EditItemIndex property, which indicates which row of the grid should be editable. When this property is set, the
DataGrid renders the row at that index as text input boxes instead of simple labels. A value of -1 (the default)
indicates that no rows are editable. The page can enclose the DataGrid in a server-side form and get access to
the edited data through the DataGrid's object model.

To figure out which row should be editable, you need a way to accept some input from the user about which row
they would like to edit. The DataGrid can contain an EditCommandColumn that renders links for firing three
special events: EditCommand, UpdateCommand, and CancelCommand. The EditCommandColumn is

http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid3.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid3.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid3.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid4.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid4.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid4.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid5.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid5.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid5.src

declaratively added to the DataGrid's Columns collection, as shown in the following example.

<ASP:DataGrid id="MyDataGrid" runat="server"
 ...
 OnEditCommand="MyDataGrid_Edit"
 OnCancelCommand="MyDataGrid_Cancel"
 OnUpdateCommand="MyDataGrid_Update"
 DataKeyField="au_id"
>

 <Columns>
 <asp:EditCommandColumn EditText="Edit" CancelText="Cancel" UpdateText="Update" />
 </Columns>

</ASP:DataGrid>

On the DataGrid tag itself, you wire event handlers to each of the commands fired from the
EditCommandColumn. The DataGridCommandEventArgs argument of these handlers gives you direct
access to the index selected by the client, which you use to set the DataGrid's EditItemIndex. Note that you
need to re-bind the DataGrid for the change to take effect, as shown in the following example.

Public Sub MyDataGrid_Edit(sender As Object, E As DataGridCommandEventArgs)
 MyDataGrid.EditItemIndex = E.Item.ItemIndex
 BindGrid()
End Sub

VB

When a row of the DataGrid is being edited, the EditCommandColumn renders the Update and Cancel links.
If the client selects Cancel, you simply set the EditItemIndex back to -1. If the client selects Update, however,
you need to execute your update command to the database. Performing an update query requires that you know
the primary key in the database for the row you wish to update. To support this, the DataGrid exposes a
DataKeyField property that you can set to the field name for the primary key. In the event handler wired to the
UpdateCommand, you can retrieve the key name from the DataGrid's DataKeys collection. You index into this
collection using the ItemIndex of the event, as shown in the following example.

myCommand.Parameters("@Id").Value = MyDataGrid.DataKeys(CType(E.Item.ItemIndex,
Integer))

VB

At the end of the Update event handler, you set the EditItemIndex back to -1. The following sample
demonstrates this code in action.

VB DataGrid6.aspx

[Run Sample] | [View Source]

One problem with the preceding example is that the primary key field (au_id) also renders as a text input box
when a row is editable. You don't want the client to change this value, because you need it to determine which
row to update in the database. Fortunately, you can disable this column from rendering as a text box by specifying
exactly what each column looks like for the editable row. You do this by defining each row in the DataGrid's
Columns collection, using the BoundColumn control to assign data fields with each column. Using this technique
gives you complete control over the order of the columns, as well as their ReadOnly properties. For the au_id
column you set the ReadOnly property to true. When a row is in edit mode, this column will continue to render
as a Label. The following sample demonstrates this technique.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid6.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid6.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid6.src

VB DataGrid7.aspx

[Run Sample] | [View Source]

BoundColumn controls aren't the only controls you can set in the DataGrid's Columns collection. You can also
specify a TemplateColumn, which gives you complete control over the contents of the column. The template is
just arbitrary content; you can render anything you like, including server controls, inside the DataGrid's columns.
The following sample demonstrates using the TemplateColumn control to render the "State" column as a drop-
down list and the "Contract" column as a check box HtmlControl. The ASP.NET data binding syntax is used to
output the data field value within the template. Note that there is a bit of tricky logic to make the drop-down list
and check box reflect the state of the data inside the row.

VB DataGrid8.aspx

[Run Sample] | [View Source]

Just as you can place a drop-down list or check box HtmlControl in a TemplateColumn, you can also place other
controls there. The following sample adds Validator controls to the columns to check the client input before
attempting to perform the update.

VB DataGrid9.aspx

[Run Sample] | [View Source]

Deleting Data in a SQL Database

Deleting from a database is very similar to an update or insert command, but you still need a way to determine the
particular row of the grid to delete. Another control that can be added to the DataGrid's Columns collection is the
ButtonColumn control, which simply renders a button control. ButtonColumn supports a CommandName
property that can be set to Delete. On the DataGrid, you wire an event handler to the DeleteCommand, where
you perform the delete operation. Again, you use the DataKeys collection to determine the row selected by the
client. The following sample demonstrates this process.

VB DataGrid10.aspx

[Run Sample] | [View Source]

Sorting Data from a SQL Database

A common requirement for any grid is the ability to sort the data it contains. While the DataGrid control doesn't
explicitly sort its data for you, it does provide a way to call an event handler when the user clicks a column header,
which you can use to sort the data. When the DataGrid's AllowSorting property is set to true, it renders
hyperlinks for the column headers that fire a Sort command back to the grid. You set the OnSortCommand
property of the DataGrid to the handler you want to call when the user clicks a column link. The name of the
column is passed as a SortExpression property on the DataGridSortCommandEventArgs argument, which
you can use to set the Sort property of the DataView bound to the grid. The following example demonstrates
this process.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid7.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid7.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid7.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid8.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid8.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid8.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid9.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid9.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid9.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid10.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid10.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid10.src

<script>
 Protected Sub MyDataGrid_Sort(Src As Object, E As DataGridSortCommandEventArgs)
 ...
 DataView Source = ds.Tables("Authors").DefaultView
 Source.Sort = E.SortExpression
 MyDataGrid.DataBind()
 End Sub
</script>

<form runat="server">
 <ASP:DataGrid id="MyDataGrid" OnSortCommand="MyDataGrid_Sort" AllowSorting="true"
runat="server" />
</form>

VB

The following sample shows this code in action.

VB DataGrid11.aspx

[Run Sample] | [View Source]

When using BoundColumn controls, you can explicitly set the SortExpression property for each column, as
demonstrated in the following sample.

VB DataGrid12.aspx

[Run Sample] | [View Source]

Working with Master-Detail Relationships

Often your data model will contain relationships that cannot be represented using just a single grid. A very
common Web-based interface is one in which a row of data can be selected that navigates the client to a "details"
page, which displays detailed information about the selected row. To accomplish this using the DataGrid, you can
add a HyperLinkColumn to the Columns collection, which specifies the details page to which the client will
navigate when the link is clicked. You use the format string syntax to substitute a field value in this link, which is
passed as a querystring argument. The following example demonstrates this process.

 <ASP:DataGrid id="MyDataGrid" runat="server">

 <Columns>
 <asp:HyperLinkColumn
 DataNavigateUrlField="au_id"
 DataNavigateUrlFormatString="datagrid13_details.aspx?id={0}"
 Text="Get Details"
 />
 </Columns>

 </ASP:DataGrid>

On the details page, you retrieve the querystring argument and perform a join select to obtain details from the
database. The following sample demonstrates this scenario.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid11.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid11.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid11.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid12.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid12.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid12.src

VB DataGrid13.aspx

[Run Sample] | [View Source]

Writing and Using Stored Procedures

In general, performing ad hoc queries comes at the expense of performance. Using stored procedures can reduce
the cost of performing heavy database operations in an application. A stored procedure is easy to create, and can
even be done using a SQL statement. The following code example creates a stored procedure that simply returns a
table.

CREATE Procedure GetAuthors AS
 SELECT * FROM Authors
 return
GO

You can create stored procedures that accept parameters as well. For example:

CREATE Procedure LoadPersonalizationSettings (@UserId varchar(50)) AS
 SELECT * FROM Personalization WHERE UserID=@UserId
 return
GO

Using a stored procedure from an ASP.NET page is just an extension of what you've learned so far about the
SqlCommand object. The CommandText is just the name of the stored procedure instead of the ad hoc query
text. You indicate to the SqlCommand that the CommandText is a stored procedure by setting the
CommandType property.

myCommand.SelectCommand.CommandType = CommandType.StoredProcedure

VB

The following sample demonstrates a call to a stored procedure to fill the DataSet.

VB DataGrid14.aspx

[Run Sample] | [View Source]

Parameters to stored procedures are passed just as they are for ad hoc queries, as shown in the following
samples.

VB DataGrid15.aspx

[Run Sample] | [View Source]

http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid13.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid13.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid13.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid14.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid14.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid14.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid15.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid15.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid15.src

VB DataGrid16.aspx

[Run Sample] | [View Source]

Accessing XML-based Data

At the beginning of this section it was mentioned that the DataSet was designed to abstract data in a way that is
independent of the actual data source. You can see this by changing the focus of your samples from SQL to XML.
The DataSet supports a ReadXml method that takes a FileStream object as its parameter. The file you read in
this case must contain both a schema and the data you wish to read. The DataSet expects data to be in the form,
as shown in the following example.

<DocumentElement>
 <TableName>
 <ColumnName1>column value</ColumnName1>
 <ColumnName2>column value</ColumnName2>
 <ColumnName3>column value</ColumnName3>
 <ColumnName4>column value</ColumnName4>
 </TableName>
 <TableName>
 <ColumnName1>column value</ColumnName1>
 <ColumnName2>column value</ColumnName2>
 <ColumnName3>column value</ColumnName3>
 <ColumnName4>column value</ColumnName4>
 </TableName>
</DocumentElement>

Each TableName section corresponds to a single row in the table. The following sample shows reading schema
and data from an XML file using the ReadXml method of the DataSet. Note that after the data is read into the
DataSet it is indistinguishable from SQL data -- the DataGrid binds to it just the same, as shown in the following
sample.

VB DataGrid17.aspx

[Run Sample] | [View Source]

You can also read the data and schema separately, using the ReadXmlData and ReadXmlSchema methods of
the DataSet, as shown in the following sample.

VB DataGrid18.aspx

[Run Sample] | [View Source]

Just as the DataSet supports reader methods for XML data, it also supports writing the data. The following
sample implements a tool for selecting data from SQL and writing the result as XML data or schema text.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid16.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid16.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid16.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid17.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid17.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid17.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid18.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/datagrid18.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/datagrid18.src

VB XMLGen.aspx

[Run Sample] | [View Source]

Section Summary

1. The common language runtime's managed data access APIs abstract data and present it in a consistent
way regardless of its actual source (SQL Server, OLEDB, XML, and so on).

2. To give your page access to the classes you will need to perform SQL data access, you must import the
System.Data and System.Data.SqlClient namespaces into your page.

3. Populating a dataset from a SQL query involves creating a SqlConnection, associating a
SqlDataAdapter object with the connection that contains your query statement, and filling the dataset
from the command.

4. The DataGrid control supports a DataSource property that takes an IEnumerable (or ICollection)
type. You can set this to the result of a SQL query by assigning the DataSet's DefaultView property,
which is of type DataView.

5. The SqlDataAdapter maintains a Parameters collection that can be used to replace variable identifiers
(denoted by an "@" in front of the name) with values.

6. When performing commands that do not require data to be returned, such as inserts, updates, and deletes,
you use a SqlCommand instead of the SqlDataAdapter. The command is issued by calling an
ExecuteNonQuery method, which returns the number of rows affected.

7. The SqlConnection must be explicitly opened when you use the SqlCommand (the SqlDataAdapter
automatically handles opening the connection for you). Always remember to close the SqlConnection to
the data model before the page finishes executing. If you do not close the connection, you migh
inadvertantly exhaust the connection limit while waiting for the page instances to be released to garbage
collection.

8. To allow rows to be edited, the DataGrid supports an integer EditItemIndex property, which indicates
which row of the grid should be editable. When this property is set, the DataGrid renders the row at that
index as text input boxes instead of simple labels.

9. The DataGrid exposes a DataKeyField property that you can set to the field name for the primary key.
In the event handler wired to the UpdateCommand, you can retrieve the key name from the DataGrid's
DataKeys collection.

10. Using BoundColumn controls in the DataGrid gives you complete control over the order of the columns,
as well as their ReadOnly properties.

11. Using TemplateColumn controls in the DataGrid gives you complete control over the contents of the
column.

12. The ButtonColumn control can be used to simply render a button control in each row for that column,
which can be associated with an event.

13. A HyperLinkColumn can be added to the DataGrid's Columns collection, which supports navigating to
another page when the link is clicked.

14. When the DataGrid's AllowSorting property is set to true, it renders hyperlinks for the column headers
that fire a Sort command back to the grid. You set the OnSortCommand property of the DataGrid to
the handler you want to call when the user clicks a column link.

15. The DataSet supports ReadXml, ReadXmlData, and ReadXmlSchema methods that take a
FileStream as a parameter, which can be used to populate a DataSet from an XML file.

16. Using stored procedures can reduce the cost of performing heavy database operations in an application.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/xmlgen.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/data/VB/xmlgen.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/data/xmlgen.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Data Access and Customization

 Introduction to Templated Controls
 Handling Postbacks from a Template
 Using Select and Edit Templates
 Finding a Control Inside a Template
 Section Summary

Introduction to Templated Controls

While the DataGrid server control demonstrated in the previous section is suitable for many Web application
scenarios where a grid-like representation of data is appropriate, many times the presentation of data needs to
be much richer. ASP.NET offers two controls, DataList and Repeater, that give you greater flexibility over the
rendering of list-like data. These controls are template-based, and so have no default rendering of their own. The
way data is rendered is completely determined by the your implementation of the control's templates, which
describe how to present data items.

Like the DataGrid control, DataList and Repeater support a DataSource property, which can be set to any
ICollection, IEnumerable, or IListSource type. The data in this DataSource is bound to the control using its
DataBind method. Once the data is bound, the format of each data item is described by a template.

The ItemTemplate property controls the rendering of each item in the DataSource collection. Inside an
ItemTemplate, you can define any arbitrary presentation code (HTML or otherwise). Using the ASP.NET data
binding syntax, you can insert values from the data bound to the DataList or Repeater control, as shown in the
following example.

<ASP:Repeater id="MyRepeater" runat="server">

 <ItemTemplate>
 Hello <%# DataBinder.Eval(Container.DataItem, "name") %> !
 </ItemTemplate>

</ASP:Repeater>

The Container represents the first control in the immediate hierarchy that supports the
System.Web.UI.INamingContainer marker interface. In this case, the Container resolves to an object of
type System.Web.UI.WebControls.RepeaterItem, which has a DataItem property. As the Repeater
iterates over the DataSource collection, the DataItem contains the current item in this collection. For example, if
the data source is set to an ArrayList of Employee objects, the DataItem is of type Employees. When bound to
a DataView, the DataItem is of type DataRowView.

The following example demonstrates a Repeater control bound to a DataView (returned from a SQL query).
HeaderTemplate and FooterTemplate have also been defined and render at the beginning and end of the list,
respectively.

VB DataList1.aspx

[Run Sample] | [View Source]

The Repeater control just iterates over the bound data, rendering the ItemTemplate once for each item in the
DataSource collection. It does not render anything besides the elements contained in its templates. While the
Repeater is a general purpose iterator, the DataList provides some additional features for controlling the layout
of the list. Unlike the Repeater, DataList renders additonal elements, like table rows and cells and spans
containing style attributes, outside of the template definition to enable this richer formatting. For example,
DataList supports RepeatColumns and RepeatDirection properties that specify whether data should be
rendered in multiple columns, and in which direction (vertical or horizontal) the data items should be rendered.
DataList also supports style attributes, as shown in the following example.

<ASP:DataList runat="server" DataSource="<%#MyData%>"
 RepeatColumns="2"
 RepeatDirection="Horizontal"
 ItemStyle-Font-Size="10pt"
 ItemStyle-Font-Name="Verdana"
>

http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/datalist1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/datalist1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/datalist1.src

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

 ...
</ASP:DataList>

Note: The remainder of this section concentrates on the many features of the DataList control. For more
information about the Repeater control, refer to the Repeater topic in the Web Forms Controls Reference section
of this tutorial.

The following sample demonstrates the use of the DataList control. Note that the look of the data items has
been changed from the previous example, simply by changing the contents of the control's ItemTemplate
property. The RepeatDirection and RepeatColumns properties determine how the ItemTemplates are laid
out.

VB Datalist2.aspx

[Run Sample] | [View Source]

The following example further demonstrates the infinite flexibility of templates by changing the ItemTemplate
yet again. This time, one of the DataItem values has been substituted for the "src" attribute of an tag.
The format String parameter of DataBinder.Eval has also been used to substitute a DataItem value in the
query string for a URL.

VB Datalist3.aspx

[Run Sample] | [View Source]

Handling Postbacks from a Template

As in the DataGrid, you can fire a command from inside a DataList template that is passed to an event handler
wired to the DataList itself. For example, a LinkButton inside the ItemTemplate might fire a Select
command. By setting the OnSelectedIndexChanged property of the DataList, you can call an event handler
in response to this command. The following example demonstrates this process.

<ASP:DataList id="MyDataList" OnSelectedIndexChanged="MyDataList_Select"
runat="server">

 <ItemTemplate>

 <asp:linkbutton CommandName="Select" runat="server">
 <%# DataBinder.Eval(Container.DataItem, "title") %>
 </asp:linkbutton>

 </ItemTemplate>

</ASP:DataList>

The following sample demonstrates this code in action. In the MyDataList_Select event handler, you
populate several other server controls with the details about the particular selected item.

VB Datalist4.aspx

[Run Sample] | [View Source]

Note that while the DataList recognizes a few special commands such as Select and Edit/Update/Cancel, the

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/webdatalist.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/repeater/doc_repeater.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/datalist2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/datalist2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/datalist2.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/datalist3.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/datalist3.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/datalist3.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/datalist4.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/datalist4.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/datalist4.src

command string fired inside a template can be any arbitrary string. For all commands, the DataList's
OnItemCommand is fired. You can wire this event to a handler as in the previous example; the following
example shows how to do this.

<script runat="server">

 Protected Sub MyDataList_ItemCommand(Sender As Object, E As
DataListCommandEventArgs)
 Dim Command As String = E.CommandName

 Select Case Command
 Case "Discuss"
 ShowDiscussions(E.Item.DataItem)
 Case "Ratings"
 ShowRatings(E.Item.DataItem)
 End Select
 End Sub

</script>

<ASP:DataList id="MyDataList" OnItemCommand="MyDataList_ItemCommand" runat="server">

 <ItemTemplate>

 <asp:linkbutton CommandName="Ratings" runat="server">
 View Ratings
 </asp:linkbutton>
 |
 <asp:linkbutton CommandName="Discuss" runat="server">
 View Discussions
 </asp:linkbutton>

 </ItemTemplate>

</ASP:DataList>

VB

Note that because more than one command can fire this event handler, you must employ a switch statement to
determine the particular command that was fired. The following sample demonstrates this code in action.

VB Datalist5.aspx

[Run Sample] | [View Source]

Using Select and Edit Templates

In addition to handling the Select command using a page-level event handler, the DataList can respond to this
event internally. If a SelectedItemTemplate is defined for the DataList, the DataList renders this template
for the item that fired the Select command. The following example uses the SelectedItemTemplate to make
the title of the selected book bold.

VB Datalist6.aspx

[Run Sample] | [View Source]

DataList also supports an EditItemTemplate for rendering an item whose index is equal to the DataList's
EditItemIndex property. For details about how editing and updating works, refer to the Updating Data topic of
the Data Access section of this tutorial.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/datalist5.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/datalist5.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/datalist5.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/datalist6.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/datalist6.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/datalist6.src

VB Datalist7.aspx

[Run Sample] | [View Source]

Finding a Control Inside a Template

Sometimes it is necessary to locate a control contained inside a template. If a control is given an ID in a
template, that control can be retrieved from its container (the first control in the parent hierarchy that supports
INamingContainer). In this case, the container is the DataListItem control. Note that even though there are
several controls with the same ID (by virtue of the DataList's repetition), each is contained logically in the
namespace of the DataListItem container control.

You can go through the DataList's Items collection to retrieve the DataListItem for a given index, and then
call the DataListItem's FindControl method (inherited from the base Control class) to retrieve a control with
a particular ID.

<script runat="server">

 Public Sub Page_Load(sender As Object, E As EventArgs))
 ' set datasource and call databind here

 For I=0 To MyDataList.Items.Count-1
 Dim IsChecked As String =
MyDataList.Items(i).FindControl("Save").Checked.ToString()
 If IsChecked = "True" Then
 ...
 End If
 Next
 End Sub
</script>

<ASP:DataList id="MyDataList" runat="server">

 <ItemTemplate>
 <asp:CheckBox id="Save" runat="server"/> Save to Favorites
 </ItemTemplate>

</ASP:DataList>

VB

The following sample demonstrates this code in action.

VB Datalist8.aspx

[Run Sample] | [View Source]

Section Summary

1. The DataList and Repeater controls provide developers fine-tuned control over the rendering of data-
bound lists.

2. Rendering of bound data is controlled using a template, such as the HeaderTemplate,
FooterTemplate, or ItemTemplate.

3. The Repeater control is a general-purpose iterator, and does not insert anything in its rendering that is
not contained in a template.

4. The DataList control offers more control over the layout and style of items, and outputs its own
rendering code for formatting.

5. The DataList supports the Select, Edit/Update/Cancel, and Item Command events, which can be
handled at the page level by wiring event handlers to the DataList's Command events.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/datalist7.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/datalist7.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/datalist7.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/datalist8.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/customize/VB/datalist8.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/customize/datalist8.src

6. DataList supports a SelectedItemTemplate and EditItemTemplate for control over the rendering of
a selected or editable item.

7. Controls can be programmatically retrieved from a template using the Control.FindControl method. This
should be called on a DataListItem retrieved from the DataList's Items collection.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Working With Business Objects

 The Application /Bin Directory
 Importing Business Objects
 A Simple Two-Tier Web Forms Page
 A Simple Three-Tier Web Forms Page
 Section Summary

Encapsulating logic in business components is an essential part of any real-world application, Web-based or
otherwise. In ASP.NET, business objects are the building blocks for multi-tiered Web applications, such as those with
a layer for data access or common application rules. This section demonstrates how to write some simple
components and include them in your application's Web Forms pages.

The Application /Bin Directory

A problem with using the COM model for Web application components is that those components must be registered
(typically using the regsvr32 tool) before they can be used from a traditional ASP application. Remote administration
of these types of applications is often not possible, because the registration tool must be run locally on the server.
To make matters more difficult, these components remain locked on disk once they are loaded by an application,
and the entire Web server must be stopped before these components can be replaced or removed.

ASP.NET attempts to solve these problems by allowing components to be placed in a well-known directory, to be
automatically found at run time. This well-known directory is always named /bin, and is located immediately under
the root directory for the application (a virtual directory defined by Internet Information Services (IIS)). The benefit
is that no registration is required to make components available to the ASP.NET Framework application --
components can be deployed by simply copying to the /bin directory or performing an FTP file transfer.

In addition to providing a zero-registration way to deploy compiled components, ASP.NET does not require these
components to remain locked on disk at run time. Behind the scenes, ASP.NET duplicates the assemblies found in
/bin and loads these "shadow" copies instead. The original components can be replaced even while the Web server
is still running, and changes to the /bin directory are automatically picked up by the runtime. When a change is
detected, ASP.NET allows currently executing requests to complete, and directs all new incoming requests to the
application that uses the new component or components.

Importing Business Objects

At its most basic level, a business component is just a class for which you can create an instance from a Web Forms
page that imports it. The following example defines a simple HelloWorld class. The class has one public constructor
(which is executed when an instance of the class is first created), a single String property called FirstName, and a
SayHello method that prints a greeting using the value of the FirstName property.

Imports System
Imports System.Text

Namespace HelloWorld
 Public Class HelloObj
 Private _name As String

 Public Sub New
 MyBase.New()
 _name = Nothing
 End Sub

 Public Property FirstName As String
 Get
 Return(_name)
 End get
 Set
 _name = value
 End Set
 End Property

 Public Function SayHello() As String
 Dim sb As New StringBuilder("Hello ")
 If (_name <> Nothing) Then
 sb.Append(_name)
 Else
 sb.Append("World")
 End If
 sb.Append("!")
 Return(sb.ToString())
 End Function

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

 End Class
End Namespace

VB

To compile this class, the C# compiler (Csc.exe) is run from the command line. The /t option tells the compiler to
build a library (DLL), and the /out option tells the compiler where to place the resulting assembly. In this case, the
/bin directory for the application is directly under the "aspplus" vroot of this tutorial, and it is assumed this
command is being run from the sample directory, that is, ...\QuickStart\AspPlus\Samples\WebForms\Busobjs.

csc /t:library /out:..\..\..\..\bin\HelloObj.dll HelloObj.cs

For Visual Basic, the equivalent compilation command is:

vbc /t:library /out:..\..\..\..\bin\HelloObjVB.dll HelloObj.vb

For JScript, the equivalent compilation command is:

jsc /out:..\..\..\..\bin\HelloObjJS.dll HelloObj.js

The component is now available to any Web Forms page in the application that needs to use it. The following
HelloObj.aspx example illustrates this functionality.

VB HelloObj.aspx

[Run Sample] | [View Source]

Note the Import directive at the top of the page that specifies the namespace to include. Once the namespace is
included using this directive, the class can be used from within the Web Forms page. Because the assembly is pre-
loaded by the ASP.NET runtime, only a simple namespace import is required to make the component available. The
following code example the Import directive.

<%@ Import Namespace="HelloWorld" %>

By default, ASP.NET loads all assemblies from the /bin directory when the application is started. The assemblies to
load are specifed through the configuration system. For details, see the Configuration Overview section. Additional
assemblies can be imported into an application using configuration as well. For example:

<configuration>
 <compilation>
 <assemblies>
 <!--The following assemblies are loaded explicitly from the global cache--
>
 <add assembly="System.Data"/>
 <add assembly="System.Web.Services"/>
 <add assembly="System.Drawing"/>
 <!--This tells ASP.NET to load all assemblies from /bin-->
 <add assembly="*"/>
 </assemblies>
 </compilation>
</configuration>

Note: Each assembly loaded from /bin is limited in scope to the application in which it is running. This means that
peer applications could potentially use different assemblies with the same class or namespace names, without
conflicting.

A Simple Two-Tier Web Forms Page

The classic use for an external component is to perform data access. This simplifies the code in your page,
improving readability and separating your user interface (UI) logic from the system functionality. The following
example demonstrates a simple two-tiered Web Forms page that uses a data access component to retrieve product
information.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/businessobjs.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/busobjs/VB/HelloObj.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/busobjs/VB/HelloObj.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/busobjs/HelloObj.src

 VB TwoTier.aspx

[Run Sample] | [View Source]

The data access component takes a single parameter to its constructor specifying the connection string to the
product database. The Web Forms page calls the component's GetCategories method to populate a drop-down
list, and calls the component's GetProductsForCategory method to display the products for the category selected
by the user.

A Simple Three-Tier Web Forms Page

A three-tiered application model extends the two-tiered scenario to include business rules between the UI and data
access logic. This model allows UI developers to work with a higher level of abstraction rather than directly
manipulating data through low-level data access component APIs. The middle business component typically
enforces business rules and ensures that the relationships and primary key constraints of the database are honored.
The following example uses the middle component to calculate a discount based on a two-digit Vendor ID entered
by the client.

VB ThreeTier.aspx

[Run Sample] | [View Source]

Section Summary

1. The ASP.NET runtime finds business objects (local assemblies) in a well-known /bin directory, directly under
the application root. The /bin directory offers the following advantages:

❍ No registration required. No registration is required to make an assembly available to pages in
the application. It is available by virtue of its location in the /bin directory. Compiled code can be
deployed by simply copying or FTPing to this location.

❍ No server restart required. When any part of an ASP.NET Framework application is changed (for
example, when a DLL in /bin is replaced), new requests immediately begin execution against the
changed file or files. Currently executing requests are allowed to complete before the old application
is gracefully torn down. The Web server does not require a restart when you change your
application, even when replacing compiled code.

❍ No namespace conflicts. Each assembly loaded from /bin is limited in scope to the application in
which it is running. This means that peer applications could potentially use different assemblies with
the same class or namespace names, without conflicting.

2. Classes in an assembly are made available to a page in the application using an Import directive within the
.aspx file.

3. Two-tiered applications simplify the code in a page, improving readability and separating user interface (UI)
logic from system functionality.

4. Three-tiered applications extend the two-tiered model to enable UI developers to work with a higher level of
abstraction. The middle business component typically enforces business rules and ensures that the
relationships and primary key constraints of the database are honored.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/busobjs/VB/TwoTier.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/busobjs/VB/TwoTier.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/busobjs/TwoTier.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/busobjs/VB/ThreeTier.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/busobjs/VB/ThreeTier.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/busobjs/ThreeTier.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Authoring Custom Controls

 Developing a Simple Custom Control
 Defining Simple Properties
 Defining Class Properties
 Retrieving Inner Content
 Developing a Composite Control
 Handling Events in a Composite Control
 Raising Events from a Composite Control
 Maintaining State
 Developing a Custom (Non-Composite) Control that Handles Post-back Data
 Generating Client-side JavaScript for Custom Post-back
 Developing a Templated Control
 Developing a Templated Databound Control
 Overriding Control Parsing
 Defining a Custom Control Builder

This section of the QuickStart demonstrates how advanced developers can write their own ASP.NET server controls
that work within the ASP.NET page framework. By writing your own custom ASP.NET server controls, you can
encapsulate custom user interface and other functionality in controls that can be reused on ASP.NET pages. The
QuickStart provides an introduction to authoring custom controls through hands-on examples. For more
information about control authoring, see Developing ASP.NET Server Controls in the Microsoft .NET Framework
SDK documentation.

Note: The controls described in this section might not work correctly at design time in a forms designer such as
Microsoft Visual Studio .NET, although they work properly at run time on ASP.NET pages. To work in a designer, a
control needs to apply design-time attributes not described here. For details about the design-time attributes you
need to apply, see Design-Time Attributes for Components in the SDK documentation.

Developing a Simple Custom Control

It is easy to start authoring your own ASP.NET server controls. To create a simple custom control, all you have to
do is to define a class that derives from System.Web.UI.Control and override its Render method. The Render
method takes one argument of type System.Web.UI.HtmlTextWriter. The HTML that your control wants to
send to the client is passed as a string argument to the Write method of HtmlTextWriter.

The following example demonstrates a simple control that renders a message string.

VB Simple.aspx

[Run Sample] | [View Source]

Defining Simple Properties

Properties are like "smart" fields that have accessor methods. You should expose properties instead of public fields
from your controls because properties allow data hiding, can be versioned, and are supported by visual designers.
Properties have get/set accessor methods that set and retrieve properties, and allow additional program logic to be
performed if needed.

The following sample shows how to add simple properties that correspond to primitive data types such as integer,
Boolean, and string. The sample defines three properties - Message is of type string, MessageSize is of type
enumeration, and Iterations is of type integer. Note the page syntax for setting simple and enumeration
properties.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/simple/VB/Simple.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/simple/VB/Simple.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/ctrlauth/simple/Simple.src

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

VB SimpleProperty.aspx

[Run Sample] | [View Source]

Defining Class Properties

If a class A has a property whose type is class B, then the properties of B (if any) are called subproperties of A.
The following sample defines a custom control SimpleSubProperty that has a property of type Format.
Format is a class that has two primitive properties - Color and Size, which in turn become subproperties of
SimpleSubProperty.

VB SimpleSubProperty.aspx

[Run Sample] | [View Source]

Note that ASP.NET has a special syntax for setting subproperties. The following code example shows how to
declaratively set the Format.Color and Format.Size subproperties on SimpleSubProperty. The "-" syntax
denotes a subproperty.

<SimpleControlSamples:SimpleSubProperty Message="Hello There" Format-Color="red"
Format-Size="3" runat=server/>

Retrieving Inner Content

Every control has a Controls property that it inherits from System.Web.UI.Control. This is a collection property
that denotes the child controls (if any) of a control. If a control is not marked with the ParseChildrenAttribute
or marked with ParseChildrenAttribute(ChildrenAsProperties = false), the ASP.NET page framework applies
the following parsing logic when the control is used declarartively on a page. If the parser encounters nested
controls within the control's tags, it creates instances of them and adds them to the Controls property of the
control. Literal text between tags is added as a LiteralControl. Any other nested elements generate a parser
error.

The following sample shows a custom control, SimpleInnerContent, that renders text added between its tags
by checking if a LiteralControl has been added to its Controls collection. If so, it retrieves the Text property of
the LiteralControl, and appends it to its output string.

VB SimpleInnerContent.aspx

[Run Sample] | [View Source]

Note: If your custom control derives from WebControl, it will not have the parsing logic described in the sample,
because WebControl is marked with ParseChildrenAttribute(ChildrenAsProperties = true), which results in
a different parsing logic. For more information about the ParseChildrenAttribute, see the SDK documentation.

Developing a Composite Control

You can author new controls by combining existing controls using class composition. Composite controls are
equivalent to user controls that are authored using ASP.NET page syntax. The main difference between user
controls and composite controls is that user controls are persisted as .ascx text files, whereas composite controls

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/webctrlauthoring.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/simple/VB/SimpleProperty.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/simple/VB/SimpleProperty.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/ctrlauth/simple/SimpleProperty.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/simple/VB/SimpleSubProperty.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/simple/VB/SimpleSubProperty.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/ctrlauth/simple/SimpleSubProperty.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/simple/VB/SimpleInnerContent.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/simple/VB/SimpleInnerContent.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/ctrlauth/simple/SimpleInnerContent.src

are compiled and persisted in assemblies.

The key steps in developing a composite control are:

● Override the protected CreateChildControls method inherited from Control to create instances of child
controls and add them to the Controls collection.

● If new instances of your composite control will repeatedly be created on a page, implement the
System.Web.UI.INamingContainer interface. This is a tagging interface that has no methods. When it
is implemented by a control, the ASP.NET page framework creates a new naming scope under that control.
This ensures that the child controls will have unique IDs in the hierarchical tree of controls.

You do not have to override the Render method because child controls provide rendering logic. You can expose
properties that synthesize properties of the child controls.

The following sample defines a composite control, Composition1, that combines a
System.Web.UI.LiteralControl and a System.Web.UI WebControls.TextBox. Composition1 exposes a
custom property, Value, of type integer, that maps to the Text property of TextBox.

 VB Composition1.aspx

[Run Sample] | [View Source]

Handling Events in a Composite Control

A composite control can handle events raised by its child controls. This is accomplished by providing event
handling methods and attaching delegates to the events raised by the child controls.

The following sample shows a composite control, Composition2, that adds two button controls (named Add and
Subtract) to the composite control from the previous example and provides event handling methods for the
Click events of the buttons. These methods increment and decrement the Value property of Composition2.
The CreateChildControls method of Composition2 creates instances of event handlers (delegates) that
reference these methods, and attaches the delegates to the Click events of the Button instances. The end result
is a control that does its own event handling - when the Add button is clicked, the value in the text box is
incremented, and when the Subtract button is clicked, the value is decremented.

VB Composition2.aspx

[Run Sample] | [View Source]

Raising Custom Events from a Composite Control

A composite control can define custom events that it raises in response to events raised by its child controls.

The following example shows a composite control, Composition3, that raises a custom event, Change, in
response to the TextChanged event of the TextBox child control.

This is accomplished as follows:

● The custom Change event is defined using the standard event pattern. (This pattern includes the definition
of a protected OnChange method that raises the Change event.)

Public Event Change(Sender as Object, E as EventArgs)
Protected Sub OnChange(e As EventArgs)
 Change(Me, e)
End Sub

VB

http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/composition/VB/Composition1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/composition/VB/Composition1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/ctrlauth/composition/Composition1.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/composition/VB/Composition2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/composition/VB/Composition2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/ctrlauth/composition/Composition2.src

● An event-handling method is defined for the TextChanged event of TextBox. This method raises the
Change event by invoking the OnChange method.

Private Sub TextBox_Change(sender As Object, e As EventArgs)
 OnChange(EventArgs.Empty)
End Sub

VB

● The CreateChildControls method creates an instance of an event handler that references the above
method, and attaches the event handler to the TextChanged event of the TextBox instance.

Protected Overrides Sub CreateChildControls()
 ...
 Dim box As New TextBox()
 AddHandler Box.TextChanged, AddressOf TextBox_Change
 ...
End Sub

VB

The Change event can be handled by a page that hosts the control, as shown in the following sample. In the
sample, the page provides an event-handling method for the Change event that sets the Value property to zero if
the number entered by the user is negative.

VB Composition3.aspx

[Run Sample] | [View Source]

Maintaining State

Every Web Forms control has a State property (inherited from Control) that enables it to participate in State
management. The type of State is Sytem.Web.UI.StateBag, which is a data structure equivalent to a
hashtable. A control can save data in State as key/value pairs. State is persisted to a string variable by the
ASP.NET page framework and makes a round trip to the client as a hidden variable. Upon postback, the page
framework parses the input string from the hidden variable and populates the State property of each control in
the control hierarchy of a page. A control can restore its state (set properties and fields to their values before
postback) using the State property. Control developers should be aware that there is a performance overhead in
sending data by round trip to the client, and be judicious about what they save in State.

The following code example shows a property that is saved in State.

Public Property Text As String
 Get
 Return CType(State("Text"), String))
 End Get
 Set
 State("Text") = Value
 End Set
End Property

VB

The following sample shows a custom control, Label, that has two properties, Text and FontSize, that are
saved in State. The ASP.NET page that uses Label contains buttons that have event handlers to increase the font
size of the text in Label when a button is clicked. Thus the font size increases every time a button is clicked. This
is possible only due to state management - Label needs to know what the font size was before postback in order
to render the next larger font size after postback.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/composition/VB/Composition3.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/composition/VB/Composition3.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/ctrlauth/composition/Composition3.src

VB Label.aspx

[Run Sample] | [View Source]

Developing a Custom (Non-Composite) Control that Handles Postback Data

You authored a simple custom control at the beginning of this QuickStart. The following example demonstrates a
custom control that does something more meaningful - it renders an input box, and reads in data entered by the
user. A control that examines postback (input) data must implement the
System.Web.UI.IPostBackDataHandler interface. This signals to the ASP.NET page framework that a control
should participate in postback data handling. The page framework passes input data to the LoadPostData
method of this interface as key/value pairs. In its implementation of this method, the control can examine the
input data and update its properties as shown below.

Private _value As Integer = 0
Public Function LoadPostData(postDataKey As String, values As NameValueCollection) As
Boolean
 _value = Int32.Parse(values(Me.UniqueID))
 Return(False)
End Function

VB

The following sample defines a custom control, NonComposition1, that implements IPostBackDataHandler
and has one property, Value. The control renders an HTML input box whose text attribute is the string
representation of Value. The property is set by examining postback input data. The page that uses
NonComposition1 also has two buttons that have event handlers to increment and decrement the Value
property of NonComposition1.

VB NonComposition1.aspx

[Run Sample] | [View Source]

Generating Client-side JavaScript for Custom Postback

If a control wants to capture postback events (form submissions from a client), it must implement the
System.Web.UI.IPostBackEventHandler interface. This signals to the ASP.NET page framework that a control
wants to be notified of a postback event. The RaisePostBackEvent method allows the control to handle the
event, and to raise other events. Additionally, the ASP.NET page framework has a custom event architecture that
allows a control to generate client-side JavaScript that initiates custom postback. Normally, postback is initiated by
only a few elements such as a Submit button or an Image button. However, by emitting client-side JavaScript, a
control can also initiate postback from other HTML elements.

The following example defines a custom control, NonComposition2, that builds on the previous example,
NonComposition1. In addition to the interface provided by NonComposition1, it renders two HtmlButtons
that generate client-side JavaScript to cause postback when clicked. The name attributes of these buttons are Add
and Subtract. The name attribute is passed as a string argument to RaisePostBackEvent by the page
framework. NonComposition2 implements RaisePostBackEvent to increment the Value property if Add is
clicked and to decrement Value if Subtract is clicked, as shown below.

Public Sub RaisePostBackEvent(eventArgument As String)
 If eventArgument = "Add" Then
 Me.Value = Me.Value + 1
 Else
 Me.Value = Me.Value - 1
 End If

http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/viewstate/VB/Label.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/viewstate/VB/Label.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/ctrlauth/viewstate/Label.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/noncomposition/VB/NonComposition1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/noncomposition/VB/NonComposition1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/ctrlauth/noncomposition/NonComposition1.src

End Sub

VB

The user interface that is presented to the client is identical to that in the previous example; however, the entire
UI is rendered by one custom control that also handles the postback events. The page developer can simply add
NonComposition2 to the page, without providing any event handling logic. The following sample presents this
code in action.

VB NonComposition2.aspx

[Run Sample] | [View Source]

Developing a Templated Control

The ASP.NET page framework allows control developers to author controls that separate the user interface from
the control logic through the use of templates. Page developers can customize the presentation of the control by
providing the UI as parameters between template tags.

Templated controls have one or more properties of type System.Web.UI.ITemplate, as shown in the following
example.

Public Property <TemplateContainer(GetType(Template1VB))> MessageTemplate As
ITemplate

VB

The attribute (in square brackets above) specifies the type of the container (parent) control.

The ITemplate interface has one method, InstantiateIn, that creates a control instance dynamically. This is
invoked on the ITemplate property in the CreateChildControls method, as shown in the following example.

Protected Overrides Sub CreateChildControls()
 If MessageTemplate <> Null Then
 MessageTemplate.InstantiateIn(Me)
 End if
 ...
End Sub

VB

The following sample shows a simple templated control and an ASP.NET page that uses it.

 VB Template1.aspx

[Run Sample] | [View Source]

Developing a Templated Databound Control

The following sample shows a more complex use of templates to create a databound control. The Repeater control
defined in this example is similar to the System.Web.UI.WebControls.Repeater control.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/noncomposition/VB/NonComposition2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/noncomposition/VB/NonComposition2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/ctrlauth/noncomposition/NonComposition2.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/templates/VB/Template1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/templates/VB/Template1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/ctrlauth/templates/Template1.src

VB Repeater1.aspx

[Run Sample] | [View Source]

The following sample modifies the preceding sample so that a page consumer can walk its Items collection during
postback to pull out values from it.

VB Repeater2.aspx

[Run Sample] | [View Source]

Overriding Control Parsing

As you saw in Retrieving Inner Content , if a control A has nested controls within its control tags on a page, the
page parser adds instances of those controls to A's Controls collection. This is done by invoking the
AddSubParsedObject method of A. Every control inherits this method from Control; the default implementation
simply inserts a child control into the control hierarchy tree. A control can override the default parsing logic by
overriding the AddSubParsedObject method. Note that this discussion is somewhat simplified; more details are
given in the next example.

The following sample defines a custom control, CustomParse1, that overrides the default parsing logic. When a
child control of a certain type is parsed, it adds it to a collection. The rendering logic of CustomParse1 is based
on the number of items in that collection. A simple custom control, Item, is also defined in the sample.

VB CustomParse1.aspx

[Run Sample] | [View Source]

Note: If your custom control derives from WebControl, it will not have the parsing logic described in the sample,
because WebControl is marked with ParseChildrenAttribute(ChildrenAsProperties = true), which results in
a different parsing logic. For more information about the ParseChildrenAttribute, see the SDK documentation.
The Retrieving Inner Content topic also describes this issue in more detail.

Defining a Custom Control Builder

The ASP.NET page framework uses classes called control builders to process the declarations within control tags on
a page. Every Web Forms control is associated with a default control builder class,
System.Web.UI.ControlBuilder. The default control builder adds a child control to the Controls collection for
every nested control that it encounters within control tags. Additionally, it adds Literal controls for text between
nested control tags. You can override this default behavior by associating a custom control builder class with your
control. This is done by applying a control builder attribute to your control, as shown in the following example.

Public Class <ControlBuilderAttribute(GetType(CustomParse2ControlBuilderVB))> _
 CustomParse2VB : Inherits Control

VB

The element in square brackets above is a common language runtime attribute that associates the
CustomParse2ControlBuilder class with the CustomParse2 control. You can define your own custom
control builder by deriving from ControlBuilder and overriding its methods.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/templates/VB/Repeater1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/templates/VB/Repeater1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/ctrlauth/templates/Repeater1.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/templates/VB/Repeater2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/templates/VB/Repeater2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/ctrlauth/templates/Repeater2.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/customparsing/VB/CustomParse1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/customparsing/VB/CustomParse1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/ctrlauth/customparsing/CustomParse1.src

The following sample defines a custom control builder that overrides the GetChildControlType method inherited
from ControlBuilder. This method returns the type of the control to be added and can be used to decide which
controls will be added. In the example, the control builder will add a child control only if the tag name is
"customitem". The code for the control is very similar to the previous example, except for the addition of the
custom attribute.

VB CustomParse2.aspx

[Run Sample] | [View Source]

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/customparsing/VB/CustomParse2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlauth/customparsing/VB/CustomParse2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/ctrlauth/customparsing/CustomParse2.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Web Forms Controls Reference

 System.Web.UI.HtmlControls
 System.Web.UI.WebControls

System.Web.UI.HtmlControls

HTML server controls are HTML elements exposed to the server so you can program against them.
HTML server controls expose an object model that maps very closely to the HTML elements that
they render.

HtmlAnchor HtmlButton HtmlForm HtmlGenericControl

HtmlImage
HtmlInputButton
(Button)

HtmlInputButton
(Reset)

HtmlInputButton
(Submit)

HtmlInputCheckBox HtmlInputFile HtmlInputHidden HtmlInputImage

HtmlInputRadioButton
HtmlInputText
(Password)

HtmlInputText
(Text)

HtmlSelect

HtmlTable HtmlTableCell HtmlTableRow HtmlTextArea

System.Web.UI.WebControls

Web server controls are ASP.NET server controls with an abstract, strongly-typed object model.
Web server controls include not only form-type controls such as buttons and text boxes, but also
special-purpose controls such as a calendar. Web server controls are more abstract than HTML
server controls, in that their object model does not necessarily reflect HTML syntax.

AdRotator Button Calendar CheckBox

CheckBoxList CompareValidator CustomValidatorDataGrid

DataList DropDownList HyperLink Image

ImageButton Label LinkButton ListBox

Panel PlaceHolder RadioButton RadioButtonList

RangeValidator RegularExpressionValidatorRepeater RequiredFieldValidator

Table TableCell TableRow TextBox

ValidationSummaryXML

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlAnchor/doc_anchor.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlButton/doc_button.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlForm/doc_form.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlGenericControl/doc_generic.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlImage/doc_image.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlInputButton/doc_inputbut.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlInputButton/doc_inputbut.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlInputButton/doc_inputbut.aspx#submit
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlInputButton/doc_inputbut.aspx#submit
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlInputButton/doc_inputbut.aspx#submit
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlInputButton/doc_inputbut.aspx#submit
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlInputCheckBox/doc_check.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlInputFile/doc_inputfile.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlInputHidden/doc_hidden.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlInputImage/doc_inputimage.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlInputRadioButton/doc_radio.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlInputText/doc_inputtext.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlInputText/doc_inputtext.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlInputText/doc_inputtext.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlInputText/doc_inputtext.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlSelect/doc_select.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlTable/doc_table.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlTable/doc_table.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlTable/doc_table.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/htmlctrl/HtmlTextArea/doc_textarea.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/adrotator/doc_adrot.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/button/doc_button.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/calendar/doc_cal.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/checkbox/doc_check.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/checkboxlist/doc_checklist.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/comparevalidator/doc_compare.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/customvalidator/doc_custval.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/datagrid/doc_datagrid.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/datalist/doc_datalist.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/dropdownlist/doc_dropdown.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/hyperlink/doc_hyperlink.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/image/doc_image.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/imagebutton/doc_imagebut.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/label/doc_label.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/linkbutton/doc_linkbut.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/listbox/doc_listbox.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/panel/doc_panel.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/placeholder/doc_placeholder.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/radiobutton/doc_radiobut.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/radiobuttonlist/doc_radiolist.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/rangevalidator/doc_rangeval.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/regexvalidator/doc_regexval.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/repeater/doc_repeater.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/reqfieldvalidator/doc_reqval.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/table/doc_table.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/table/doc_table.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/table/doc_table.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/textbox/doc_text.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/validationsummary/doc_valsum.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/ctrlref/webctrl/xml/doc_xml.aspx

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation

Web Forms Syntax Reference

 ASP.NET Web Forms Syntax Elements
 Rendering Code Syntax
 Declaration Code Syntax
 ASP.NET Server Control Syntax
 ASP.NET Html Server Control Syntax
 Databinding Syntax
 Object Tag Syntax
 Server Side Comment Syntax
 Server Side Include Syntax

ASP.NET Web Forms Syntax Elements

An ASP.NET Web Forms page is a declarative text file with an .aspx file name extension. In
addition to static content, you can use eight distinct syntax markup elements. This section of the
QuickStart reviews each of these syntax elements and provides examples demonstrating their
use.

Rendering Code Syntax: <% %> and <%= %>

Code rendering blocks are denoted with <% ... %> elements, allow you to custom-control
content emission, and execute during the render phase of Web Forms page execution. The
following example demonstrates how you can use them to loop over HTML content.

<% For I=0 To 7 %>
 <font size="<%=i%>"> Hello World!

<% Next %>

VB

VB Reference1.aspx

[Run Sample] | [View Source]

Code enclosed by <% ... %> is just executed, while expressions that include an equal sign,
<%= ... %>, are evaluated and the result is emitted as content. Therefore
<%="Hello World" %> renders the same thing as the C# code
<% Response.Write("Hello World"); %>.

Note: For languages that utilize marks to end or separate statements (for example, the
semicolon (;) in C#), it is important to place those marks correctly depending on how your code
should be rendered.

C# code

<% Response.Write("Hello
World"); %>

A semicolon is necessary to end the
statement.

<%="Hello World"; %> Wrong: Would result in
"Response.Write("Hello World";);".

<%="Hello World" %> A semicolon is not necessary.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/reference/VB/reference1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/reference/VB/reference1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/reference/reference1.src

 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

Declaration Code Syntax: <script runat="server">

Code declaration blocks define member variables and methods that will be compiled into the
generated Page class. These blocks can be used to author page/navigation logic. The following
example demonstrates how a Subtract method can be declared within a <script
runat="server"> block, and then invoked from the page.

<script language="VB" runat=server>
Function Subtract(num1 As Integer, num2 As Integer) As Integer
 Return(num1 - num2)
End Function
</script>

<%
 ...
 number = subtract(number, 1)
 ...
%>

VB

VB Reference2.aspx

[Run Sample] | [View Source]

Important: Unlike ASP -- where functions could be declared within <% %> blocks -- all
functions and global page variables must be declared in a <script runat=server> tag.
Functions declared within <% %> blocks will now generate a syntax compile error.

ASP.NET Server Control Syntax

Custom ASP.NET server controls enable page developers to dynamically generate HTML user
interface (UI) and respond to client requests. They are represented within a file using a
declarative, tag-based syntax. These tags are distinguished from other tags because they contain
a "runat=server" attribute. The following example demonstrates how an <asp:label
runat="server"> server control can be used within an ASP.NET page. This control corresponds
to the Label class in the System.Web.UI.WebControls namespace, which is included by
default.

By adding a tag with the ID "Message", an instance of Label is created at run time:

<asp:label id="Message" font-size=24 runat="server"/>

The control can then be accessed using the same name. The following line sets the Text
property of the control.

Message.Text = "Welcome to ASP.NET"

VB

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/webformssyntaxref.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/reference/VB/reference2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/reference/VB/reference2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/reference/reference2.src

VB Reference3.aspx

[Run Sample] | [View Source]

ASP.NET HTML Server Control Syntax

HTML server controls enable page developers to programmatically manipulate HTML elements
within a page. An HTML server control tag is distinguished from client HTML elements by means
of a "runat=server" attribute. The following example demonstrates how an HTML <span
runat=server> server control can be used within an ASP.NET page.

As with other server controls, the methods and properties are accessible programmatically, as
shown in the following example.

<script language="VB" runat="server">
 Sub Page_Load(sender As Object, e As EventArgs)
 Message.InnerHtml = "Welcome to ASP.NET"
 End Sub
</script>
...

VB

VB Reference4.aspx

[Run Sample] | [View Source]

Data Binding Syntax: <%# %>

The data binding support built into ASP.NET enables page developers to hierarchically bind
control properties to data container values. Code located within a <%# %> code block is only
executed when the DataBind method of its parent control container is invoked. The following
example demonstrates how to use the data binding syntax within an <asp:datalist
runat=server> control.

Within the datalist, the template for one item is specified. The content of the item template is
specified using a data binding expression and the Container.DataItem refers to the data
source used by the datalist MyList.

<asp:datalist id="MyList" runat=server>
 <ItemTemplate>
 Here is a value: <%# Container.DataItem %>
 </ItemTemplate>
</asp:datalist>

In this case the data source of the MyList control is set programmatically, and then
DataBind() is called.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/reference/VB/reference3.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/reference/VB/reference3.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/reference/reference3.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/reference/VB/reference4.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/reference/VB/reference4.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/reference/reference4.src

Sub Page_Load(sender As Object, e As EventArgs)
 Dim items As New ArrayList()

 items.Add("One")
 items.Add("Two")
 items.Add("Three")

 MyList.DataSource = items
 MyList.DataBind()
End Sub

VB

Calling the DataBind method of a control causes a recursive tree walk from that control on
down in the tree; the DataBinding event is raised on each server control in that hierarchy, and
data binding expressions on the control are evaluated accordingly. So, if the DataBind method
of the page is called, then every data binding expression within the page will be called.

 VB Reference5.aspx

[Run Sample] | [View Source]

Object Tag Syntax: <object runat="server" />

Object tags enable page developers to declare and create instances of variables using a
declarative, tag-based syntax. The following example demonstrates how the object tag can be
used to create an instance of an ArrayList class.

<object id="items" class="System.Collections.ArrayList" runat="server"/>

The object will be created automatically at run time and can then be accessed through the ID
"items".

Sub Page_Load(sender As Object, e As EventArgs)
 items.Add("One")
 items.Add("Two")
 items.Add("Three")
 ...
End Sub

VB

VB Reference6.aspx

[Run Sample] | [View Source]

Server-Side Comment Syntax: <%-- Comment --%>

Server-side comments enable page developers to prevent server code (including server controls)
and static content from executing or rendering. The following sample demonstrates how to block
content from executing and being sent down to a client. Note that everything between <%-- and
--%> is filtered out and only visible in the original server file, even though it contains other
ASP.NET directives.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/reference/VB/reference5.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/reference/VB/reference5.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/reference/reference5.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/reference/VB/reference6.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/reference/VB/reference6.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/reference/reference6.src

<%--
 <asp:calendar id="MyCal" runat=server/>
 <% For I=0 To 44 %>
 Hello World

 <% Next %>
--%>

VB

VB Reference7.aspx

[Run Sample] | [View Source]

Server-Side Include Syntax: <-- #Include File="Locaton.inc" -->

Server-side #Includes enable developers to insert the raw contents of a specified file anywhere
within an ASP.NET page. The following sample demonstrates how to insert a custom header and
footer within a page.

<!-- #Include File="Header.inc" -->
...
<!-- #Include File="Footer.inc" -->

VB Reference8.aspx

[Run Sample] | [View Source]

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/webforms/reference/VB/reference7.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/reference/VB/reference7.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/reference/reference7.src
http://docs.aspng.com/quickstart/aspplus/samples/webforms/reference/VB/reference8.aspx
http://docs.aspng.com/quickstart/aspplus/samples/webforms/reference/VB/reference8.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/webforms/reference/reference8.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security

Introducing XML Web services

The Internet is quickly evolving from today's Web sites that just deliver user
interface pages to browsers to a next generation of programmable Web sites
that directly link organizations, applications, services, and devices with one
another. These programmable Web sites become more than passively accessed
sites - they become reusable, intelligent Web Services.

The common language runtime provides built-in support for creating and
exposing Web Services, using a programming abstraction that is consistent and
familiar to both ASP.NET Web Forms developers and existing Visual Basic users.
The resulting model is both scalable and extensible, and embraces open Internet
standards (HTTP, XML, SOAP, WSDL) so that it can be accessed and consumed
from any client or Internet-enabled device.

ASP.NET Web Services

ASP.NET provides support for Web Services with the .asmx file. An .asmx file is a
text file that is similar to an .aspx file. These files can be part of an ASP.NET
application that includes .aspx files. These files are then URI-addressable, just as
.aspx files are.

The following example shows a very simple .asmx file.

<%@ WebService Language="VB" Class="HelloWorld" %>

Imports System
Imports System.Web.Services

Public Class HelloWorld :Inherits WebService

 <WebMethod()> Public Function SayHelloWorld() As String
 Return("Hello World")
 End Function

End Class

VB

This file starts with an ASP.NET directive WebService, and sets the language to
C#, Visual Basic, or JScript. Next, it imports the namespace
System.Web.Services. You must include this namespace. Next, the class
HelloWorld is declared. This class is derived from the base class WebService;
note that deriving from the WebService base class is optional. Finally, any
methods that will be accessible as part of the service have the attribute
[WebMethod] in C#, <WebMethod()> in Visual Basic, or
WebMethodAttribute in JScript, in front of their signatures.

To make this service available, we might name the file HelloWorld.asmx and
place it on a server called SomeDomain.com inside a virtual directory called
someFolder. Using a Web browser, you could then enter the URL
http://SomeDomain.com/someFolder/HelloWorld.asmx, and the
resulting page would show the public methods for this Web Service (those
marked with the WebMethod attribute), as well as which protocols (such as
SOAP, or HTTP GET) you can use to invoke these methods.

 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

Entering the address:
http://SomeDomain.com/someFolder/HelloWorld.asmx?WSDL into the
browser returns a Web Service Description Language (WSDL) document. This
WSDL document is very important, and is used by clients that will access the
service.

Accessing Web Services

In addition to the ASP.NET server side technology that allows developers to
create Web Services, the .NET Framework provides a sophisticated set of tools
and code to consume Web Services. Because Web Services are based on open
protocols such as the Simple Object Access Protocol (SOAP), this client
technology can also be used to consume non-ASP.NET Web Services.

Within the SDK, there is a tool called the Web Services Description Language tool
(WSDL.exe). This command-line tool is used to create proxy classes from WSDL.
For example, you could enter:

WSDL http://someDomain.com/someFolder/HelloWorld.asmx?WSDL

to create a proxy class called HelloWorld.cs.

This class would look very similar to the class created in the previous section. It
would contain a method called SayHelloWorld that returns a string. Compiling
this proxy class into an application and then calling this proxy class's method
results in the proxy class packaging a SOAP request across HTTP and receiving
the SOAP-encoded response, which is then marshaled as a string.

From the client perspective, the code would be simple, as shown in the following
example.

Dim myHelloWorld As New HelloWorld()
Dim sReturn As String = myHelloWorld.SayHelloWorld()

VB

The return would be "Hello World".

The rest of this section deals with more advanced Web Services topics, such as
sending and receiving complex data types. There is also a section on Text
Pattern Matching, a technology that addresses any URI that returns text as if it
were a Web Service. You can also perform data binding operations with Web
Services; this topic is discussed in the Data section.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/webservicesintro.aspx

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Write a Simple Web Service

You can write a simple XML Web service in a few minutes using any text editor. The service you will
create in this section, MathService, exposes methods for adding, subtracting, dividing, and
multiplying two numbers. At the top of the page, the following directive identifies the file as a XML
Web service in addition to specifying the language for the service (C#, in this case).

<%@ WebService Language="C#" Class="MathService" %>

In this same file, you define a class that encapsulates the functionality of your service. This class
should be public, and can optionally inherit from the WebService base class. Each method that will
be exposed from the service is flagged with a [WebMethod] attribute in front of it. Without this
attribute, the method will not be exposed from the service. This is sometimes useful for hiding
implementation details called by public Web Service methods, or in the case where the
WebService class is also used in local applications (a local application can use any public class, but
only WebMethod classes are remotely accessible as XML Web services).

Imports System
Imports System.Web.Services

Public Class MathService : Inherits WebService

 <WebMethod()> Public Function Add(a As Integer, b As Integer) As Integer
 Return(a + b)
 End Function

End Class

VB

XML Web service files are saved under the .asmx file extension. Like .aspx files, these are
automatically compiled by the ASP.NET runtime when a request to the service is made (subsequent
requests are serviced by a cached precompiled type object). In the case of MathService, you have
defined the WebService class in the .asmx file itself. Note that if an .asmx file is requested by a
browser, the ASP.NET runtime returns a XML Web service Help page that describes the Web Service.

VB MathService.asmx

[Run Sample] | [View Source]

 VB MathService.asmx?wsdl

[View Sample]

Precompiled XML Web services

If you have a precompiled class that you want to expose as a XML Web service (and this class
exposes methods marked with the [WebMethod] attribute), you can create an .asmx file with only
the following line.

<%@ WebService Class="MyWebApplication.MyWebService" %>

MyWebApplication.MyWebService defines the WebService class, and is contained in the \bin
subdirectory of the ASP.NET application.

Consuming a XML Web service from a Client Application

To consume this service, you need to use the Web Services Description Language command-line tool
(WSDL.exe) included in the SDK to create a proxy class that is similar to the class defined in the
.asmx file. (It will contain only the WebMethod methods.) Then, you compile your code with this
proxy class included.

http://docs.aspng.com/quickstart/aspplus/samples/services/MathService/VB/MathService.asmx
http://docs.aspng.com/quickstart/aspplus/samples/services/MathService/VB/MathService.asmx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/services/MathService/MathService.src
http://docs.aspng.com/quickstart/aspplus/samples/services/MathService/VB/MathService.asmx?WSDL
http://docs.aspng.com/quickstart/aspplus/samples/services/MathService/VB/MathService.asmx?WSDL

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

WSDL.exe accepts a variety of command-line options, however to create a proxy only one option is
required: the URI to the WSDL. In this example, we are passing a few extra options that specify the
preferred language, namespace, and output location for the proxy. We are also compiling against a
previously saved WSDL file instead of the URI to the service itself:

wsdl.exe /l:CS /n:MathService /out:MathService.cs MathService.wsdl

Once the proxy class exists, you can create objects based on it. Each method call made with the
object then goes out to the URI of the XML Web service (usually as a SOAP request).

VB MathServiceClient.aspx

[Run Sample] | [View Source]

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/writingservices.aspx
http://docs.aspng.com/quickstart/aspplus/samples/services/MathService/VB/MathServiceClient.aspx
http://docs.aspng.com/quickstart/aspplus/samples/services/MathService/VB/MathServiceClient.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/services/MathService/MathServiceClient.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

XML Web service Type Marshaling

This section illustrates that various data types can be passed to
and returned from Web Service methods. Because the XML Web
services implementation is built on top of the XML Serialization
architecture, it supports a significant number of data types. The
following table lists the supported data types for Web Service
methods when using the SOAP protocol (for example, using the
proxy generated by the Web Services Description Language tool,
WSDL.exe).

Type Description

Primitive Types Standard primitive types.
The complete list of
supported primitives are
String, Char, Byte,
Boolean, Int16, Int32,
Int64, UInt16, UInt32,
UInt64, Single, Double,
Guid, Decimal, DateTime
(as XML's timeInstant),
DateTime (as XML's date),
DateTime (as XML's time),
and XmlQualifiedName (as
XML's QName).

Enum Types Enumeration types, for
example, "public enum
color { red=1, blue=2 }"

Arrays of Primitives,
Enums

Arrays of the above
primitives, such as string[]
and int[]

Classes and Structs Class and struct types with
public fields or properties.
The public properties and
fields are serialized.

Arrays of Classes
(Structs)

Arrays of the above.

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

DataSet ADO.NET DataSet Types
(see the next section for
an example). DataSets can
also appear as fields in
structs or classes.

Note: Microsoft Visual
Studio .NET and the
XSD.EXE SDK utility have
support for "strong-typing"
a DataSet. These tools
generate a class that
inherits from DataSet to
produce DataSet1, adding
several
methods/properties/etc
that are specific to a
particular XML schema. If
you pass DataSet, XML
Web services always
transmits the schema
along with the data (so it
knows what tables and
columns you are passing),
and their types (for
example, int, string). If
you pass a subclass of
DataSet (for example,
DataSet1), XML Web
services assumes you are
adding tables/columns in
the constructor, and
assumes that those
tables/columns represent
your schema.

Arrays of DataSet Arrays of the above.

XmlNode XmlNode is an in-memory
representation of an XML
fragment (like a
lightweight XML document
object model). For
example, "<comment>This
ispretty
neat</comment>" could
be stored in an XmlNode.
You can pass XmlNodes as
parameters, and they are
added to the rest of the
XML being passed to the
XML Web service (the
other parameters) in a
SOAP-compliant manner.

 Get URL for this page The same is true for return
values. This allows you to
pass or return XML whose
structure changes from call
to call, or where you may
not know all the types
being passed. XmlNode
can also appear as fields in
structs or classes.

Arrays of XmlNode Arrays of above.

Return values:

Whether calling a XML Web service using SOAP or HTTP
GET/POST, all the above types are supported for return
values.

Parameters:

Both by-value and by-reference (in/out) parameters are
supported when using the SOAP protocol. By-reference
parameters can send the value both ways: up to the server,
and back to the client. When passing input parameters to a
XML Web service using HTTP GET/POST, only a limited set of
data types are supported, and they must be by-value
parameters. The supported types for HTTP GET/POST
parameters are listed below:

Type Description
Primitive Types (limited) Most standard

primitive types.
The complete list of
supported
primitives are
Int32, String,
Int16, Int64,
Boolean, Single,
Double, Decimal,
DateTime, UInt16,
UInt32, UInt64,
and Currency. From
the client's
perspective, all
these types turn
into string.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/webservicetypes.aspx

Enum Types Enumeration types,
for example,
"public enum color
{ red=1, blue=2
}". From the
client's perspective,
enums become
classes with a static
const string for
each value.

Arrays of Primitives, Enums Arrays of the above
primitives, such as
string[] and int[]

The following example demonstrates the use of the types listed
above, using a SOAP proxy generated from WSDL.exe. Note that
because there is more than one public class defined in the .asmx
file, you must specify which is to be treated as the WebService
class using the "Class" attribute of the WebService directive:

<%@ WebService Language="C#" Class="DataTypes" %>

 VB
DataTypes.asmx

[Run Sample] | [View
Source]

VB
DataTypes.asmx?wsdl

[View Sample]

● The SayHello method shows returning a String from a
service.

● The SayHelloName method returns a String, and also
takes a String as a parameter.

● The GetIntArray method shows how to return an array
of integers.

● The GetMode method returns an enum value.
● The GetOrder method returns a class (which is almost

the same as a struct here).
● The GetOrders method returns an array of Order

objects.

Using the WSDL.exe command line proxy generation tool, the
marshaling of these data types is transparent to the consuming
client application. A sample client application for the above XML
Web service follows:

http://docs.aspng.com/quickstart/aspplus/samples/services/DataTypes/VB/DataTypes.asmx
http://docs.aspng.com/quickstart/aspplus/samples/services/DataTypes/VB/DataTypes.asmx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/services/DataTypes/DataTypes.src
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/services/DataTypes/DataTypes.src
http://docs.aspng.com/quickstart/aspplus/samples/services/DataTypes/VB/DataTypes.asmx?WSDL
http://docs.aspng.com/quickstart/aspplus/samples/services/DataTypes/VB/DataTypes.asmx?WSDL

VB DataTypesClient.aspx

[Run Sample] | [View Source]

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/services/DataTypes/VB/DataTypesClient.aspx
http://docs.aspng.com/quickstart/aspplus/samples/services/DataTypes/VB/DataTypesClient.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/services/DataTypes/DataTypesClient.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Use Data in XML Web services

This sample shows how DataSets, a powerful new XML-based way
to represent disconnected data, can be returned from a Web
Service method. This is an extremely powerful use of XML Web
services, as DataSets can store complex information and
relationships in an intelligent structure. By exposing DataSets
through a service, you can limit the database connections your data
server is experiencing.

The method GetTitleAuthors connects to a database and issues
two SQL statements: one that returns a list of authors, and another
that returns a list of book titles. It places both result sets into a
single DataSet called ds, and returns this DataSet.

The method PutTitleAuthors illustrates a Web Service method
that takes a DataSet as a parameter, returning an integer that
represents the number of rows received in the "Authors" table of the
DataSet. Although the implementation of this method is somewhat
simplistic, this method could also intelligently merge the passed data
with the database server.

 VB
DataService.asmx

[Run Sample] | [View
Source]

VB
DataService.asmx?wsdl

[View Sample]

The client application for this XML Web service calls GetTitleAuthors
and binds the Authors table to a DataGrid control, as you've seen in
previous examples. To illustrate the PutTitleAuthors method, the
client removes three rows of data from the DataSet before calling
this method, printing out the number of rows received by the
service.

VB DataServiceClient.aspx

[Run Sample] | [View Source]

http://docs.aspng.com/quickstart/aspplus/samples/services/DataService/VB/DataService.asmx
http://docs.aspng.com/quickstart/aspplus/samples/services/DataService/VB/DataService.asmx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/services/DataService/DataService.src
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/services/DataService/DataService.src
http://docs.aspng.com/quickstart/aspplus/samples/services/DataService/VB/DataService.asmx?WSDL
http://docs.aspng.com/quickstart/aspplus/samples/services/DataService/VB/DataService.asmx?WSDL
http://docs.aspng.com/quickstart/aspplus/samples/services/DataService/VB/DataServiceClient.aspx
http://docs.aspng.com/quickstart/aspplus/samples/services/DataService/VB/DataServiceClient.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/services/DataService/DataServiceClient.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Use Objects and Intrinsics

This sample illustrates how to access ASP.NET intrinsics such as the
Session and Application objects. It also shows how to turn off Session
on a per-[WebMethod] basis.

The first method in the sample .asmx file, UpdateHitCounter, accesses
the Session and adds 1 to the "HitCounter" value. It then returns this value
as a String. The second method, UpdateAppCounter does the same thing,
but with the Application. Notice the following:

<WebMethod(EnableSession:=true)>

VB

Session state for XML Web services is disabled by default, and you have to
use a special attribute property to enable Sessions. However, Sessions
aren't needed for this object, since it only uses the Application object.

VB
SessionService.asmx

[Run Sample] | [View Source]

VB
SessionService.asmx?wsdl

[View Sample]

When the client proxy is accessed, it contains a cookie collection. This
collection is used to accept and return the APSESSIONID cookie that
ASP.NET uses to track Sessions. This is what allows this client to receive
varying answers to the Session hit method.

VB SessionServiceClient.aspx

[Run Sample] | [View Source]

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/services/Intrinsics/VB/SessionService1.asmx
http://docs.aspng.com/quickstart/aspplus/samples/services/Intrinsics/VB/SessionService1.asmx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/services/Intrinsics/SessionService1.src
http://docs.aspng.com/quickstart/aspplus/samples/services/Intrinsics/VB/SessionService1.asmx?WSDL
http://docs.aspng.com/quickstart/aspplus/samples/services/Intrinsics/VB/SessionService1.asmx?WSDL
http://docs.aspng.com/quickstart/aspplus/samples/services/Intrinsics/VB/SessionService1Client.aspx
http://docs.aspng.com/quickstart/aspplus/samples/services/Intrinsics/VB/SessionService1Client.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/services/Intrinsics/SessionService1Client.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization

The WebService Behavior

Microsoft recently released a new SOAP-enabled DHTML behavior for Microsoft Internet
Explorer 5.0 and later versions. The new WebService behavior enables client-side
script to invoke remote methods exposed by Microsoft .NET XML Web services, or other
Web servers that support the Simple Object Access Protocol (SOAP). The WebService
behavior is implemented with an HTML Components (HTC) file as an attached
behavior, so it can be used in Internet Explorer.

The purpose of the WebService behavior is to provide a simple way of using and
leveraging SOAP, without requiring expert knowledge of its implementation. The
WebService behavior supports the use of a wide variety of data types, including
intrinsic SOAP data types, arrays, and Extensible Markup Language (XML) data. This
flexible component enables Internet Explorer to retrieve information from XML Web
services and to update a page dynamically using DHTML and script, without requiring
navigation or a full page refresh.

The next generation of .NET development tools and infrastructure, including Visual
Studio .NET, the .NET Framework, and the .NET Enterprise Servers, are designed for
the development of applications based on the XML Web services model. The
WebService behavior is particularly significant because it enables Internet Explorer to
use these next-generation XML Web services.

The Microsoft Developer Network (MSDN) site provides the following documentation.

WebService
Behavior
Overview

http://msdn.microsoft.com/workshop/author/webservice/overview.asp

Using the
WebService
Behavior

http://msdn.microsoft.com/workshop/author/webservice/using.asp

The
WebService
Behavior

http://msdn.microsoft.com/workshop/author/webservice/webservice.asp

Copyright 2001 Microsoft Corporation. All rights reserved.

http://msdn.microsoft.com/workshop/author/webservice/overview.asp
http://msdn.microsoft.com/workshop/author/webservice/using.asp
http://msdn.microsoft.com/workshop/author/webservice/webservice.asp

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

HTML Text Pattern Matching

This example demonstrates how to create a client proxy for
any URI that serves up text. Instead of authoring the .asmx
file, you can create a WSDL file that describes an HTML (or
XML or any other nonbinary format) page you currently
offer. The WSDL can be used to generate a client proxy,
using the WSDL.exe command line tool that will use RegEx
to parse the named HTML page and extract values.

You can do this by adding <Match> tags in the Response
section of the WSDL. These tags take an attribute called
pattern, which is the Regular Expression that corresponds
to the piece of text on the page that is the property's value.
(Note: the property from the proxy class is read-only.)

The consuming code can then create the object, access the
Matches object that is returned by the functioned name in
the WSDL, and gain access to any piece of the HTML as a
property. No understanding of WSDL, regular expressions,
or even HTML is needed to use the proxy class. It behaves
like any other .NET Framework class would.

VB MatchClient.aspx

[Run Sample] | [View Source]

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/services/TextMatching/VB/MatchClient.aspx
http://docs.aspng.com/quickstart/aspplus/samples/services/TextMatching/VB/MatchClient.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/services/TextMatching/MatchService.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication

Application Overview

 What is an ASP.NET Application?
 Creating an Application
 Lifetime of an Application
 A Note on Multiple Threads
 Section Summary

What is an ASP.NET Application?

ASP.NET defines an application as the sum of all files, pages, handlers, modules, and
executable code that can be invoked or run in the scope of a given virtual directory (and
its subdirectories) on a Web application server. For example, an "order" application might
be published in the "/order" virtual directory on a Web server computer. For IIS the virtual
directory can be set up in the Internet Services Manager; it contains all subdirectories,
unless the subdirectories are virtual directories themselves.

Each ASP.NET Framework application on a Web server is executed within a unique .NET
Framework application domain, which guarantees class isolation (no versioning or naming
conflicts), security sandboxing (preventing access to certain machine or network
resources), and static variable isolation.

ASP.NET maintains a pool of HttpApplication instances over the course of a Web
application's lifetime. ASP.NET automatically assigns one of these instances to process
each incoming HTTP request that is received by the application. The particular
HttpApplication instance assigned is responsible for managing the entire lifetime of the
request and is reused only after the request has been completed. This means that user
code within the HttpApplication does not need to be reentrant.

Creating an Application

To create an ASP.NET Framework application you can use an existing virtual directory or
create a new one. For example, if you installed Windows 2000 Server including IIS, you
probably have a directory C:\InetPub\WWWRoot. You can configure IIS using the Internet
Services Manager, available under Start -> Programs -> Administrative Tools. Right-click
on an existing directory and choose either New (to create a new virtual directory) or
Properties (to promote an existing regular directory).

By placing a simple .aspx page like the following in the virtual directory and accessing it
with the browser, you trigger the creation of the ASP.NET application.

<%@Page Language="VB"%>
<html>
<body>
<h1>hello world, <% Response.Write(DateTime.Now.ToString()) %></h1>
</body>
</html>

VB

Now you can add appropriate code to use the Application object--to store objects with
application scope, for example. By creating a global.asax file you also can define various
event handlers-- for the Application_Start event, for example.

Lifetime of an Application

 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

An ASP.NET Framework application is created the first time a request is made to the
server; before that, no ASP.NET code executes. When the first request is made, a pool of
HttpApplication instances is created and the Application_Start event is raised. The
HttpApplication instances process this and subsequent requests, until the last instance
exits and the Application_End event is raised.

Note that the Init and Dispose methods of HttpApplication are called per instance and
thus can be called several times between Application_Start and Application_End.
Only these events are shared among all instances of HttpApplication in one ASP.NET
application.

A Note on Multiple Threads

If you use objects with application scope, you should be aware that ASP.NET processes
requests concurrently and that the Application object can be accessed by multiple
threads. Therefore the following code is dangerous and might not produce the expected
result, if the page is repeatedly requested by different clients at the same time.

<%
Application("counter") = CType(Application("counter") + 1, Int32)
%>

VB

To make this code thread safe, serialize the access to the Application object using the
Lock and UnLock methods. However, doing so also means accepting a considerable
performance hit:

<%
Application.Lock()
Application("counter") = CType(Application("counter") + 1, Int32)
Application.UnLock()
%>

VB

Another solution is to make the object stored with an application scope thread safe. For
example, note that the collection classes in the System.Collections namespace are not
thread safe for performance reasons.

Section Summary

1. ASP.NET Framework applications consist of everything under one virtual directory
of the Web server.

2. You create an ASP.NET Framework application by adding files to a virtual directory
on the Web server.

3. The lifetime of an ASP.NET Framework application is marked by
Application_Start and Application_End events.

4. Access to application-scope objects must be safe for multithreaded access.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/applications.aspx

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Using the Global.asax File

 The Global.asax File
 Application or Session-Scoped Events
 Application or Session-Scoped Objects
 Section Summary

The Global.asax File

In addition to writing UI code, developers can also add application level logic and event handling
code into their Web applications. This code does not handle generating UI and is typically not
invoked in response to individual page requests. Instead, it is responsible for handling higher-level
application events such as Application_Start, Application_End, Session_Start, Session_End,
and so on. Developers author this logic using a Global.asax file located at the root of a particular
Web application's virtual directory tree. ASP.NET automatically parses and compiles this file into a
dynamic .NET Framework class--which extends the HttpApplication base class--the first time any
resource or URL within the application namespace is activated or requested.

The Global.asax file is parsed and dynamically compiled by ASP.NET into a .NET Framework class
the first time any resource or URL within its application namespace is activated or requested. The
Global.asax file is configured to automatically reject any direct URL request so that external users
cannot download or view the code within.

Application or Session-Scoped Events

Developers can define handlers for events of the HttpApplication base class by authoring
methods in the Global.asax file that conform to the naming pattern
"Application_EventName(AppropriateEventArgumentSignature)". For example:

<script language="VB" runat="server">

Sub Application_Start(Sender As Object, E As EventArgs)
 ' Application startup code goes here
End Sub
</script>

VB

If the event handling code needs to import additional namespaces, the @ import directive can be
used on an .aspx page, as follows:

<%@ Import Namespace="System.Text" %>

The following sample illustrates the lifetime of Application, Session, and Request.

VB Application1.aspx

[Run Sample] | [View Source]

The first time the page is opened, the Start event is raised for the application and the session:

Sub Application_Start(Sender As Object, E As EventArgs)
 ' Application startup code goes here
End Sub

http://docs.aspng.com/quickstart/aspplus/samples/apps/application1/VB/application1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/apps/application1/VB/application1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/apps/application1/application1.src

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

Sub Session_Start(Sender As Object, E As EventArgs)
 Response.Write("Session is Starting...
")
 Session.Timeout = 1
End Sub

VB

The BeginRequest and EndRequest events are raised on each request. When the page is
refreshed, only messages from BeginRequest, EndRequest, and the Page_Load method will
appear. Note that by abandoning the current session (click the "End this session" button) a new
session is created and the Session_Start event is raised again.

Application or Session-Scoped Objects

Static objects, .NET Framework classes, and COM components all can be defined in the Global.asax
file using the object tag. The scope can be appinstance, session, or application. The
appinstance scope denotes that the object is specific to one instance of HttpApplication and is
not shared.

<object id="id" runat="server" class=".NET Framework class Name"
scope="appinstance"/>
<object id="id" runat="server" progid="COM ProgID" scope="session"/>
<object id="id" runat="server" classid="COM ClassID" scope="application"/>

Section Summary

1. ASP.NET Framework applications can define event handlers with application-wide or session-
wide scope in the Global.asax file.

2. ASP.NET Framework applications can define objects with application-wide or session-wide
scope in the Global.asax file.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/globalasax.aspx

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization

Managing Application State

 Using Application State
 Using Session State
 Using Client-Side Cookies
 Using ViewState
 Section Summary

Using Application State

This sample illustrates the use of application state to read a dataset in Application_Start.

VB Application2.aspx

[Run Sample] | [View Source]

Because an application and all the objects it stores can be concurrently accessed by different threads,
it is better to store only infrequently modified data with application scope. Ideally an object is
initialized in the Application_Start event and further access is read-only.

In the following sample a file is read in Application_Start (defined in the Global.asax file) and the
content is stored in a DataView object in the application state.

Sub Application_Start()
 Dim ds As New DataSet()

 Dim fs As New
FileStream(Server.MapPath("schemadata.xml"),FileMode.Open,FileAccess.Read)
 Dim reader As New StreamReader(fs)
 ds.ReadXml(reader)
 fs.Close()

 Dim view As New DataView (ds.Tables(0))
 Application("Source") = view
End Sub

VB

In the Page_Load method, the DataView is then retrieved and used to populate a DataGrid object:

Sub Page_Load(sender As Object, e As EventArgs)
 Dim Source As New DataView = CType(Application("Source"), DataView)
 ...
 MyDataGrid.DataSource = Source
 ...
End Sub

VB

The advantage of this solution is that only the first request pays the price of retrieving the data. All
subsequent requests use the already existing DataView object. As the data is never modified after
initialization, you do not have to make any provisions for serializing access.

Using Session State

http://docs.aspng.com/quickstart/aspplus/samples/apps/application2/VB/application2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/apps/application2/VB/application2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/apps/application2/application2.src

 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

The following sample illustrates the use of session state to store volatile user preferences.

VB Session1.aspx

[Run Sample] | [View Source]

To provide individual data for a user during a session, data can be stored with session scope. In the
following sample, values for user preferences are initialized in the Session_Start event in the
Global.asax file.

Sub Session_Start()
 Session("BackColor") = "beige"
 ...
End Sub

VB

In the following customization page, values for user preferences are modified in the Submit_Click
event handler according to user input.

Protected Sub Submit_Click(sender As Object, e As EventArgs)
 Session("BackColor") = BackColor.Value
 ...

 Response.Redirect(State("Referer").ToString())
End Sub

VB

The individual values are retrieved using the GetStyle method:

Protected GetStyle(key As String) As String
 Return(Session(key).ToString())
End Sub

VB

The GetStyle method is used to construct session-specific styles:

<style>
 body
 {
 font: <%=GetStyle("FontSize")%> <%=GetStyle("FontName")%>;
 background-color: <%=GetStyle("BackColor")%>;
 }
 a
 {
 color: <%=GetStyle("LinkColor")%>
 }
</style>

To verify that the values are really stored with session scope, open the sample page twice, then
change one value in the first browser window and refresh the second one. The second window picks
up the changes because both browser instances share a common Session object.

Configuring session state: Session state features can be configured via the <sessionState>
section in a web.config file. To double the default timeout of 20 minutes, you can add the following to
the web.config file of an application:

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/stateoverview.aspx
http://docs.aspng.com/quickstart/aspplus/samples/apps/session1/VB/session1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/apps/session1/VB/session1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/apps/session1/session1.src

<sessionState timeout="40" />

By default, ASP.NET will store the session state in the same process that processes the request, just as
ASP does. If cookies are not available, a session can be tracked by adding a session identifier to the
URL. This can be enabled by setting the following:

<sessionState
 cookieless="true"
/>

By default, ASP.NET will store the session state in the same process that processes the request, just as
ASP does. Additionally, ASP.NET can store session data in an external process, which can even reside
on another machine. To enable this feature:

● Start the ASP.NET state service, either using the Services snap-in or by executing "net start
aspnet_state" on the command line. The state service will by default listen on port 42424. To
change the port, modify the registry key for the service:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\aspnet_state\Parameters\Port

● Set the mode attribute of the <sessionState> section to "StateServer".
● Configure the stateConnectionString attribute with the values of the machine on which you

started aspnet_state.

The following sample assumes that the state service is running on the same machine as the Web
server ("localhost") and uses the default port (42424):

<sessionState
 mode="StateServer"
 stateConnectionString="tcpip=localhost:42424"
/>

Note that if you try the sample above with this setting, you can reset the Web server (enter
iisreset on the command line) and the session state value will persist.

Using Client-Side Cookies

The following sample illustrates the use of client-side cookies to store volatile user preferences.

VB Cookies1.aspx

[Run Sample] | [View Source]

Storing cookies on the client is one of the methods that ASP.NET's session state uses to associate
requests with sessions. Cookies can also be used directly to persist data between requests, but the
data is then stored on the client and sent to the server with every request. Browsers place limits on
the size of a cookie; therefore, only a maximum of 4096 bytes is guaranteed to be acceptable.

When the data is stored on the client, the Page_Load method in the file cookies1.aspx checks
whether the client has sent a cookie. If not, a new cookie is created and initialized and stored on the
client:

Protected Sub Page_Load(sender As Object, e As EventArgs)
 If Request.Cookies("preferences1") = Null Then
 Dim cookie As New HttpCookie("preferences1")
 cookie.Values.Add("ForeColor", "black")
 ...
 Response.AppendCookie(cookie)
 End If

http://docs.aspng.com/quickstart/aspplus/samples/apps/cookies1/VB/cookies1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/apps/cookies1/VB/cookies1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/apps/cookies1/cookies1.src

End Sub

VB

On the same page, a GetStyle method is used again to provide the individual values stored in the
cookie:

Protected Function GetStyle(key As String) As String
 Dim cookie As HttpCookie = Request.Cookies("preferences1")
 If cookie <> Null Then
 Select Case key
 Case "ForeColor"
 Return(cookie.Values("ForeColor"))
 Case ...
 End Select
 End If
 Return("")
End Function

VB

Verify that the sample works by opening the cookies1.aspx page and modifying the preferences. Open
the page in another window, it should pick up the new preferences. Close all browser windows and
open the cookies1.aspx page again. This should delete the temporary cookie and restore the default
preference values.

VB Cookies2.aspx

[Run Sample] | [View Source]

To make a cookie persistent between sessions, the Expires property on the HttpCookie class has to
be set to a date in the future. The following code on the customization.aspx page is identical to the
previous sample, with the exception of the assignment to Cookie.Expires:

Protected Sub Submit_Click(sender As Object, e As EventArgs)
 Dim cookie As New HttpCookie("preferences2")
 cookie.Values.Add("ForeColor",ForeColor.Value)
 ...
 cookie.Expires = DateTime.MaxValue ' Never Expires

 Response.AppendCookie(cookie)

 Response.Redirect(State("Referer").ToString())
End Sub

VB

Verify that the sample is working by modifying a value, closing all browser windows, and opening
cookies2.aspx again. The window should still show the customized value.

Using ViewState

This sample illustrates the use of the ViewState property to store request-specific values.

http://docs.aspng.com/quickstart/aspplus/samples/apps/cookies2/VB/cookies2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/apps/cookies2/VB/cookies2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/apps/cookies2/cookies2.src

VB PageState1.aspx

[Run Sample] | [View Source]

ASP.NET provides the server-side notion of a view state for each control. A control can save its internal
state between requests using the ViewState property on an instance of the class StateBag. The
StateBag class provides a dictionary-like interface to store objects associated with a string key.

The file pagestate1.aspx displays one visible panel and stores the index of it in the view state of the
page with the key PanelIndex:

Protected Sub Next_Click(sender As Object, e As EventArgs)
 Dim PrevPanelId As String = "Panel" + ViewState("PanelIndex").ToString()
 ViewState("PanelIndex") = CType(ViewState("PanelIndex") + 1, Integer)
 Dim PanelId As String = "Panel" + ViewState("PanelIndex").ToString()
 ...
End Sub

VB

Note that if you open the page in several browser windows, each browser window will initially show
the name panel. Each window can independently navigate between the panels.

Section Summary

1. Use application state variables to store data that is modified infrequently but used often.
2. Use session state variables to store data that is specific to one session or user. The data is

stored entirely on the server. Use it for short-lived, bulky, or sensitive data.
3. Store small amounts of volatile data in a nonpersistent cookie. The data is stored on the client,

sent to the server on each request, and expires when the client ends execution.
4. Store small amounts of non-volatile data in a persistent cookie. The data is stored on the client

until it expires and is sent to the server on each request.
5. Store small amounts of request-specific data in the view state. The data is sent from the server

to the client and back.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/apps/pagestate/VB/pagestate1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/apps/pagestate/VB/pagestate1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/apps/pagestate/pagestate1.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

HTTP Handlers and Factories

 Overview
 Configuring HTTP Handlers and Factories
 Creating a Custom HTTP Handler
 Section Summary

Overview

ASP.NET provides a low-level request/response API that enables developers to use .NET Framework classes to
service incoming HTTP requests. Developers accomplish this by authoring classes that support the
System.Web.IHTTPHandler interface and implement the ProcessRequest() method. Handlers are often
useful when the services provided by the high-level page framework abstraction are not required for processing
the HTTP request. Common uses of handlers include filters and CGI-like applications, especially those that
return binary data.

Each incoming HTTP request received by ASP.NET is ultimately processed by a specific instance of a class that
implements IHTTPHandler. IHttpHandlerFactory provides the infrastructure that handles the actual
resolution of URL requests to IHttpHandler instances. In addition to the default IHttpHandlerFactory
classes provided by ASP.NET, developers can optionally create and register factories to support rich request
resolution and activation scenarios.

Configuring HTTP Handlers and Factories

HTTP handlers and factories are declared in the ASP.NET configuration as part of a web.config file. ASP.NET
defines an <httphandlers> configuration section where handlers and factories can be added and removed.
Settings for HttpHandlerFactory and HttpHandler are inherited by subdirectories.

For example, ASP.NET maps all requests for .aspx files to the PageHandlerFactory class in the global
machine.config file:

<httphandlers>
 ...
 <add verb="*" path="*.aspx" type="System.Web.UI.PageHandlerFactory,System.Web" />
 ...
</httphandlers>

Creating a Custom HTTP Handler

The following sample creates a custom HttpHandler that handles all requests to "SimpleHandler.aspx".

VB SimpleHandler

[Run Sample] | [View Source]

A custom HTTP handler can be created by implementing the IHttpHandler interface, which contains only two
methods. By calling IsReusable, an HTTP factory can query a handler to determine whether the same instance
can be used to service multiple requests. The ProcessRequest method takes an HttpContext instance as a
parameter, which gives it access to the Request and Response intrinsics. In the following sample, request
data is ignored and a constant string is sent as a response to the client.

Public Class SimpleHandler : Inherits IHttpHandler
 Public Sub ProcessRequest(context As HttpContext)
 context.Response.Write("Hello World!")
 End Sub

 Public Function IsReusable() As Boolean
 Return(True)
 End Function
End Class

http://docs.aspng.com/quickstart/aspplus/samples/apps/handler/VB/simplehandler.aspx
http://docs.aspng.com/quickstart/aspplus/samples/apps/handler/VB/simplehandler.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/apps/handler/handler.src

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

VB

After placing the compiled handler assembly in the application's \bin directory, the handler class can be specified
as a target for requests. In this case, all requests for "SimpleHandler.aspx" will be routed to an instance of the
SimpleHandler class, which lives in the namespace Acme.SimpleHandler.

<httphandlers> <add verb="*" path="SimpleHandler.aspx"
type="Acme.SimpleHandler,SimpleHandler" /> </httphandlers>

Section Summary

1. HTTP Handlers and factories are the backbone of the ASP.NET page framework.
2. Factories assign each request to one handler, which processes the request.
3. Factories and handlers are defined in the web.config file. Settings for factories are inherited by

subdirectories.
4. To create a custom handler, implement IHttpHandler and add the class in the <httphandlers>

section of the web.config in the directory.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/httphandlers.aspx

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

Caching Overview

Caching is a technique widely used in computing to
increase performance by keeping frequently accessed or
expensive data in memory. In the context of a Web
application, caching is used to retain pages or data across
HTTP requests and reuse them without the expense of
recreating them.

ASP.NET has three kinds of caching that can be used by
Web applications:

● Output caching, which caches the dynamic response
generated by a request.

● Fragment caching, which caches portions of a
response generated by a request.

● Data caching, which caches arbitrary objects
programmatically. To support this, ASP.NET
provides a full-featured cache engine that allows
programmers to easily retain data across requests.

Output caching is useful when the contents of an entire
page can be cached. On a heavily accessed site, caching
frequently accessed pages for even a minute at a time can
result in substantial throughput gains. While a page is
cached by the output cache, subsequent requests for that
page are served from the output page without executing
the code that created it.

Sometimes it is not practical to cache an entire page -
perhaps portions of the page must be created or
customized for each request. In this case, it is often
worthwhile to identify objects or data that are expensive to
construct and are eligible for caching. Once these items are
identified, they can be created once and then cached for
some period of time. Additionally, fragment caching can be
used to cache regions of a page's output.

Choosing the time to cache an item can be an interesting
decision. For some items, the data might be refreshed at
regular intervals or the data is valid for a certain amount of
time. In that case, the cache items can be given an
expiration policy that causes them to be removed from the
cache when they have expired. Code that accesses the
cache item simply checks for the absence of the item and
recreates it, if necessary.

 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications

The ASP.NET cache supports file and cache key
dependencies, allowing developers to make a cache item
dependent on an external file or another cache item. This
technique can be used to invalidate items when their
underlying data source changes.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model

Page Output Caching

Output caching is a powerful technique that increases request/response
throughput by caching the content generated from dynamic pages. Output
caching is enabled by default, but output from any given response is not
cached unless explicit action is taken to make the response cacheable.

To make a response eligible for output caching, it must have a valid
expiration/validation policy and public cache visibility. This can be done
using either the low-level OutputCache API or the high-level @
OutputCache directive. When output caching is enabled, an output
cache entry is created on the first GET request to the page. Subsequent
GET or HEAD requests are served from the output cache entry until the
cached request expires.

The output cache also supports variations of cached GET or POST
name/value pairs.

The output cache respects the expiration and validation policies for pages.
If a page is in the output cache and has been marked with an expiration
policy that indicates that the page expires 60 minutes from the time it is
cached, the page is removed from the output cache after 60 minutes. If
another request is received after that time, the page code is executed and
the page can be cached again. This type of expiration policy is called
absolute expiration - a page is valid until a certain time.

The following example demonstrates a simple way to output cache
responses using the @ OutputCache directive. The example simply
displays the time when the response was generated. To see output
caching in action, invoke the page and note the time at which the
response was generated. Then refresh the page and note that the time
has not changed, indicating that the second response is being served from
the output cache.

VB Outputcache1.aspx

[Run Sample] | [View Source]

The following directive activates output caching on the response:

<%@ OutputCache Duration="60" VaryByParam="none"%>

This directive simply indicates that the page should be cached for 60
seconds and that the page does not vary by any GET or POST
parameters. Requests received while the page is still cached are satisfied
from the cache. After 60 seconds, the page is removed from the cache;
the next request is handled explicitly and caches the page again.

http://docs.aspng.com/quickstart/aspplus/samples/cache/VB/outputcache1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/cache/VB/outputcache1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/cache/outputcache1.src

 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

Of course, in the previous example, very little work is saved by output
caching. The following example shows the same technique for output
caching, but queries a database and displays the results in a grid.

VB Outputcache2.aspx

[Run Sample] | [View Source]

In the final example, the application is modified slightly to allow the user
to selectively query for authors in various states. This example
demonstrates caching requests varying by the name/value pairs in the
query string using the VaryByParam attribute of the @ OutputCache
directive.

<%@ OutputCache Duration="60" VaryByParam="state" %>

For each state in the data set, there is a link that passes the desired state
as part of the query string. The application then constructs the
appropriate database query and shows authors belonging only to the
selected state.

Note that the first time you click the link for a given state, it generates a
new timestamp at the bottom of the page. Thereafter, whenever a
request for that state is resubmitted within a minute, you get the original
timestamp indicating that the request has been cached.

VB Outputcache3.aspx

[Run Sample] | [View Source]

Applications that want more control over the HTTP headers related to
caching can use the functionality provided by the
System.Web.HttpCachePolicy class. The following example shows the
code equivalent to the page directives used in the previous samples.

Response.Cache.SetExpires(DateTime.Now.AddSeconds(60))
Response.Cache.SetCacheability(HttpCacheability.Public)

VB

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/outputcaching.aspx
http://docs.aspng.com/quickstart/aspplus/samples/cache/VB/outputcache2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/cache/VB/outputcache2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/cache/outputcache2.src
http://docs.aspng.com/quickstart/aspplus/samples/cache/VB/outputcache3.aspx
http://docs.aspng.com/quickstart/aspplus/samples/cache/VB/outputcache3.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/cache/outputcache3.src

To make this a sliding expiration policy, where the expiration time out
resets each time the page is requested, set the SlidingExpiration
property as shown in the following code.

Response.Cache.SetExpires(DateTime.Now.AddSeconds(60))
Response.Cache.SetCacheability(HttpCacheability.Public)
Response.Cache.SetSlidingExpiration(True)

VB

Note: When sliding expiration is enabled (SetSlidingExpiration(true)),
a request made to the origin server always generates a response. Sliding
expiration is useful in scenarios where there are downstream caches that
can satisfy client requests, if the content has not expired yet, without
requesting the content from the origin server.

Applications being ported from ASP may already be setting cache policy
using the ASP properties; for example:

Response.CacheControl = "Public"
Response.Expires = 60

VB

These properties are supported by ASP.NET and have the same effect as
the other examples that have been shown.

Section Summary

1. Output caching caches the content generated by ASP.NET pages.
2. Pages are not placed in the output cache unless they have a valid

expiration or validation policy and public cache visibility.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview

Page Fragment Caching

In addition to output caching an entire page, ASP.NET provides a simple way for you to output cache
regions of page content, which is appropriately named fragment caching. You delineate regions of your
page with a user control, and mark them for caching using the @ OutputCache directive introduced in
the previous section. This directive specifies the duration (in seconds) that the output content of the user
control should be cached on the server, as well as any optional conditions by which it should be varied.

For example, the following directive instructs ASP.NET to output cache the user control for 120 seconds,
and to vary the caching using the "CategoryID" and "SelectedID" querystring or form post parameters.

<%@ OutputCache Duration="120" VaryByParam="CategoryID;SelectedID"%>

The VaryByParam attribute is extremely powerful and allows user control authors to instruct ASP.NET to
cache/store multiple instances of an output cache region on the server. For example, the following URLs to
the host page of the previous user control cache separate instances of the user control content.

http://localhost/mypage.aspx?categoryid=foo&selectedid=0
http://localhost/mypage.aspx?categoryid=foo&selectedid=1

Logic within a user control can then dynamically generate different content (which is cached separately)
depending on the arguments provided.

In addition to supporting the VaryByParam attribute, fragment caching also supports a VaryByControl
attribute. Whereas the VaryByParam attribute varies cached results based on name/value pairs sent
using POST or GET, the VaryByControl attribute varies the cached fragment by controls within the user
control. For example:

<%@ OutputCache Duration="120" VaryByParam="none" VaryByControl="Category" %>

Note that similar to output-cached pages, explict use of VaryByParam is required even if it is not used.

If the user control contained a drop-down select box control named Category, the user control's output
would vary based on the selected value within that control.

Just as it is possible to nest user controls recursively within a page (that is, a user control declared within
another server control), it is also possible to nest output-cached user controls recursively. This provides a
powerful composition model that enables cached regions to be composed of further subcached regions.

The following sample code demonstrates how to cache two menu sections of a page using a declarative
user control.

<%@ Register TagPrefix="Acme" TagName="Menu" Src="Menu.ascx" %>

<html>
 <body>
 <table>
 <tr>
 <td>
 <Acme:Menu Category="LeftMenu" runat=server/>
 </td>
 <td>
 <h1>Hi, the time is now: <%=Now%> </h1>
 </td>
 <td>
 <Acme:Menu Category="RightMenu" runat=server/>
 </td>
 <tr>
 </table>
 </body>
</html>

VB

The following sample code shows the implementation of the "Acme:Menu" user control with caching
support.

 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

<%@ OutputCache Duration="120" VaryByParam="none" %>

<script language="VB" runat=server>

 Public Category As String;

 Sub Page_Load(sender As Object, e As EventArgs)

 Dim conn As AdoConnection = New AdoConnection("MyDSN")

 MyMenu.DataSource = conn.Execute("select * from menu where category=" &
Category)
 MyMenu.DataBind()
 End Sub

</script>

<asp:datagrid id="MyMenu" runat=server/>

VB

Note that this example output caches the response of each user control for a period of 120 seconds. All
logic necessary to recreate each menu user control in the event of a cache miss (either because 120
seconds has expired or because memory conditions on the server have become scarce) is encapsulated
cleanly within the user control.

The following example shows simple fragment caching. The sample caches the output from a control that
retrieves data from an SQL Server database, while keeping the dynamic properties of the parent page. You
can see that the page is dynamic because the time is updated with every refresh, while the control is only
updated every 60 seconds.

VB FragmentCache1.aspx

[Run Sample] | [View Source]

Caveats

Note: Attempts to programmatically manipulate an output-cached control from its containing page result
in an error. For example, attempts to use a declarative data binding expression on the user control tag
generates parser errors, as shown in the following code.

<!-- The following tags generate parser errors. -->
<Acme:Menu Category='<%# Container.DataItem("Category")' runat="server"/>

The reason for this is simple. In cases when the content of a user control is output cached, an instance of
the control is created only on the first request; thus, once cached, the control is no longer available.
Instead, you should encapsulate all the logic necessary to create the content of a user control directly
within the control itself; this is typically done within the user control's Page_Load event or
Page_PreRender event.

You can declare and use other declarative property parameters to customize the control. For example, the
previous user control can be customized as follows:

<Acme:Menu Category="LeftMenu" runat=server/>
<Acme:Menu Category="RightMenu" runat=server/>

These declarations cause the appropriate code to be generated and executed by the page compiler in the
event that the control is created as a result of a cache miss. User control developers can then access these
settings just as they would in a non-cached user control scenario.

Section Summary

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/fragmentcaching.aspx
http://docs.aspng.com/quickstart/aspplus/samples/cache/VB/fragmentcache1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/cache/VB/fragmentcache1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/cache/fragmentcache1.src

1. In addition to output caching an entire page, ASP.NET provides a simple way for you to output
cache regions of page content, which is appropriately named fragment caching.

2. You delineate regions of your page with a user control and mark them for caching using the @
OutputCache directive introduced in the previous section.

3. Just as it is possible to nest user controls recursively within a page (that is, a user control declared
within another server control), it is also possible to nest output-cached user controls recursively.

4. Attempts to programmatically manipulate an output-cached control from its containing page result
in an error. Instead, you should encapsulate all the logic necessary to create the content of a user
control directly within the control itself, typically within the user control's Page_Load event or
Page_PreRender event.

5. It is possible to declare and use other declarative property parameters to customize the control.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security

Page Data Caching

 Introduction to Data Caching
 Using the Data Cache
 Section Summary

Introduction to Data Caching

ASP.NET provides a full-featured cache engine that can be used by pages to
store and retrieve arbitrary objects across HTTP requests. The ASP.NET cache is
private to each application and stores objects in memory. The lifetime of the
cache is equivalent to the lifetime of the application; that is, when the application
is restarted, the cache is recreated.

The cache provides a simple dictionary interface that allows programmers to
easily place objects in and retrieve them from the cache. In the simplest case,
placing an item in the cache is just like adding an item to a dictionary:

Cache("mykey") = myValue

VB

Retrieving the data is just as simple:

myValue = Cache("mykey")
If myValue <> Null Then
 DisplayData(myValue)
End If

VB

For applications that need more sophisticated functionality, the ASP.NET cache
supports scavenging, expiration, and file and key dependencies.

● Scavenging means that the cache attempts to remove infrequently used
or unimportant items if memory becomes scarce. Programmers who want
to control how scavenging occurs can provide hints to the scavenger
when items are inserted into the cache that indicate the relative cost of
creating the item and the relative rate at which the item must be
accessed to remain useful.

● Expiration allows programmers to give cache items lifetimes, which can
be explicit (for example, expire at 6:00) or can be relative to an item's
last use (for example, expire 20 minutes after the item was last
accessed). After an item has expired, it is removed from the cache and
future attempts to retrieve it return the null value unless the item is
reinserted into the cache.

● File and key dependencies allow the validity of a cache item to be based
on an external file or on another cache item. If a dependency changes,
the cache item is invalidated and removed from the cache. For an
example of how you might use this functionality, consider the following

 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

scenario: an application reads financial information from an XML file that
is periodically updated. The application processes the data in the file and
creates a graph of objects that represent that data in a consumable
format. The application caches that data and inserts a dependency on the
file from which the data was read. When the file is updated, the data is
removed from the cache and the application can reread it and reinsert
the updated copy of the data.

Using the Data Cache

The following sample shows a simple use of the cache. It executes a database
query and caches the result, which it continues to use for the lifetime of the
application. When you run the sample, note the message at the bottom of the
page. When first requested, it indicates that the data was explicitly retrieved
from the database server. After refreshing the page, the page notes that the
cached copy was used.

VB Datacache1.aspx

[Run Sample] | [View Source]

The next example shows a cache item that depends on an XML file. It is similar
to the first example, although in this case the data is retrieved from an XML data
source instead of a database server. When the data is cached, the XML file is
added as a dependency.

When a new record is added using the form at the bottom of the page, the XML
file is updated and the cached item must be recreated.

VB Datacache2.aspx

[Run Sample] | [View Source]

Note that a file dependency is added by using Cache.Insert and supplying a
CacheDependency object referencing the XML file.

Cache.Insert("MyData", Source, _
 New CacheDependency(Server.MapPath("authors.xml")))

VB

A cache item can depend on a single or multiple files or keys. As mentioned
previously, an application can also set expiration policy on a cache item. The

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/datacaching.aspx
http://docs.aspng.com/quickstart/aspplus/samples/cache/VB/datacache1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/cache/VB/datacache1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/cache/datacache1.src
http://docs.aspng.com/quickstart/aspplus/samples/cache/VB/datacache2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/cache/VB/datacache2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/cache/datacache2.src

following code sets an absolute cache expiration time.

Cache.Insert("MyData", Source, null, _
 DateTime.Now.AddHours(1), TimeSpan.Zero)

VB

The relevant parameter is the call to DateTime.Now.AddHours(1), which
indicates that the item expires 1 hour from the time it is inserted. The final
argument, TimeSpan.Zero indicates that there is no relative expiration policy
on this item.

The following code shows how to set a relative expiration policy. It inserts an
item that expires 20 minutes after it is last accessed. Note the use of
DateTime.MaxValue, which indicates that there is no absolute expiration policy
on this item.

Cache.Insert("MyData", Source, null, DateTime.MaxValue, _
 TimeSpan.FromMinutes(20))

VB

Section Summary

1. Data caching allows arbitrary objects to be cached programmatically.
2. The ASP.NET cache supports expiration and dependencies.
3. The cache is scoped to an application and its lifetime is equivalent to the

lifetime of the application.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

Configuration Overview

A central requirement of any Web application server is a
rich and flexible configuration system--one that enables
developers to easily associate settings with an installable
application (without having to "bake" values into code) and
enables administrators to easily customize these values
post-deployment. The ASP.NET configuration system has
been designed to meet the needs of both of these
audiences; it provides a hierarchical configuration
infrastructure that enables extensible configuration data to
be defined and used throughout an application, site, and/or
machine. It has the following qualities that make it uniquely
suited to building and maintaining Web applications:

● ASP.NET allows configuration settings to be stored
together with static content, dynamic pages, and
business objects within a single application directory
hierarchy. A user or administrator simply needs to
copy a single directory tree to set up an ASP.NET
Framework application on a machine.

● Configuration data is stored in plain text files that
are both human-readable and human-writable.
Administrators and developers can use any standard
text editor, XML parser, or scripting language to
interpret and update configuration settings.

● ASP.NET provides an extensible configuration
infrastructure that enables third-party developers to
store their own configuration settings, define the
persistence format of their own configuration
settings, intelligently participate in their processing,
and control the resulting object model through
which those settings are ultimately exposed.

● Changes to ASP.NET configuration files are
automatically detected by the system and are
applied without requiring any user intervention (in
other words, an administrator does not need to
restart the Web server or reboot the machine for
them to take effect).

● Configuration sections can be locked down when
using the <location> tag and the allowOverride
attribute.

To learn more about the ASP.NET configuration system and

 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications

how it works, see Configuration File Format and Retrieving
Configuration.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications

Configuration File Format

ASP.NET configuration files are XML-based text files--each named web.config--that can appear in any directory
on an ASP.NET Web application server. Each web.config file applies configuration settings to the directory it is
located in and to all virtual child directories beneath it. Settings in child directories can optionally override or
modify settings specified in parent directories. The root configuration file--
WinNT\Microsoft.NET\Framework\<version>\config\machine.config--provides default configuration settings for
the entire machine. ASP.NET configures IIS to prevent direct browser access to web.config files to ensure that
their values cannot become public (attempts to access them will cause ASP.NET to return 403: Access
Forbidden).

At run time ASP.NET uses these web.config configuration files to hierarchically compute a unique collection of
settings for each incoming URL target request (these settings are calculated only once and then cached across
subsequent requests; ASP.NET automatically watches for file changes and will invalidate the cache if any of the
configuration files change).

For example, the configuration settings for the URL http://myserver/myapplication/mydir/page.aspx would be
computed by applying web.config file settings in the following order:

Base configuration settings for machine.
C:\WinNT\Microsoft.NET\Framework\v.1.00\config\machine.config

Overridden by the configuration settings for the site (or the root application).
C:\inetpub\wwwroot\web.config

Overridden by application configuration settings.
D:\MyApplication\web.config

Overridden by subdirectory configuration settings.
D:\MyApplication\MyDir\web.config

If a web.config file is present at the root directory for a site, for example "Inetpub\wwwroot", its configuration
settings will apply to every application in that site. Note that the presence of a web.config file within a given
directory or application root is completely optional. If a web.config file is not present, all configuration settings
for the directory are automatically inherited from the parent directory.

Configuration Section Handlers and Sections

A web.config file is an XML-based text file that can contain standard XML document elements, including well-
formed tags, comments, text, cdata, and so on. The file may be ANSI, UTF-8, or Unicode; the system
automatically detects the encoding. The root element of a web.config file is always a <configuration> tag.
ASP.NET and end-user settings are then encapsulated within the tag, as follows:

<configuration>
 <!- Configuration settings would go here. -->
</configuration>

The <configuration> tag typically contains three different types of elements: 1) configuration section
handler declarations, 2) configuration section groups, and 3) configuration section settings.

● Configuration section handlers - The ASP.NET configuration infrastructure makes no assumptions
regarding the file format or supported settings within a web.config file. Instead, it delegates the
processing of web.config data to configuration section handlers, .NET Framework classes that
implement the IConfigurationSectionHandler interface. An individual
IConfigurationSectionHandler declaration needs to appear only once, typically in the
machine.config file. The web.config files in child directories automatically inherit this declaration.
Configuration section handlers are declared within a web.config file using section tag directives nested
within a <configSections> tag. Section tags may be further qualified by section group tags to
organize them into logical groups (see below). Each section tag identifies a tag name denoting a
specific section of configuration data and an associated IConfigurationSectionHandler class that
processes it.

● Configuration section groups - ASP.NET configuration allows hierarchical grouping of sections for
organizational purposes. A <sectionGroup> tag may appear inside a <configSections> tag or
inside other <sectionGroup> tags. For example, ASP.NET section handlers all appear within the
<system.web> section group.

● Configuration sections - ASP.NET configuration settings are represented within configuration tag
sections, also nested within a <configuration> tag (and optional section group tags). For each
configuration section, an appropriate section handler must be defined in the config hierarchy. For

 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

example, in the sample below, the tag <httpModules> is the configuration section that defines the
HTTP modules configuration data. The System.Configuration.HttpModulesConfigurationHandler
class is responsible for interpreting the content contained within the <httpModules> tag at run time.
Note that both the section handler definition and the section must have the same section group
qualifier (in this case, <system.web>). Also note that tag names are case-sensitive and must be
typed exactly as shown. Various attributes and settings for ASP.NET are also case-sensitive and will not
be examined by the configuration runtime if the case does not match.

<configuration>

 <configSections>
 <sectionGroup name="system.web">
 <section
 name="httpModules"
 type="System.Web.Configuration.HttpModulesConfigurationHandler,System.Web"
 />
 </sectionGroup>
 </configSections>

 <system.web>
 <httpModules>
 <add
 name="CookielessSession"
 type="System.Web.SessionState.CookielessSessionModule,System.Web"
 />
 <add
 name="OutputCache"
 type="System.Web.Caching.OutputCacheModule,System.Web"
 />
 <add
 name="Session"
 type="System.Web.SessionState.SessionStateModule,System.Web"
 />
 <add
 name="WindowsAuthentication"
 type="System.Web.Security.WindowsAuthenticationModule,System.Web"
 />
 <add
 name="FormsAuthentication"
 type="System.Web.Security.FormsAuthenticationModule,System.Web"
 />
 <add
 name="PassportAuthentication"
 type="System.Web.Security.PassportAuthenticationModule,System.Web"
 />
 <add
 name="UrlAuthorization"
 type="System.Web.Security.UrlAuthorizationModule,System.Web"
 />
 <add
 name="FileAuthorization"
 type="System.Web.Security.FileAuthorizationModule,System.Web"
 />
 </httpModules>
 </system.web>

</configuration>

Using Location and Path

By default, all configuration settings defined within the top-level <configuration> tag are applied to the
current directory location of the containing web.config file and to all of the child paths beneath it. You can
optionally apply configuration settings to specific child paths under the current config file by using the
<location> tag with an appropriately constraining path attribute. If the config file is the main machine.config
file, you can apply settings to specific virtual directories or applications. If the config file is a web.config file,
you can apply settings to a specific file, child directory, virtual directory, or application.

<configuration>

 <location path="EnglishPages">
 <system.web>
 <globalization
 requestEncoding="iso-8859-1"
 responseEncoding="iso-8859-1"

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/configformat.aspx

 />
 </system.web>
 </location>

 <location path="EnglishPages/OneJapanesePage.aspx">
 <system.web>
 <globalization
 requestEncoding="Shift-JIS"
 responseEncoding="Shift-JIS"
 />
 </system.web>
 </location>

</configuration>

Locking down configuration settings

In addition to specifying path information using the <location> tag, you can also specify security so that
settings cannot be overridden by another configuration file further down the configuration hierarchy. To lock
down a group of settings, you can specify an allowOverride attribute on the surrounding <location> tag
and set it to false. The following code locks down impersonation settings for two different applications.

<configuration>

 <location path="app1" allowOverride="false">
 <system.web>
 <identity impersonate="false" userName="app1" password="app1pw" />
 </system.web>
 </location>

 <location path="app2" allowOverride="false">
 <system.web>
 <identity impersonate="false" userName="app2" password="app2pw" />
 </system.web>
 </location>

</configuration>

Note that if a user tries to override these settings in another configuration file, the configuration system will
throw an error:

<configuration>

 <system.web>
 <identity userName="developer" password="loginpw" />
 </system.web>

</configuration>

Standard ASP.NET Configuration Section

ASP.NET ships with a number of standard configuration section handlers that are used to process configuration
settings within web.config files. The following table provides brief descriptions of the sections, along with
pointers to more information.

Section Name Description

<httpModules> Responsible for configuring HTTP modules within an
application. HTTP modules participate in the processing of
every request into an application. Common uses include
security and logging.

<httpHandlers> Responsible for mapping incoming URLs to IHttpHandler
classes. Subdirectories do not inherit these settings. Also
responsible for mapping incoming URLs to
IHttpHandlerFactory classes. Data represented in
<httpHandlers> sections are hierarchically inherited by
subdirectories. For more information, see the Http
Handlers and Factories section of this tutorial.

<sessionState> Responsible for configuring the session state HTTP
module. For more information, see the Managing
Application State section of this tutorial.

<globalization> Responsible for configuring the globalization settings of an
application. For more information, see the Localization
section of this tutorial.

<compilation> Responsible for all compilation settings used by ASP.NET.
For more information, see the Business Objects and
Debugging sections of this tutorial.

<trace> Responsible for configuring the ASP.NET trace service. For
more information, see the Tracing section of this tutorial.

<processModel> Responsible for configuring the ASP.NET process model
settings on IIS Web server systems.

<browserCaps> Responsible for controlling the settings of the browser
capabilities component. For more information, see the
Retrieving Configuration section of this tutorial.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding

Retrieving Configuration

ASP.NET allows developers to access configuration settings from within an application either by exposing
configuration settings directly (as strongly typed properties) or by using general configuration APIs. The
following sample shows a page that accesses the <browserCaps> configuration section using the Browser
property of the System.Web.HttpRequest class. This is a hash table of attributes that reflect the
capabilities of the browser client that is currently accessing the page. The actual <browserCaps> section
data is included in the machine.config file.

VB BrowsCaps.aspx

[Run Sample] | [View Source]

In addition to accessing configuration settings, as demonstrated above, developers also can use the
System.Configuration.ConfigurationSettings class to retrieve the data for any arbitrary configuration
section. Note that the particular object returned by ConfigurationSettings depends on the section handler
mapped to the configuration section (see IConfigurationSectionHandler.Create). The following code
demonstrates how you can access the configuration data exposed for a <customconfig> section. In this
example, it is assumed that the configuration section handler returns an object of type
CustomConfigSettings with the property Enabled.

Dim config As CustomConfigSettings = CType(ConfigurationSettings("customconfig"),
CustomConfigSettings)

If config.Enabled = True Then
 ' Do something here.
End If

VB

Using Application Settings

Configuration files are perfectly suited for storing custom application settings, such as database connection
strings, file paths, or remote XML Web service URLs. The default configuration sections (defined in the
machine.config file) include an <appSettings> section that may be used to store these settings as
name/value pairs. The following example shows an <appSettings> configuration section that defines
database connection strings for an application.

<configuration>
 <appSettings>
 <add key="pubs"
value="server=(local)\NetSDK;database=pubs;Trusted_Connection=yes" />
 <add key="northwind"
value="server=(local)\NetSDK;database=northwind;Trusted_Connection=yes" />
 </appSettings>
</configuration>

The ConfigurationSettings object exposes a special AppSettings property that can be used to retrieve
these settings:

Dim dsn As String = ConfigurationSettings.AppSettings("pubs")

VB

The following sample illustrates this technique.

http://docs.aspng.com/quickstart/aspplus/samples/config/VB/browscaps.aspx
http://docs.aspng.com/quickstart/aspplus/samples/config/VB/browscaps.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/config/browscaps.src

 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

VB Config1.aspx

[Run Sample] | [View Source]

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/configretrieve.aspx
http://docs.aspng.com/quickstart/aspplus/samples/config/VB/config1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/config/VB/config1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/config/config1.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview

Deploying ASP.NET Applications

 File System Layout of ASP.NET Applications
 Resolving Class References to Assemblies
 ASP.NET Framework application Startup and Class Resolution
 Code Replacement
 Section Summary

File System Layout of ASP.NET Applications

ASP.NET can be used to host multiple Web applications, each identified using a
unique URL prefix within a Web site (where a Web site is represented on a Web
server as a unique HostName/Port combination). For example, a single Microsoft
Internet Information Services (IIS) Web server with two mapped IP addresses (one
aliased to "www.msn.com" and the other to "intranet") and three logical sites
(http://intranet, http://www.msn.com, http://www.msn.com port 81) could expose
the following six ASP.NET applications.

Application URL Description

http://intranet "Root" application on intranet site.

http://www.msn.com "Root" application on www.msn.com site.

http://www.msn.com:81 "Root" application on www.msn.com port 81
site.

http://intranet/training "Training" application on intranet site.

http://intranet/hr "HR" application on intranet site.

http://intranet/hr/compensation/ "Compensation" application on intranet site.

Note: The URL for the compensation application mentioned in the table is rooted
within the HR application URL namespace. However, this URL hierarchy notation
does not imply that the compensation application is contained or nested within the
HR application. Rather, each application maintains an independent set of
configuration and class resolution properties; both are logical peer child sites of the
intranet site.

Each ASP.NET Framework application exposed within a URL namespace is backed
using a file system directory located on either a local or remote file share.
Application directories are not required to be centrally located within a contiguous
part of the file system; they can be scattered throughout a disk. For example, the
ASP.NET applications mentioned previously could be located in the different
directories listed in the following table.

Application URL Physical path

http://intranet c:\inetpub\wwwroot

http://www.msn.com c:\inetpub\msnroot

http://www.msn.com:81 d:\msnroot81

http://intranet/training d:\serverapps\trainingapp

http://intranet/hr \\hrweb\sillystuff\reviews

http://intranet/hr/compensation/ c:\inetpub\wwwroot\compensation

 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

Resolving Class References to Assemblies

Assemblies are the unit of class deployment in the common language runtime.
Developers writing .NET Framework classes using Visual Studio .NET version 7.0 will
produce a new assembly with each Visual Studio project that they compile. Although
it is possible to have an assembly span multiple portable executable (PE) files
(several module DLLs), Visual Studio .NET will, by default, compile all assembly code
into a single DLL (1 Visual Studio .NET project = 1 .NET Framework assembly = 1
physical DLL).

You can use an assembly on a computer by deploying it into an assembly cache.
The assembly cache can be either global to a computer or local to a particular
application. Only code intended to be shared across multiple applications should be
placed in the global system assembly cache. Code specific to a particular application,
such as most Web application logic, should be deployed in the application's local
assembly cache. One advantage of deploying an assembly within an application's
local assembly cache is that only code within that application can access it. (This is a
nice feature for scenarios involving ISPs.) It also facilitates side-by-side versioning of
the same application because classes are private to each application version
instance.

An assembly can be deployed into an application's local assembly cache by simply
copying, XCOPYing, or FTPing the appropriate files into a directory that has been
marked as an "assembly cache location" for that particular application. No additional
registration tool must be run once the appropriate files are copied, and no reboot is
necessary. This eliminates some of the difficulties currently associated with
deploying COM components within ASP applications (currently, an administrator
must log on to the Web server locally and run Regsvr32.exe).

By default, an ASP.NET Framework application is automatically configured to use the
\bin subdirectory, located immediately under the application root, as its local
assembly cache. The \bin directory is also configured to deny any browser access so
that a remote client cannot download and steal the code. The following example
shows a possible directory layout for an ASP.NET application, where the \bin
directory is immediately under the application root.

C:\inetpub\wwwroot Web.cfg Default.aspx \bin <= Application
assembly cache directory MyPages.dll MyBizLogic.dll \order
SubmitOrder.aspx OrderFailed.aspx \img HappyFace.gif

ASP.NET Framework application Startup and Class
Resolution

ASP.NET Framework applications are lazily constructed the first time a client
requests a URL resource from them. Each ASP.NET Framework application is
launched within a unique application domain (AppDomain)--a new common
language runtime construct that enables process hosts to provide extensive code,
security, and configuration isolation at run time.

ASP.NET is responsible for manually creating an application domain when a new
application is started. As part of this process, ASP.NET provides configuration
settings for the common language runtime to use. These settings include:

● The directory paths that make up the local assembly cache. (Note: It is the
.NET Framework application domain isolation architecture that allows each
application to maintain its own local assembly cache.)

● The application's security restrictions (what the application can access on the
system).

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/deployment.aspx

Because ASP.NET does not have compile-time knowledge of any applications you
write on top of it, it cannot use static references to resolve and reference application
code. Instead, ASP.NET must use a dynamic class/assembly resolution approach to
make the transition from the ASP.NET runtime into application code.

ASP.NET configuration and page activation files will enable you to dynamically
reference a target-compiled .NET Framework class by specifying an assembly and
class name combination. The string format for this union follows the pattern

classname, assemblyname

. The common language runtime can then use this simple string reference to resolve
and load the appropriate class.

Code Replacement

.NET Framework assemblies are typically compiled and deployed into a Windows
DLL-based PE format. When the common language runtime's loader resolves a class
implemented within this type of assembly, it calls the Windows LoadLibrary routine
on the file (which locks its access on disk), and then maps the appropriate code data
into memory for run-time execution. Once loaded, the DLL file will remain locked on
disk until the application domain referencing it is either torn down or manually
recycled.

Although ASP.NET cannot prevent the common language runtime from locking a
loaded assembly DLL on disk, it can support you by ensuring that the physical DLLs
in a Web application's private assembly cache are never actually loaded by the
runtime. Instead, shadow copies of the assembly DLLs are made immediately prior
to their use. These shadow assemblies--not the original files--are then locked and
loaded by the runtime.

Because the original assembly files always remain unlocked, you are free to delete,
replace, or rename them without cycling the Web server or having to use a
registration utility. FTP and similar methods work just fine. ASP.NET maintains an
active list of all assemblies loaded within a particular application's application domain
and uses file-change monitoring code to watch for any updates to the original files.

Section Summary

1. ASP.NET Framework applications are identified by a unique URL and live in
the file system of the Web server.

2. ASP.NET can use shared assemblies, which reside in the global cache, and
application-specific assemblies, which reside in the \bin directory of the
application's virtual root.

3. ASP.NET Framework applications run in the context of application domains
(AppDomains), which provide isolation and enforce security restrictions.

4. Classes can be dynamically referenced using "classname, assemblyname".
5. ASP.NET uses shadow copies of assembly files to avoid locking, it and

monitors the files so that changes are picked up immediately.

Copyright 2001 Microsoft Corporation. All rights reserved.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

Using the Process Model

 Process Model Configuration
 Reactive Process Recycling
 Proactive Process Recycling
 Logging Process Model Events
 Enabling Web Gardens
 Section Summary

One of the most important requirements for ASP.NET
Framework applications is reliability. The architecture of
applications running inside the server process (in IIS,
Inetinfo.exe) does not produce a solid foundation for building
reliable applications that can continue to run over a long
period of time. Too many resources are shared on the
process level, and it is too easy for an error to bring down
the entire server process.

To solve this problem, ASP.NET provides an out-of-process
execution model, which protects the server process from user
code. It also enables you to apply heuristics to the lifetime of
the process to improve the availability of your Web
applications. Using asynchronous interprocess communication
enables you to provide the best balance of performance,
scalability, and reliability.

Process Model Configuration

Process model settings are exposed in the root configuration
file for the computer, Machine.config. The configuration
section is named <processModel> and is shown in the
following example. The process model is enabled by default
(enable="true").

<processModel
 enable="true"
 timeout="infinite"
 idleTimeout="infinite"
 shutdownTimeout="0:00:05"
 requestLimit="infinite"
 requestQueueLimit="5000"
 memoryLimit="80"
 webGarden="false"
 cpuMask="0xffffffff"
 userName=""
 password=""

 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal

 logLevel="errors"
 clientConnectedCheck="0:00:05"
/>

Most of these settings control when a new worker process is
started to serve requests (gracefully taking the place of an
old worker process). The process model supports two types
of recycling: reactive and proactive.

Reactive Process Recycling

Reactive process recycling occurs when a process is
misbehaving or unable to serve requests. The process
typically displays detectable symptoms, such as deadlocks,
access violations, memory leaks, and so on, in order to
trigger a process recycle. You can control the conditions that
trigger a process restart by using the configuration settings
described in the following table.

Setting Description

requestQueueLimit Handles deadlock conditions.
The DWORD value is set to
the maximum allowed number
of requests in the queue, after
which the worker process is
considered to be misbehaving.
When the number is
exceeded, a new process is
launched and the requests are
reassigned. The default is
5000 requests.

memoryLimit Handles memory leak
conditions. The DWORD value
is set to the percentage of
physical memory that the
worker process can consume
before it is considered to be
misbehaving. When that
percentage is exceeded, a
new process is launched and
the requests are reassigned.
The default is 80%.

 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

shutdownTimeout Specifies the amount of time
the worker process has to
shut itself down gracefully
(string value in hr:min:sec
format). When the time out
expires, the ASP.NET ISAPI
shuts down the worker
process. The default is
"00:00:05".

Proactive Process Recycling

Proactive process recycling restarts the worker process
periodically even if the process is healthy. This can be a
useful way to prevent denials of service due to conditions the
process model is unable to detect. A process can be restarted
after a specific number of requests or after a time-out period
has elapsed.

Setting Description

timeout String value in hr:min:sec format that
configures the time limit after which
a new worker process will be
launched to take the place of the
current one. The default is infinite,
a keyword indicating that the process
should not be restarted.

idleTimeout String value in hr:min:sec format that
configures the amount of inactivity,
after which the worker process is
automatically shut down. The default
is infinite, a keyword indicating that
the process should not be restarted.

requestLimit DWORD value set to the number of
requests after which a new worker
process will be launched to take the
place of the current one. The default
is infinite, a keyword indicating that
the process should not be restarted.

Logging Process Model Events

The process model can write events to the Windows event
log when process cycling occurs. This is controlled by the
logLevel attribute in the <processModel> configuration
section.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/procmodel.aspx

Setting Description

logLevel Controls that process cycling events are
logged to the event log. The value can be:

● All: All process cycling events are
logged.

● None: No events are logged.
● Errors: Only unexpected events

are logged.

When a cycling event occurs, if logging is enabled for that
event, the following events are written to the application
event log.

Shutdown Reason Event Log Type Description

Unexpected Error The ASP.NET
worker
process has
shut down
unexpectedly.

RequestQueueLimit Error The ASP.NET
worker
process has
been
restarted
because the
request
queue limit
was
exceeded.

RequestLimit Information The ASP.NET
worker
process has
been
restarted
because the
request limit
was
exceeded.

Timeout Information The ASP.NET
worker
process has
been
restarted
because the
time-out
interval was
met.

IdleTimeout Information The ASP.NET
worker
process has
been shut
down
because the
idle time-out
interval was
met.

MemoryLimitExceeded Error The ASP.NET
worker
process was
restarted
because the
process
memory limit
was
exceeded.

Enabling Web Gardens

The process model helps enable scalability on multiprocessor
computers by distributing the work to several processes, one
per CPU, each with processor affinity set to its CPU. This
eliminates cross-processor lock contention and is ideal for
large SMP systems. This technique is called Web gardening.
The configuration settings for enabling Web gardens are
listed in the following table. Note that these settings take
effect only after a server is restarted. IIS must be cycled in
order for this change to take place.

Setting Description

webGarden Controls CPU affinity. True indicates
that processes should be affinitized to
the corresponding CPU. The default is
False.

cpuMask Controls the number of processes and
how the Web garden works. One
process is launched for each CPU
where the corresponding bit in the
mask set to 1. When UseCPUAffinity
is set to 0, the cpuMask setting only
controls the number of worker
processes (number of bits set to 1).
The maximum-allowed number of
worker processes is the number of
CPUs. By default, all CPUs are enabled;
the same number of worker processes
is launched as there are CPUs. The
default value is 0xffffffff.

Web gardening has some side effects that you should be
aware of:

● If your application uses session state, it must choose
an out-of-process provider (NT Service or SQL).

● Application state and application statics are per
process, not per computer.

● Caching is per process, not per computer.

Section Summary

1. ASP.NET provides an out-of-process execution model,
which protects the server process from user code. It
also enables you to apply heuristics to the lifetime of
the process to improve the overall availability of Web
applications.

2. The <processModel> settings are exposed in the
root configuration file for the computer's
Machine.config file. The process model is enabled by
default.

3. The process model supports two types of recycling:
reactive and proactive. Reactive process recycling
occurs when a process is misbehaving or unable to
serve requests. Proactive process recycling restarts
the worker process periodically, even when the
process may be healthy.

4. The process model can write events to the Windows
event log when process cycling occurs. This is
controlled by the log-level attribute in the
<processModel> configuration section.

5. The process model helps enable scalability on
multiprocessor computers by distributing the work to
several processes, one per CPU, each with processor
affinity set to its CPU. This technique is called Web

gardening.

Copyright 2001 Microsoft Corporation. All rights reserved.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Handling Errors

 Customizing Error Pages
 Handling Errors Programmatically
 Writing to the Event Log
 Section Summary

When an error occurs on a page, ASP.NET sends information about the error to the client. Errors are divided into
four categories:

● Configuration errors: Occur when the syntax or structure of a Web.config file in the configuration
hierarchy is incorrect.

● Parser errors: Occur when the ASP.NET syntax on a page is malformed.
● Compilation errors: Occur when statements in a page's target language are incorrrect.
● Run-time errors: Occur during a page's execution, even though the errors could not be detected at

compile time.

By default, the information shown for a run-time error is the call stack (the chains of procedure calls
leading up to the exception). If debug mode is enabled, ASP.NET displays the line number in source code
where the run-time error originated. Debug mode is a valuable tool for debugging your application. You
can enable debug mode at the page level, using the following directive:

<%@ Page Debug="true" %>

You can also enable debug mode at the application level, using the Web.config file in the application's
root directory, as shown in the following example.

Note: Running debug mode incurs a heavy performance penalty. Be sure to disable it before deploying
your finished application.

The following example demonstrates the use of debug mode to show source line numbers for a run-time
exception.

VB Error1.aspx

[Run Sample] | [View Source]

Customizing Error Pages

Depending on the circumstances, you might want to handle application errors in different ways. For
example, at development time you probably want to see the detailed error pages that ASP.NET provides
to help you identify and fix problems. However, once an application is being served in a production
environment, you probably do not want to display detailed errors to your customer clients. You can use
ASP.NET to specify whether errors are shown to local clients, to remote clients, or to both. By default,
errors are shown only to local clients (those clients on the same computer as the server). You can also
specify a custom error page to redirect clients to if an error occurs.

Custom errors are enabled in the Web.config file for an application. For example:

<configuration>
 <system.web>
 <customErrors defaultRedirect="genericerror.htm" mode="remoteonly" />
 </system.web>
</configuration>

This configuration enables local clients to see the default ASP.NET detailed error pages but redirects
remote clients to a custom page, genericerror.htm. This page could be an .aspx page as well. ASP.NET
passes the path of the page on which the error occurred to the error page as a QueryString argument.
Note that if the execution of the error page generates an error, a blank page is sent back to the remote
client.

http://docs.aspng.com/quickstart/aspplus/samples/apps/errors/handlerr/VB/error1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/apps/errors/handlerr/VB/error1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/apps/errors/handlerr/error1.src

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

<%@ Page Language="VB" Description="Error page"%>

<html>
<head>
<title>Error page</title>
</head>

<body>
<h1>Error page</h1>
Error originated on: <%=Request.QueryString("ErrorPage") %>
</body>
</html>

VB

Note: Only files mapped to the aspnet_isapi.dll extension in IIS generate these errors. Files not served
through the aspnet_isapi.dll are not processed by ASP.NET and generate IIS errors. See the IIS
documentation for information about configuring IIS custom errors.

The following table describes the configuration attributes and values for the <customerrors> tag.

Attribute Description

Mode Indicates whether custom errors are enabled, disabled, or only shown to
remote computers. Values: On, Off, RemoteOnly (default).

DefaultRedirect Indicates the default URL to which a browser should be redirected if an
error occurs. This attribute is optional.

The Mode attribute determines whether errors are shown to local clients, remote clients, or both. The
effects of each setting are described in the following table.

Mode Local host request Remote host request

On Custom error page. Custom error page.

Off ASP.NET error page. ASP.NET error page.

RemoteOnly ASP.NET error page. Custom error page.

The following sample demonstrates how the <customerrors> configuration section is used.

VB Custom1.aspx

[Run Sample] | [View Source]

In addition to redirecting to a common page for all errors, you can also assign specific error pages to
specific error status codes. The <customerrors> configuration section supports an inner <error> tag
that associates HTTP status codes with custom error pages. For example:

<configuration>
 <system.web>
 <customErrors mode="RemoteOnly" defaultRedirect="/genericerror.htm">
 <error statusCode="500" redirect="/error/callsupport.htm"/>
 <error statusCode="404" redirect="/error/notfound.aspx"/>
 <error statusCode="403" redirect="/error/noaccess.aspx"/>
 </customErrors>
 </system.web>
</configuration>

The following table describes the attributes and values for the <error> tag.

Attribute Description

StatusCode HTTP status code of errors for which the custom error page should be used.
Examples: 403 Forbidden, 404 Not Found, or 500 Internal Server Error.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/handlingerrs.aspx
http://docs.aspng.com/quickstart/aspplus/samples/apps/errors/custom1/VB/custom1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/apps/errors/custom1/VB/custom1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/apps/errors/custom1/custom1.src

Redirect URL to which the client browser should be redirected if an error occurs.

The following example demonstrates how to use the <error> tag. Note that the example specifies an
.aspx page for "File Not Found" errors so that the missing page URL passed via the QueryString can be
printed.

VB Custom1.aspx

[Run Sample] | [View Source]

Handling Errors Programmatically

You can also handle errors in code, at either the page level or the application level. The Page base class
exposes a Page_Error method, which you can override in your pages. The method is called whenever
an uncaught exception is thrown at run time.

<script language="C#" runat="server">

Sub Page_Error(Source As Object, E As EventArgs)
 Dim message As String = "" _
 & "<h4>" & Request.Url.ToString() & "</h4>" _
 & "<pre>" &
Server.GetLastError().ToString() & "</pre>" _
 & ""

 Response.Write(message)
End Sub

</script>

VB

The following sample demonstrates the Page_Error method.

VB Error2.aspx

[Run Sample] | [View Source]

You could do something useful in this method, like sending an e-mail to the site administrator saying that
the page failed to execute properly. ASP.NET provides a set of classes in the System.Web.Mail
namespace for just this purpose. To import this namespace, use an @Import directive at the top of your
page, as follows:

<%@ Import Namespace="System.Web.Mail" %>

You can then use the MailMessage and SmtpMail objects to programmatically send e-mail.

Dim mail As New MailMessage
mail.From = "automated@yourservername.com"
mail.To = "administrator@yourservername.com"
mail.Subject = "Site Error"
mail.Body = message
mail.BodyFormat = MailFormat.Html
SmtpMail.Send(mail)

VB

http://docs.aspng.com/quickstart/aspplus/samples/apps/errors/custom1/VB/custom1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/apps/errors/custom1/VB/custom1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/apps/errors/custom1/custom1.src
http://docs.aspng.com/quickstart/aspplus/samples/apps/errors/handlerr/VB/error2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/apps/errors/handlerr/VB/error2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/apps/errors/handlerr/error2.src

The following sample shows how to send a mail message in response to a page error.

Note: This sample does not actually send mail unless you have configured the SMTP mail service on your
machine. For more information about the SMTP mail service, consult the IIS documentation.

VB Error3.aspx

[Run Sample] | [View Source]

In addition to handling errors at the page level, you might want to handle errors at the application level.
To do this, use the Application_Error event in Global.asax. This event occurs for any unhandled
exception thrown within the application.

Sub Application_Error(sender As Object, e As EventArgs)
 '...Do something here
End Sub

VB

Writing to the Event Log

The System.Diagnostics namespace provides classes for writing to the Windows event log. To use this
namespace in your pages, you must first import the namespace, as follows:

<%@ Import Namespace="System.Diagnostics"%>

The EventLog class encapsulates the log itself. It provides static methods for detecting or creating logs
and can be instantiated to write log entries from code. The following example shows this functionality
within the Application_Error method of Global.asax. Whenever an unhandled exception occurs in the
application, an entry containing the error message and stack trace is made to the application log.

Sub Application_Error(sender As Object, e As EventArgs)

 Dim Message As String = "\n\nURL:\n http://localhost/" & Request.Path _
 & "\n\nMESSAGE:\n " &
Server.GetLastError().Message _
 & "\n\nSTACK TRACE:\n" &
Server.GetLastError().StackTrace

 ' Create event log if it does not exist

 Dim LogName As String = "Application"
 If (Not EventLog.SourceExists(LogName))
 EventLog.CreateEventSource(LogName, LogName)
 End If

 ' Insert into event log
 Dim Log As New EventLog
 Log.Source = LogName
 Log.WriteEntry(Message, EventLogEntryType.Error)

End Sub

VB

The complete source code for the preceding example follows. Note that this code is disabled so that it
cannot run here, to prevent entries to your Windows event log. If you would like to see this code run,
create an IIS virtual root pointing to the directory that contains this file.

http://docs.aspng.com/quickstart/aspplus/samples/apps/errors/handlerr/VB/error3.aspx
http://docs.aspng.com/quickstart/aspplus/samples/apps/errors/handlerr/VB/error3.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/apps/errors/handlerr/error3.src

VB Global.asax

[View Source]

Section Summary

1. Errors are divided into four categories: configuration errors, parser errors, compilation errors, and
run-time errors.

2. By default, the information shown for a run-time error is the call stack (the chain of procedure
calls leading up to the exception). If debug mode is enabled, ASP.NET displays the line number in
source code where the run-time error originated.

3. ASP.NET enables you to specify whether errors are shown to local clients, to remote clients, or to
both. By default, errors are only shown to local clients (clients on the same computer as the
server). You can also specify a custom error page to redirect clients to if an error occurs.

4. In addition to redirecting to a common page for all errors, you can also assign specific error pages
to specific error status codes. The <customerrors> configuration section supports an inner
<error> tag for associating HTTP status codes with custom error pages.

5. You can also handle errors in code, at either the page level or application level. The Page base
class exposes a HandleError method, which you can override in your pages. The method will be
called whenever an uncaught exception is thrown at run time.

6. The System.Web.Mail namespace exposes classes for programmatically sending e-mail. This is
useful for notifying an administrator when an error occurs.

7. In addition to handling errors at the page level, you can use the Application_Error event in
Global.asax to handle errors at the application level. This event will occur for any unhandled
exception thrown within the application.

8. The System.Diagnostics namespace provides classes for writing to the Windows event log.

Copyright 2001 Microsoft Corporation. All rights reserved.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/apps/errors/handlerr/evtlog.src
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/apps/errors/handlerr/evtlog.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

Security Overview

An important part of many Web applications is the ability to
identify users and control access to resources. The act of
determining the identity of the requesting entity is known
as authentication. Generally, the user must present
credentials, such as a name/password pair in order to be
authenticated. Once an authenticated identity is available,
it must be determined whether that identity can access a
given resource. This process is known as authorization.
ASP.NET works in conjunction with IIS to provide
authentication and authorization services to applications.

An important feature of COM objects is the ability to control
the identity under which COM object code is executed.
When a COM object executes code with the identity of the
requesting entity, this is known as impersonation. ASP.NET
Framework applications can optionally choose to
impersonate requests.

Some applications also want to be able to dynamically tailor
content, based on the requesting identity or based on a set
of roles that a requesting identity belongs to. ASP.NET
Framework applications can dynamically check whether the
current requesting identity participates in a particular role.
For example, an application might want to check to see
whether the current user belongs to the manager's role, in
order to conditionally generate content for managers.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format

Authentication and Authorization

ASP.NET works in conjunction with IIS to support
authentication, using Basic, Digest, and Windows
authentication. ASP.NET supports the Microsoft Passport
authentication service, which provides single sign-on services
and support for user profile services. ASP.NET also provides a
robust service for applications that want to use forms-based
authentication. Forms-based authentication uses cookies to
authenticate users and allows the application to do its own
credential verification.

It is important to realize that ASP.NET authentication services
are subject to the authentication services provided by IIS. For
example, in order to use Basic authentication in an IIS
application, you must configure the use of Basic authentication
for the application using the Internet Service Manager tool.

ASP.NET provides two types of authorization services:

● Checks against ACLs or permissions on a resource to
determine whether the authenticated user account can
access the resources

● URL authorization, which authorizes an identity for
pieces of the Web space

To illustrate the difference, consider a scenario in which an
application is configured to allow anonymous access using the
IUSR_MYMACHINE account. When a request for an ASP.NET
page (such as "/default.aspx") is authorized, a check is done
against the ACLs on that file (for example,
"c:\inetpub\wwwroot\default.aspx") to see whether the
IUSR_MYMACHINE account has permission to read the file. If it
does, then access is authorized. File authorization is performed
automatically.

For URL authorization, the anonymous user is checked against
the configuration data computed for the ASP.NET application. If
access is allowed for the requested URL, the request is
authorized. In this case, ASP.NET checks to see whether the
anonymous user has access to /Default.aspx (that is, the check
is done against the URL itself, not against the file that the URL
ultimately resolves to).

This might seem a subtle distinction, but it enables applications
to use authentication schemes likes forms-based authentication
or Passport authentication, in which the users do not
correspond to a machine or domain account. It also enables
authorization against virtual resources, for which there is no
physical file underlying the resource. For example, an

 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application

application could choose to map all requests for files ending in
.stk to a handler that serves stock quotes based on variables
present in the query string. In such a case, there is no physical
.stk against which to do ACL checks, so URL authorization is
used to control access to the virtual resource.

File authorization is always performed against the authenticated
account provided by IIS. If anonymous access is allowed, this is
the configured anonymous account. Otherwise, it uses an NT
account. This works in exactly the same way as ASP.

File ACLs are set for a given file or directory using the Security
tab in the Explorer property page. URL authorization is
configured as part of an ASP.NET Framework application and is
described fully in Authorizing Users and Roles.

To activate an ASP.NET authentication service, you must
configure the <authentication> element in the application's
configuration file. This element can have any of the values
listed in the following table.

Value Description

None No ASP.NET authentication services are active.
Note that IIS authentication services can still be
present.

Windows ASP.NET authentication services attach a
WindowsPrincipal
(System.Security.Principal.WindowsPrincipal)
to the current request to enable authorization
against NT users or groups.

Forms ASP.NET authentication services manage cookies
and redirect unathenticated users to a logon page.
This is often used in conjunction with the IIS option
to allow anonymous access to an application.

Passport ASP.NET authentication services provide a
convenient wrapper around the services provided
by the Passport SDK, which must be installed on
the machine.

For example, the following configuration file enables forms-
based (cookie) authentication for an application:

<configuration>
 <system.web>
 <authentication mode="Forms"/>
 </system.web>
</configuration>

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Windows-based Authentication

When you use ASP.NET Windows authentication, ASP.NET attaches a WindowsPrincipal object to
the current request. This object is used by URL authorization. The application can also use it
programatically to determine whether a requesting identity is in a given role.

If User.IsInRole("Administrators") Then
 DisplayPrivilegedContent()
End If

VB

The WindowsPrincipal class determines roles by NT group membership. Applications that want to
determine their own roles can do so by handling the WindowsAuthentication_OnAuthenticate
event in their Global.asax file and attaching their own class that implements
System.Security.Principal.IPrincipal to the request, as shown in the following example:

' Create a class that implements IPrincipal
Public Class MyPrincipal : Inherits IPrincipal
 ' Implement application-defined role mappings
End Class

' In a Global.asax file
Public Sub WindowsAuthentication_OnAuthenticate(Source As Object, e As
WindowsAuthenticationEventArgs)
 ' Attach a new application-defined class that implements IPrincipal to
 ' the request.
 ' Note that since IIS has already performed authentication, the provided
 ' identity is used.
 e.User = New MyPrincipal(e.Identity)
End Sub

VB

The following sample shows how to access the name of an authenticated user, which is available as
User.Identity.Name. Programmers familiar with ASP should note that this value is also still
available as the AUTH_USER server variable:

VB Windows Authentication

[Run Sample] | [View Source]

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/security/WindowsAuth/VB/windowsauth.aspx
http://docs.aspng.com/quickstart/aspplus/samples/security/WindowsAuth/VB/windowsauth.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/security/WindowsAuth/windowsauth.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Forms-Based Authentication

Forms-based authentication is an ASP.NET authentication service that enables applications to provide their own
logon UI and do their own credential verification. ASP.NET authenticates users, redirecting unauthenticated users
to the logon page, and performing all the necessary cookie management. This sort of authentication is a popular
technique used by many Web sites.

An application has to be configured to use forms-based authentication by setting <authentication> to Forms,
and denying access to anonymous users. The following example shows how this can be done in the Web.config
file for the desired application:

<configuration>
 <system.web>
 <authentication mode="Forms"/>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</configuration>

Administrators use forms-based authentication to configure the name of the cookie to use, the protection type,
the URL to use for the logon page, length of time the cookie is in effect, and the path to use for the issued
cookie. The following table shows the valid attributes for the <Forms> element, which is a sub-element of the
<authentication> element shown in the following example:

<authentication mode="Forms">
 <forms name=".ASPXCOOKIEDEMO" loginUrl="login.aspx" protection="all" timeout="30"
path="/">
 <!-- protection="[All|None|Encryption|Validation]" -->
 </forms>
</authentication>

Attribute Description

loginUrl Logon URL to which unauthenticated users are redirected. This can be on
the same computer or a remote one. If it is on a remote computer, both
computers need to be using the same value for the decryptionkey
attribute.

name Name of the HTTP cookie to use for authentication purposes. Note that if
more than one application wants to use forms-based authentication services
on a single computer, they should each configure a unique cookie value. In
order to avoid causing dependencies in URLs, ASP.NET uses "/" as the Path
value when setting authentication cookies, so that they are sent back to
every application on the site.

timeout Amount of time in integer minutes, after which the cookie expires. The
default value is 30. The timeout attribute is a sliding value, expiring n
minutes from the time the last request was received. In order to avoid
adversely affecting performance and to avoid multiple browser warnings for
those who have cookies warnings turned on, the cookie is updated if the
time is more than half gone. (This means a loss of possible precision in
some cases.)

path Path to use for the issued cookie. The default value is "/" to avoid difficulties
with mismatched case in paths, since browsers are strictly case-sensitive
when returning cookies. Applications in a shared-server environment should
use this directive to maintain private cookies. (Alternatively, they can specify
the path at runtime using the APIs to issue cookies.)

protection Method used to protect cookie data. Valid values are as follows:

● All: Use both data validation and encryption to protect the cookie.
The configured data validation algorithm is based on the element.
Triple DES is used for encryption, if available and if the key is long
enough (48 bytes). All is the default (and suggested) value.

● None: Use for sites that are only using cookies for personalization
and have weaker security requirements. Both encryption and
validation can be disabled. Although you should use caution if you
use cookies in this way, this setting provides the best performance
of any method of doing personalization using the .NET Framework.

● Encryption: Encrypts the cookie using TripleDES or DES, but data
validation is not done on the cookie. This type of cookie can be
subject to chosen plaintext attacks.

● Validation: Does not encrypt the contents of the cookie, but

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

validates that the cookie data has not been altered in transit. To
create the cookie, the validation key is concatenated in a buffer with
the cookie data and a MAC is computed and appended to the
outgoing cookie.

After the application has been configured, you need to provide a logon page. The following example shows a
simple logon page. When the sample is run, it requests the Default.aspx page. Unauthenticated requests are
redirected to the logon page (Login.aspx), which presents a simple form that prompts for an e-mail address and a
password. (Use Username="jdoe@somewhere.com" and Password="password" as credentials.)

After validating the credentials, the application calls the following:

FormsAuthentication.RedirectFromLoginPage(UserEmail.Value, PersistCookie.Checked)

VB

This redirects the user back to the originally requested URL. Applications that do not want to perform the
redirection can call either FormsAuthentication.GetAuthCookie to retrieve the cookie value or
FormsAuthentication.SetAuthCookie to attach a properly encrypted cookie to the outgoing response. These
techniques can be useful for applications that provide a logon UI embedded in the containing page or that want
to have more control over where users are redirected. Authentication cookies can either be temporary or
permanent ("persistent"). Temporary cookies last only for the duration of the current browser session. When the
browser is closed, the cookie is lost. Permanent cookies are saved by the browser and are sent back across
browser sessions unless explicitly deleted by the user.

VB Forms-Based/Cookie Authentication

[Run Sample] | [View Source]

The authentication cookie used by forms authentication consists of a linear version of the
System.Web.Security.FormsAuthenticationTicket class. The information includes the user name (but not
the password), the version of forms authentication used, the date the cookie was issued, and a field for optional
application-specific data.

Application code can revoke or remove authentication cookies using the FormsAuthentication.SignOut
method. This removes the authentication cookie regardless of whether it is temporary or permanent.

It is also possible to supply forms-based authentication services with a list of valid credentials using configuration,
as shown in the following example:

<authentication>
 <credentials passwordFormat="SHA1" >
 <user name="Mary" password="GASDFSA9823598ASDBAD"/>
 <user name="John" password="ZASDFADSFASD23483142"/>
 </credentials>
</authentication>

The application can then call FormsAuthentication.Authenticate, supplying the username and password, and
ASP.NET will verify the credentials. Credentials can be stored in cleartext, or as SHA1 or MD5 hashes, according
to the following values of the passwordFormat attribute:

Hash Type Description

Clear Passwords are stored in cleartext

SHA1 Passwords are stored as SHA1 digests

MD5 Passwords are stored as MD5 digests

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/formsauth.aspx
http://docs.aspng.com/quickstart/aspplus/samples/security/CookieAuth/VB/default.aspx
http://docs.aspng.com/quickstart/aspplus/samples/security/CookieAuth/VB/default.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/security/CookieAuth/cookieauth.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

Authorizing Users and Roles

ASP.NET is used to control client access to URL resources.
It is configurable for the HTTP method used to make the
request (GET or POST) and can be configured to allow or
deny access to groups of users or roles. The following
example shows access being granted to a user named John
and a role named Admins. All other users are denied
access.

<authorization>
 <allow users="jdoe@somewhere.com" />
 <allow roles="Admins" />
 <deny users="*" />
</authorization>

Permissible elements for authorization directives are either
allow or deny. Each allow or deny element must contain
a users or a roles attribute. Multiple users or roles can be
specified in a single element by providing a comma-
separated list.

<allow users="John,Mary" />

The HTTP method can be indicated using the Verb
attribute:

<allow VERB="POST" users="John,Mary" />
<deny VERB="POST" users="*" />
<allow VERB="GET" users="*" />

This example lets Mary and John POST to the protected
resources, while only allowing everyone else to use GET.

There are two special usernames:

● *: All users
● ?: Anonymous (unauthenticated) users

These special usernames are commonly used by
applications using forms-based authentication to deny
access to unauthenticated users, as shown in the following
example:

 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications

<authorization>
 <deny users="?" />
</authorization>

URL authorization is computed hierarchically and the rules
used to determine access are as follows:

● Rules relevant to the URL are collected from across
the hiearchy and a merged list of rules is
constructed.

● The most recent rules are placed at the head of the
list. This means that configuration in the current
directory is at the head of the list, followed by
configuration in the immediate parent, and so on,
up to the top-level file for the computer.

● Rules are checked until a match is found. If the
match is allowable, access is granted. If not, access
is disallowed.

What this means is that applications that are not interested
in inheriting their configuration should explicitly configure
all of the possiblities relevant to their applications.

The default top-level Web.config file for a given computer
allows access to all users. Unless an application is
configured to the contrary (and assuming that a user is
authenticated and passes the file authorization ACL check),
access is granted.

When roles are checked, URL authorization effectively
marches down the list of configured roles and does
something that looks like the following pseudocode:

If User.IsInRole("ConfiguredRole") Then
 ApplyRule()
End If

VB

What this means for your application is that you use your
own class that implements
System.Security.Principal.IPrincipal to provide your
own role-mapping semantics, as explained in Windows-
based Authentication.

The following sample uses forms-based authentication

 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

services. It explicitly denies access to
jdoe@somewhere.com and anonymous users. Try logging
into the sample with Username="jdoe@somewhere.com"
and Password="password". Access will be denied and you
will be redirected back to the logon page. Now log on as
Username="mary@somewhere.com" and
Password="password". You will see that access is granted.

 VB Forms-Based/Cookie
Authentication with URL
Authorization

[Run Sample] | [View Source]

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/authorization.aspx
http://docs.aspng.com/quickstart/aspplus/samples/security/UserAuth/VB/default.aspx
http://docs.aspng.com/quickstart/aspplus/samples/security/UserAuth/VB/default.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/security/UserAuth/userauth.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

User Account Impersonation

As mentioned in the Security Overview, impersonation
refers to a process in which a COM object executes with the
identity of the entity on behalf of which it is performing
work. What this means for a Web application is that if a
server is impersonating, it is doing work using the identity
of the client making the request.

By default, ASP.NET does not do per-request
impersonation. This is different from ASP, which does
impersonate on every request. If desired, you can configure
an application to impersonate on every request with the
following Configuration directive:

<identity impersonate="true" />

Since ASP.NET does dynamic compilation, enabling
impersonation requires that all accounts have read/write
access to the application's Codegen directory (where
dynamically compiled objects are stored by the ASP.NET
runtime) as well as the global assembly cache
(%Windir%\assembly). Some applications require
impersonation to be enabled for ASP compatibility or to use
Windows authentication services.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Security and WebServices

 Windows Authentication and Authorization
 Custom Authentication and Authorization (with Soap Headers)
 Section Summary

This section describes methods for securing your XML Web services. If you haven't already read the Security
section of this tutorial, take the time to do so now before continuing in this topic.

Windows Authentication and Authorization

You use the same technique to secure your XML Web services using Windows authentication that you used for
.aspx pages (described in the Windows-based Authentication section). To require authentication, you enable
Integrated Windows authentication for your application and disable Anonymous access in the IIS
management console. To allow or deny specific users access to your service, use the ASP.NET configuration
system or set ACLs on the service file itself, as shown in the following example:

<configuration>

 <system.web>
 <authentication mode="Windows"/>
 </system.web>

 <location path="secureservice.asmx">

 <system.web>
 <authorization>
 <allow users="Administrator"/>
 <allow users="DOMAIN\Bradley"/>
 <deny roles="BUILTIN\Power Users"/>
 </authorization>
 </system.web>

 </location>

</configuration>

This works well when you know that the client of the XML Web service will be running as a specific Windows
user. A more interesting case is is that of a client running as one user, but acting on behalf of another. Consider
an ASP.NET page that accesses a secure XML Web service that does not impersonate the client who accesses it.
In such a case, you should programmatically set the username and password before connecting to the Web
service. The following example uses basic authentication and illustrates a simple WebService:

<%@ WebService language="VB" Class="SecureService" %>

Imports System.Web.Services
Imports System

Class SecureService : Inherits WebService

 <WebMethod()> Public Function SecureTest As String
 Return "Hello from the secure web service"
 End
End Class

VB

You could require basic authentication for this service by making appropriate settings in IIS as follows:

1. Open the IIS MMC console.

Start->Run "inetmgr"

2. In the left pane, expand the tree to find your virtual directory.
3. In the right pane, right-click Secureservice.asmx, and choose Properties.
4. Select the File Security tab. Under Anonymous Access and Authentication Control, click Edit.

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

❍ Disable anonymous access.
❍ Disable integrated Windows authentication.
❍ Enable basic authentication.

5. Click OK to save these settings and exit the MMC console.

The base WebService proxy class provides two properties, Username and Password, that you can use to
specify the credentials with which to connect to the remote Web service. These must be set to valid Windows
credentials on the Web service's computer or domain.

<%@ Import Namespace="SecureService" %>

<html>
<script language="VB" runat="server">

 Public Sub Page_Load(sender As Object, e As EventArgs)

 Dim s As New SecureService

 s.Credentials = New System.Net.NetworkCredential("Administrator", "test123")

 Message.Text = s.SecureTest()
 End Sub

</script>

<body>
 <h4>
 <asp:Label id="Message" runat="server"/>
 </h4>
</body>

</html>

VB

The base WebService class also provides a User property of type System.Security.Principal.IPrincipal,
which you can use to retrieve information about the client user. Again, you can authorize access to your Web
service using the Authorization section in the ASP.NET configuration system.

Custom Authentication and Authorization with Soap Headers

Windows authentication works well for intranet scenarios, in which you are authenticating against a user in your
own domain. On the Internet, however, you probably want to perform custom authentication and authorization,
perhaps against a SQL database. In that case, you should pass custom credentials (such as the username and
password) to your service and let it handle the authentication and authorization itself.

A convenient way to pass extra information along with a request to a XML Web service is a SOAP header. To do
this, define a class that derives from SOAPHeader in your service, and then declare a public field of your service
as that type. This is exposed in the public contract for your service, and made available to the client when the
proxy is created from WebServiceUtil.exe, as in the following example:

Imports System.Web.Services
Imports System.Web.Services.Protocols

' AuthHeader class extends from SoapHeader
Public Class AuthHeader : Inherits SoapHeader
 Public Username As String
 Public Password As String
End Class

Public Class HeaderService : Inherits WebService
 Public sHeader As AuthHeader
 ...
End Class

VB

Each WebMethod in your service can define a set of associated headers using the SoapHeader custom
attribute. By default, the header is required, but it is possible to define optional headers as well. The
SoapHeader attribute specifies the name of a public field or property of the Client or Server class (referred to
as a Headers property in this topic). WebServices sets the value of a Headers property before the method is

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/secureservices.aspx

called for input headers, and retrieves the value when the method returns for output headers. For more
information about output or optional headers see the .NET Framework SDK documentation.

<WebMethod(), SoapHeader("sHeader")> Public Function SecureMethod() As String

 If (sHeader Is Nothing)
 Return "ERROR: Please supply credentials"
 Else
 Return "USER: " & sHeader.Username
 End If
End Function

VB

A client then sets the header on the proxy class directly before making a method call that requires it, as shown in
the following example:

Dim h As New HeaderService
Dim myHeader As New AuthHeader
myHeader.Username = "JohnDoe"
myHeader.Password = "password"
h.AuthHeader = myHeader
Dim result As String = h.SecureMethod()

VB

To see this code in action, run the following sample:

VB SoapHeaders.aspx

[Run Sample] | [View Source]

Section Summary

1. Securing your XML Web services on the server using Windows authentication follows exactly the same
model as described for .aspx page.

2. You can also programmatically set Windows credentials using the Username and Password properties
on the WebService proxy class.

3. Lastly, you can do custom authentication by passing credential information as SOAPHeaders, along with
a SOAP request to the method that requires it.

Copyright 2001 Microsoft Corporation. All rights reserved.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/services/soapheaders/VB/soapheaders.aspx
http://docs.aspng.com/quickstart/aspplus/samples/services/soapheaders/VB/soapheaders.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/services/soapheaders/soapheaders.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview

Internationalization Overview

 Encoding Support
 Localization Support
 Configuration Settings
 Section Summary

Encoding Support

ASP.NET internally uses Unicode. In addition, ASP.NET utilizes the String class of the .NET Framework
class library and the related utility functions, which are also internally Unicode. When interfacing with the
outside world, ASP.NET can be configured in several ways to use a defined encoding, which includes the
encoding of .aspx files, request data, and response data. For example, it is possible to store .aspx files
with Unicode encoding and convert the HTML output of a page to an ANSI code page like ISO-8859-1.

Localization Support

Properties of a locale are accessible through the CultureInfo class. Additionally, ASP.NET tracks two
properties of a default culture per thread and request: CurrentCulture for the default of locale-
dependent functions and CurrentUICulture for locale-specific lookup of resource data.

The following code displays the culture values on the Web server. Note that the CultureInfo class is
fully qualified.

<%@Import Namespace="System.Globalization"%>
...
<%=CultureInfo.CurrentCulture.NativeName%>
<%=CultureInfo.CurrentUICulture.NativeName%>

The result is as follows:

English (United States)
English (United States)

For locale-dependent data like date/time formats or currency, ASP.NET leverages the support of the .NET
Framework class library in the common language runtime. Code on ASP.NET pages can use locale-
dependent formatting routines like DateTime.Format. For example, the following code displays the
current date in a long format: the first line according to the system locale, the second one according to
the German ("de") locale:

<%=DateTime.Now.ToString("f")%>
<%=DateTime.Now.ToString("f", new System.Globalization.CultureInfo("de-DE"))%>

The result is as follows:

Friday, March 22, 2002 12:24 PM
Freitag, 22. März 2002 12:24

Configuration Settings

When creating ASP.NET pages or code-behind modules, developers can use the .NET Framework class
library to provide features necessary for a globalized environment or to localize the application. ASP.NET
also provides configuration settings to ease development and administration of ASP.NET applications.

ASP.NET utilizes configuration files to provide directory settings that are usually also inherited by
subdirectories. Each file can contain a Globalization section in which you can specify default encodings
and cultures. Values are valid if they are accepted by the related classes Encoding and CultureInfo.
You can find more information about the Encoding and CultureInfo classes in the .NET Framework
SDK.

<configuration> <system.web> <globalization fileEncoding="utf-8"
requestEncoding="utf-8" responseEncoding="utf-8" culture="en-US"
uiCulture="de-DE" /> </system.web> </configuration>

Within the Globalization section, the value of fileEncoding determines the way in which ASP.NET

 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

encodes .aspx files; the values of requestEncoding and responseEncoding determine the way in
which request data and response data are encoded, respectively.

The attributes of the Globalization section in the Web.config file can also be specified on the Page
directive (with the exception of fileEncoding, because it applies to the file itself). These settings are
only valid for a specific page and override the settings of the Web.config file. The following sample
directive specifies that the page should use French culture settings and UTF-8 encoding for the response:

<%@Page Culture="fr-FR" UICulture="fr-FR" ResponseEncoding="utf-8"%>

Note: Within a page, the culture values can be changed programmatically by setting
Thread.CurrentCulture and Thread.UICulture.

Section Summary

1. ASP.NET supports a wide range of encodings for .aspx files, request data, and response data.
2. Support for locale-dependent data is provided by the CultureInfo class, where the two values

CurrentCulture and CurrentUICulture are tracked.
3. Internationalization settings can be configured for each computer, for each directory, and for each

page.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/internationalization.aspx

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Setting Culture and Encoding

 Encodings
 Using CultureInfo
 Using RegionInfo
 Section Summary

Encodings

Internally, ASP.NET handles all string data as Unicode. By using the ResponseEncoding attribute in the
following sample, ASP.NET is asked to also send the page with UTF-8 encoding. Note that any arbitrary encoding
could be chosen without affecting the .aspx file. ASP.NET also sets the CharSet attribute on the Content Type
of the HTTP header according to the value of ResponseEncoding. This enables browsers to determine the
encoding without a metatag or having to guess the correct encoding from the content.

VB i18n_encodings.aspx

[Run Sample] | [View Source]

Note: If some characters appear as empty rectangles, you must install the additional language support for
Japanese and Hebrew. To do this on a Windows 2000 platform, open Regional Options on the Control Panel
and add the required language support.

The preceding sample demonstrates how to use different national character sets on the same page. The page
contains English text (ASCII), German text with one umlaut character, Japanese text, and Hebrew text (uses
dir="rtl"). The source for the page itself is stored with codepage-neutral UTF-8 encoding, as specified in
Web.config.

<configuration> <system.web> <globalization fileEncoding="utf-8" ... />
</system.web> </configuration>

The Page directive specifies ResponseEncoding on the page itself:

<%@Page ... ResponseEncoding="utf-8"%>

Note: The ResponseEncoding in Web.config is also specified as UTF-8, so repeating it on the page is
redundant. However, if the .aspx file is moved to a server that does not use UTF-8, the file would still specify the
right encoding.

Using CultureInfo

Code on ASP.NET pages can use the CultureInfo class to supply localized settings. In the following sample, the
properties of a culture, initially the culture of the server, is set as follows:

culture = CultureInfo.CurrentCulture

VB

If the name of a new culture is submitted, it will be used instead:

culture = New CultureInfo(NewCulture.Value)

VB

The submitted culture is set to be the new default value and some properties are displayed:

<%
Thread.CurrentThread.CurrentCulture = culture

http://docs.aspng.com/quickstart/aspplus/samples/localize/i18n/VB/i18n_encodings.aspx
http://docs.aspng.com/quickstart/aspplus/samples/localize/i18n/VB/i18n_encodings.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/i18n/i18n_encodings.src

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

%>
...
Current Culture is <%= CultureInfo.CurrentCulture.Name %>
(<%=Thread.CurrentThread.CurrentCulture.Name%>),
<%= CultureInfo.CurrentCulture.EnglishName
%>/<%=CultureInfo.CurrentCulture.NativeName%>,
The localized date is: <%= DateTime.Now.ToString("D", CultureInfo.CurrentCulture) %>

VB

VB i18n_cultureinfo.aspx

[Run Sample] | [View Source]

Using RegionInfo

Code on ASP.NET pages can also use the RegionInfo class to supply regional settings. In the following sample,
the properties of a region are displayed. The initial display is the server's default region.

region = RegionInfo.CurrentRegion
...
Current region is <%= region.EnglishName %> (<%=region.DisplayName%>),
currency is <%= region.CurrencySymbol %>.

VB

On subsequent requests the entered region is displayed:

region = New RegionInfo(NewRegion.Value)

VB

VB I18N_Regional.aspx

[Run Sample] | [View Source]

Section Summary

1. ASP.NET can use pages that are stored with UTF-8 encoding to support different national characters.
2. The CultureInfo class can be set and used programmatically to localize pages.
3. The RegionInfo class can be used to provide regional settings on ASP.NET pages.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/cultureencoding.aspx
http://docs.aspng.com/quickstart/aspplus/samples/localize/i18n/VB/i18n_cultureinfo.aspx
http://docs.aspng.com/quickstart/aspplus/samples/localize/i18n/VB/i18n_cultureinfo.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/i18n/i18n_cultureinfo.src
http://docs.aspng.com/quickstart/aspplus/samples/localize/i18n/VB/i18n_regional.aspx
http://docs.aspng.com/quickstart/aspplus/samples/localize/i18n/VB/i18n_regional.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/i18n/i18n_regional.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization

Localizing ASP.NET Applications

 Copy and Translate
 Localization and Controls
 Section Summary

Copy and Translate

The easiest way to localize a Web page is usually to create a copy and translate it to the target
language. This works well for static content that does not require a lot of maintenance. To support this
model for ASP.NET pages, you can set the Culture attribute using the Page directive. All locale-
dependent methods pick up the value of the Culture attribute.

The following sample shows how to do this for three independent, localized versions of a page. The
Culture property is set on each page to determine the format of the date:

<%@Page Culture="de-DE" Language="VB" %>
...
<%=DateTime.Now.ToString("f", Nothing)%>

VB

 VB news-en-
us.aspx

[Run Sample] | [View
Source]

VB news-de.aspx

[Run Sample] | [View
Source]

VB news-ja.aspx

[Run Sample] | [View
Source]

Localization and Controls

An improvement over the simple copy-and-translate approach is to use controls to pick up the culture of
the main page. In the following sample, the image of the flag and the search bar are controls.
Depending on the culture of the hosting page, they render different content. To support this, the
UICulture attribute is also added to each page:

<%@Page Culture="de-DE" UICulture="de-DE" Language="VB" %>

VB

The flag control (Flag.ascx), for example, just uses the culture name to build the Src attribute of an
 tag:

<%@Import Namespace="System.Globalization"%>

<script runat="Server" Language="VB">
Overrides Protected Sub Render(writer As HtmlTextWriter)
 FlagImage.Src = "../../flags/" & CultureInfo.CurrentCulture.Name & ".jpg"
 FlagImage.Alt = CultureInfo.CurrentCulture.NativeName
 MyBase.Render(writer)
End Sub
</script>

http://docs.aspng.com/quickstart/aspplus/samples/localize/localize1/VB/news-en-us.aspx
http://docs.aspng.com/quickstart/aspplus/samples/localize/localize1/VB/news-en-us.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/localize1/news-en-us.src
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/localize1/news-en-us.src
http://docs.aspng.com/quickstart/aspplus/samples/localize/localize1/VB/news-de.aspx
http://docs.aspng.com/quickstart/aspplus/samples/localize/localize1/VB/news-de.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/localize1/news-de.src
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/localize1/news-de.src
http://docs.aspng.com/quickstart/aspplus/samples/localize/localize1/VB/news-ja.aspx
http://docs.aspng.com/quickstart/aspplus/samples/localize/localize1/VB/news-ja.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/localize1/news-ja.src
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/localize1/news-ja.src

 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

VB

The search control (Search.ascx) uses a switch statement to initialize the values of a label and a text
box, but the culture name could also be the parameter for a database query:

Sub LocalizeSearchText()
 Select Case String.Intern(CultureInfo.CurrentUICulture.Name))
 Case "en-US"
 SearchText.Text = "Clinton"
 SearchButton.Text = "Search"

 Case "de-DE"
 ...
 Case "ja-JP"
 ...
 Case Else
 SearchButton.Text = "Search"
 End Select
End Sub

VB

 VB news-en-
us.aspx

[Run Sample] | [View
Source]

VB news-de.aspx

[Run Sample] | [View
Source]

VB news-ja.aspx

[Run Sample] | [View
Source]

Section Summary

1. ASP.NET pages support Culture and UICulture attributes to support independent localized
pages.

2. Controls on pages can pick the culture of the page and can render culture-dependent content.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/localizingapps.aspx
http://docs.aspng.com/quickstart/aspplus/samples/localize/localize2/VB/news-en-us.aspx
http://docs.aspng.com/quickstart/aspplus/samples/localize/localize2/VB/news-en-us.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/localize2/news-en-us.src
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/localize2/news-en-us.src
http://docs.aspng.com/quickstart/aspplus/samples/localize/localize2/VB/news-de.aspx
http://docs.aspng.com/quickstart/aspplus/samples/localize/localize2/VB/news-de.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/localize2/news-de.src
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/localize2/news-de.src
http://docs.aspng.com/quickstart/aspplus/samples/localize/localize2/VB/news-ja.aspx
http://docs.aspng.com/quickstart/aspplus/samples/localize/localize2/VB/news-ja.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/localize2/news-ja.src
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/localize2/news-ja.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization

Working with Resource Files

 Creating Resources
 Using Resources on a Page
 Using Satellite Assemblies
 Using Satellite Assemblies for Controls
 Section Summary

Creating Resources

Resource management, a feature of the .NET Framework class library, can be used to extract localizable
elements from source code and to store them with a string key as resources. At runtime an instance of
the ResourceManager class can be used to resolve the key to the original resource or a localized
version. Resources can be stored as independent ("loose") files or as a part of an assembly.

ASP.NET pages can utilize resource files; compiled code-behind controls can, in addition, utilize
resources embedded or linked into their assembly.

Resources can be created using the ResourceWriter class programmatically or by the tool Resgen.exe.
Resgen.exe can use a simple key=value format as input or an XML file in .resx format.

; ; Lines beginning with a semicolon can be used for comments. ;
[strings] greeting=Welcome ! more=Read more

ResourceWriter and Resgen.exe create a .resources file, which can be used as is or as part of an
assembly. To include a .resources file in an assembly, use the related compiler switch or the Al.exe tool.
Assemblies containing only localized resources and no code are called satellite assemblies.

Using Resources on a Page

The following sample implements only one .aspx page, which is localized for each request. The
supported languages are English, German, and Japanese. The language is determined by examining the
Content-Language field of the HTTP header in the Global.asax file. The contents of the field are
accessible through the UserLanguages collection:

Thread.CurrentThread.CurrentCulture =
CultureInfo.CreateSpecificCulture(Request.UserLanguages(0))

VB

To change the initial language setting, you can use differently localized clients or change the language
setting on your browser. For Internet Explorer 5.x, for example, select Tools -> Internet Options
from the menu and click the Languages button at the bottom. In the following dialog you can add
additional languages and define their priority. For simplicity the sample always chooses the first entry.

After the page is loaded the first time, the user can select another culture in the drop-down list control
MyUICulture. If a valid culture is selected, this value overrides the setting acquired from
UserLanguages:

Dim SelectedCulture As String = MyUICulture.SelectedItem.Text
If Not(SelectedCulture.StartsWith("Choose")) Then
 ' If another culture was selected, use that instead.
 Thread.CurrentThread.CurrentCulture =
CultureInfo.CreateSpecificCulture(Request.UserLanguages(0))
 Thread.CurrentThread.CurrentUICulture = Thread.CurrentThread.CurrentCulture
End If

VB

In the previous code, the use of the CreateSpecificCulture method is required because you cannot set
the current CultureInfo of your Thread to a neutral culture. However, the string available from the
UserLanguages setting may be a neutral culture. Therefore, the CreateSpecificCulture method takes this
string, and makes an appropriate CultureInfo from it.

 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

Also, in the Global.asax file, a ResourceManager instance with application scope is initialized. This
way, resources are only loaded once per application. Because resources are read-only, no lock
contention should occur.

Public Sub Application_Start()
 Application("RM") = New ResourceManager("articles", _
 Server.MapPath("resources") + Path.DirectorySeparatorChar, _
 Nothing)
End Sub

VB

The resource manager then can easily be used on the page. The greeting string is simply localized by:

<%=rm.GetString("greeting")%>

global.asax

[View Source]

VB news.aspx

[Run Sample] | [View Source]

Using Satellite Assemblies

If you look at the structure of the directories in the sample in the previous section, you see that the
resources for the sample are loaded not from DLLs, but from .resource files. Although this is certainly
one solution, you can also compile your code into satellite assemblies. A satellite assembly is defined as
an assembly with resources only, no executable code. For more information on satellite assemblies, see
the section How Do I... Create Resources? .

The benefit of using satellite assemblies becomes apparent when you realize that .resources files are
not shadow-copied because they are not DLLs, and therefore Web sites can encounter locking problems
when using them. The alternative is to use a parallel main assembly for application resources. The main
assembly contains fallback resources; the satellites (one per culture) contain localized resources. The
main assembly is installed into the \bin directory, and the satellites are stored in the usual xx-XX
subdirectories (see How Do I... Create Resources?). Being assemblies, they are shadow-copied and are
not locked. To create an assembly-aware .asp application:

1. Create the resource DLL and copy it into the \bin directory. For example:

resgen qq.txt qq.resources
al /embed:qq.resources,qq.resources /out:qq.dll

The "y" refers to whether the blob should be visible to other assemblies. Since the
ResourceManager lives in Mscorlib and is a different assembly from "qq", the .resources file
must be publically visible. The "y" says whether this should be public.

2. On your page, include the following statement. Note that the name of the assembly here is in
the System.Reflection namespace defined in Mscorlib (which is always referenced for you
when compiling):

 <%
 Dim a As Assembly = Assembly.Load("qq")
 Dim rm As ResourceManager = New ResourceManager("qq", a)
 Response.Write(rm.GetString("key"))
 %>

VB

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/resourcefiles.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/resources/news/global_asax.src
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/resources/news/global_asax.src
http://docs.aspng.com/quickstart/aspplus/samples/localize/resources/News/VB/news.aspx
http://docs.aspng.com/quickstart/aspplus/samples/localize/resources/News/VB/news.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/resources/News/news.src
http://docs.aspng.com/quickstart/howto/doc/createresources.aspx
http://docs.aspng.com/quickstart/howto/doc/createresources.aspx

3. Compile each satellite resource into its own assembly, placing it into the correct required
directory structure within the /bin directory:

al /embed:qq.en-US.resources,qq.en-US.resources /out:qq.resources.dll /c:en-US

Substitute the code for the culture into which you are localizing for en-US. Remember that the
/c: tag is the culture specifier.

After the DLLs are in the right locations (/bin and /bin/en-US in the above samples), the resources can
be retrieved appropriately. Note that everything gets shadow-copied by assembly cache and thus is
replaceable, avoiding potential locking scenarios.

Using Satellite Assemblies for Controls

Compiled code-behind controls can also use satellite assemblies to supply localized content. From a
deployment perspective, this is an especially good thing, because satellite assemblies can be version-
independent from the code. As a result, support for additional languages can be provided just by
copying the module of the satellite to the server, and no code change is required.

The following sample contains the LocalizedButton control in the assembly LocalizedControls
(module LocalizedControls.dll). On the page Showcontrols.aspx, the compiled control is registered and
used later on:

<%@Register TagPrefix="Loc" namespace="LocalizedControls" %>
...
<Loc:LocalizedButton runat="server" Text="ok" />

The LocalizedButton control stores a ResourceManager instance, which is shared by all instances of
LocalizedButton. Whenever a control is rendered, the value of the Text property is replaced with the
localized version:

_rm = New ResourceManager("LocalizedStrings", _
 Assembly.GetExecutingAssembly(), _
 Nothing, _
 True)
...
Overrides Protected Sub Render (writer As HtmlTextWriter)
 Text = ResourceFactory.RManager.GetString(Text)
 base.Render(writer)
End Sub

VB

The ResourceManager instance is responsible for resolving the key to a localized resource. If a
satellite assembly with the correct culture is not available and no related culture is found, the neutral
resource of the main assembly is used ("en-us" -> "en" -> neutral). Support for another language is
simply granted by copying the module file for the new satellite assembly in place.

Localized Controls

[View Source]

VB Using Localized Controls

[Run Sample] | [View Source]

Section Summary

1. ASP.NET pages can utilize the resource classes to isolate localizable content in resources, which
are selected at runtime.

2. A good alternative is to use satellite assemblies rather than the intermediate .resources files for

http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/resources/Controls/controls.src
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/resources/Controls/controls.src
http://docs.aspng.com/quickstart/aspplus/samples/localize/resources/ShowControls/VB/showcontrols.aspx
http://docs.aspng.com/quickstart/aspplus/samples/localize/resources/ShowControls/VB/showcontrols.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/localize/resources/ShowControls/showcontrols.src

loading your resources, since this can avoid locking issues.
3. Compiled controls can contain resources of their own and will select the correct localized

content, depending on the UICulture of the hosting page.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

Tracing Overview

When you are developing an application, it is often helpful
to be able to insert debugging print statements into your
code to output variables or structures, assert whether a
condition is met, or just generally trace through the
execution path of the application. ASP.NET provides two
levels of tracing services that make it easy to do just that.

● Page-level Tracing: At the page level, developers
can use the TraceContext instrinsic to write
custom debugging statements that appear at the
end of the client output delivered to the requesting
browser. ASP.NET also inserts some helpful
statements regarding the start/end of lifecycle
methods, like Init, Render, and PreRender, in
addition to the inputs and outputs to a page, such
as form and QueryString variables or headers, and
important statistics about the page's execution
(control hierarchy, session state, and application
state). Because tracing can be explicitly enabled or
disabled for a page, these statements can be left in
the production code for a page with no impact to
the page's performance. Each statement can be
associated with a user-defined category for
organizational purposes, and timing information is
automatically collected by the ASP.NET runtime.
The resulting output can be ordered by either time
or category.

● Application-level Tracing: Application-level
tracing provides a view of several requests to an
application's pages at once. Like page-level tracing,
it also displays inputs and outputs to a page, such
as form and QueryString variables or headers, as
well as some important statistics (control hierarchy,
session state, and application state). Application-
level tracing is enabled through the ASP.NET
configuration system, and accessed as a special
mapped URL into that application (Trace.axd).
When application tracing is enabled, page-level
tracing is automatically enabled for all pages in that
application (provided there is no page-level directive
to explicitly disable trace).

To learn more about how the Trace feature works, read the
following two sections: Trace Logging to Page Output and
Application-level Trace Logging.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Trace Logging to Page Output

Page-level tracing enables you to write debugging statements directly to a page's output, and conditionally run
debugging code when tracing is enabled. To enable tracing for a page, include the following directive at the top
of the page code:

<%@ Page Trace="true"%>

Trace statements can also be organized by category, using the TraceMode attribute of the Page directive. If no
TraceMode attribute is defined, the default value is SortByTime.

<%@ Page Trace="true" TraceMode="SortByCategory" %>

The following example shows the default output when page-level tracing is enabled. Note that ASP.NET inserts
timing information for important places in the page's execution lifecycle:

VB Trace1.aspx

[Run Sample] | [View Source]

The page exposes a Trace property (of type TraceContext), which can be used to output debugging
statements to the page output, provided tracing is enabled. Using TraceContext, you can write debugging
statements using the Trace.Write and Trace.Warn methods, which each take a message string or a category
and message string. Trace.Warn statements are identical to Trace.Write statements, except they are output in
red.

' Trace(Message)
Trace.Write("Begging User Code...")
...
Trace.Warn("Array count is Nothing!")
' Trace(Category, Message)
Trace.Write("Custom Trace","Beginning User Code...")
...
Trace.Warn("Custom Trace","Array count is null!")

VB

When tracing is disabled (that is, when Trace="false" on the Page directive, or is not present), these
statements do not run and no Trace output appears in the client browser. This makes it possible to keep
debugging statements in production code and enable them conditionally at a later time.

Often you might need to run additional code to construct the statements to pass to the Trace.Write or
Trace.Warn methods, where this code should only run if tracing is enabled for the page. To support this, Page
exposes a Boolean property, Trace.IsEnabled, which returns true only if tracing is enabled for the page. You
should check this property first to guarantee that your debugging code can only run when tracing is on.

If Trace.IsEnabled Then
 For i=0 To ds.Tables("Categories").Rows.Count-1
 Trace.Write("ProductCategory",ds.Tables("Categories").Rows(i)(0).ToString())
 Next
End if

VB

The following example shows the use of Trace.Write and Trace.Warn to output debugging statements. Also
note the use of the Trace.IsEnabled property to conditionally run extra debugging code. In this example, the
trace information has been sorted by category.

http://docs.aspng.com/quickstart/aspplus/samples/trace/VB/trace1.aspx
http://docs.aspng.com/quickstart/aspplus/samples/trace/VB/trace1.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/trace/trace1.src

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

VB Trace2.aspx

[Run Sample] | [View Source]

ASP.NET also provides a way to enable tracing for the entire application, not just a single page. For more about
application-level tracing, click here.

Section Summary

1. Page-level tracing is enabled using a Trace="true" attribute on the top-level Page directive.
2. Page-level tracing enables you to write debugging statements as part of a page's client output. Trace

statements are output using the Trace.Write and Trace.Warn methods, passing a category and
message for each statement.

3. Debugging code can be conditionally run, depending on whether tracing is enabled for the page. Use the
Trace.IsEnabled property of the page to determine whether tracing is enabled.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/tracelogpage.aspx
http://docs.aspng.com/quickstart/aspplus/samples/trace/VB/trace2.aspx
http://docs.aspng.com/quickstart/aspplus/samples/trace/VB/trace2.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/trace/trace2.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security

Application-level Trace Logging

In addition to the Page-level Trace funtionality, ASP.NET provides a way to enable
trace output for an entire application. Enabling Trace at the application level has
the effect of enabling Page-level Trace for every page within that application
(provided there is no page-level directive to explicitly disable trace). When
application-level tracing is enabled, the ASP.NET runtime also collects several
additional statistics, such as the state of the control hierarchy, the contents of
session and application state, the form and querystring input values, and other
characteristics of request's execution. These statistics are collected for a specified
number of requests as determined by the application's configuration file. To
enable tracing for an application, place the following in the application's
web.config file at the application root directory:

<configuration>
 <system.web>
 <trace enabled="true"/>
 </system.web>
</configuration>

Using the above configuration, each page in the application will run its page-level
trace statements to be output in the client browser. To access the additional page
statistics, request a specially-mapped "trace.axd" URL from the application root.
For example, if the URL to your application is http://localhost/myapplication, you
would request the URL http://localhost/myapplication/trace.axd to access the
trace statistics for that application.

By default, trace information will be collected for up to 10 requests (you can use
the "clear current trace" link to reset the request counter). The trace section of the
configuration file also supports an attribute for controlling whether trace
statements are output to the client browser, or whether they are only available
from trace.axd. The attributes supported in the trace configuration section are
listed in the table below:

Value Description

enabled Set to true | false, indicates whether
Tracing is enabled for the application
(default is false)

 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

pageOutput Set to true | false, indicates whether
trace information should be rendered
at the end of each page - or only
accessible via the trace.axd utility
(default is false)

requestLimit Number of trace requests to store on
the server (default is 10)

traceMode Set to SortByTime | SortByCategory,
indicates the display order for Trace
messages (default is SortByTime)

localOnly Set to true | false, indicates whether
Tracing is enabled for localhost users
or for all users (default is true)

For example, the following configuration collects trace information for up to 40
requests, and prevents trace statements from being output to the requesting
browser (provided there is no page-level directive to explicitly enable trace). The
messages are displayed in order of category:

<configuration>
 <system.web>
 <trace
 enabled="true"
 traceMode="SortByCategory"
 requestLimit="40"
 pageOutput="false"
 localOnly="true"
 />
 </system.web>
</configuration>

Application Trace Request Details

After making a series of requests to the application, accessing trace.axd will list
those requests in time-order. You can drill-down into the details for each request
by selecting the "View Details" link.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/tracelogapp.aspx

The trace application presents the following detailed information for each request:

Request Detail

Value Description

Session Id The Session Id for this request

Time of Request The time the request was made

Status Code The returned status code for this
request

Request Type GET | POST

Request Encoding Encoding for the request

Response Encoding Encoding for the response

Trace Information

Value Description

Category The category for a Trace statement
written to the TraceContext

Message The message string for this Trace
statement

From First (s) Time in seconds from the first Trace
statement

From Last (s) Time in seconds from the previous
Trace statement

Control Hierarchy

Value Description

Control ID The ID for the control

Type The fully qualified type of the control

Render Size The size of the control's rendering in
bytes including children

ViewState Size The size of the control's viewstate in
bytes excluding children

Session State

Value Description

Key The key for an object in Session State

Type The fully qualified type of the object

Value The value of the object

Application State

Value Description

Key The key for an object in Application
State

Type The fully qualified type of the object

Value The value of the object

Cookies Collection

Value Description

Name The name of the cookie

Value The value of the cookie, or sub-
keys/values if multi-valued

Size The size of the cookie rendering in
Bytes

Headers Collection

Value Description

Name The name of the header

Value The value of the header

Form Collection

Value Description

Name The name of the form variable

Value The value of the form variable

QueryString Collection

Value Description

Name The name of the querystring variable

Value The value of the querystring variable

Server Variables

Value Description

Name The name for the server variable

Value TThe value of the server variable

Section Summary

1. Application-level Tracing is enabled using a "trace" section in the
configuration file at the application root directory.

2. Application-level Tracing enables trace log output for every page within an
application (provided there is no page-level directive to explicitly disable
trace).

3. After making a series of requests, details for those requests may be
accessed by requesting "trace.axd" from the application root.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview

The Microsoft .NET Framework SDK Debugger

No matter how skilled a programmer you are, you are bound to make mistakes once in a while. Tracking
down problems in your code can be baffling without the appropriate tool. Fortunately, the compiled nature
of ASP.NET means that debugging Web applications is no different than debugging any other managed
applications, and the .NET Framework SDK includes a lightweight debugger that is perfectly suited for this
task.

This section describes the steps required to debug ASP.NET Framework applications using the debugger
provided in this SDK. The debugger supports manual-attach debugging of processes on a local
development computer. The debugger documentation included in this SDK is your best resource for
information about specific features.

Enabling Debug Mode for ASP.NET Applications

Because many parts of an ASP.NET Framework application are dynamically compiled at runtime (.aspx and
.asmx files, for example), you must configure the ASP.NET runtime to compile the application with symbolic
information before the application can be debugged. Symbols (.pdb files) tell the debugger how to find the
original source files for a binary, and how to map breakpoints in code to lines in those source files. To
configure an application to compile with symbols, include a debug attribute on the compilation section
within the system.web group of the Web.config file at the application's root directory, as follows:

<configuration>
 <compilation debug="true"/>
</configuration>

Important: You should only enable this setting when you are debugging an application, because it can
significantly affect application performance.

Debugging ASP.NET Applications

When you have enabled debugging for the application, you should issue a request to the page you want to
debug. This ensures that the ASP.NET runtime process (Aspnet_wp.exe) is created and the application is
loaded into memory.

To begin debugging:

1. Launch the .NET Framework debugger, DbgClr.exe.
2. Use the File...Miscellaneous Files...Open File menu to open the source file for the page you

want to debug.
3. From the Tools menu, choose Debug Processes. The screen in the figure following these

instructions will appear.
4. Check the Show system processes checkbox, if it is not checked.
5. Find the Aspnet_wp.exe process and double-click it to bring up the Attach to Process dialog.
6. Make sure your application appears in the list of running applications, and select OK to attach.
7. Close the Programs dialog.

Important: When you attach to the Aspnet_wp.exe process, all threads in that process are frozen. Under

 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

no circumstances should you attempt to debug a live production application, because client requests can
not execute normally until the debugger is detached.

Setting Breakpoints

To set a breakpoint in your page, click the left-hand margin on a line containing an executable statement
or function/method signature. A red dot appears where the breakpoint is set. Move the mouse over the
breakpoint to ensure that it is appropriately mapped to the correct application instance in the
Aspnet_wp.exe process.

Reissue the request to the page from your browser. The debugger will stop at the breakpoint and gain the
current window focus. From this point, you can step, set variable watches, view locals, stack information,
disassembly, and so on. You can see the intrinsic objects on the page, like Request, Response, and
Session by using this (C#) or Me (VB) in the watch window.

Generating Symbols for Pre-Compiled Components

To debug pre-compiled components, such as business objects or code-behind files, you must compile with
symbolic information prior to debugging. Symbols for assemblies are typically found by means of a path-
based search algorithm. The algorithm used by the PDB library (Mspdb70.dll) to find symbolic information
is as follows:

1. Search the same path as the assembly. This is the normal location for .pdb files.
For local assemblies, place the symbols (.pdb files) in the application's /bin directory with the DLLs.

2. Search path as specified in the PE file (the NB10 debug header).
3. Search NT symbol file locations (environment variables _NT_SYMBOL_PATH and

_NT_ALT_SYMBOL_PATH).

Note: If symbolic information cannot be found, the debugger prompts for a user-specified location.

Section Summary

1. The debugger described in this section supports manual-attach debugging of processes on a local
development computer.

2. Debugging allows the ASP.NET runtime to dynamically compile with symbolic information. Enable
this by setting <compilation debug="true"/> in the Web.config file located in the application's root
directory. The debugger setting should only be enabled when you are debugging an application,
because it degrades application performance.

3. To debug an application, issue a request to a page, attach the debugger to the Aspnet_wp.exe
process, set breakpoints, and reissue the page request.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/debugcomsdk.aspx

4. When attached to the Aspnet_wp.exe process, all threads in that process are frozen. Under no
circumstances should you debug a live production application, since client requests can not execute
normally until the debugger is detached.

5. To debug pre-compiled components, such as business objects or code-behind files, you must
compile with symbolic information prior to debugging.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

Performance Overview

Feature-rich web applications are not very useful if they
cannot perform well. The demands of the Web are so great
that code is expected to do more in less time than ever
before. This section describes some key principles of Web
application performance, tips for writing code that performs
well, and tools for measuring performance.

ASP.NET provides a number of built-in performance
enhancements. For example, pages are compiled only once
and cached for subsequent requests. Because these
compiled pages are saved to disk, even a complete server
restart does not invalidate them. ASP.NET also caches
internal objects, such as server variables, to speed user
code access. Further, ASP.NET benefits from all of the
performance enhancements to the common language
runtime: just-in-time compiling, a fine-tuned common
language runtime for both single- and multiprocessor
computers, and so on.

However, all of these enhancements cannot protect you
from writing code that does not perform well. Ultimately,
you must ensure that your application can meet the
demands of its users. The next section describes a few of
the common ways to avoid performance bottlenecks.
However, first you need to understand the following
metrics:

● Throughput: The number of requests a Web
application can serve per unit of time, often
measured in requests/second. Throughput can vary,
depending on the load (number of client threads)
applied to the server. This is usually considered the
most important performance metric to optimize.

● Response Time: The length of time between the
issuance of a request and the first byte returned to
the client from the server. This is often the most
perceptable aspect of performance to the client
user. If an application takes a long time to respond,
the user can become impatient and go to another
site. The response time of an application can vary
independently of (even inversely to) the rate of
throughput.

● Execution Time: The time it takes to process a
request, usually measured between the first byte

 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications

and the last byte returned to the client from the
server. Execution time directly affects the
throughput calculation.

● Scalability: The measurement of an application's
ability to perform better as more resources
(memory, processors, or computers) are allocated
to it. Often, it is a measurement of the rate of
change of throughput with respect to the number of
processors.

Writing applications that perform well is all about striking a
balance between these metrics. No single measurement
can characterize how your application will behave under
varying circumstances, but several measurements taken
together can paint a reasonable picture of an application's
performance.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output

Performance Tuning Tips

Any programming model has its common performance pitfalls, and ASP.NET is no exception. This section describes some
of the ways in which you can avoid performance bottlenecks in your code.

1. Disable Session State when not in use: Not all applications or pages require per-user session state. If it is not
required, disable it completely. This is easily accomplished using a page-level directive, such as the following:

<%@ Page EnableSessionState="false" %>

Note: If a page requires access to session variables but does not create or modify them, set the value of the
directive to ReadOnly. Session State can also be disabled for XML Web service methods. See Using Objects and
Intrinsics in the XML Web services section.

2. Choose your Session State provider carefully: ASP.NET provides three distinct ways to store session data for
your application: in-process session state, out-of-process session state as a Windows Service, and out-of-process
session state in a SQL database. Each has its advantages, but in-process session state is by far the fastest solution.
If you are only storing small amounts of volatile data in session state you should use the in-process provider. The
out-of-process solutions are primarily useful in Web garden and Web farm scenarios or in situations in which data
cannot be lost in the event of a server/process restart.

3. Avoid excessive round trips to the server: The Web Forms page framework is one of the best features of
ASP.NET, because it can dramatically reduce the amount of code you need to write to accomplish a task.
Programmatic access to page elements using server controls and the postback event handling model are arguably
the most time-saving features. However, there are appropriate and inappropriate ways to use these features, and it
is important to know when it is appropriate to use them.

An application typically needs to make a round trip to the server only when retrieving data or storing data. Most
data manipulations can take place on the client between round trips. For example, validating form entries can often
take place on the client before the user submits data. In general, if you do not need to relay information back to
the server, then you should not make a round trip to the server.

If you are writing your own server controls, consider having them render client-side code for up-level (ECMAScript-
capable) browsers. By employing "smart" controls, you can dramatically reduce the number of unecessary hits to
your Web server.

4. Use Page.IsPostback to avoid extra work on a round trip: If you are handling server control postbacks, you
often need to execute different code the first time the page is requested from the code you do use for the round
trip when an event is fired. If you check the Page.IsPostBack property, your code can execute conditionally,
depending on whether there is an initial request for the page or a responce to a server control event. It might seem
obvious to do this, but in practice it is possible to omit this check without changing the behavior of the page. For
example:

<script language="VB" runat="server">

 Public ds As DataSet
 ...

 Sub Page_Load(sender As Object, e As EventArgs)
 ' ...set up a connection and command here...
 If Not (Page.IsPostBack)
 Dim query As String = "select * from Authors where FirstName like
'%JUSTIN%'"
 myCommand.Fill(ds, "Authors")
 myDataGrid.DataBind()
 End If
 End Sub

 Sub Button_Click(sender As Object, e As EventArgs)
 Dim query As String = "select * from Authors where FirstName like '%BRAD%'"
 myCommand.Fill(ds, "Authors")
 myDataGrid.DataBind()
 End Sub

</script>

<form runat="server">
 <asp:datagrid datasource='<%# ds.Tables["Authors"].DefaultView %>'
runat="server"/>

 <asp:button onclick="Button_Click" runat="server"/>
</form>

VB

The Page_Load event executes on every request, so we checked Page.IsPostBack so that the first query does
not execute when we process the Button_Click event postback. Note that even without this check our page

 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

would behave identically, since the binding from the first query would be overturned by the call to DataBind in the
event handler. Keep in mind that it can be easy to overlook this simple performance improvement when you write
your pages.

5. Use server controls sparingly and appropriately: Even though it is extremely easy to use, a server control
might not always be the best choice. In many cases, a simple rendering or databinding substitution will accomplish
the same thing. For example:

<script language="VB" runat="server">

 Public imagePath As String
 Sub Page_Load(sender As Object, e As EventArgs)
 '...retrieve data for imagePath here...
 DataBind()
 End Sub

</script>

<%--the span and img server controls are unecessary...--%>
The path to the image is: <span innerhtml='<%# imagePath %>' runat="server"/>

<img src='<%# imagePath %>' runat="server"/>

<%-- use databinding to substitute literals instead...--%>
The path to the image is: <%# imagePath %>

<img src='<%# imagePath %>' />

<%-- or a simple rendering expression...--%>
The path to the image is: <%= imagePath %>

<img src='<%= imagePath %>' />

VB

In this example, a server control is not needed to substitute values into the resulting HTML sent back to the client.
There are many other cases where this technique works just fine, even in server control templates. However, if you
want to programmatically manipulate the control's properties, handle events from it, or take advantage of its state
preservation, then a server control would be appropriate. You should examine your use of server controls and look
for code you can optimize.

6. Avoid excessive server control view state: Automatic state management is a feature that enables server
controls to re-populate their values on a round trip without requiring you to write any code. This feature is not free
however, since the state of a control is passed to and from the server in a hidden form field. You should be aware
of when ViewState is helping you and when it is not. For example, if you are binding a control to data on every
round trip (as in the datagrid example in tip #4), then you do not need the control to maintain it's view state, since
you will wipe out any re-populated data in any case.

ViewState is enabled for all server controls by default. To disable it, set the EnableViewState property of the
control to false, as in the following example:

<asp:datagrid EnableViewState="false" datasource="..." runat="server"/>

You can also turn ViewState off at the page level. This is useful when you do not post back from a page at all, as
in the following example:

<%@ Page EnableViewState="false" %>

Note that this attribute is also supported by the User Control directive. To analyze the amount of view state used
by the server controls on your page, enable tracing and look at the View State column of the Control Hierarchy
table. For more information about the Trace feature and how to enable it, see the Application-level Trace Logging
feature.

7. Use Response.Write for String concatenation: Use the HttpResponse.Write method in your pages or user
controls for string concatenation. This method offers buffering and concatenation services that are very efficient. If
you are performing extensive concatenation, however, the technique in the following example, using multiple calls
to Response.Write, is faster than concatenating a string with a single call to the Response.Write method.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/perftuning.aspx

Response.Write("a")
Response.Write(myString)
Response.Write("b")
Response.Write(myObj.ToString())
Response.Write("c")
Response.Write(myString2)
Response.Write("d")

VB

8. Do not rely on exceptions in your code: Exceptions are very expensive and should rarely occur in your code.
You should never use exceptions as a way to control normal program flow. If it is possible to detect in code a
condition that would cause an exception, you should do that instead of waiting to catch the exception before
handling that condition. Common scenarios include checking for null, assigning to a string that will be parsed into a
numeric value, or checking for specific values before applying math operations. For example:

' Consider changing this:

Try
 result = 100 / num

Catch (e As Exception)
 result = 0
End Try

// To this:

If Not (num = 0)
 result = 100 / num
Else
 result = 0
End If

VB

9. Use early binding in Visual Basic or JScript code: One of the advantages of Visual Basic, VBScript, and JScript
is their typeless nature. Variables can be created simply by using them and need no explicit type declaration. When
assigning from one type to another, conversions are performed automatically, as well. This can be both an
advantage and a disadvantage, since late binding is a very expensive convenience in terms of performance.

The Visual Basic language now supports type-safe programming through the use of a special Option Strict
compiler directive. For backward compatibility, ASP.NET does not enable Option Strict by default. However, for
optimal perfomance, you should enable Option Strict for your pages by using a Strict attribute on the page or
Control directive:

<%@ Page Language="VB" Strict="true" %>

<%

Dim B
Dim C As String

' This causes a compiler error:
A = "Hello"

' This causes a compiler error:
B = "World"

' This does not:
C = "!!!!!!"

' But this does:
C = 0

%>

JScript also supports typeless programming, though it offers no compiler directive to force early binding. A variable
is late-bound if:

❍ It is declared explicitly as an object.
❍ It is a field of a class with no type declaration.
❍ It is a private function/method member with no explicit type declaration and the type cannot be inferred

from its use.

The last distinction is complicated. The JScript compiler optimizes if it can figure out the type, based on how a
variable is used. In the following example, the variable A is early-bound but the variable B is late-bound:

var A;
var B;

A = "Hello";
B = "World";
B = 0;

For the best performance, declare your JScript variables as having a type. For example, "var A : String".

10. Port call-intensive COM components to managed code: The .NET Framework provides a remarkably easy
way to interoperate with traditional COM components. The benefit is that you can take advantage of the new
platform while preserving your existing code. However, there are some circumstances in which the performance
cost of keeping your old components is greater than the cost to migrate your components to managed code. Every
situation is unique, and the best way to decide what needs to be changed is to measure site performance. In
general, however, the performance impact of COM interoperability is proportional to the number of function calls
made or the amount of data marshaled from unmanaged to managed code. A component that requires a high
volume of calls to interact with it is called "chatty," due to the number of communications between layers. You
should consider porting such components to fully managed code to benefit from the performance gains provided by
the .NET platform. Alternatively, you might consider redesigning your component to require fewer calls or to
marshal more data at once.

11. Use SQL stored procedures for data access: Of all the data access methods provided by the .NET Framework,
SQL-based data access is the best choice for building scalable web applications with the best performance. When
using the managed SQL provider, you can get an additional performance boost by using compiled stored
procedures instead of ad hoc queries. For an example of using SQL stored procedures, refer to the Server-Side
Data Access section of this tutorial.

12. Use SqlDataReader for a fast-forward, read-only data cursor: A SqlDataReader object provides a
forward, read-only cursor over data retrieved from a SQL database. SqlDataReader is a more performant option
than using a DataSet if it can be used for your scenario. Because SqlDataReader supports the IEnumerable
interface, you can even bind server controls, as well. For an example of using SqlDataReader, see the Server-
Side Data Access section of this tutorial.

13. Cache data and output wherever possible: The ASP.NET programming model provides a simple mechanism
for caching page output or data when it does not need to be dynamically computed for every request. You can
design your pages with caching in mind to optimize those places in your application that you expect to have the
most traffic. More than any feature of the .NET Framework, the appropriate use of caching can enhance the
performance of your site, sometimes by an order of magnitude or more. For more information about how to use
caching, see the Cache Services section of this tutorial.

14. Enable Web gardening for multiprocessor computers: The ASP.NET process model helps enable scalability
on multiprocessor machines by distributing the work to several processes, one for each CPU, each with processor
affinity set to its CPU. The technique is called Web gardening, and can dramatically improve the performance of
some applications. To learn how to enable Web gardening, refer to the Using the Process Model section.

15. Do not forget to disable Debug mode: The <compilation> section in ASP.NET configuration controls whether
an application is compiled in Debug mode, or not. Debug mode degrades performance significantly. Always
remember to disable Debug mode before you deploy a production application or measure performance. For more
information about Debug mode, refer to the section entitled The SDK Debugger.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

Measuring Performance

Measuring Web server performance is a skill that can only
be refined by repeated experience and experimentation.
There are many variables at play, such as the number of
clients, speed of client connections, server resources,
application code, and so on. It helps to have good tools at
your disposal, and fortunately those are available.

Microsoft provides the Web Application Stress (WAS) tool,
which simulates multiple HTTP clients hitting your Web site.
You can control the client load, number of connections,
format of cookies, headers, and several other parameters
from the tool's graphical interface. After a test run, WAS
provides you with reports containing performance metrics
such as response time, throughput, and performance
counter data relevant to your application. The goal is
simple: to maximize throughput and CPU utilization under
high degrees of load. WAS is available from the Microsoft
Internet Information Server Resource Kit and is also
downloadable separately from
http://webtool.rte.microsoft.com.

ASP.NET also exposes a number of performance counters
that can be used to track the execution of your
applications. Unlike traditional ASP, most of these
performance counters are exposed per-application, instead
of globally for the entire machine. The per-application
counters are available under the ASP.NET Framework
applications performance object, and you need to select a
particular application instance when selecting a counter to
monitor. Of course, you can still see the counter values for
all applications using a special "__Total__" application
instance in System Monitor. ASP.NET also exposes global-
only counters which are not bound to a particular
application instance. These counters are located under the
ASP.NET System performance object. To view all available
counters for ASP.NET (on Windows 2000 systems):

1. Select Start->Programs->Administrative Tools-
>Performance.

2. Click the View Report button in System Monitor.
3. Click the Add button.
4. Select ASP.NET Applications, then choose the All

counters radio button. Click OK.
5. Select ASP.NET, then choose the All counters

radio button. Click OK.

http://webtool.rte.microsoft.com/

 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications

The ASP.NET Trace feature is also useful for identifying
performance bottlenecks in your code. It can show you
important timing information between successive trace
output statements, as well as information about the server
control heierarchy, the amount of viewstate used, and the
render size of controls on your page. For more information
about the Trace feature, refer to the Tracing section of this
tutorial.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

Migration Overview

Installing ASP.NET will not break your existing ASP
applications. It uses a separate file name extension (.aspx
instead of .asp), separate configuration settings, and an
entirely separate common language runtime (Asp.dll has
not been modified). ASP pages and applications can
continue to use the existing ASP engine, with no
interference from ASP.NET. That said, the benefits of
migrating your existing applications to ASP.NET are
enormous. ASP.NET easily provides many times the
features of traditional ASP, and moving your ASP
applications to the new platform provides a huge
opportunity for improvement. Among the new features you
can take advantage of are:

● Improved performance and scalability
● Web farm support and XCopy deployment
● Output caching and custom security
● Web Forms page controls
● XML Web services infrastructure

ASP.NET is designed to help preserve your investment in
traditional ASP and COM technologies. It balances support
for existing ASP syntax and semantics with the need for a
forward-looking platform that can last well into the next
age of Internet application development. While ASP.NET
preserves the majority of ASP's feature set, 100%
compatibility between the two was not possible if the
platform was to move forward, so there are a few changes
to the old way of doing things.

The good news is that your ASP skills will translate easily to
ASP.NET. There are only a few differences, which are
usually easy to fix. However, migrating ASP applications to
ASP.NET does require some work. Relatively simple pages
might migrate without any changes, but more complex
applications probably will require some modifications. The
following sections describe the changes and the ways in
which they might affect your existing application code.
They also demonstrate some of the ways in which you can
reuse ASP and COM code in ASP.NET.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication

Syntax and Semantics

ASP.NET is fully API-compatible with traditional ASP, with the following three exceptions:

● Request(): ASP returns an array of strings; ASP.NET returns a string.
● Request.QueryString(): ASP returns an array of strings; ASP.NET returns a string.
● Request.Form(): ASP returns an array of strings; ASP.NET returns a string.

In ASP, the Request, Request.QueryString, and Request.Form collections return string
arrays from lookups. For example, in traditional ASP the query string values from a request
to http://localhost/test/Test.asp?values=45&values=600 would be accessed as follows:

<%
 ' Below line outputs: "45, 600"
 Response.Write Request.QueryString("values")

 ' Below line outputs: "45"
 Response.Write Request.QueryString("values")(1)
%>

In ASP.NET, these collections require an explicit method to get array access. These arrays
are also now 0-index based. For example, in ASP.NET the query string values from a request
to http://localhost/test/Test.aspx?values=45&values=600 would be accessed as follows:

<%
 ' Below line outputs: "45, 600"
 Response.Write(Request.QueryString("values"))

 ' Below line outputs: "45"
 Response.Write(Request.QueryString.GetValues("values")(0))
%>

VB

These arrays are most commonly used when form values are posted from multiselect list
boxes (<select multiple>) or when multiple check boxes have the same name.

Semantic Differences Between ASP.NET and ASP

ASP.NET pages also have several semantic changes from existing ASP pages. The following
issues are the ones most likely to affect you:

● ASP.NET pages only support a single language.

ASP allowed multiple languages to be used on a single page, which was useful for
script library scenarios. Because of ASP.NET's compiled nature, it supports only a
single language on a page. However, it is still possible to have multiple pages, each
with a separate language, within a single application. User Controls might also have
a different language from the page that contains them. This enables you to integrate
functionality written in different languages in a single page. This is an adequate
substitute for the multiple-language Include files that are prevalent in traditional ASP
applications.

● ASP.NET page functions must be declared in <script runat=server> blocks.

In ASP, page functions could be declared within <% %> blocks:

<%
 Sub DoSomething()
 Response.Write "Hello World!"

 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

 End Sub

 DoSomething
%>

In ASP.NET, page functions must be declared in <script runat=server> blocks:

<script language="VB" runat=server>

 Sub DoSomething()
 Response.Write ("Hello World!")
 End Sub

</script>

<%
 DoSomething()
%>

VB

● ASP.NET does not support page-render functions.

In ASP, page-render functions could be declared with <% %> blocks:

<% Sub RenderSomething() %>
 Here is the time: <%=Now %>
<% End Sub %>

<%
 RenderSomething
 RenderSomething
%>

In ASP.NET, this must be rewritten:

<script language="VB" runat=server>

 Sub RenderSomething()
 Response.Write(" ")
 Response.Write("Here is the time: " & Now)
 End Sub

</script>

<%
 RenderSomething()
 RenderSomething()
%>

VB

Section Summary

1. With three exceptions, ASP.NET is 100% API-compatible with traditional ASP. The
API changes are that, now, Request(), Request.QueryString(), and
Request.Form() all return individual strings, rather than string arrays.

2. ASP.NET pages support only a single language.
3. ASP.NET page functions must be declared in <script runat=server> blocks.
4. Page-render functions are not supported.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/syntaxandsemantics.aspx

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview

Language Compatibility

The differences between the VBScript used in ASP and the Visual Basic .NET
language used in ASP.NET are by far the most extensive of all the potential
migration issues. Not only has ASP.NET departed from the VBScript language to
"true" Visual Basic, but the Visual Basic language itself has undergone significant
changes in this release. The changes are designed to:

● Make the language more consistent by bringing together features of the
language with similar purposes.

● Simplify the language by redesigning the features that made Visual Basic less
than "basic."

● Improve readability and maintainability by redesigning features that hid too
many important details from the programmer.

● Improve robustness by enforcing better practices, such as type-safe
programming.

This section highlights some common issues you are likely to encounter when you
begin to use the new Visual Basic language.

● No more Set and Let. Instead, use simple variable assignment.

<%
 ' Old ASP syntax.
 Dim MyConn
 Set MyConn = Server.CreateObject("ADODB.Connection")

 ' New ASP.NET syntax.
 Dim MyConn
 MyConn = Server.CreateObject("ADODB.Connection")
%>

● No more non-indexed default properties. Non-indexed default
properties enable an expression that normally refers to an object to refer to
a default property of the object instead. The unfortunate consequence of
support for default properties is that it makes programs more difficult to
read, since the meaning of an expression depends on its context. In Visual
Basic .NET, non-indexed properties must always be specified explicitly within
code.

<%
' Old ASP syntax (retrieving recordset column value).
Set MyConn = Server.CreateObject("ADODB.Connection")
MyConn.Open("TestDB")
Set RS = MyConn.Execute("Select * from Products")
Response.Write RS("Name")

' New ASP.NET syntax (retrieving recordset column value).
MyConn = Server.CreateObject("ADODB.Connection")
MyConn.Open("TestDB")
RS = MyConn.Execute("Select * from Products")
Response.Write RS("Name").Value
%>

Indexed default properties are still supported:

<%
Dim RS As RecordSet

 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

' This is allowed (indexed).
RS.Fields(1).Value = RS.Fields(2).Value

' But these are not allowed (non-indexed).
RS(1) = RS(2)
RS(1).Value = RS(2).Value
%>

● Parentheses are now required for calling subroutines. Visual Basic
now supports exactly the same syntax for calling subroutines and functions.

' Note parentheses with Response.Write.
Sub DoSomething()
 Response.Write("Hello World!")
End Sub

' Note parenthesws with DoSomething.
DoSomething()

● The new default is by-value arguments. In Visual Basic 6, if a user does
not explicitly specify ByVal or ByRef on a parameter declaration, the calling
convention defaults to ByRef. In the new Visual Basic .NET, the default is
ByVal. This applies both to regular parameters for which the default can be
overridden by explicitly specifying ByRef and to parameters passed to a
ParamArray parameter where the default can not be overridden. This has
been changed because it is much more common for a parameter to be used
solely for passing a value into a procedure than for altering a passed-in
variable. Changing the default to ByVal increases performance and
decreases the likleihood of accidental side-effects.

You can still use by-reference arguments by explicitly using the ByRef
modifier:

<script language="VB" runat=server>

 Sub DoSomething(ByRef value)
 value = 4343
 End Sub

</script>

<%
 Dim number = 55
 DoSomething (number)
 Response.Write ("Number: " & number)
%>

Note: There are many additional differences between Visual Basic 6 and Visual
Basic .NET. Consult the language documentation for more information.

Section Summary

1. The differences between the VBScript used in ASP and the Visual Basic .NET
language used in ASP.NET are by far the most extensive of all the potential
migration issues. The changes have been made to simplify the language and
improve consistency, readability, maintainability, and robustness.

2. Set and Let assignments are no longer supported in Visual Basic .NET. Use
standard variable assignment instead.

3. Non-indexed default properties are not supported in Visual Basic .NET.
Indexed default properties are still supported.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/languagecompat.aspx

4. Parentheses are required for calling subroutines in Visual Basic .NET.
5. The new default is by-value arguments. You can still use by-reference

arguments by explicitly using the ByRef modifier.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

COM Interoperability

The common language runtime enables .NET objects to
interoperate seamlessly with traditional COM components.
ASP.NET exposes the familiar Server.CreateObject(ProgId)
API to developers for creating late-bound references to COM.

Dim myConn
myConn = Server.CreateObject("ADODB.Connection");

You can also use early-bound, traditional COM components by
creating runtime callable wrappers (RCWs), which optimize the
performance of calls between unmanaged and managed code.
You can create an RCW using the Tlbimp.exe utility included in
the .NET Framework SDK. For more information on Tlbimp.exe,
see the Interoperability section of the Common Tasks QuickStart.
The ASP.NET Performance section contains more information
comparing late binding with early binding.

Like ASP, you can also create traditional COM components using
the <object> tag with either a progid or a classid attribute.
In addition to using the <object> tag in pages, you can also use
it in the Global.asax file for the application. In this case, the
object is added to the Page.Application.StaticObjects
collection and can be accessed programmatically by simply using
its id attribute. Note that you cannot create single-threaded
apartment (STA) objects statically in the Global.asax file because
doing so generates a runtime error, as it does in ASP.

ASP.NET also continues to support the existing ASP intrinsic
interfaces ObjectContext Intrinsic Flow, OnStartPage, and
OnEndPage. Supporting these interfaces means that you can use
existing components (Commerce Server, Exchange, and so on) in
ASP.NET pages. These interfaces are not enabled by default but
are explicitly turned on using the following page directive:

<%@ Page ASPCompat="true" %>

This directive causes ASP.NET to create unmanaged ASP intrinsic
objects and pass them to COM components used in the page. It
also runs the page in an STA thread pool. See the following
section for information.

Performance Considerations

In ASP.NET, the thread pool is a multithreaded apartment (MTA)
by default, which can affect the performance of traditional
apartment-threaded Visual Basic 5 and Visual Basic 6
components. The ASPCompat="true" attribute enables an STA

http://docs.aspng.com/QuickStart/howto/default.aspx?url=/quickstart/howto/doc/Interop/Interop_Overview.aspx

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

thread pool to address performance with existing Visual Basic
components on a per-page basis.

Calling between managed and unmanaged components also
incurs a marshaling cost, which can impede the performance of
your pages. Every scenario yields different performance
characteristics, so it is important to test adequately before
deciding whether interoperability is the right choice for your
application. However, in nearly all scenarios, rewriting your COM
components in managed code provides performance benefits. See
the ASP.NET Performance section for more information and
important tips.

Section Summary

1. ASP.NET exposes the familiar Server.CreateObject API
to developers for creating late-bound references to COM.

2. You can also use early-bound, traditional COM
components by creating runtime callable wrappers, which
optimize the performance of calls between unmanaged
and managed code.

3. ASP.NET continues to support the existing ASP intrinsic
interfaces ObjectContext Intrinsic Flow,
OnStartPage, and OnEndPage. These interfaces are
explicitly enabled using the page directive <%@ Page
ASPCompat="true" %>.

4. The ASPCompat="true" attribute enables STA thread
pools on a per-page basis to address performance with
existing Visual Basic components.

5. In nearly all scenarios, rewriting your COM components in
managed code provides performance benefits.

Copyright 2001 Microsoft Corporation. All rights reserved.

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model

MTS Transactions

A transaction is an operation or set of operations that succeeds or fails as a
logical unit. A good example of a transaction is the transfer of funds from
one bank account to another. In this case, the funds must be debited from
the first account and credited to the second account before the operation
can be considered a success. If the funds are successfully debited but not
credited, the debit from the first account must be undone to leave both
accounts in a correct and consistent state.

Transactions are normally managed by declaring boundaries around a set
of operations. Operations that execute in the context of the transaction
boundary then succeed or fail as a unit. For ASP.NET, the transaction
boundary is the execution of a single request to a page, which might
contain nested components that participate in the same transaction. While
the page is executing, if an operation on the page itself or a nested
component in the same transaction fails, it can call ContextUtil.SetAbort.
This is then picked up by the current transaction context, the entire
transaction fails, and any operations that were already completed are
undone. If nothing fails, the transaction is committed.

ASP.NET support for transactions consists of the ability to allow pages to
participate in ongoing Microsoft .NET Framework transactions. Transaction
support is exposed via an @Transaction directive that indicates the
desired level of support:

<%@ Transaction="Required" %>

The following table defines the supported transaction attributes. The
absence of a transaction directive is the same as an explicit directive to
"Disabled". Unlike ASP, ASP.NET has no explicit directive for none (that is,
Transaction="None").

Attribute Description

Required The page requires a transaction. It runs in the
context of an existing transaction, if one exists.
If not, it starts one.

RequiresNew The page requires a transaction and a new
transaction is started for each request.

Supported The page runs in the context of an existing
transaction, if one exists. If not, it runs without a
transaction.

NotSupported The page does not run within the scope of
transactions. When a request is processed, its
object context is created without a transaction,
regardless of whether there is an active
transaction.

A transaction can be explicitly committed or aborted using static methods
of the System.EnterpriseServices.ContextUtil class. You can explicitly
call the SetComplete or SetAbort method to commit or abort an ongoing
transaction.

 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

Note: A transaction will commit or abort at the end of page's lifetime
depending on the whether SetComplete or SetAbort was called last,
provided there is no other object join the same transaction.

' Try to do something crucial to transaction completing.
If (Not DoSomeWork())
 ContextUtil.SetAbort()
End If

VB

Section Summary

1. A transaction is an operation or set of operations that succeeds or
fails as a logical unit.

2. ASP.NET transaction support consists of the ability to allow pages to
participate in ongoing Microsoft .NET Framework transactions.
Transaction support is exposed via an @Transaction directive that
indicates the desired level of support.

3. A transaction can be explicitly committed or aborted using static
methods of the System.EnterpriseServices.ContextUtil class.
Developers can explicitly call the SetComplete or SetAbort
method to commit or abort an ongoing transaction.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/QuickStart/aspplus/default.aspx?url=/quickstart/aspplus/doc/mtstransactions.aspx

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

A Personalized Portal

This sample illustrates a personalized portal home page
application. The application allows users to customize a
home page to show various modules of their choosing,
such as a site directory or favorite links list. Each module is
implemented as a user control, which is dynamically added
to the home page if the user has chosen to include it. The
custom personalization settings are maintained in a SQL
database and are retrieved using a personalization HTTP
module component (which works much as the session state
and application state HTTP modules do). Every page in the
application inherits from a common code-behind base Page
class, which uses the personalization component to expose
a special dictionary called UserState. This UserState
dictionary provides the application's pages with access to
the per-user customization settings (as key/value string
pairs). In addition to storing the user's module selections,
the UserState dictionary stores other customization
parameters such as color schemes. Individual modules can
use the UserState dictionary to store their own
customization settings as well.

The portal application employs the
FormsAuthenticationModule for user authentication.
When a user first requests the home page, the settings for
an anonymous user are displayed. If the user tries to
access a portion of the portal that is restricted to
authenticated users (such as the module customization
page), the FormsAuthenticationModule redirects the
user to a login page to enter credentials. A user who has
not logged in before can use a registration form to create a
new user account and password. On subsequent visits to
the portal home page, a user can simply log in using these
account credentials (which are then verified against a SQL
database).

To get started exploring the portal application, follow the
steps described above to create a user account. Once your
account is created you can browse and customize the entire
portal.

 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications

VB Portal Application

[Run Sample] | [View Source]

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/portal/VB/default.aspx
http://docs.aspng.com/quickstart/aspplus/samples/portal/VB/default.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/portal/portal.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

An E-Commerce Storefront

The following sample application is a mock-up of a typical e-
commerce storefront. The application shows the most
common elements of the following types of applications: a
product browser, a session-based shopping cart, product
details, and so forth. A SQL Server database is used to
store the product data, and the DataList and Repeater
controls render this data. The data access portion of the
application is implemented as a managed component.

VB GrocerToGo.aspx

[Run Sample] | [View Source]

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/grocertogo/VB/grocertogo.aspx
http://docs.aspng.com/quickstart/aspplus/samples/grocertogo/VB/grocertogo.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/grocertogo/grocertogo.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security
 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

A Class Browser Application

The following sample application implements a .NET Framework-based class browser, using the
System.Reflection APIs to gather information about a class. To simplify the .aspx code, the application
employs a managed component that encapsulates the reflection details. The .aspx page itself relies heavily on
several DataList controls for rendering the namespaces, classes, and class details. The sample also shows the
use of nested DataList controls for rendering the parameter lists. To view the sample, click the icon below.

VB ClassBrowser.aspx

[Run Sample] | [View Source]

The class browser also uses the ASP.NET configuration system to determine which modules to load and reflect
upon. A configuration section is mapped to the HashtableSectionHandler, which maintains key/value pairs
for the assembly name and file. You can add assemblies to this list by appending a line to the class browser
application's configuration section, as follows:

<configuration>
 <configSections>
 <sectionGroup name="system.web">
 <section name="ClassBrowser"
type="System.Configuration.NameValueSectionHandler,
 System,Version=1.0.3300.0,Culture=neutral,PublicKeyToken=b77a5c561934e089"/>
 </sectionGroup>
 </configSections>

 <system.web>
 <ClassBrowser>
 <add key="ASP.NET Class Library" value="System.Web, Version=1.0.3300.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 <add key=".NET Framework class Library" value="mscorlib, Version=1.0.3300.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089" />
 </ClassBrowser>
 </system.web>

</configuration>

Copyright 2001 Microsoft Corporation. All rights reserved.

http://docs.aspng.com/quickstart/aspplus/samples/classbrowser/vb/classbrowser.aspx
http://docs.aspng.com/quickstart/aspplus/samples/classbrowser/vb/classbrowser.aspx
http://docs.aspng.com/quickstart/util/srcview.aspx?path=/quickstart/aspplus/samples/classbrowser/classbrowser.src

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview

IBuySpy.com

The IBuySpy ASP.NET sample application was built to show
how you can use the new Microsoft .NET Framework and
ASP.NET to build a full-featured e-commerce application. It
offers all the functionality of typical shopping applications,
including product searches, shopping cart management,
user login and registration, and even the ability to view and
edit your own product reviews.

Portions of IBuySpy were designed and developed by
Vertigo Software, Inc.

IBuySpy.com

[View Sample]

Copyright 2001 Microsoft Corporation. All rights reserved.

http://www.ibuyspy.com/
http://www.ibuyspy.com/

 Links to the Web: Support | Search | microsoft.com

 Welcome | ASP.NET | Windows Forms | How Do I...? Hide TOC | I want my samples in...

Getting Started
 Introduction
 What is ASP.NET?
 Language Support

ASP.NET Web Forms
 Introducing Web Forms
 Working with Server Controls
 Applying Styles to Controls
 Server Control Form Validation
 Web Forms User Controls
 Data Binding Server Controls
 Server-Side Data Access
 Data Access and Customization
 Working with Business Objects
 Authoring Custom Controls
 Web Forms Controls Reference
 Web Forms Syntax Reference

ASP.NET Web Services
 Introducing Web Services
 Writing a Simple Web Service
 Web Service Type Marshalling
 Using Data in Web Services
 Using Objects and Intrinsics
 The WebService Behavior
 HTML Pattern Matching

ASP.NET Web Applications
 Application Overview
 Using the Global.asax File
 Managing Application State
 HttpHandlers and Factories

Cache Services
 Caching Overview
 Page Output Caching
 Page Fragment Caching
 Page Data Caching

Configuration
 Configuration Overview
 Configuration File Format
 Retrieving Configuration

Deployment
 Deploying Applications
 Using the Process Model
 Handling Errors

Security

Welcome to the ASP.NET QuickStart Tutorial

The ASP.NET QuickStart is a series of ASP.NET samples and supporting commentary
designed to quickly acquaint developers with the syntax, architecture, and power of the
ASP.NET Web programming framework. The QuickStart samples are designed to be short,
easy-to-understand illustrations of ASP.NET features. By the time you have completed the
QuickStart tutorial, you will be familiar with:

● ASP.NET Syntax. While some of the ASP.NET syntax elements will be familiar to
veteran ASP developers, several are unique to the new framework. The QuickStart
samples cover each element in detail.

● ASP.NET Architecture and Features. The QuickStart introduces the features of
ASP.NET that enable developers to build interactive, world-class applications with
much less time and effort than ever before.

● Best Practices. The QuickStart samples demonstrate the best ways to exercise the
power of ASP.NET while avoiding potential pitfalls along the way.

What Level of Expertise Is Assumed in the QuickStart?
If you have never developed Web pages before, the QuickStart is not for you. You should
be fluent in HTML and general Web development terminology. You do not need previous
ASP experience, but you should be familiar with the concepts behind interactive Web
pages, including forms, scripts, and data access.

Working with the QuickStart Samples
The QuickStart samples are best experienced in the order in which they are presented. Each
sample builds on concepts discussed in the preceding sample. The sequence begins with a
simple form submittal and builds up to integrated application scenarios.

Copyright 2001 Microsoft Corporation. All rights reserved.

http://www.microsoft.com/support/
http://search.microsoft.com/
http://www.microsoft.com/
http://www.microsoft.com/
http://docs.aspng.com/quickstart/default.htm
http://docs.aspng.com/quickstart/aspplus/default.aspx
http://docs.aspng.com/quickstart/winforms/default.aspx
http://docs.aspng.com/quickstart/howto/default.aspx
javascript:__doPostBack('TOCSelect','')

 Security Overview
 Authentication & Authorization
 Windows-based Authentication
 Forms-based Authentication
 Authorizing Users and Roles
 User Account Impersonation
 Security and WebServices

Localization
 Internationalization Overview
 Setting Culture and Encoding
 Localizing ASP.NET Applications
 Working with Resource Files

Tracing
 Tracing Overview
 Trace Logging to Page Output
 Application-level Trace Logging

Debugging
 The SDK Debugger

Performance
 Performance Overview
 Performance Tuning Tips
 Measuring Performance

ASP to ASP.NET Migration
 Migration Overview
 Syntax and Semantics
 Language Compatibility
 COM Interoperability
 Transactions

Sample Applications
 A Personalized Portal
 An E-Commerce Storefront
 A Class Browser Application
 IBuySpy.com

 Get URL for this page

	aspng.com
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft Howto QuickStart Tutorial
	http://docs.aspng.com/quickstart/aspplus/doc/webformsintro.aspx
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	http://docs.aspng.com/quickstart/aspplus/doc/webvalidation.aspx
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	http://docs.aspng.com/quickstart/aspplus/doc/webdatalist.aspx
	http://docs.aspng.com/quickstart/aspplus/doc/businessobjs.aspx
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	http://docs.aspng.com/quickstart/aspplus/doc/htmlscraping.aspx
	http://docs.aspng.com/quickstart/aspplus/doc/applications.aspx
	http://docs.aspng.com/quickstart/aspplus/doc/globalasax.aspx
	http://docs.aspng.com/quickstart/aspplus/doc/stateoverview.aspx
	http://docs.aspng.com/quickstart/aspplus/doc/httphandlers.aspx
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	http://docs.aspng.com/quickstart/aspplus/doc/perfoverview.aspx
	http://docs.aspng.com/quickstart/aspplus/doc/perftuning.aspx
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStarts Tutorial
	http://docs.aspng.com/quickstart/aspplus/doc/classbrowser.aspx
	Microsoft ASP.NET QuickStarts Tutorial
	Microsoft ASP.NET QuickStart Tutorial

	POEKELFIEENEPOHPHBMFGOHMIFGGOEFA:
	form1:
	x:
	f1:
	f2:
	f3: dDw1MTMyNDU1NDc7dDw7bDxpPDI+Oz47bDx0PDtsPGk8MT47aTwzPjs+O2w8dDxwPHA8bDxDb21tYW5kTmFtZTtUZXh0Oz47bDxZZXM7XDxGT05UIENvbG9yPSIjZmZmZmZmIlw+SGlkZSBUT0NcPC9GT05UXD47Pj47Pjs7Pjt0PHQ8OztsPGk8MT47Pj47Oz47Pj47Pj47PuwqLyv6V9uMA6EoyvXKwLq9sVLG
	f4: [VB]

	LJHFLNPDFGAGMJJONGJGBFOKFEFMFMAGPF:
	form1:
	x:
	f1:
	f2:
	f3: dDw1MTMyNDU1NDc7dDw7bDxpPDI+Oz47bDx0PDtsPGk8MT47aTwzPjs+O2w8dDxwPHA8bDxDb21tYW5kTmFtZTtUZXh0Oz47bDxZZXM7XDxGT05UIENvbG9yPSIjZmZmZmZmIlw+SGlkZSBUT0NcPC9GT05UXD47Pj47Pjs7Pjt0PHQ8OztsPGk8MT47Pj47Oz47Pj47Pj47Ph0PYEM8/G1nyjpspijl1WZvbtC2
	f4: [VB]

