COM and .NET
Interoperability

ANDREW TROELSEN

COM and .NET Interoperability
Copyright © 2002 by Andrew Troelsen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-011-2
Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewers: Habib Heydarian, Eric Gunnerson

Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore,
Karen Watterson, John Zukowski

Managing Editor: Grace Wong

Copy Editors: Anne Friedman, Ami Knox

Proofreaders: Nicole LeClerc, Sofia Marchant

Compositor: Diana Van Winkle, Van Winkle Design

Artist: Kurt Krames

Indexer: Valerie Robbins

Cover Designer: Tom Debolski

Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710.

Phone: 510-549-5930, Fax: 510-549-5939, Email: info@apress.com, Web site:
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Downloads
section. You will need to answer questions pertaining to this book in order to successfully down-
load the code.

0205 THE APRESS ASP.NET DMAP
(CGeETTHEJOB) (____ DOTHEJOB

B:S'J:‘;é’}g Moving to Pro ASPNET 1.1 Performance
2l g ASP.NET: Web in G#: - Tuning and
F:;:‘Bﬁzflle Development From Professional BS”"‘"““C‘?“?[:'E: Optimizing ASPNET
to Professional A1 O 2T % Bgert Michak/Cameron Applications
MacDonald Harris/Macdonald MacDonald (Ed.) 1-59059-140-2 Hasan/Tu
e 1-59059-009-0 1-59059-351-0 s 1-59059-072-4
Apr 2002 Nov 2004 Mar 2003
Feb 2004
Real World
Goginning Programming Real World ASPNET:
ASENET in C#: the Web with ASPHET 1.1 ASPNET Building a Content
From Novice : Solutions Toolkit B
A Visual Basic.NET d Best Practices Management
o Professional Petersen et al Garcia Aprea etal. Muhammad/Milner System
MacDonald ; 1-50059-446-0
oo 1-69059-027-9 S 1-59059-100-3 Fraser
ey ot Jul 2002 May 2003 1-59059-024-4
Apr 2002

Beginning Applied ADO.NET:

ASPNET 1.1 e
Databases: Best Practices for n:;lg:"i?en Go to the
From Novice | VB Programmers, Solutions SQL SERVER
® to Professional Second Edition Chand/Talbot map to become
Apl'e S S FoggonMaharry Vaughn 1-59050-073-2 an SQL expert
1-59059-369-3 1-893115-68-2 h

www.apress.com Jun 2004 Feb 2002 Mar 2003

This book is dedicated to Mary and Wally Troelsen (aka Mom and Dad).
Thanks for buying me my first computer (the classic Atari 400) so long ago and for staying
awake during my last visit when I explained (in dreadful detail) how System.ODbject is so
much better than IUnknown. I love you both.

Contents at a Glance

ACKNOWIEAGMENTS ...ttt xxiii
INETOAUCTION ..ot XXV
Chapter 1 Understanding Platform Invocation Services................ 1
Chapter 2 The Anatomy of a COM SEIVeroenereorenennan 51
Chapter 3 A Primer on COM Programming Frameworks................... 127
Chapter 4 COM Type INFOXMATION.........ceviemionieieeicicieieieieieierenes 161
Chapter 5 The Anatomy of a .NET Server ..., 229
ChAPLEY 6 NET TYPES...ooiiiiieieieiereeeeseeteeste et 289

Chapter 7 .NET-to-COM Interoperability-
TRE BASICS......ooeeeeeeeeeeeeeeeee e 339

Chapter 8 .NET-to-COM Interoperability-
Intermediate TOPICS......ciorinieiereeierereeene 403

Chapter 9 .NET-to-COM Interoperability-
AdVANCEA TOPICS.....ooveeieieeirieseests et 471

Chapter 10 COM-to-.NET Interoperability-
TRE BASICS......ooeeeeeiteee ettt 539

Chapter 11 COM-to-.NET Interoperability-
Intermediate TOPICS......ciorinieiereeiereree e 593

Chapter 12 COM-to-.NET Interoperability-
AdVANCEA TOPICS.....oveeieeeirieeeeste et 633

Chapter 13 Building Serviced Components
(COM+ INEOTOP) ..o 669

Contents

ACKNOWIEAGMENTS ...ttt xxiii
INETOAUCTION ..ot XXV

Chapter 1 Understanding Platform

Invocation Services.......eees 1

The Two Faces of Unmanaged COde................nieneeneeneeneeeesisininians I
Understanding the C-Style DLL ..., 2
Exporting Custom MEIMDETScccoverereririeieieieiesie et 3
Building a Custom C-BaSed DLL ..., 5
Functions Using Basic Data Types and Arrays.......c..cceceeeerersensieneeneesieneennes 6
Functions Receiving Structures (and Structures Containing Structures)....... 7
Functions Using Class TYPESc..cceruereririneririeieieierteniesiesrese et 8
Viewing Your Imports and Exports Using dumpbin.exe................... 9
Deploying TraditioNal DLLS............iiieinieneseenenseeeas 12
A Dynamic C+ DLL CLINT ...t 15
Dynamically Loading an External Librarycccccooceevevienieneencniienienceee 15
INVOKing MEIMDETScoruiiiiiiiiiiiiiiiicc e 16

The Atoms Of PINVOKE.......ovmniniriniirisesesesese e 18
Data TyPe CONVEISIONSceveruririiieiieiieieerentenieeseete et seeesteeaesseesaeesneeeeas 18

The Marshal Classcceeveereirinieinenctneee ettt 20
The DITMPOTrtAHIiDULE TYPE....covereeeereerieeiieiieieeie et 25

A Trivial PINvoke EXAMPILE.........iiiiiiircieieeeeeeeeeresiesanean. 26
Specifying the ExactSpelling Field.............ccccviiiiiiiiniiiiiicicccn 29
Specifying the Character Setcoceveeereeeiienieierenenereeereeeeeece e 29
Specifying Calling CONVENTIONScceveruirieieieieierienene st 30
Specifying Function Entry POINESc.cceceeeeieiienienienienieniereseeeeeeeeeee e 31
SetLastError and Marshal.GetLastWIn32E1ror() «.oeeeeveveeeeeeveeeeeeeeeeeeeeeeeeennn. 32
Interacting with MyCustomDLL.dI1 ... 33
Marshaling AITAYScccoiviiiiiiiiiiiiice e 34
PaSSING SIIUCTUTESooueeieiiiiiieiieeiiceeeeees ettt 35
Receiving Allocated StIUCTUTES..........coeeererieieieieieieeseeiesie e 37
Interacting with Exported Class TYPESccceeveieierierieneneneneneeeeeeieeeene 39
Examining the Underlying IL.........cccooiiiririiiiieieieeeeeeee e 41
Working with Unmanaged Callbacksicionniinnn, 42
A Simple Callback EXQMPIE.........mmminirieieieereieeeieeeeeee e 43
A More Interesting Callback FUNCEION..........cioiionnininicnn, 44
Building a C# Callback CLIent ..., 46
SUMMALY .ottt ettt 49

vii

Contents

viii

Chapter 2 The Anatomy of a COM Server ... 51
Of C1asses and INTEIFACES.......omininininesereserese e 51
Interfaces from a Non-COM Perspectiveccccceveeveereeeienveneenieesiennenenens 52
Cleaning Up the Interface Definitionccccocevenenininenininceecee, 54
Building the Class TYPEScc.coueeuererieieieieieieiestee ettt 55
Interfaces Are Strongly Typed Variablescccocevevininininieneeieeeee, 58
Classes Can Support Multiple Interfacesccccceveveeveneenencencnecneee 59
Interfaces Provide a Versioning Schemec.ccccoceeevninnniiiincncncnencnnn. 61
The CompoSition Of @ COM DLL ... 63
The Role Of Type LIDYATIES........oiirieiinieienteeseieeeneisee e, 65
The FUll MIDL OULPULcoutiiiieriirieeieeiteitete ettt 66
The Role of the System ReGiSTI ... 66
Creating the COM DLL Project WOIKSPACEmminincenirnercrcrnne. 67
Understanding COM INtEIfACES ... 68
The Role of the GUID........cccciiiiiriiiiceeceeeeeeee e 68
The Role of TUNKNOWTcoouiiiiiiiininieeeeeeeeeseseee ettt 71
Defining the ICar Interface in IDL.........ccooeiieiinineneneneeeeeeee e 73
The Role of the HRESULTcccccuvirieiinineireicineeeenreee ettt 74
IDL Parameter AttriDULES.c..eoereruieieieieicicicieeneeese e 74
Defining the Coclass (ComCar) in IDL.........cccccoviininiiiininiiniiciciecee, 75
Defining the [default] Interfacecccocuevveviiininininneeecee, 76
Defining and Supporting Multiple Interfaces........c..ceceeeeeeveeneenienenenenenene 76
Compiling the IDL File with the MIDL Compiler.........cccceceeieiieienenenenenne. 77
Examining the MIDL-Generated Files...........cccccovererineneninieieieeee e 78
A Brief Word on COM-Centric MACTOS ... 79
Implementing the COMCAL ... 80
Implementing TUNKNOWTL.....c..coiriririeiiieiciceseeseeeee e 81
Implementing ICar and TRAIOceceeeeieieriiieniecrcceeeee e 83
Understanding ICLASSFACTOLYcomininieirisienenieeseee e 84
Building Your ClasS FACTOIY ... 85
Implementing IClassFactory::CreateInstance()c..ccceveeeeeeeeveniennennennenne. 86
Implementing IClassFactory::LoCkServer()cccooeverererenereeienieicicnnenne. 87
Implementing DLL Component HOUSING.........cconiimoenininncanean. 88
Managing Server Lifetime: DIICanUnloadNOW().....c.cceeveeverveinecerrenreennenee 88
Contending with DIIRegisterServer() and DllUnregisterServer()................... 90
EXporting the EXPOTTS......ooiiiiieieieinieesesesenesesese e 90
Registering the COM SEIVET ... 91
Programmatic Identifiers (ProgIDs)cccccviciiviniiiininicininiiiniicciccs 91
A Critical Key: HKEY_CLASSES_ROOT \ CLSIDccceoeririnireeieicieieneennes 92
Another Critical Key: HKEY_CLASSES_ROOT\TypeLib......cccccccvevenenennenne. 94
Other COM Registration Possibilities...........ccccvererereneneriniiieieieeeee, 94
Registering YOUr COM SETIVETS.........couerueeriieienieniieieeieeiesieenie et 95

Developing a C++ COM CLIENT ... 97
Activating COM ODjJECTEScovueerieiiiiiiniieniieiteieeie ettt 97
Accessing a Coclass Using CoCreateInstance()coccevevevererereeeenenens 100
Building a C++ Client Using the #import Directive..........cccccccevereccrennenenn. 102
AVisual Basic 6.0 COM CHENt......cc.ccoveerireirenreinereenrceeeneeeereseeesreneenens 103

Understanding COM PIOPEITIEScowmemirieeniirieiseinieineiseeiseiseieeeane 105
IDL Syntax for Interface Propertiesceceevvevieienenienereneneeeeeeeeieeene 106
Properties: The Client’s Point Of VIEWcccccevieierenenineneceeeeeeee 107

Building Scriptable Objects (Using IDispatch) ... 108
Understanding Dispinterfaces and DISPIDSccccoccvverineneneneeceieeennes 109
ODbtaining DISPIDS......ccc.couiiiririeniereneeeetee ettt sttt 111
Invoking the MemDETccooiiiiiiriiiiieieeeeeeee e 111

The VARIANT DAEA TYPE...coveveeieiiriestirietseee sttt 112
Working with VARTANTS (il) veuveververierieeiieieieieiesie e see e 114
Working with VARIANTS (i VB 6.0)ccveviririirieieieieieieneneneeeeeeeeeens 115
The DISPPARAMS SEIUCEUTE........cevuiieiiriiieiiiereeiereeeee e 115

A C++ IDISPAtch EXAMPILE ...t 116

A Visual Basic IDispatch CLIeNt..........iiiieen, 117

Understanding the Dual INTEIfACE ... 118

Defining a Scriptable ODJecCt ..., 118
Implementing IScriptableCarcoeeeeireeieieiiicrieeeeeeee 119

Building the Class FACTOIY ... 123

Updating D11GetClasSODTECT ...t 123

Updating the Server’s Registration File............ 124

Building a VBScript Late-Bound Client...........c.innn, 124

SUMMALY .ottt ettt ettt 126

Chapter 3 A Primer on COM

Programming Framewoxks ... 127

The Role of the Active Template LiIbIary............... 127
Generating the Component HOUSINGcccuecveiiriinienininienineneecceceeiene 128
The ATL Project Files.....cc.ceiiiiieiieienienienenieeceeteteeteseese et 129
Inserting COM Objects Using the ATL Object Wizard........c..cccceceeeeeeeenee 133
COAE UPAALES ...ttt ettt st e bt ettt seeeas 135
ATLs Implementation of YOur Coclass..........ccceceereeienienienierieneneeceieieieens 136
ATL's Registration SUPPOTT......ccccecveierierinininiieieeeieietesre sttt 137
Adding Members to the [Default] Interface.........cc.cccccoevenenenennnccncnns 140
Adding a More Interesting Method...........coceeeeiriiiiiicninininnececes 142
Supporting Additional COM Interfaces..........cccccoevuererenienenenieneeieieene 143

Contents

Contents

The Role of VISUGl BASIC 6.0 ...t 146
Building COM Servers Using Visual Basic 6.0cccceceeveeieieniesienienienieene 146
Defining Auxiliary Interfaces............cccceovicininiiiininiininciicnccce 148
Implementing Interfaces in VB 6.0ccccuevieveninininininccecceee, 149
Setting Binary Compatibility........ccoceeveeieienienieniinineneseeceececceee e 151
Viewing the Generated IDL Using OleVIEW.EXEc.cccereruereeeeienienieniennns 152
Making Use of YOUT COM SEIVETScceeueierierieriinieniesieeeeieeieneenieneeseeniesaens 156

SUMMOALY ..ottt ettt ettt ettt 159

Chapter 4 COM Type INformation ... 161

The Format of @ COM IDL FIile ... 162

DEfIiNIiNgG COM TYPES ..ottt ettt 163

Primitive COM DATA TYPES ...ttt 164
The Oleautomation (aka Variant) Data TYPEeScceeeevereeeeneeienierienieseene. 166

IDL Method Parameter AtTIIDUTEsS...........omiiriiiriesieieinean 167

Defining COM Interface Types in IDL ..., 171
Defining Raw DiSpinterfaces..........coceeeeeeieienienieneninineneeeeeeeeeeeee 171
Defining Dual INterfacescocceveeeeiiieiienieieeseeeeeeeeee e 172
Building IlUnknown-Derived Interfaces...........ccocevvevereneeieienieiesieseseee 173
Common IDL Interface MOifierscocoveoereneineneincecncieccee 173
Defining COM Classes in IDL..........ccccccueiiiiininiiininiiiiiniciciccceeceee 174
Defining IDL ENUMETAtioNsc..coeeueeeeeieieieienienieneeerenieee e 176
Defining IDL StIUCTUTES......cc.evuertirierierieeiieteeeeeeneesieee ettt 176
COM String Representationc.cceoueeeereerieerienieneenieenieeieneeseenseenneseennees 177
COM (Safe)Array REPresentation...........ecevveruerierienierienieeeeiieieseeie e seesie s 179
COM Interface Types As Method Parameterscceceeveeeeienieieniesieniennens 184

The ITypeInfo INTEIFACE ... 185
A Brief Word on ITypeInfo2ccccoeviririeiiiiiceceeeeeeeeeecee e 188
Related ITypeInfo Data TYPES......cceeerueeieieienieienienienieeieeieeie e 188

Generating COM Type Information Programmatically..................... 189
A Brief Word on ICreateTypeLib2 and ICreateTypeInfo2............ccccccoueuenene 190
The Target IDL.....cc.ceieieieiesieseeee ettt ettt 190

Building the Type Library (ICreateTypeLib)............. 191

Creating the IHEllo INtEIFACE. ... 193
Breaking Down the Createlnterface() Helper Method...........cccccoeveuenenene. 195

Building the SayHello() MEtROd............ioineneiiseneeeeene. 198

Building the HEIlo COCLASS.......mieinieieinieieseeieseieeseie e 200

Testing the APPliCAtIioN ..., 201

Programmatically Reading COM Type Information................... 203
The Program SKeletomn...........ccoeevuiriieiinieniieieeeeeseeeee e 204
Displaying COM Library Informationc.ccccccvicinincinincninicncnn 205
Dumping COM Type Informationc..ceceeceeeeveeieneneneneneneneeeeceeeenen 207
Listing CoClass StatiStiCsccuerverrerereririeieeieieieiestesie ettt 208
Listing IDispatch-Based Interface Statisticsccocevererenerieneneeseeieeennes 209
Listing ITUnknown-Based Interface StatiStiCs.........c.ccocerererenienienieeeieenees 209
Listing COM Enumeration StatiStiCSccceeveeriierieerneenieerieeeieeniieeeeeane 209
Reading the MyTypeLib.tIb fileccccccooiririiiiiiiiiice 210

Defining Custom IDL ATETIDULES ... 212
Reading Custom AtIIDULESccvevveruerieriniieiieeeeceeee s 214

Introducing the System.Runtime.InteropServices Namespace......218

Building a C# COM Type Information VIewer....................... 220
Loading the COM Type LiDIaryccccoeceeieieienieieniesieseseeiceeeieeeee e 221
Loading the COM Type Libraryccccocceveiviiiiniciiniiciiiciccncccc, 222
Displaying the COM TYPESc.coeruerueriririniieieeeteiestesie ettt 224

SUMMALY ..ottt et 228

Chapter 5 The Anatomy of a .NET Server............... 229

The PhiloSophy Of NET ...t 230

The Building BIocks Of NET ..o 231

Working with Managed LaAnGUAGes..................mmceninioeeneineeenennes 232

The Composition Of G NET BINAIY ... 233

Building a C# COde LIDIATY......iriiirieiiniesesieseseeeseeeene 235
Building the AbStract Car TYPe.......ccceeeeeeieieieieieriesiesie et 238
Building the Derived MiniVan TyPe.........ccceeveevierienieneeenieeieneeeee e 240
Implementing the Convertibles............c.cccccviviiniiiiiiiiccc, 240
Establishing the Assembly Manifest..........cccceceevevininineninneneeccceeeee 242

INtroducing ILDASM.EXE ...ttt 243
Viewing the Assembly Manifest..........ccccocevvereriniiiiiininineeeeeeeee 243
Viewing the Type Metadataccceverierieneriieieieieieiese et 245
Viewing (Partial) Metadata for the CarColor Enumeration......................... 246
Viewing (Partial) Metadata for the IConvertible Interface........................... 247
Viewing (Partial) Metadata for a Derived Type.........cccccoceevvvinecinincininnenne 247
Remaining Bits of Interesting Metadata...........c.ccceverenerenenienenieeeieeennes 248
(Not) Viewing the Underlying IL Codec.cceceeveieieneneneneneneeeceeene 249

Building a Managed CLIeNt............iiiieneneeneseeenean 250
Configuring Private ASSEMDIES........c.coceeieieieiiieiesie e 251

Specifying Arbitrary Assembly LOCATIONS ... 253

Contents

Contents

Xii

Understanding the Shared ASSemblyiionionionneneane, 254
Generating a Strongly Named Assembly............cccoocevirinieieniinieieneeee 255
Prepping the Project Workspacecocecvevevveninininincniniccciecicceee 257
Building the Air VEhicles........ccccoireririiiiieicicceeeeeeecee e 258
Generating the Strong Name.........ccccecveeeieierieneneneneneeeeeee e 260

Using the Shared ASSEMDLYciirniinirisenisieneiseeseiseeinean 262

Versioning Shared ASSEMDIIes ... 264
Versioning the Shared VB .NET AirVehicles Assembly..........ccccccevierienienene. 265

Working with Publisher Policy Assemblies............o 267
The Binding Process in a Nutshellccccccoeninininnninicccceeeee, 269

And Now for Something Completely Different: System.CodeDOM...270
System.CodeDOM: Its Meaning in Lifeccccoeveneninininiinieicnccee 272

Introducing the System.CodeDOM Namespace................oeneenen. 272
The Types of System.CodeDOM...........cccuerieierierenenieeieeeeieeeeeie e 274
Building a CodeDOM Example...........cccccoviininiiininiciininicinciccnccceee 276
Building the Main() FUNCHION.......c.cocireiiiieieicceecereeceeeee 277
Building the File via CreateFile().......ccceeoveieienienenineneneneceeeceeeeeee 280
Building the HelloClass (and Containing Namespace)..........cc.cccucvveveenuenene 281

Compiling the ASSEMDIY ...t 284
Running the Assembly (Using Late Binding)ccccoeceeveeeeieniesieneneneee 285
Running Your ApPLiCAtIONccceeeuererieeieieieicicieneeeseeeeeeee e 285

SUMMALY ...ttt 288

Chapter 6 .NET TYPES ... 289

The Role of System.ODFECt ...t 289
OVErriding TOSTTING() «.vevveeververueerieieiieieteiete ettt ettt saeas 290
The Two Faces of EQUAlityccccooviiiiiiiiiiiiiiiccccccce 292

Examining the .NET Data Type SyStem...........oiioencneen. 294
System Data Type Language Mappings.....cc..cecceeceereeneenieeceeneeneeneenieneennnes 296

The Set of CUSTOM NET TYPES ..ottt 297
INET ClaSS TYPES ..ttt sttt ettt sttt ettt seenee e e 299
NET Structure TYPES ..eeeeeeeeiieeiieeieeeeeee ettt 300
NET Interface TYPes........cccocoveiriiniiiniiniiiniicicinccsee e 301
NET Enumeration TYPES.....c..cocveecierierienieeiiiienienieeieeieeeesieeneere e 301

Building a Complex Code LiDIATIY..........cmirininicneinicineane, 302

Understanding REFIECTIONcimieniirieieneeesteie e 304

Working WIth SYSTem.TYPe ...ttt 304
Obtaining a Type Reference Using System.Object.GetType()......ccccevveruennee 306
Obtaining a Type Reference Using the C# typeof Operator..............c......... 306
Obtaining a Type Reference Using the Type Class......c..cccceceeveeevenienenennene 307

The System.Reflection NAMESPACE.............cvemiomeoeenieneeeninieireineeineneee 309

Dynamically Loading an ASSEmbly..............iioniniornenineennens 310
Enumerating Types in a Referenced Assembly...........ccccoecerivienienieceeienennne. 311
Enumerating Class MemMDETS...........cccccviiiiiiiiiniiiiicinccccce 311
Enumerating Method Parameterscccceceeceeveeienieneneneneneneeeeeeeeenen 311

Building a Custom .NET Type VIEWETccminoeninieneanes 312
Showing Selected Type Details.........ccceeeeeeieieienienienierereeeeeeeeceeeee 315
Building the More Details MenU..........ccceceeeeieieienieniesiesieeicseeee e 316

A Brief Word Regarding System.Reflection.Emit..........c.c. 323

Understanding .NET AttribUtes ... 323

Creating and Applying Custom ATtributes ... 325
Viewing the Applied Metadata.........ccccoeeerereririeieieieeeeeseseeeeene 326
Restricting Attribute USAZEcc.covevuerueruiriiiieieieieeesesie et 327
Assembly- (and Module-) Level AttriDutesccceveverereneneneeieieiens 328

Reading Attributes at RUNTIME ... 330
Late Binding Under the .NET Platformcccccoiiiiiiiininiininiicn 331
The ACtivator Class........c.ccovueiriinieiriiieirecteieeereee e 331
Late Binding to a Private Assemblycccecveiiiiiiiinininineeeee 332
Invoking Parameterized Methods...........ceceeeeieiieiienienenienenereeeeeeeeee 334

Binding Late to Shared ASSEMDIIESioinioniieninieineanes 335
Contrasting COM and .NET Late-Binding Syntax.........c..ceceeeeeveeveenienieniennnne 336

SUMMALY ...ttt 338

Chapter 7 .NET-to-COM Interoperability-

TRE BASICS ... 339
A High-Level Overview of .NET-to-COM Interoperability............ 339
Understanding the Role of the RCW........cccocoeiiiiiiiininininereeeceeee 340
Building an Interop Assembly—-The Simplest Possible Example...342
AVisual Basic .NET CIENtcccoooueiieiiiiriieeieeeeteieieiee e 346
Converting Between COM IDL Data Types
and Managed DAtA TYPES ... 346
Working with Managed GUIDs (System.Guid)ccccocevereneneneneeceienns 348
Blittable and Non-Blittable Data TYPes........cccuevuevverierienerenereneeeeeeieeenes 349
Interfaces Consumed by the RCW.............cocnionicninieneineeinennes 351
Options to Obtain an Interop ASSEmbIy..............cnionnnn, 353
Using the tlbimp.exe Command Line Utilityccccooceverenerienienieieienne, 353
Examining the Generated .NET Types..........ininennennn. 356
Manipulating COM Types Using Generated “-Class” Typesccccccueueeee. 357
Manipulating COM Types Using Discrete Interfaces........c..cccceceeveeeevenenees 358
Manipulating COM Types Using the [Default] Interface Type 361

Contents

xiii

Contents

Select Members of the

System.Runtime.InteropServices Namespace................... 362
An Interesting Aside:
System.Runtime.InteropServices.RuntimeEnvironment..............cccco.c..... 366

COM Library Statement to .NET

Assembly Statement Conversion RULES..............c.innian, 367

Programmatically Controlling the Namespace Definition............ccccccueu.c. 369
COM Types to .NET Types Conversion RUIES ..., 371
COM Interface CONVETSION.cceeerueeieieieieieierteneseeeee ettt 371
COM Interface Members to .NET Method Conversion Rules 375
COM Method Parameters to .NET Method
Parameters Conversion RUIESccccocieieierienininieneneeceeeeeeesee 377
Handling Optional and Default Parametersccoceeoeeeeeeeieniesienienicnenene 381
COM CoClass CONVETSIONc.eerueeieriiriieniienieeieeiteeitenieeieeieeiee sttt esaeeaeeaees 385
Mapping [noncreatable] and [appobject] Coclasses.........cc.ccccecveeeruenuennnne. 387
Cataloging COM DISPIDS.....cc.ccceririeieieieieienentenese ettt 388
Additional Coclass to .NET Class Infrastructure...........c.ccececeverveereveennencne 389
COM ENUIM CONVETSION. ...c.ueiriiiiieieriiniienieeteeteeitesieesteeteeresinesieenseennesaesaees 391
Deploying Interop ASSEmDIIes ... 392
Creating a Primary Interop ASSembly............iiiiiiicnnns 393
Reflecting on Interop Assembly Attributes.............o. 396
Obtaining Type Information for a COM Wrapper Type.......cccccceeveverenennene 398
The Role of System.__ COmMODJECK........cocurieieriiniinierininereeeeeeeeeee 399
Interacting with Well-Known COM SEIVEIScniniorneneen. 399
SUMMALY ..ottt sttt ettt 402

Chapter 8 .NET-to-COM Interoperability—

Intermediate TOPICS........iirieeeneen 403

Hand1ing the COM VARIANT ... 403
Building a VARIANT-Centric COM SEIVeT.........inininenn. 405
Exercising COM VARIANTSs from Managed Codec.ccoceeereeveieneennennenne. 407
The VARIANT WTQPPETSveeuvieererreeiieieeieseenteesseesessessesseessesssessesseesseessennes 409
Hand1ing COM SAFEATTAYS ...ttt 410
Exercising COM SAFEARRAYs from Managed Codeccceeveienenieniennee 413
Receiving SAFEARRAYS........ooiiiiiiiiieceeteeeceeeeeet et 416
Hand1ing C-StYle ATTAYS ... 419
Hand1ing COM PATam ATTAYS........commeninieineineeineineiceneiseeesncisseeenees 420
Hand1ing COM STXUCTUTES ..ottt 421
Building a VB 6.0 StrUCLUIE SEIVETc.cccueieieriirienienienieeeeieeteeeiesee e 423
Exercising COM Structures from Managed Code..........cccceceeieieienienenennene 424
Hand1ing COM COIIECTIONS ... 426
Exercising the COM Collection from Managed Codecccecevueurnunnnnee. 433

A Brief Review of COM Connection Points (COM Events).............. 437
Understanding IConnectionPointContainer...........ccoceeoeveeereeeenieneenieneenne. 437
Understanding IConnectionPointccccveeiiiniininiciiniicincccecn, 438
Understanding the Outbound Interfacecccccoevenenneninncecice. 439
All TOGETET INOW... c.eetiiiriiiieieeiieteee sttt sttt 440

Building a Connectable COM TYpe........orioeninieneineeneineeeneanes 441

A Brief Review of .NET Delegates ..., 443

A Brief Review Of NET EVENTS ..., 445

Examining the Interop Assembly............cnnne. 448
Examining the Generated Delegates.........c..cccecvevueveneneneneneneeieeeieeennen 450
Examining the Generated _CoCar and __CoCar_Event Interfaces............ 451
Examining the Managed COCIassc..ceceeeeienieienienienienieneeeeeeeeeee e 453
Receiving the COM EVENLS (CH) ..oovevuerueruirieiieieieieiesiesie et 455
Receiving the COM Events (VB .INET)cccoeiiiiiniiiniiieeceieeeeeee 456
Handling COM Types with Multiple [source] Interfaces.........c..cccceceeuveueee. 457

Hand1ing COM EXT0T ODJECTS......oiriinieienieicineeieseie e 459
Manipulating COM Error Objects in COM..........cccceevenenenenienenieeeieeenes 461
The Role of ISUPPOTtEITOIINSOoouerieriiiiiiiiiieeceeeecee e 462
Building a Simple ATL EITOT SETVETcc.coceeeeiiieienieniesie e 462

The .NET Error Handling MeCRGNISMnneoeioerennnan. 464
The COMEXCeption TYPe.....c.ccevueiriiiiiiiiiiicicicicee e 466
Handling COM Error Information from Managed Code...............cccccuueee. 466

Debugging COM Servers UsSing VS NET......iionncniniennens 468

SUMMALY ..ottt ettt ettt nens 470

Chapter 9 .NET-to-COM Interoperability—

Advanced TOPICS ... 471

Revisiting the MArSNAL CLASS ... 471
Directly Interacting with TUNKNOWTL.......cccoeieieiieiierienereseeeeeeeeee e 473
Manually Destroying a COM ODbject.........cccccoeviriniininiciiniiciniiccc 474
COM Coclasses Implementing .NET INterfaces..............oooo. 475
Building a Comparable COM CIasscoceeeeieieienienienienienenenieeeeeeieneenees 476
Building a Cloneable COM TYPEc..cccererirmieieieieieniesiesieeeeeeeeeeeee e 480
Building .NET Type Compatible Coclasses Using ATL 3.0.........cccceceevenennee. 481
Guidelines for Building .NET Type Compatible COM Classes.......484
Guideline #1: Don't Indirectly Implement the Same Interface Twice.......... 485
Guideline #2: Don’t Implement .NET Class Interfaces........c..cccceccevveeenenee 485
Guideline #3: Take Care When Implementing Interface Hierarchies.......... 487
Guideline #4: VB 6.0 Has a Key Limitation (Imagine That . . .).....c..ccccccueu.e. 489

Contents

Contents

Consuming ActiveX Controls from Managed Code................c...... 490
Building an Example ActiveX CONtrolccccccevererenieieeieieieiesiesiese s 490
Viewing the Generated IDL...........cccccociiiiniininiiiniccc 493

Options for Consuming ActiveX Controls from Managed Code.......495
Consuming an ActiveX Control Using the VS NET IDE...........cccccoeevnuennee. 495
Importing ActiveX Controls Using AXIMP.€X€cccceerererueeienienienienienennens 501

Modifying the Code for the AxHost-Derived Type................... 504
One Final Modification..........cceceveeieirieininiciricrice e 506

Manually Modifying Interop Assemblies...............in 508
Building an Example COM SEIVETccccocueierienienenenineneeeeeeeeeeeesie e 509

Understanding the Interop Editing PIrocess............. 510
Generating the Initial Interop AsSembIYccccocerereriinininiieiieiccreeee 511
Obtaining the *.il File for interop.HelpfulATLServer.dll............cccccccevenuenene 512
Viewing the Original IL/Metadata Definitionscccceceeceeveeienieienieneene 514

Dissecting the Layout of Attribute Metadata.................c...... 517

Building a “Scratch” ASSEmbly ... 519
Creating a .NET [cuStOm] WIQPPETcccceveeruirriinienieenieeieeieneeneenie e aes 519
Updating the Interop ASSEMDIYcccceieieiiniiniiiinireeeeee e 522
Recompiling the TL.......cooiiiiiiiiiieeeee e 524

Building the Managed CLIent ... 526

Building a Custom Type Library Importer Utility.................. 528
Understanding the TypeLibConverter Class..........coccecevvererereeienienieneneenne. 528

Building the Main SRELL ... 530
Programmatically Loading the COM Type Informationcccccocevuenuenee 531
Dissecting the TypeLibConverter.ConvertTypeLibToAssembly/()

IMEROM. ... 533
Building the Helper Sink...........cccoccoiiiiniiiiniiiiiiiiiciccc 535
Implementing MyTlbImpApp.GenerateAssemblyFromTypeLib().............. 536
SUMMALY ..ottt et 538

Chapter 10 COM-to-.NET Interoperability-

TRE BASICS ... seeeeseeseseseesssnsennnnns 539

The ROIE Of the COW......coiooiiiieiieieteeste ettt 539
The CCW: Mapping .NET Data Types into COM IDL Data Types................ 540
The CCW: Simulating Implemented COM Interfaces..........c..cccuevuevuenuenenee. 542
The CCW: Simulating COM Identity..........ccccecevueirinicincniciiniiciicccee 543
Core Requirements for COM-to-.NET Communications 544
Generating COM Type Definitionsc.ccceeevenenenenenieneeieeeeeiee 545
Registering the .NET Assembly with COM..........ccccocevinininiiniiniiicnieeeee 545
Using the tlbexp.exe ULIL1Iity ... 546

General Guidelines for Building COM-Aware .NET Types............. 547
Establishing Type ViSibility........ccocceveriririeieieeieeeeeeeeee e 547
Establishing Type Member Visibilitycccoccoceoviiiniininiiiiiiiic 548
Controlling Type and Member Visibility Using the ComVisible Attribute..548
Translating Constructors and C#-Style Destructors..........cccceceeeeeeeeeeneennes 549
Translating Abstract Base Classes........cccceceeeeieieienienienenieneneneeeeeeieeenes 551
Translating Overridable MEmMDETS..........cccceceeieiieiienieneneseeeeeeeee e 551
Inheriting Public MEMDETScccocuiriiiiiiiiiieieeieteeeeee e 553
Translating Static and Constant Members...........c.cccocveiiiiccinnicincniennn. 554

Critical .NET-to-COM Conversion Details ... 554
Converting Method Signaturescocceeeeeieienienieneneneneeeeeeeceeeeieeens 555
Converting .NET PrOPertiescocccovvereererieriienieneeieeieeeenieeieeiesvesiee e 556
Converting .INET Fields......cccooivirirenireeieieeeeee e 557

Understanding the C1ass INTEIfACE ... 557
Establishing a .NET Class Interface............cccoccceoiviciiinciinniinnicn, 559
The Custom IDL Attribute:
{OF21F359-AB84-41E8-9A78-36D110EGD2F9}........ccccviniiiiiiiiiiieeeee 561

Understanding the Object INterface..........ivencnne, 562
Transforming System.Object. TOStrING()ccecveveervererenerenereeeeeeeeeene 563

The Case Against C1ass INTEIFACES ..., 563

Exposing Custom .NET Interfaces to COM..........nn. 564
Controlling IID and DISPID Generationccccoevereneneneneeeeeeneennennns 566

Implementing Explicit INTETfACES ..., 567

Controlling the Generated PIOGIDinniorneninienneen. 567

Controlling the COM Library Definition ... 568

Handling Overloaded MetROdScncineioeieieierererannan. 569

Importing mSCOTIID.t1bh ... 570

Using the regasm.exe UEtIIity ..., 572

Examining the Updated ENTIIEs ..., 574
The ProglD ENtIY....cccoeeieiiieieiesieieseeeee ettt 575
The HKCR\CLSID ENUIY....coveiiiiieiriiieireietnieeesieeeese e 575
Enlisting .NET Types into a Specific COM Categorycccceeeeveereeeeueneensen 577
Registering the Exposed Interfaces............cccoceceiniiiincinincininicc, 579
Registering the COM Type Library.......ccccoceeeeieieeienenenenineneeeeeeeeeeene 582

Deploying the .NET ASSEMDLY ...t 582

Leveraging the Visual Studio NET IDE........ciinenen. 584

Building a Visual Basic 6.0 COM Client ..., 584
Interacting with MScOrlib.tIb.........ccccoviriiiiieieee e 586

Building a C++ COM CLI@NT ... 589

Building a VBScript COM Client........cinenennes 590

SUMMALY ..ottt et et 591

Contents

xvii

Contents

xviii

Chapter 11 COM-to-.NET Interoperability—

Intermediate TOPICS.........iirieeeneen 593

Converting .NET Enums to COM ENUMSccoocvmieumniecenecrinienicieenean. 593
Altering the Underlying Field Storageccocccviviininiiininiiiiiicns 595
Leveraging System.Enum?............ccccoociiiiiiiiiiiiininiiniiccciciccee 597
Converting .NET Structures to COM Structures.................. 598
Exposing a .NET Structure As an IDL UnNion......cccceccevvveneeneencnieneeneenenne 603
Converting .NET Delegates to COM Connection Points............... 604
Creating the Event Interface...........ccecevievienieiieninineneeeeeeeee e 605
Specifying the Event Interfaces (a la ComSourcelnterfacesAttribute)........ 606
Establishing Multiple [source] Interfaces...........cccccecvineininiininicnncnne. 607
Building a .NET Event Server Using VB .NET.......... 608
Building a Visual Basic 6.0 Event Client............e 609
Building a C++ Event CLIent ... 610
Building the Client-Side Sinkccceoeiienerenininiceeeeeeee e 611
Exposing Custom .NET COI1@CtIONsiininciniiciniicciannane. 614
AVB 6.0 .NET Collection ClienL............cccccereieiniecieiniiiiinicineiccnciecsieen 617
Exposing .NET EXCEPTIONS ...ttt 619
Throwing Custom .NET EXCEPIONS.....ccccecteierieniininienineneeieeeeeee e 620
Exercising Your DotNetCollection Assembly from C++................... 621
Converting .NET Interface with Multiple Base Interfaces........ 624
Converting .NET Interface HieIrarChies..........iin 627
SUMMALY ...ttt s 630

Chapter 12 COM-to-.NET Interoperability—

Advanced TOPICS ... 633
Changing Type Marshaling Using MarshalAsAttribute.................. 633
.NET Types Implementing COM INtEIfACESoommmmiroeninicrnean 638
Defining Custom COM INTEIFACES ... 638
Building and Deploying the Interop Assembly...........cccceceeiieiiiiieiienencnienene 640
Building a Binary-Compatible C# TyPe........ccccocemenererinierieieicicicreiennns 641
Building a Binary-Compatible VB .NET Type........cccccccecuvicirineciniicicee. 642
Registering the .NET Assemblies with COMccccoceririniniiiieicnicnenenene 644
Building a VB 6.0 COM CLIENT ... 644
Defining COM Interfaces Using Managed Code.................cownn.. 646
Selected Notes on Manually Defining COM
Interfaces Using Managed Code............cccceueiriiiiiniiiiiiniciniicinciccne 649
Manually Defining COM Atoms: An Extended Example 650
Defining the Dual Interface (and SHAPECOLOR Enum) Using C#............. 651

Interacting with Interop Assembly Registration.................. 653
Inserting Custom Registration Informationcccceeceveeevencenienceniennnne. 654
Programmatically Converting Assemblies
to COM Type INFOTMATION........ooimiiiiiiiieieieiee e 655
Hosting the .NET Runtime from an Unmanaged Environment ... 660
Building a Custom HOSt......c..eoueriirieieieriieeeceeeeee s 663
SUMMALY ..ottt ettt ettt et 667

Chapter 13 Building Serviced Components

(COM+ INEEIOP) ... 669
The MTS, COM+, Component Services Name Game 669
Recapping Component SEIVICESccniniceneinicineinieeseineenneanes 670
Reviewing the COM+ Runtime Environment ... 672
Reviewing ODjJect CONTEXLcc.couirerereririeiieieeeieientesie ettt 673
RevieWing Call CONEEXL.......ccueruerierierierieniinieeiteteteieie ettt 674
The Role of the COM+ CatALOg ... 675
The Component Service EXPLOTETI ..., 678
Creating COM+ APPLICALIONSeovervieririiriieiieieieicteereee e 679
A C1assic COM+ EXAMPLE ...t 682
Building a VB 6.0 COM+ CLINT ... 683
Deploying COM+ APPlIiCATIONS ...t 685
The System.EnterpriseServices Namespace ..., 687
The System.EnterpriseServices.ServicedComponent Type...........cccenee.e. 689
The Simplest Possible EXAMPIE ..., 690
Installing the Code Library.......c..cocoeverinirieieieieeencseeeeeeeeeeeeeee 693
Using the regsvcs.exe Command Line UtIlity.........c.c.cun 694
Viewing the Generated Type COM Information...........cccceecevevereneeeeneenens 695
Acknowledging the Registration ENtriesccccecueverienerencncnceieieiens 696
And Finally, the COM+ Application Itself............ccccererinineninienieeiens 697
Accessing the Configured .NET Component from VB 6.0................ 698
Accessing the Configured .NET Component from Ch............cu... 699
Enabling Component STAtISTICS ..., 699
A Brief Word on Lazy (Automatic) Registration................... 700
Working with the RegistrationHelper Type............cunnn 701
Configuring a Managed COM+
Application Using .NET Attributes............c.i. 703
Supporting Object Construction STIINGs ... 704
Examining the ContextUtIl TYpPe.......iiiiinieneneeeen. 706

Contents

Contents

Understanding JITA ...ttt 708
The “Happy” and “Done” Bitsccceceeierieienierieresieeeeeeieeceeee e 709
Enabling JITA/ASAP Deactivationccccceevieininiciininiciniiccicecees 710
Controlling the Done Bit.......c.ccoeeeeieirieiiieicieneeeseseeeeeecceeese s 712
JITA and Implementing IObjectControl (So to Speak...)ccceevvevevueneennene 713

JITA, IObjectControl, and the .NET Garbage Collector............... 714

Configuring Po0lable ODFECTS ..., 715

A Recap of Transactional PIogramming....................c..cocomn.. 717
Root Objects, Secondary Objects, and COM+ Transactions........................ 718

Programming COM+ TXANSACTIONScvveeuiuriciriiricireirieieree e, 720
Setting the Happy Bit...c..coeoeriririnieiecieeceseeseeeeeeeee e 722

A Complete Serviced Component EXample...............conionionneuneen. 724
Building the Custom Databasecccceouerierienierienenieeeeceeee e 725
Building the C# Code LiDrarycccccveieienierieniesiereeeeceeeee e 726
Building the LogSale TYPecccccueiviiiiiiiiiiiicircccccce 727
Building the Carlnventory Class TYPecccceevererenenereneeecieeceeeneenen 728
Building the Windows Forms Front Endcccccceveneninininceiecceenne, 732
Building an ASPNET Web Service Client.........c.ccoceeveverenieeieiienieienienicnenene 734

Final Thoughts Regarding System.EnterpriseServices.................. 736

SUMMOALY ..ottt ettt ettt 738

TINACX ... 739

Contents

Acknowledgments

As always, [must give a very real and heartfelt thanks to all of the fine people at
Apress. First, thanks to Gary Cornell and Dan Appleman for building such a great
place for writers to do their work. A mammoth thanks to Grace Wong for gently
pushing me forward in order to get this book out on time and for putting up with
me in general. And thanks to Stephanie Rodriguez and Hollie Fischer for their
awesome work in spreading the word about Apress titles both at home and across
the globe.

A huge thanks also goes to Ami Knox, Nicole LeClerc, Sofia Marchant, and
Anne Friedman, all of whom did fantastic jobs smoothing over any grammatical
glitches on my part. Thanks to Habib Heydarian and Eric Gunnerson for providing
excellent technical assistance. Further thanks to Diana Van Winkle, Kurt Krames,
and Tom Debolski for making the book look respectable and professional inside
and out. Special thanks to Valerie Robbins for working on (yet another) tight dead-
line in order to index these chapters.

As for those individuals a bit closer to home, a heartfelt thanks to all my
coworkers at Intertech, Inc. (http://www.intertech-inc.com), for making my “real
job” a wonderful place to be. The previous praise does not apply to Tom Salonek,
whom I still don’t care much for at all (. . . well, maybe just a little). Further thanks
are in order for my family and friends for remaining patient when I became “just a
bit grumpy” during the last month of this project. Last but not least, I must thank
my wife Amanda for supporting me through yet another stint of sleepless nights
and for remaining positive and encouraging when I was anything but. Thanks all!

xxiii

Introduction

The funny thing about writing a book on COM and .NET interoperability is that
one author could craft a five- to ten-page article describing the basic details that
you must understand to get up and running with interop-related endeavors. At
the same time, another author could write volumes of material on the exact same
subject. So, you may be asking, how could this massive discrepancy between
authors possibly exist?

Well, stop and think for a moment about the number of COM-aware
programming languages and COM application frameworks that exist. Raw
C++/IDL, ATL, MFC, VB 6.0, and Object Pascal (Delphi) each have their own
syntactic tokens that hide the underbelly of COM from view in various ways. Thus,
the first dilemma you face as an interop author is choosing which language to use
to build the COM sample applications.

Next, ponder the number of .NET-aware programming languages that are
either currently supported or under development. C#, VB .NET, COBOL .NET, APL
.NET, PASCAL .NET, and so on, each have their own unique ways of exposing
features of the CTS to the software engineer. Therefore, the next dilemma is
choosing which language to use to build the .NET applications.

Even when you solve the first two dilemmas and choose the languages to use
during the course of the book, the final dilemma has to do with the assumptions
made regarding the readers themselves. Do they have a solid understanding of
IDL and the COM type system? Do they have a solid understanding of the NET
platform, managed languages, and metadata? If not, how much time should be
spend pounding out such details?

Given the insane combinations of language preferences and reader back-
grounds, I have chosen to take a solid stance in the middle ground. If have done
my job correctly, you will walk away from this text with the skills you need to
tackle any interop-centric challenge you may encounter. Also, I am almost certain
you will learn various tantalizing tidbits regarding the COM and .NET type
systems.

My ultimate goal in writing this book is to provide you with a solid foundation
of COM and .NET interoperability. To achieve this goal, I have chosen to provide
material that defines the finer details of the COM and .NET architectures. For
example, over the course of the first six chapters, you will learn how to program-
matically generate and parse COM IDL, dynamically generate C# and VB .NET
source code on the fly (via System.CodeDOM), and build .NET applications that

Introduction

can read COM type information. After all, when you need to build a software
solution that makes use of two entirely unique programming paradigms, you had
better have a solid understanding of each entity.

However, once this basic foundation has been laid, the bulk of this book
describes the process of making COM and .NET binaries coexist in harmony.
As an added bonus, I cover the process of building .NET code libraries
that can leverage the services provided by the COM+ runtime layer (via
System.EnterpriseServices).

Now that you have the big picture in your mind, here is a chapter-by-chapter
breakdown of the material:

Chapter 1: Understanding Platform Invocation Services

I open this examination of COM/.NET interoperability by focusing on the role of a
single .NET class type: DllimportAttribute. In this chapter, you learn how to access
custom C-based (non-COM) DLLs as well as the Win32 API from a managed envi-
ronment. Along the way, you investigate how to marshal C structures, interact
with traditional callback functions, and extract exported C++ class types from
within a managed environment. This chapter also examines the role of the
Marshal class, which is used in various places throughout the book.

Chapter 2: The Anatomy of a COM Server

The point of this chapter is to document the internal composition of a classic
COM server using raw C++ and COM IDL. Given that many COM frameworks
(such as VB 6.0) hide the exact underpinnings of COM, this chapter also examines
the use of the system registry, required DLL exports, the role of the class factory,
late binding using IDispatch, and so on. As you might guess, the COM server you
construct during this chapter is accessed by managed code later in the text.

Chapter 3: A Primer on COM Programming Frameworks

Given that you build a number of COM servers over the course of the book, this
(brief) chapter provides an overview of two very popular COM frameworks: the
Active Template Library (ATL) and Visual Basic 6.0. Knowledge mappings are
made between the raw C++ server created in Chapter 2 and the binaries produced
by the ATL/VB 6.0 COM frameworks. Along the way, you also explore the key COM
development tool, oleview.exe.

Chapter 4: COM Type Information

This chapter examines the gory details of the COM type system, including a
number of very useful (but not well-known) tasks such as constructing custom
IDL attributes, applying various IDL keywords such as [appobject], [noncreatable],
and so forth. More important, this chapter also illustrates how to read and write
COM type information programmatically using ICreateTypeLibrary, ICreateTypelnfo,

Introduction

and related COM interfaces. This chapter wraps up by examining how to build a
managed C# application that can read COM type information using interop
primitives.

Chapter 5: The Anatomy of a .NET Server

The goals of this chapter are to examine the core aspect of a .NET code library,
including various deployment-related issues (for example, XML configuration
files, publisher policy, and the like). This chapter also provides a solid overview of
a seemingly unrelated topic: dynamically generating and compiling code using
System.CodeDOM. Using this namespace, developers are able to dynamically
generate code in memory and save it to a file (*.cs or *.vb) on the fly. Once you
have investigated the role of System.CodeDOM, you will have a deeper under-
standing of how various interop-centric tools (such as aximp.exe) are able to emit
source code via command line flags.

Chapter 6: .NET Types

If you haven’t heard by now, understand that the .NET type system is 100 percent
different than that of classic COM. Here, you solidify your understanding of the
.NET type system, including the use of custom .NET attributes. This chapter also
examines the role of the System.Reflection namespace, which enables you to
dynamically load an assembly and read the contained metadata at runtime. This
chapter also illustrates late binding under .NET and the construction of custom
managed attributes. [wrap up by showing you how to build a Windows Forms
application that mimics the functionality provided by ILDasm.exe.

Chapter 7: .NET-to-COM Interoperability—The Basics

In this chapter, the focus is on learning how to build .NET applications that
consume classic COM servers using a Runtime Callable Wrapper (RCW). You
begin with the obvious (and most straightforward) approach of using the inte-
grated wizards of Visual Studio .NET. Next, you learn about the tlbimp.exe tool
(and the numerous command line options). Along the way, you are exposed to the
core conversion topics, including COM/.NET data type conversions, property and
method mappings, and other critical topics.

Chapter 8: .NET-to-COM Interoperability—Intermediate Topics

This chapter builds on the previous one by examining a number of intermediate
topics. For example, you learn how .NET clients can make use of COM VARIANTSs
and SafeArrays, COM Error Objects, COM enums, COM connection points, and
COM collections. Topics such as exposing COM interface hierarchies are also
examined in detail.

XXVii

Introduction

xxviii

Chapter 9: .NET-to-COM Interoperability—Advanced Topics

Here you learn to import ActiveX controls and augment the work performed by
the aximp.exe command line utility to account for COM [helpstring] attributes
that are lost during the conversion process. Furthermore, this chapter examines
the process of manually editing the metadata contained in a given interop
assembly. For example, you learn how to support [custom] IDL attributes in terms
of NET metadata and understand how to compile *.il files using ilasm.exe. This
chapter also describes how a COM type can implement .NET interfaces to achieve
“type compatibility” with other like-minded .NET types. You wrap up by learning
how to build a custom type library importer application using C#.

Chapter 10: COM-to-.NET Interoperability—The Basics

This chapter focuses on how COM clients (written in VB 6.0, C++, and VBScript)
can make use of .NET types using a COM Callable Wrapper (CCW). Here, I cover
class interfaces, the tlbexp.exe/regasm.exe command line tools, and various regis-
tration and deployment issues. This chapter also examines how a COM client can
interact with the types contained in the core .NET assembly, mscorlib.dll.

Chapter 11: COM-to-.NET Interoperability—Intermediate Topics

This chapter builds on the materials presented in Chapter 10 by examining how
.NET enumerations, interface hierarchies, delegates, and collections are
expressed in terms of classic COM. You also learn how to expose custom .NET
exceptions as COM error objects, as well as about the process of exposing

.NET interface hierarchies to classic COM.

Chapter 12: COM-to-.NET Interoperability—Advanced Topics

This advanced COM-to-.NET-centric chapter examines how a .NET programmer
is able to build “binary-compatible” .NET types that integrate with classic COM.
You see how a .NET type can implement COM interfaces, and you also get a
chance to explore the details of manually defining COM types using managed
code. This chapter also examines how to interact with the registration process of
an interop assembly. The final topics of this chapter address the process of
building a custom host for the .NET runtime (using classic COM) and the
construction of a custom .NET-to-COM conversion utility.

Chapter 13: Building Serviced Components (COM+ Interop)

Despite the confusion, .NET programmers are able to build code libraries that can
be installed under COM+. In this final chapter, I begin by examining the role of
the COM+ runtime and reviewing how it fits into n-tier applications. The bulk of
this chapter is spent understanding the System.EnterpriseServices namespace
and numerous types of interest. You learn how to program for JITA, object pools,

Introduction

construction strings, and transactional support using managed code. I wrap up by
constructing an n-tier application using managed code, serviced components,
Windows Forms, and ASP .NET.

Now that you have a better understanding about the scope of this book and
the mindset I have regarding the material that follows, understand that I have
written this book based on the following assumptions about you:

* You are not satisfied with clicking a button of a given wizard and thinking
“I guess it worked . .. somehow . .. I think.” Rather, I assume you would love
to know the inner details of what that wizard does on your behalf and then
click the button.

¢ You are aware of the role of COM, have created a number of COM servers,
and feel confident building COM solutions in the language mapping of your
choice. As well, I am assuming that you still find the process of learning the
finer details of COM a worthwhile endeavor. As you will see, most of the
COM servers built during the course of this book make use of VB 6.0, unless
a particular COM atom cannot be expressed using the vernacular of BASIC.
In these cases, I make use of the ATL framework.

* You are aware of the role of .NET, have (at the very least) explored the
syntax of your favorite managed language, and (at the very most) created
a number of .NET applications during the process. While many of my
managed examples make use of C#, I also make use of VB .NET when
necessary.

Finally, be aware that the source code for each example can be obtained from
the Apress Web site in the Downloads section at http://www.apress.com.

It is my sincere hope that as you read though the text you enjoy yourself and
expand your understanding of COM, the .NET platform, and the techniques used
to blend each architecture into a unified whole.

Andrew Troelsen
Minneapolis, Minnesota

CHAPTER 1

Understanding Platform
Invocation Services

Platform Invocation Services (PInvoke) provides a way for managed code to call
unmanaged functions that are implemented in traditional Win32 (non-COM)
DLLs. PInvoke shields the .NET developer from the task of directly locating and
invoking the exact function export. PInvoke also facilitates the marshalling of
managed data (for example, intrinsic data types, arrays, structures) to and from
their unmanaged counterparts.

In this chapter, you learn how to interact with unmanaged C DLLs using a
small set of types found within the System.Runtime.InteropServices namespace.
As you will see, PInvoke is basically composed of two key members. The
DllImport attribute is a .NET class type that wraps low-level LoadLibrary() and
GetProcAddress() calls on your behalf. System.Runtime.InteropServices.Marshal
is the other key PInvoke-centric type, and it allows you to transform various
primitives (including COM types) from managed to unmanaged equivalents
and vice versa.

The Two Faces of Unmanaged Code

As T am sure you are aware, code built using a .NET-aware programming language
(C#, VB .NET, and so on) is termed managed code. Conversely, code that was
compiled without a .NET-aware compiler is termed unmanaged code. Unmanaged
code really comes in two flavors:

e Traditional C-style Win32 DLLs/EXEs
* COM-based DLLs/EXEs

Obviously, the majority of this book is concerned with interoperating with
COM-based binary images. However, the .NET platform does support the ability

Chapter 1

for managed code to call methods exported from a traditional (non-COM) C-style
DLL. Formally, this facility is known as Platform Invocation, or simply PInvoke.

However, you will seldom be in a position where you absolutely need to
directly call a Win32 API function, given the very simple fact that the .NET class
libraries will typically provide the same functionality using a particular assembly.
If you can find a .NET type that satisfies your needs, make use of it! Not only will it
require less work on your part, but you can rest assured that as the .NET platform
is ported to other operating systems, your code base will not be contingent upon a
Windows-centric DLL.

Nevertheless, PInvoke is still a useful technology. First of all, many shops
make use of a number of proprietary C-based DLLs in their current systems. Thus,
if you have the best bubble sort algorithm known to humankind contained in a C-
style DLL, your shiny new .NET applications will still be able to make use of it
through PInvoke. Given that PInvoke can trigger the functionality contained in
anyWin32-based DLL (custom or otherwise), I spend the majority of this chapter
examining how to invoke members exported from custom DLLs. However, you
also get to see an example of using PInvoke to call prefabricated Win32 APIs (as
you might guess, the process is identical).

Understanding the C-Style DLL

As you certainly know, Win32 EXEs define a WinMain() method that is called by
the OS when the application is launched. In contrast, COM-based DLLs export a
set of four functions that allow the COM runtime to extract class factories, register
and unregister the COM server, and poll the DLL for its “unloadability.” Unlike a
Windows EXE or COM-based DLL, custom C-style DLLs are not required to
support a set of well-known functions for consumption by the Windows OS.

However, although a custom DLL does not need to support a fixed member
infrastructure, most do indeed support a special method named DIIMain(), which
will be called by the OS (if present) to allow you to initialize and terminate the
module itself. DIIMain() does have a fixed signature, which looks like the
following:

// D1lMain()’s prototype.

BOOL APIENTRY Dl1lMain(HANDLE hModule,
DWORD ul reason for call,
LPVOID lpReserved);

The most relevant parameter for this discussion is the DWORD parameter,
which contains a value (set by the OS) describing how the DLL is being accessed
by the outside world. As you would hope, you are provided with a prefabricated set

Understanding Platform Invocation Services

of programming constants to represent each possibility. In a nutshell, two of these
constants are used to test if the DLL is being loaded or unloaded (for the first or
last time), and two are used to capture instances when a new thread attaches to or
detaches from the module. To account for each of these possibilities, you could
implement DIIMain() as follows:

// The optional, but quite helpful, D11Main().
BOOL APIENTRY D1lMain(HANDLE hModule,

DWORD ul reason for call,

LPVOID 1lpReserved)

{
switch (ul _reason_for call)
{
case DLL_PROCESS_ATTACH: break;
case DLL_THREAD ATTACH: break;
case DLL_THREAD DETACH: break;
case DLL_PROCESS DETACH: break;
}
return TRUE;
}

Obviously, what you do within the scope of DlIMain() is contingent on the
module you are constructing. Possible tasks include assigning values to module-
level data members, allocating (and deallocating) memory, and so forth. Of
course, a DLL that only defines DIIMain() is not very useful. You need custom
content to make your DLL interesting to the outside world.

Exporting Custom Members

A traditional C-style DLL is not constructed using the building blocks of COM and
does not have the same internal structure as a .NET binary. Rather, unmanaged
DLLs contain some set of global functions, user-defined types (UDTs), and data
points that are identified by a friendly string name and ordinal value. Typically, a
*.def file is used to identify the available exports. For example, assume you have
written a C-based DLL that exports four global functions. The corresponding *.def
file might look something like the following:

; MyCBasedDll.def : Declares the module parameters.
LIBRARY "MyCBasedD1l.d1l"

EXPORTS
MethodA @1 PRIVATE
MethodB @2 PRIVATE
MethodC @3 PRIVATE
MethodD @4 PRIVATE

Chapter 1

Note that the LIBRARY tag is used to mark the name of the *.dll that contains
the member exports. The EXPORTS tag documents the set of members that are
reachable from another binary client (DLL or EXE). Finally, note only the name of
each member (not the parameters or return values) is identified using a simple
numerical identifier (@1, @2, @3, and so on). As an interesting side note, under-
stand that COM-based DLLs also make use of a standard *.def file to export the
core functions accessed by the COM runtime (more details in Chapter 2):

; ATLServer.def : Declares the module parameters.
LIBRARY "ATLServer.DLL"

EXPORTS
D11CanUnloadNow @1 PRIVATE
D11GetClassObject @2 PRIVATE
D11RegisterServer @3 PRIVATE
DllUnregisterServer @4 PRIVATE

The Dllexport Declaration Specification

Although traditional *.def files have stood the test of time, the Visual C++ compiler
also supports a specific declaration specification (declspec) that can be used to
expose a member from a C-based DLL without the need to maintain and update a
stand-alone *.def file. Following convention, the dllexport declspec will be used to
build a simple macro that can be prefixed to a given function, data member, or
class that needs to be visible from outside the binary boundary. The macro defini-
tion could be written as follows:

// A custom macro which will mark a DLL export.
#tdefine MYCSTYLEDLL APT _ declspec(dllexport)

You would then expose MethodA() from a given DLL as shown here (note that
the prototype and member implementation both need to be qualified with the
MYCSTYLEDLL macro):

// Function prototype (in some header file).
extern "C" MYCSTYLEDLL API int MethodA(void);

// Function implementation (in some *.cpp file).
extern "C" MYCSTYLEDLL API int MethodA(void)
{return 1234;}

Understanding Platform Invocation Services

This same shortcut can be used when you wish to export a single point of data
(such as some fixed global constants) or an entire class module (not a COM class
mind you, but a vanilla-flavored C++ class).

Building a Custom C-Based DLL

During the course of this chapter, you learn how to use the Dlllmport attribute to
allow your managed .NET code to call members contained in a traditional C-style
DLL (including Win32 DLLs). To be sure, DllImport is most commonly used to
trigger Win32 API functions; however, this same .NET attribute can be used to
interact with your custom proprietary modules. Given this, let’s build a simple
Win32 DLL named MyCustomDLL. If you wish to follow along, fire up Visual
Studio 6.0 (or VS .NET if you prefer) and select a Win32 DLL project workspace
(Figure 1-1).

Files Projects Workzpaces | Other Documents

L& ATL COM Appwizard] win32 Static Library Project name:
r| Cluster Resource Type Wizard IMyEustomDLL
g% Cuztom Appifizard)
& Database Froject Lagation:
B D eyStudio Add-in Wizard [C:\2PRESS BODKSUNTERDP .|

T
=
[n]

=
L
m

% Create new workspace
{7 Add to cunent workspace
[Dependency of:

| [

Platfarmsz
IW’in32

< 1M | B

Ok, I Cancel

Figure 1-1. Creating your C-style DLL

From the resulting wizard, simply select “A simple DLL” project. The first order
of business is to establish the custom declspec macros, which will be used under
two circumstances. First, if the code base defines the MYCSTYLEDLL_EXPORTS
symbol, the macro will expand to __declspec(dllexport). On the other hand, if an

Chapter 1

external code base #includes the files that define the custom members (and thus
does not define the MYCSTYLEDLL_EXPORTS symbol), the macro will expand to
__declspec(dllimport). For simplicity, simply add the following macro logic in the
current MyCustomDLL.h file:

// The helper macro pair.

#ifdef MYCSTYLEDLL_ EXPORTS

f#tdefine MYCSTYLEDLL_API _ declspec(dllexport)
#else

#fdefine MYCSTYLEDLL API _ declspec(dllimport)
#endif

Functions Using Basic Data Types and Arrays

A proprietary DLL could contain members of varying complexity. On the simple
side of life, you may have a function taking a single integer by value. On the
complex end of the spectrum, you may have a function that receives an array of
complex structures by reference (which of course may be reallocated by the
module). Although your custom DLL will not account for every possibility, it will
export a set of six functions that illustrate how to marshal native data types, struc-
tures, class types, and arrays. Once you understand the basics of triggering these
members from managed code, you will be able to apply this knowledge to other
DLL exports.

Your first two functions allow the caller to pass single integer parameters as
well as an array of integers. The prototypes are as follows:

// Prototypes for basic functions.
extern "C" MYCUSTOMDLL _API int AddNumbers(int x, int y);
extern "C" MYCUSTOMDLL _API int AddArray(int x[], int size);

The implementation of AddNumbers() is as you would expect (simply return
the summation of the incoming arguments). AddArray() allows the caller to pass
in an array of some size to receive the summation of all items. Here are the
implementations:

// 1) A very simple DLL export.
extern "C" MYCUSTOMDLL _API int AddNumbers(int x, int y)
{ return x +y; }

// 2) A method taking an array.
extern "C" MYCUSTOMDLL API int AddArray(int x[], int size)

Understanding Platform Invocation Services

{
int ans = 0;
for(int i = 0; i < size; i++)
{
ans = ans + x[i];
}
return ans;
}

Functions Receiving Structures
(and Structures Containing Structures)

The next two function exports allow the user to pass in a complex structure for
processing as well as return an array of structures to the caller. Before you see the
methods themselves, here are definitions of the CAR and CAR2 UDTs:

// A basic structure.
typedef struct CAR

{
char* make;
char* color;
} CAR;

// A structure containing another structure.
typedef struct CAR2

{
CAR theCar;
char* petName;
} CAR2;

As you can see, the basic CAR structure defines two fields that document the
color and make of a give automobile. CAR2 extends this basic information with a
new field (petName), which allows the user to assign a friendly name to the car in
question. The first structure-centric function, DisplayBetterCar(), takes a CAR2
type as an input parameter that is displayed using a Win32 MessageBox() call:

// Function prototype.
extern "C" MYCUSTOMDLL _API void DisplayBetterCar(CAR2* theCar);

// 3) A method taking a struct.
extern "C" MYCUSTOMDLL_API void DisplayBetterCar(CAR2* theCar)

Chapter 1

{
// Read values of car and put in message box.
MessageBox (NULL, theCar->theCar.color, "Car Color", MB_OK);
MessageBox (NULL, theCar->theCar.make, "Car Make", MB_OK);
MessageBox (NULL, theCar->petName, "Car Pet Name", MB_OK);

}

The next DLL export, GiveMeThreeBasicCars(), returns a fixed array of CAR
types to the caller as an output parameter. Given that you will be dynamically allo-
cating structures on the fly, you make use of CoTaskMemAlloc(), which is defined
in objbase.h (so be sure to #include this file in your project). Here is the code:

// Function prototype.
extern "C" MYCUSTOMDLL_API void GiveMeThreeBasicCars(CAR** theCars);

// 4) A Method returning an array of structs.
extern "C" MYCUSTOMDLL_API void GiveMeThreeBasicCars(CAR** theCars)
{

int numbOfCars = 3;

theCars = (CAR)CoTaskMemAlloc(numbOfCars * sizeof(CAR));

char* carMakes[3] = {"BMW", "Ford", "Viper"};
char* carColors[3] = {"Green", "Pink", "Red"};

CAR* pCurCar = *theCars;
for(int i = 0; i < numbOfCars; i++, pCurCar++)
{

pCurCar->color = carColors[i];

pCurCar->make = carMakes[i];

Functions Using Class Types

The final two function exports defined by your custom DLL allow the outside
world to obtain and destroy a (non-COM) C++ class type named CMiniVan:

// A class to be exported.
class MYCUSTOMDLL_API CMiniVan
{
public:
(Minivan(){m_numbKids = 52;}
int DisplayNumberOfKids()
{ return m_numbKids;}
private:
int m_numbKids;

};

Understanding Platform Invocation Services
To interact with this class type, you provide the final two functions:

// Prototypes for class marshaling.
extern "C" MYCUSTOMDLL API CMiniVan* CreateMiniVan();
extern "C" MYCUSTOMDLL_API void DeleteMiniVan(CMiniVan* obj);

// 5) Method to create a CMiniVan.
extern "C" MYCUSTOMDLL_API CMiniVan* CreateMiniVan()
{ return new CMinivan(); }

// 6) Method to destroy a CMiniVan
extern "C" MYCUSTOMDLL_API void DeleteMiniVan(CMiniVan* obj)
{ delete obj; }

That’s it! Go ahead and compile the project. Over the course of this chapter,
you will trigger these members from managed and unmanaged code bases.

leeeee CODE The MyCustomDLL project is included under the Chapter 1
\ YR directory.

Viewing Your Imports and Exports Using dumpbin.exe

The dumpbin.exe utility is a command line tool that allows you to view a number
of details for a given unmanaged DLL (or EXE). Like most command line tools,
dumpbin.exe supports a set of command line flags you use to inform it exactly
what you are interested in viewing. Table 1-1 illustrates some of the more common
options.

Table 1-1. Common dumpbin.exe Flags

dumpbin.exe Flag Meaning in Life

/all This option displays all available information except code
disassembly.

/disasm This option displays disassembly of code sections, using

symbols if present in the file.

/exports This option displays all definitions exported from an
executable file or DLL.

Chapter 1

Table 1-1. Common dumpbin.exe Flags (continued)

dumpbin.exe Flag Meaning in Life

/imports This option displays all definitions imported to an
executable file or DLL.

/summary This option displays minimal information about sections,

including total size. This option is the default if no other
option is specified.

First, let’s check out the set of imported modules used by MyCustomDLL.dIl.
As you recall, your code base made use of the MessageBox() API (defined in
user32.dll), the CoTaskMemAlloc() API (ole32.dll), and the mandatory kernel32.dlIL
Given this, if you were to open a command window, navigate to the location of
MyCustomDLL.dll, and apply the /imports command to dumpbin.exe as follows:

C:\ >dumpbin /imports mycustomdll.dll

you would find the listing shown in Figure 1-2.

[c:t | -|O| x

icrosoft (H> COFF Binary File Dumper Uerszion 6.00.8447
opyright <C> Microsoft Corp 1992-1998. All rights reserved.

Dump of file mycustomdll.dll
File Type: DLL

Section contains the following imports:

USER32.d11
188383B8 Inmport Address Tabhle
18838104 Import Mame Table
B time date stamp
B Index of first forwarder reference

1BE MessageBoxA

ole3d2.dl11l
18A36A3E8 Import Address Table
18836284 Import Mame Tahle
B time date stamp
B Index of first forwarder reference

4E CoTaskMemfAlloc

KERHEL32.d11
18838234 Import Address Table
188368058 Import Mame Table

Figure 1-2. Dumping the imports of MyCustomDLL.dll

10

Understanding Platform Invocation Services
As you may be aware, .NET assemblies catalog the same sort of imported
information using the assembly manifest (via the [.assembly extern] tag). Of
greater interest to you at the current time is the list of exports:

C:\ >dumpbin /exports mycustomdll.dll

As you can see from Figure 1-3, the __declspec(dllexport) specification has
assigned unique ordinal numbers to each exported member.

En -0 x

=
=
& e &
=
=
=

=
=
=

I

1.

J

Y P

X

1.

L

Y

J
)
=

i i s
I=1-1-1-T
gL R
L i s
" |
s fuag

o oS
EEEE S
o &S S &

Figure 1-3. The exports of MyCustomDLL.dll

Notice that the CMiniVan class is internally represented using a common C++
complier technique termed named mangling. Basically, name mangling is a way
to assign a unique internal name to a given class member. Typically, C++ devel-
opers do not need to be concerned with the internal mangled representation of a
given class member. However, do be aware that when you wish to trigger a class
method from managed code, you will need to obtain this internal name. For
example, later in this chapter when you invoke CMiniVan::DisplayNumberOfKids(),
you need to refer to this member as

?DisplayNumberOfKids@CMiniVan@@QAEHXZ

11

Chapter 1

12

Deploying Traditional DLLs

Now that you have created a custom DLL, you are ready to begin building a
number of client applications (both managed and unmanaged) that can access
the exported member set. Before you get to that point, you need to address a
rather obvious question: How will the runtime locate the custom C-based module?

As you may know (and will see in detail in Chapter 2), COM-based DLLs can
be placed anywhere within the host computer’s directory structure, given that
COM servers are explicitly registered in the system registry. On the other hand,
.NET-based DLLs are not registered in the system registry at all, but are typically
deployed in the same directory as the launching client (that is, as a private
assembly). As an alternative, .NET DLLs can be shared by multiple client applica-
tions on a given machine by placing the assembly within a well-known location
called the Global Assembly Cache (GAC).

Traditional C-style DLLs are deployed much like a .NET DLL, given that they
are not registered within the system registry. The simplest approach to deploy your
custom DLLs is to place them directly in the directory of the calling client (typi-
cally called the application directory).

This brings about a rather interesting side note, however. As you know, the
Windows OS defines a number of system-level DLLs that supply a number of core
services such as GDI, file IO, and so forth. For sake of reference, Table 1-2 docu-
ments some of the critical system DLLs to be aware of.

Table 1-2. Core System-Level DLLs

Core Windows DLL Meaning in Life
advapi32.dll Advanced API services library supporting numerous APIs,
including many security and registry calls

comdlg32.dll Common dialog API library

gdi32.dll Graphics Device Interface API library

kernel32.dll Core Windows 32-bit base API support

mpr.dll No, not Minnesota Public Radio, but rather Multiple
Provider Router library

netapi32.dil 32-bit Network API library

shell32.dll 32-bit Shell API library

user32.dll Library for user interface routines

version.dll Version library

winmm.dll Windows multimedia library

Understanding Platform Invocation Services

Obviously, when you are building a custom Win32 application, you are not
required to create private copies of these core DLLs in the client’s application
directory. How then are these DLLs located by the runtime? The Windows OS
maintains a well-known location for its system-level DLLs, specifically
%windir%\System32 (Figure 1-4).

& C:\WINDOWS\system32

File Edit View Favorites Tools Help #

eBack 3 e @ ‘pSEErch @Folders -

Address |3 c:\WINDOWS \system32 L"Jl 55

g X X ~

System Tasks] &I %I .I |I

Hide the contents of FTPWPP.DLL ftsrch.dl g711codc.ax gh2312.uce I

this folder =
“@ Add or remove = & Iy

programs * | . D |I
7 search for files or

folders gedef.dll gdi32. gdi.exe geo.nls
File and Folder Tasks @ D %I %I %I
mjj Rename this file /| getmac.exe getuname.dl gimf32.dl glu3z.di ~

Figure 1-4. The %windir%\System32 subdirectory is the location of core
Win32 DLLs.

This location is documented using a system path variable that can be found
by taking the following steps on a Windows XP machine (some steps may vary for
other OSs):

¢ Right-click the My Computer icon.

¢ (Click the Environment Variables button on the Advanced Tab.

¢ View the Path value under the System Variables list box (Figure 1-5).

13

Chapter 1

Environment Variables

User variables for Andrew Troglsen

Variable Value 1|

include C:\Program Files\Microsaft Visual Studio...

lib C:\Program Files\Microsoft Visual Studio... |=

MSDevDir C:\Program Files\Microsoft Visual Studio... ||

path C:'Program Files\Microsoft Visual Studio...

TEMP C:\Documents and Settings\Andrew Tro... (¥
[mew J[Edt][Delete |

System variables
Variable Value fal
NUMBER_OF P... 1

05 Windows_NT [

PATHEXT .COM;.EXE;: .[BAT;.CMD;.VBS ; .VBE;.I5;.....
PLATMANROCT C:\Program Files\Microsoft Visual Studio... (¥

[mwew J[et][pelete |

i OK i[Cancel J

Figure 1-5. Viewing environment variables

Using this path value, the Windows OS understands where to look when it is
attempting to locate a distinct Win32 (non-COM/non-.NET) DLL. Given that the
“Path” variable defines numerous values (separated by semicolons), you are free to
place your custom DLLs in within any documented paths. For the remainder of
this chapter, I will assume that you have placed a copy of MyCustomDLL.dll in
your %windir%\System32 subdirectory (Figure 1-6).

& C:\WINDOWS\system32
File Edit WView Favorites Tools Help #

eﬁack - @ @ pSeardﬂ H’E}Folders v

Address (23 C:\WINDOWS \system32

System Tasks

[/ Hide the contents of g? @

this folder
narrator.exe narrhook.dll

“@ Add or remove
DI

programs "
Search for files or P
P folders D ‘&I
nbtstat.exe ncobjapi.dil ncpa.cpl necpa.cpl.ma...
2 & & ™ . <

Figure 1-6. Your custom DLL is now within the %windir%\System32 path.

File and Folder Tasks @

il Rename this file

14

Understanding Platform Invocation Services

A Dynamic C++ DLL Client

Before you learn how to trigger function exports using managed languages, let’s
take a brief look at a traditional C-based client application. Now, if you wanted to
take the simple (that is, uninteresting) approach, you would build a C++ client that
directly links to the MyCustomDLL.dll binary. However, let’s take a more inter-
esting approach and load (and invoke) members of the *.dll on the fly at runtime.
As you will see, the managed DllImport attribute mimics the same pattern found
with the LoadLibrary()/GetProcAddress() APIs.

To begin, assume you have a new Win32 console application named
MyCustomDLLCppClient (a “simple project” will be fine). First, place a copy of
the MyCustomDILh file directly in the project directory (you do this because the
file has the C definitions of your custom UDTs). When you need to load a C-based
DLL and invoke its members dynamically, you must make use of three key Win32
API calls, which are explained in Table 1-3.

Table 1-3. Library-Centric Win32 API Functions

Library-Centric Meaning in Life
API Function
FreeLibrary() This API decreases the *.dll's internal use counter by one and

removes the binary from memory when the counter is at zero.

GetProcAddress() This API function is used to invoke a given export within the
loaded module.

LoadLibrary() This API function loads a specific *.dll module using the search
heuristics explained previously.

Dynamically Loading an External Library

Calling LoadLibrary() is quite painless, given that the only parameter is the string
name of the DLL you wish to load into the current process. The return value is of
type HINSTANCE, which represents a handle to the currently loaded binary (as
you will see, GetProcAddress() requires this value as a parameter). To begin,
update Main() as shown here:

#include "stdafx.h"

#include <windows.h>

#include <iostream>

#include "MyCustomDLL.h"

using namespace std;

int main(int argc, char* argv[])

15

Chapter 1

16

// A handle to the loaded library.
HINSTANCE dllHandle = NULL;

// Load the DLL and keep the handle to it.

// Assume this DLL is in the same folder as the
// client EXE or under \System32.

dllHandle = LoadLibrary("MyCustomD1l.d11");

// If the handle is valid, try to call members.
if (NULL != dllHandle)
{

// Free the library when finished.
FreeLibrary(dllHandle);
}

return 0;

Invoking Members

Given that the example has not directly linked the DLL to its compilation cycle,
you are not currently able to directly resolve the names of the exported functions.
What you need is a generic way to represent the address of a given function. Lucky
for you, GetProcAddress() will return a pointer to a specific function upon
successful completion. So, how do you represent a generic function pointer? The
standard approach is to build a C-style type definition that represents a pointer to
the method as well as its set of arguments and return value. For example, if you
craft such a pointer for the AddNumbers() method, you can build the following

typedef:

// A typedef to hold the address of the AddNumbers() method.
typedef int (*PFNADDNUMBERS) (int, int);

// Create a variable of this type.
PFNADDNUMBERS pfnAddMethod;

A similar typedef could be created for any of your exported members. Here is
another example for the DisplayBetterCar() method, which as you recall takes a
CAR2 structure type as its sole parameter:

// A typedef to hold the address of the DisplayBetterCar() method.
typedef int (*PFNDISPLAYBETTERCAR) (CAR2*);
PFNDISPLAYBETTERCAR pfnDisplayBetterCar;

Understanding Platform Invocation Services

Once you have a generic pointer to a given function, you can now call
GetProcAddress() to obtain a valid pointer to said method. Here is an update to
the Main() loop that will call AddNumbers() and DisplayBetterCar() dynamically
at runtime (without statically linking to the MyCustomDLL.dll):

if (NULL != dllHandle)

{
// Get pointer to AddNumbers() using GetProcAddress.
pfnAddMethod = (PFNADDNUMBERS)
GetProcAddress(dllHandle, "AddNumbers");
// If the function address is valid, call AddNumbers().
if (NULL != pfnAddMethod)
{
int retval = pfnAddMethod(100, 100);
cout << "100 + 100 is: " << retVal << endl;
}
// Make a better car.
CAR2 myCar;
myCar.petName = "JoJo";
myCar.theCar.make = "Viper";
myCar.theCar.color = "Red";
pfnDisplayBetterCar = (PFNDISPLAYBETTERCAR)
GetProcAddress(dllHandle, "DisplayBetterCar");
// If the function address is valid, call DisplayBetterCar().
if (NULL != pfnDisplayBetterCar)
{
pfnDisplayBetterCar(&myCar);
}
// Free the library.
FreeLibrary(dllHandle);
}

As you can see, GetProcAddress() requires you to specify the module to
examine (represented by the HINSTANCE returned from LoadLibrary()) and the
name of the member you wish to invoke. The result is a pointer to the correct
function, which can be invoked as if you had a direct function definition! When
you run this application, you should see the result of adding 100 and 100, followed
by a series of message boxes describing your new red Viper named JoJo.

17

Chapter 1

18

1 leeeee CODE The MyCustomDLLCppClient application is found under the
\ Y Chapter 1 directory.

=
=~

an

The Atoms of PInvoke

Now that you have created a custom DLL (and checked out the process of dynami-
cally invoking members using the Win32 API), you will spend the rest of this
chapter examining the process of calling C-based function exports from managed
code. In order to do so, you need to be comfortable with a small set of .NET types
and a basic set of data conversion rules.

The two .NET types in question (the Marshal class and DllImport attribute)
are both defined within the System.Runtime.InteropServices namespace, which as
you will see throughout this book is the key namespace that makes COM/.NET
interoperability possible. This namespace is defined within the core .NET
assembly, mscorlib.dll, which is part of every managed application. Therefore, all
you need to do to access these types is simply make reference to the namespace
itself using the syntax of your favorite managed language. For example:

// CH#.
using System.Runtime.InteropServices;

' VB .NET.
Imports System.Runtime.InteropServices

Data Type Conversions

As C++ programmers are painfully aware, the Windows API has billions (or there-
about) of type definitions that represent primitive data types. Although these type-
defs can take a bit of getting used to at first, they do save you a few keystrokes. For
example, if you wish to define a constant string of Unicode characters, you could
write the following C-style declaration:

/* A constant Unicode string of characters in C */
const wchar_t* myUnicodeString;

or make use of the following Windows typedef:

/* Same string, fewer keystrokes..*/
LPCWSTR myOtherUnicodeString;

Understanding Platform Invocation Services

These predefined type definitions are based on a naming convention called
Hungarian notation, which is used to make a data type a bit more self-describing.
For example, LPCWSTR can be read as a “pointer to a constant wide string.” When
you are making use of PInvoke, you don’'t make use of these Win32-centric type
definitions directly, but rather a managed equivalent. Table 1-4 documents the
mapping between Win32 typedefs (and their C representation) and the correct

.NET data type.

Table 1-4. Data Type Representation

Unmanaged Type
in wtypes.h

Unmanaged C
Language Type

Managed Type Representation

Meaning in Life

BOOL long System.Int32 32 bits

BYTE unsigned char System.Byte 8 bits

CHAR char System.Char ANSI string

DOUBLE double System.Double 64 bits

DWORD unsigned long System.UInt32 32 bits

FLOAT float System.Single 32 bits

HANDLE void* System.IntPtr 32 bits

INT int System.Int32 32 bits

LONG long System.Int32 32 bits

LPCSTR const char* System.String or ANSI string
System.StringBuilder

LPCWSTR const wchar_t* System.String or Unicode string
System.StringBuilder

LPSTR char* System.String or ANSI string
System.StringBuilder

LPWSTR wchar_t* System.String or Unicode string
System.StringBuilder

SHORT short System.Int16 16 bits

UINT unsigned int System.UInt32 32 bits

ULONG unsigned long System.UInt32 32 bits

WORD unsigned short System.UInt16 16 bits

19

Chapter 1

The Marshal Class

System.Runtime.InteropServices.Marshal is a key type that is used with all facets
of .NET interoperability. This sealed class defines a healthy dose of static (Shared
in terms of VB .NET) members that provides a bridge between managed and
unmanaged constructs. When you are working with PInvoke proper (meaning you
are not interested in communicating with COM-based DLLs), you really only need
to access a very small subset of its overall functionality. In fact, a majority of the
members provided by the Marshal type are most useful when dealing with
COM/.NET interop issues.

Nevertheless, in this section, I outline the full functionality of Marshal, by
grouping members by related functionality. You will see additional aspects of
Marshal during the remainder of this text, so don’t panic due to the sheer volume
of members. Table 1-5 documents a number of members that allow you to interact
with low-level COM primitives such as IUnknown, VARIANT transformations, and
moniker bindings (among other things).

Table 1-5. COM-Centric Members of the Marshal Type

General COM-Centric Meaning in Life

Member of the Marshal Type

AddRef() Increments the reference count on the specified
interface

BindToMoniker() Gets an interface pointer identified by the specified
moniker

GenerateGuidForType() Returns the GUID for the specified type, or generates

a GUID using the algorithm employed by the Type
Library Exporter (TIbExp.exe)

GenerateProgIdForType() Returns a ProgID for the specified type

GetActiveObject() Obtains a running instance of the specified object
from the Running Object Table (ROT)

GetComlInterfaceForObject() Returns an IUnknown pointer representing the
specified interface for an object

GetIDispatchForObject() Returns an IDispatch interface from a managed
object

GetIUnknownForObject() Returns an IUnknown interface from a managed
object

20

Understanding Platform Invocation Services

Table 1-5. COM-Centric Members of the Marshal Type (continued)

General COM-Centric Meaning in Life
Member of the Marshal Type

GetObjectForNativeVariant() Converts a COM VARIANT to an object

GetObjectsForNativeVariants() Converts an array of COM VARIANTS to an array of
objects

GetNativeVariantForObject() Converts an object to a COM VARIANT

IsComObject() Indicates whether a specified object represents an
unmanaged COM object

IsTypeVisibleFromCom/() Indicates whether a type is visible to COM clients

Querylnterface() Requests a pointer to a specified interface from an

existing interface

Release() Decrements the reference count on the specified
interface
ReleaseComObiject() Decrements the reference count of the supplied

Runtime Callable Wrapper (RCW)

Closely related to the members in Table 1-5 are the following set of COM type
library-specific members of the Marshal type (Table 1-6).

Table 1-6. Type Library—Centric Members of the Marshal Class

COM Type Library-Centric Meaning in Life

Member of the Marshal Type

GetITypelnfoForType() Returns an ITypelnfo interface from a
managed type

GetTypeForITypelnfo() Converts an ITypelnfo into a managed
System.Type object

GetTypeInfoName() Retrieves the name of the type represented by
an ITypelnfo

GetTypeLibGuid() Retrieves the GUID of a type library

GetTypeLibGuidForAssembly() Retrieves the GUID that is assigned to a type

library when it was exported from the
specified assembly

GetTypeLibLcid() Retrieves the LCID of a type library

GetTypeLibName() Retrieves the name of a type library

21

Chapter 1

22

Of course, there are a number of members of the Marshal type that allow you
to convert between the managed System.String type and all 20,000 (or so) textual
variations found in the raw Win32 APIs (Table 1-7).

Table 1-7. String Conversion Members of the Marshal Type

String Conversion Member
of the Marshal Type

FreeBSTR()

PtrToStringAnsi()

PtrToStringAuto()

PtrToStringBSTR()

PtrToStringUni()

StringToBSTR()

StringToCoTaskMemAnsi()

StringToCoTaskMemAuto()

StringToCoTaskMemUni()

StringToHGlobalAnsi()

StringToHGlobalAuto()

StringToHGlobalUni()

Meaning in Life
Frees a BSTR using SysFreeString

Copies all or part of an ANSI string to a managed
System.String object

Copies an unmanaged string to a managed
System.String object

Copies a Unicode string stored in native heap to a
managed System.String object

Copies an unmanaged Unicode string to a managed
System.String object

Allocates a BSTR and copies the string contents into it

Copies the contents of a string to a block of memory
allocated from the unmanaged COM task allocator

Copies the contents of a string to a block of memory
allocated from the unmanaged COM task allocator

Copies the contents of a string to a block of memory
allocated from the unmanaged COM task allocator

Copies the contents of a managed System.String object
into native heap, converting into ANSI format as it
copies

Copies the contents of a managed System.String object
into native heap, converting into ANSI format if
required

Copies the contents of a managed System.String object
into native heap

Understanding Platform Invocation Services

Perhaps the most directly useful members of the Marshal type (especially
when working with PInvoke) are the following set of structure and/or memory
manipulation members of the Marshal type (Table 1-8).

Table 1-8. Memory/Structure-Centric Members of the Marshal Type

Memory/Structure-Centric
Member of the Marshal Type

AllocCoTaskMem()

AllocHGlobal()

DestroyStructure()

FreeCoTaskMem/()

FreeHGlobal()

PtrToStructure()

ReAllocCoTaskMem()

ReAllocHGlobal()

SizeOf()

StructureToPtr()

Meaning in Life

Allocates a block of memory of specified size from the
COM task memory allocator using CoTaskMemAlloc

Allocates a block of memory using GlobalAlloc

Frees all substructures pointed to by the specified
native memory block

Frees a block of memory allocated by the unmanaged
COM task memory allocator with AllocCoTaskMem

Frees memory previously allocated from the
unmanaged native heap of the process with
AllocHGlobal

Marshals data from an unmanaged block of memory to
amanaged object

Resizes a block of memory previously allocated with
AllocCoTaskMem

Resizes a block of memory previously allocated with
AllocHGlobal

Returns the unmanaged size of a class used via Marshal
in bytes

Marshals data from a managed object to an
unmanaged block of memory

The error-centric members listed in Table 1-9 compose the next major aspect

of the Marshal type.

23

Chapter 1

24

Table 1-9. Error-Centric Members of the Marshal Type

Error-Centric Member
of the Marshal Type

GetExceptionCode()

GetExceptionPointers()

GetHRForException()

GetHRForLastWin32Error()

GetLastWin32Error()

ThrowExceptionForHR()

Meaning in Life

Retrieves a code that identifies the type of the exception
that occurred

Retrieves a machine-independent description of an
exception and information about the machine state
that existed for the thread when the exception occurred

Converts the specified exception to an HRESULT

Returns the HRESULT corresponding to the last error
incurred by Win32 code executed using Marshal

Returns the error code returned by the last unmanaged
function called using Platform Invoke that has the
SetLastError() flag set

Throws an exception with a specific HRESULT value

Finally, be aware that the Marshal type defines a number of members that
allow you to read and write data to and from unmanaged memory (Table 1-10).

Table 1-10. Bit Reading/Writing—-Centric Members of the Marshal Type

Data Reading/Writing Meaning in Life

Members of the
Marshal Type

ReadByte() Reads or writes a single byte from an unmanaged pointer
WriteByte()

ReadInt16() Reads or writes a 16-bit integer from native heap
WriteInt16()

ReadInt32() Reads or writes a 32-bit integer from native heap
WriteInt32()

ReadInt64() Reads or writes a 64-bit integer from native heap
WriteInt64()

ReadIntPtr() Reads or writes a processor native-sized integer from
WriteIntPtr() native heap

Understanding Platform Invocation Services

Again, you are not required to make use of all of these members when working
with COM/.NET interop or PInvoke. Many of the static members seen in the
previous tables are more low level than you will need for your day-to-day
programming tasks. However, you will see useful examples when necessary
throughout the remainder of this text.

The D1lImportAttribute Type

The final piece of the PInvoke puzzle is the DlllmportAttribute type. In many ways,
this single .NET type combines the functionality of the Win32 LoadLibrary() and
GetProcAddress() APIs into a well-encapsulated class. On a related note, also
understand that Dlllmport is a direct .NET equivalent to the VB 6.0-style declare
statement. In fact, under VB .NET, the legacy Declare statement, although still
supported, has been retrofitted to make use of the services of PInvoke. Given this,
I will avoid examining the use of VB .NET’s Declare keyword and stick to the
DllImport attribute.

Like most .NET attributes, DIlAttribute defines a number of public fields
that allow you to control its behavior. Also, like most .NET attributes, these fields
are typically set as named constructor arguments. First, ponder the formal type
definition:

// The essence of PInvoke.
public sealed class DllImportAttribute : Attribute
{
// Fields (first two listings are not typos!)
// These fields are used to control exactly
// how the attribute should be applied to the
// unmanaged function export.
public CallingConvention CallingConvention;
public CharSet CharSet;
public string EntryPoint;
public bool ExactSpelling;
public bool PreserveSig;
public bool SetlastError;

// Constructor (string param used to set fields
// as name / value pairs).
public D1lImportAttribute(string d11lName);

// Properties.

public object Typeld { virtual get; }
public string Value { get; }

25

Chapter 1

26

// Methods (basic .NET infrastructure stuff).
public virtual bool Equals(object obj);
public virtual int GetHashCode();

public Type GetType();

public virtual bool IsDefaultAttribute();
public virtual bool Match(object obj);

public virtual string ToString();

As you can see, DllImportAttribute defines two fields (CallingConvention and
CharSet), which may be assigned a value from enumerations of the same name:

// Specifies the calling convention required
// to call methods implemented in unmanaged code.
public enum CallingConvention

{
Cdecl,
FastCall, // Not supported under .NET version 1.0.%*.
StdCall,
ThisCall,
Winapi
}

// Dictates which character set should be used to marshal strings.
public enum CharSet

{
Ansi,
Auto,
None,
Unicode
}

You will see exactly how these three types are used during the remainder of
this chapter. Before tackling the topic of accessing your custom DLL, let’s take
PInvoke out for a simple test drive and get to know the various fields of
DllImportAttribute at the same time.

A Trivial PInvoke Example
The most typical use of PInvoke is to allow .NET components to interact with the

Win32 API in the raw. As you already know, the .NET base class library exists for
the very purpose of hiding the low-level API from view. Thus, although you might

Understanding Platform Invocation Services

not ever need to drop down to the raw Win32, PInvoke provides the ability
to do so. To illustrate the use of PInvoke, let’s build a C# console application
(SimpleAPIInvoke) that makes a call to the Win32 MessageBox() function.
First, the code:

namespace SimpleAPIInvoke

{
using System;
// Must reference to gain access to the PInvoke types.
using System.Runtime.InteropServices;

public class PInvokeClient

{

// The Win32 MessageBox() function lives in user32.dll.

[D11Import("user32.d1l")]

public static extern int MessageBox(int hWnd, String pText,
String pCaption, int uType);

public static int Main(string[] args)
{
// Send in some managed data.
String pText = "Hello World!";
String pCaption = "PInvoke Test";
MessageBox (0, pText, pCaption, 0);
return 0;

The process of calling a C-style DLL begins by declaring the function you wish
to call using the static and extern C# keywords (this step is not optional). Notice
that when you declare the C function prototype, you must list the return type,
function name, and arguments in terms of managed data types. So you do not
send in char* or wchar_t* arrays, but the managed System.String type. Once you
have prototyped the method you intend to call, your next step is to adorn this
member with the Dlllmport attribute. At absolute minimum, you need to specify
the name of the raw DLL that contains the function you are attempting to call as
shown here:

[D11Import("user32.d11")]
public static extern int MessageBox(..);

27

Chapter 1

28

As you can see, the DIlImportAttribute type defines a set of public fields that
may be specified to further configure the process of binding to the function
export. Table 1-11 gives a rundown of these fields.

Table 1-11. Fields of the DllImportAttribute Type

D11ImportAttribute Field Meaning in Life

CallingConvention

CharSet

EntryPoint

ExactSpelling

PreserveSig

SetLastError

Used to establish the calling convention
used in passing method arguments. The default is
CallingConvention.WinAPI, which corresponds to __stdcall.

Indicates how string arguments to the method should be
marshaled (CharSet.Ansi is the default).

Indicates the string name or ordinal number of the function
to be called.

PInvoke attempts to match the name of the function you
specify with the “real” name as prototyped. If this field is set
to true, you are indicating that the name of the entry point
in the unmanaged .dll must exactly match the name you are
passing in.

When set to true (the default setting), an unmanaged
method signature will not be transformed into a managed
signature that returns an HRESULT and has an additional
[out, retval] argument for the return value.

When set to true, indicates that the caller may call
Marshal.GetLastWin32Error() to determine if an error
occurred while executing the method; the default is false in
C# but true in VB .NET.

If you wish to set these values for your current DlllmportAttribute object
instance, simply specify each as a name/value pair to the class constructor. If you
check out the definition of the DlllmportAttribute constructor, you can see it takes
a single parameter of type System.String:

class DllImportAttribute

{

// Constructor takes a string that holds all field values.
public DllImportAttribute(string val);

Understanding Platform Invocation Services

Given this bit of information, it should be clear that the order in which you
specify these values does not matter. The Dlllmport class will simply parse the
string internally and use the values to set its internal state data.

Specifying the ExactSpelling Field

The first field of interest is ExactSpelling, which is used to control whether the
name of the managed function is identical to that of the name of the unmanaged
function. For example, as you may know, there is no such function named
MessageBox in the Win32 API. Rather, you have an ANSI version (MessageBoxA)
and a Unicode version (MessageBoxW). Given the fact that you specified a
method named MessageBox, you can correctly assume that the default value of
ExactSpelling is false. However, if you were to set this value to true as follows:

[D1lImport("user32.d1l", ExactSpelling = true)]
public static extern int MessageBox(..); // Uh-oh!

you would now receive an EntryPointNotFoundException exception, because
there is no function named MessageBox in user32.dll! As you can see, the
ExactSpelling field basically allows you to be “lazy” and ignore the W or A suffixes.
However, PInvoke clearly needs to ultimately resolve the exact name of the func-
tion you wish to call. When you leave ExactSpelling at its default value (“false”), the
letter A is appended to the method name under ANSI environments and the letter
W under Unicode environments.

Specifying the Character Set

If you wish to explicitly specify the character set used to marshal data between
managed code and the raw DLL export, you may set the value of the CharSet field
using a member from the related CharSet enumeration (Table 1-12).

Table 1-12. CharSet Values

CharSet Member Name Meaning in Life

Ansi Specifies that strings should be marshaled as ANSI 1-byte chars
Auto Informs PInvoke to marshal a string correctly as required by
the target platform (Unicode on WinNT/Win2000 and ANSI
on Win 9x)
None Signifies that you didn't specify how to marshal strings (default)

and you wish the runtime to figure things out automatically

Unicode Specifies that strings should be marshaled as Unicode 2-byte
chars

29

Chapter 1

30

By way of example, if you wish to enforce that all strings be marshaled as
Unicode (and thus risk your code not working correctly on Win95, Win98, or
WinME platforms), you would write the following:

// Demand the exact name, and specify the Unicode character set.
[D11Import("user32.d11l", ExactSpelling = true, CharSet=CharSet.Unicode)]
public static extern int MessageBoxW(..);

Generally speaking, it is safer to set the CharSet value to CharSet.Auto (or
simply accept the default). In this way, textual parameters will be marshaled
correctly regardless of the target platform, leaving your code base far more
portable.

Specifying Calling Conventions

The next field of interest is CallingConvention. As you know, Win32 API functions
can be adorned with a number of typedefs that specify how parameters should be
passed into the function (C declaration, fast call, standard call, and so forth). The
CallingConvention field may be set using any value from the CallingConvention
enumeration. As you might suspect, this enum specifies values such as Cdecl,
Winapi, StdCall, and so forth. The default of this field is StdCall, so you can typically
ignore explicitly setting this field (given that this is the most common Win32
calling convention). Nevertheless, Table 1-13 documents the possible values of the
CallingConvention enumeration. (Do note the CallingConvention.ThisCall value,
which will be used later in this chapter to trigger methods of exported C++

class types.)

Table 1-13. CallingConvention Values

CallingConvention Meaning in Life

Enumeration Value

Cdecl The caller cleans the stack. This enables calling functions with
varargs.

FastCall This calling convention is not currently supported (but is

reserved for future use).

StdCall The callee cleans the stack. This is the default convention for
calling unmanaged functions from managed code.

ThisCall The first parameter is the “this” pointer and is stored in register
ECX. Other parameters are pushed on the stack. This calling
convention is used to call methods on classes exported from an
unmanaged DLL.

Winapi Uses the default platform calling convention. For example,
Windows uses StdCall and Windows CE uses Cdecl.

Understanding Platform Invocation Services

Specifying Function Entry Points

Next up is the EntryPoint field. By default, this field will be the same as the name
of the function you are prototyping. Therefore, in the following declaration,
EntryPoint is implicitly set to MessageBoxW.

// EntryPoint automatically set to ‘'MessageBoxW'.
[D11Import("user32.d1l", ExactSpelling = true, CharSet=CharSet.Unicode)]
public static extern int MessageBoxW(..);

If you wish to establish an alias for the exported function, you may specify the
“real name” of the exported function using the EntryPoint field, effectively
renaming the function for use in your managed code. Obviously, this is a helpful
way to avoid possible name clashes. To illustrate, here is the final iteration of the
PInvoke example that maps the MessageBoxW() function to a friendly alias
(DisplayMessage):

public class PInvokeClient

{
// Map the MessageBoxW() function to 'DisplayMessage’.
[D1lImport("user32.dll", ExactSpelling = true,
CharSet=CharSet.Unicode, EntryPoint = "MessageBoxW")]
public static extern int DisplayMessage(int hWnd, String pText,
String pCaption, int uType);
public static int Main(string[] args)
{
String pText = "Hello World!";
String pCaption = "PInvoke Test";
// This really calls MessageBoxW()..
DisplayMessage(0, pText, pCaption, 0);
return 0;
}
}

Also, be aware that if you wish to refer to an unmanaged method by ordinal
position (rather than the friendly string name), make use of a pound prefix
followed by the numerical value:

// The ordinal value of MessageBoxW() is 484 (ala dumpbin.exe).

[D11Import("user32.d1l", ExactSpelling = true,

CharSet=CharSet.Unicode, EntryPoint = "#484")]

public static extern int DisplayMessage(int hWnd, String pText,
String pCaption, int uType);

31

Chapter 1

32

SetlLastError and Marshal.GetlLastWin32Error()

The final field of DllImportAttribute is SetLastError, which is false by default under
C#. When you set this field to true, you are informing PInvoke that you wish to
receive any Win32 error that was returned from the exported function. For
example, as you most likely know, the first parameter to MessageBox{A|W}() is the
HWND, which identifies the parent window of the message box. Assume you
assigned a bogus value to this parameter:

// There is no window with the handle 99999!
DisplayMessage(99999, pText, pCaption, 0);

Given that the value 99999 is well within the bounds of a System.Int32, the
program compiles without fail. However, when you run the application, the
message fails to display. If you wish to obtain the error number thrown from
MessageBoxW(), simply make use of the Marshal type:

// Get the error!
DisplayMessage(999, pText, pCaption, 0);
Console.WriteLine("Last Win32 Error: {0}",

Marshal.GetLastWin32Error());

If you run the application, you now find the output shown in Figure 1-7.

Last Wind2 Error: 1488

ress any key to continue_

Figure 1-7. Obtaining the last Win32 error

Well, what good is it to know that the numerical value of the error is 1400? The
truth of the matter is that each predefined Win32 error code is assigned a friendly
text string that describes the error in question. These descriptions are located in
the winerror.h header file; however, it is much simpler to discover the error
description at design time using the Error Lookup utility located under the Tools |
Error Lookup menu selection of the VS. NET IDE. If you paste in the value 1400,
you will find the helpful hint shown in Figure 1-8.

Understanding Platform Invocation Services

¢z, Error Lookup

Value: I 1400

Error Message

Invalid window handle.

Modules... |

Close Help

Figure 1-8. The meaning of the mysterious 1400

Now, what if you wish to obtain this string message programmatically? The
FormatMessage() API function (defined in kernel32.dll) will return the correct
string value based on the numerical error. Given that FormatMessage() is
contained within a traditional C-based DLL, you would need to create a separate
DllImport statement mapping to FormatMessage(); however, I'll leave that as a
task for the interested reader.

1 leeeee CODE The SimpleAPIPInvoke project is included under the Chapter 1
\ VR subdirectory.

aal

Interacting with MyCustomDLL.dll

Now that you have seen how to customize the behavior of Dlllmport to access an
API function taking simple data types, let’s build a new C# console application
(PInvokeCustomDLL) that triggers each member of the custom DLL you created
earlier in this chapter. To do so, make use of a common PInvoke strategy, which is
to build a custom class type that wraps the collection of DIlImport statements on
behalf of the caller using various static members. Given this, assume you have
defined the following class within the new namespace:

// The Custom DLL wrapper class.
public class MyCustomDLLWrapper

{
// .all the D1lExports..

33

Chapter 1

34

The first member you will interact with is AddNumbers(), which is a very clear
mapping between managed and unmanaged types:

public class MyCustomDLLWrapper

{
// extern "C" MYCUSTOMDLL_API int AddNumbers(int x, int y);
[D11Import("MyCustomD1l.d11")]
public static extern int AddNumbers(int x, int y);

}

Calling this external function from the C# Main() method could not be any
simpler:

class CustomDLLInvoker

{

[STAThread]

static void Main(string[] args)

{
// Add some numbers.
Console.Writeline("Invoking AddNumbers()...");
Console.Writeline("10 + 10 is {o}",

MyCustomDLLWrapper.AddNumbers (10, 10));
}

To be sure, when you are invoking external functions that do not involve any
parameters above and beyond simple input data types (for example, no pointers),
the approach is quite straightforward. Simply map managed data types into
unmanaged types using the information presented earlier in Table 1-4.

Marshaling Arrays

Passing arrays of intrinsic data types is also quite simple. Recall that the
AddArray() member of the custom DLL requires the caller to pass in an array of
ints (and the size of the incoming array) to obtain the summation of each item.

Here is the Dlllmport:

public class MyCustomDLLWrapper

{
// extern "C" MYCUSTOMDLL_API int AddArray(int x[], int size);
[D11Import("MyCustomD1l.d11")]
public static extern int AddArray(int[] x, int y);

}

Understanding Platform Invocation Services
The managed C# code is again quite straightforward:

// Add array of numbers.

Console.WritelLine("\nInvoking AddArray()...");

int[] thevals = {10, 23, 83, 9, 12};

Console.WriteLine("Sum of array is {o}",
MyCustomDLLWrapper.AddArray(theVals, theVals.Length));

Passing Structures

When you need to call an exported DLL function that requires a structure, you
have a bit of additional work to do. As you may assume, the .NET class libraries do
not contain a managed definition for every Win32 structure (and obviously has no
way to know the layout of custom structures such as CAR or CAR2). To interact
with this sort of function export, you need to build a managed equivalent of the
raw Win32 structure using the syntax of your favorite programming language. One
odd point to be aware of is that you are able to define the managed version of the
raw structure via a custom structure or class definition.

In either case, when you are building a managed version of an unmanaged
structure, you need to adorn the type with the StructLayout attribute in order to
instruct PInvoke how to represent each member in the UDT. StructLayout can be
assigned any value of the LayoutKind enumeration:

// How should the class / struct definition be
// marshaled to the unmanaged layer?
public enum LayoutKind

{
Auto,
Explicit,
Sequential
}

In reality, you will almost always want to make use of LayoutKind.Sequential,
which informs PInvoke to preserve the order of the fields when mapping the type
between managed and unmanaged environments. LayoutKind.Auto is simply evil,
because it gives permission to the runtime to reorder the fields at its leisure for
reasons of efficiency. Never employ this option when marshaling structures using
PInvoke.

The final option, LayoutKind.Explicit, allows you to be in charge of calculating
the physical position of fields of the class or structure when marshaling the type
into an unmanaged binary. Types marked as StructLayout(LayoutKind.Explicit)

35

Chapter 1

36

require you to make use of another attribute (FieldOffset) to mark the locations of
each field. You have no need to make use of this option for the CAR and CAR2
types, given that many of your fields can have varying lengths (the strings).
However, by way of a simple example, assume the following managed POINT
representation:

[StructlLayout(LayoutKind.Explicit)]
public struct POINT
{
[Fieldoffset(0)] int x;
[Fieldoffset(4)] int y;

Representing CAR and CAR2 As Class Types

Assume you wish to build a managed representation of the CAR and CAR2 types
using the C# class keyword. CAR is simple enough (recall that unmanaged char*
maps into a managed System.String):

[StructlLayout(LayoutKind.Sequential)]
public class CAR

{
public string make;
public string color;

However, what about the CAR2 type, which makes use of an embedded CAR
type? Because CAR is defined as a C# class type, you can simply allocate an
instance within the CAR2 class definition as follows:

// A structure containing another structure.
[StructLayout(LayoutKind.Sequential)]
public class CAR2
{
public CAR theCar = new CAR();
public string petName;

Understanding Platform Invocation Services

This approach will also simplify the DIlImport definition and client-side invo-
cation. First update the wrapper to invoke DisplayBetterCar():

public class MyCustomDLLWrapper

{
// extern "C" MYCUSTOMDLL_API void DisplayBetterCar(CAR2* theCar);
[D11Import("MyCustomDll.d11l", CharSet=CharSet.Ansi)]
public static extern int DisplayBetterCar(CAR2 c);

}

The client-side code begins by creating a new CAR2 structure, filling in the
field data, and passing it along to the unmanaged export:

// Display a better car.

Console.WriteLine("\nInvoking DisplayBetterCar()...");
Console.WriteLine("...message boxes are displaying...");
CAR2 myCar = new CAR2();

myCar.petName = "Frank";

myCar.theCar.color = "Rust";

myCar.theCar.make = "Colt";
MyCustomDLLWrapper.DisplayBetterCar(myCar);

Receiving Allocated Structures
Now, if you wish to invoke GiveMeThreeBasicCars(), you would need to build the
DllImport statement using the C# out keyword, given that this method will allo-

cate three CAR types on your behalf.

public class MyCustomDLLWrapper

{
// extern "C" MYCUSTOMDLL_API
// void GiveMeThreeBasicCars(CAR** theCars);
[D11Import("MyCustomD1l.d11", CharSet=CharSet.Ansi)]
public static extern void GiveMeThreeBasicCars(out IntPtr theCars);
}

Notice that you have not sent in an output parameter of type CAR[], but a
System.IntPtr that will point to the memory allocated by the unmanaged export.
When you wish to filter the memory for a given structure, you need to make use of

37

Chapter 1

four key members of the Marshal type: PtrToStructure(), SizeOf(),
DestroyStructure(), and FreeCoTaskMem(). First, the calling code:

// Get three basic cars.
Console.WriteLine("\nInvoking GiveMeThreeBasicCars()...");
int size = 3;

// Pass in an IntPtr as an output parameter.
IntPtr outArray;
MyCustomDLLWrapper.GiveMeThreeBasicCars(out outArray);

// Allocate an array big enough to hold the
// memory returned to use.

CAR[] carArray = new CAR[size];

IntPtr current = outArray;

// Print out each structure.

for(int i = 0; 1 < size; i++)

{
// Get next CAR using Marshal.PtrToStructure()
carArray[i] = new CAR();
Marshal.PtrToStructure(current, carArray[i]);
Console.Writeline("Structure {o}: {1} {2}", i,

carArray[i].make, carArray[i].color);

// Destroy memory held by current structure.
Marshal.DestroyStructure(current, typeof(CAR));

// Calculate location of next structure using Marshal.SizeOf().
current = (IntPtr)((int)current + Marshal.SizeOf(carArray[i]));

// Free memory for the allocated array.
Marshal.FreeCoTaskMem(outArray);

// Just to make sure that we fail
// immediately if we try to use this again.
outArray = IntPtr.Zero;

It really isn’t as bad as it looks. The process begins by calling the unmanaged
export to receive a block of memory contained within a System.IntPtr. Because the
managed CAR class type has been defined using LayoutKind.Sequential, you can
rest assured that the memory contained within the IntPtr type can be mapped

38

Understanding Platform Invocation Services

exactly to an array of CAR types. Given this assumption, the bulk of the work
simply iterates over IntPtr three times to pull out the current CAR using
Marshal.PtrToStructure().

Once you free up the memory contained within the current CAR using
Marshal.DestroyStrucutre(), you figure out the position of the next CAR in the
IntPtr using the old C programmers’ sizeof hack (a la Marshal.SizeOf()). Finally,
once you have sucked out and displayed each CAR, you free the memory of the
allocated array using Marshal.FreeCoTaskMem().

Interacting with Exported Class Types

The final exports of MyCustomDLL.dll allow the outside world to interact with the
internal CMiniVan type. Recall that the unmanaged CreateMiniVan() and
DestroyMiniVan() functions made use of a strongly typed CMiniVan. In terms of
managed code, you will represent this type using System.IntPtr.

Also recall during my discussion of the dumpbin.exe utility that the members
of exported class types are referenced using a mangled name generated by the C++
compiler. When you wish to call an exported class member from managed code,
you need to generate a separate Dlllmport statement that makes explicit use of the
EntryPoint field. Given that DisplayNumberOfKids() method will be called on the
class level, you need to specify the CallingConvention as CallingConvention.
ThisCall (this, as in the “this” pointer). This being said, here are the final three
static methods of the MyCustomDLIWrapper type:

public class MyCustomDLLWrapper
{

// extern "C" MYCUSTOMDLL_API CMiniVan* CreateMiniVan();
[D11Import("MyCustomDll.d11")]
public static extern IntPtr CreateMiniVan();

// extern "C" MYCUSTOMDLL_API void DeleteMiniVan(CMiniVan* obj);
[D11Import("MyCustomDll.d11")]
public static extern void DeleteMiniVan(IntPtr obj);

// CMiniVan: :DisplayNumberOfKids

[D11Import("MyCustomDll.d1l", EntryPoint =
"?DisplayNumber0fKids@CMiniVan@@QAEHXZ",
CallingConvention=CallingConvention.ThisCall)]

public static extern int CetTheKids(IntPtr thisPointer);

39

Chapter 1

The C++ CMiniVan can be manipulated from your C# console application as
follows:

// Manipulate a CMiniVan type.

Console.WriteLine("\nInvoking CMiniVan.DisplayNumberOfKids()...");
IntPtr instancePtr = MyCustomDLLWrapper.CreateMiniVan();

int kidCount = MyCustomDLLWrapper.GetTheKids(instancePtr);
Console.WriteLine("Number of kids in Mini Van is: {0} \n", kidCount);

MyCustomDLLWrapper.DeleteMiniVan(instancePtr);

If you run the application, you will see the output shown in Figure 1-9.

o _ol x

Invoking AddMumbers<> ...
i + 18 i= 2@

Invoking AddArrayC> ...
Sum of array is 137

Invoking DisplayBetterGCar<r...
---meszage hoxes are displaving...

Invoking GiveMeThreeBaszicCars(>...
Structure B: BMU Green
Structure 1: Ford Pink
Structure 2: Uiper Red

Invoking CHMinilan.DisplayMumberOf Kids<{>. ..
umber of kids in Mini Uan dis: 52

Press any key to continue_

Figure 1-9. A C# client interacting with MyCustomDLL.dll

CODE The PInvokeCustomDLL project is included under the Chapter 1

/—\..._
\/ - directory.

C

40

Understanding Platform Invocation Services

Examining the Underlying IL

There is one final point of interest regarding the current C# client application.
You may be wondering exactly how a given DIlImport attribute is represented
under the hood in terms of the underlying IL. Assume you have loaded the
PInvokeCustomDLL.exe assembly into ILDasm.exe. If you examine the IL
(intermediate language) for any DllImport statement defined by the wrapper
class, you will find that the [pinvokeimpl] tag is used to inform mscoree.dll that
this method will invoke a member in an external unmanaged DLL. For example,
consider the IL for the AddNumbers() method:

.method public hidebysig static pinvokeimpl("MyCustomD1l.d11" winapi)
int32 AddNumbers(int32 x, int32 y) cil managed preservesig

Because you did not specify an EntryPoint value, you have a one-to-one
mapping between the managed and unmanaged method names. However, if you
check out the IL for the managed GetTheKids() method, you will find that the
[pinvokeimpl] tag is qualified with an “as” statement that points to the correct
mangled name of the export:

.method public hidebysig static pinvokeimpl("MyCustomDll.d11l" as

"\?DisplayNumberOfKids@CMiniVan@@QAEHXZ" thiscall)
int32 CGetTheKids(native int thisPointer) cil managed preservesig

When the engine encounters the [pinvokeimpl] tag, the following tasks ensue:
¢ The runtime locates the DLL containing the function.
¢ The runtime loads the DLL into memory.

e The runtime locates the address of the function in memory and marshals
parameters as required.

¢ Control is transferred to the unmanaged function.
Once the unmanaged function receives control, the runtime waits for the

method call to return and hands back any function return values in terms of
managed code. Figure 1-10 illustrates the basic process.

41

Chapter 1

42

Some Managed Application Unmanaged DLL
IL Instructions for AddArray() C++ Code
.method public hidebysig static extern "C"
pinvokeimpl("MyCustomD1l.d11" “| MYCUSTOMDLL_APT int
winapi) AddArray(int x[], int size)
int32 AddArray(int32[] x, {...}
int32 y) cil managed preservesig
{

Figure 1-10. Behold, the guts of PInvoke.

Working with Unmanaged Callbacks

To wrap up this chapter, let’s check out how PInvoke allows managed code to
interact with traditional Win32 callback functions. First question: What exactly is a
callback function? Simply put, a callback function is a function defined by a DLL,
but implemented by the caller, that can be called by the DLL. Typically, callback
functions are used when the unmanaged DLL needs to report back to the invoker.
This may be to simply signal that a given task is completed or indicate that the
unmanaged DLL needs additional information from the caller. Figure 1-11 docu-
ments the basic callback pattern.

Some Managed Application Unmanaged DLL

C++ Code
Implementation of Callback

Function

Do some work and call

the callback function

using client-supplied
function pointer

Pass address of callback
function to unmanaged DLL

Figure 1-11. The basic callback pattern

Understanding Platform Invocation Services

This basic pattern of passing one part of a system a pointer to a function
located at another part of the system is a common theme in Windows develop-
ment. As you may know, the COM connection point architecture takes the same
basic approach using interface references. Likewise, Win32-style callbacks are the
forerunner of the modern day .NET delegation protocol.

A Simple Callback Example

To illustrate the process of interacting with Win32 callbacks from managed

code, assume you have created a new Win32 DLL project workspace named
MyCustomCallbackDLL. The first order of business is to define a prototype of the
method that will be implemented by the caller. Think this one through just a bit. If
the unmanaged DLL is going to be passed a pointer to a function implemented
elsewhere, it must be able to understand the calling conventions of said function
(such as the parameters and return type). To keep things simple, your first callback
prototype will take no parameters and return a boolean (to signal if the client has
successfully completed its share of the workload):

// Simple Callback prototype.
typedef bool (CALLBACK *SIMPLECALLBACKFUNCTION)();

The lack of arguments is syntactically signified by the empty parentheses. The
CALLBACK tag is defined within windef.h as follows:

#define CALLBACK __stdcall

To keep your wits about you, I'll take the opportunity here to remind you that
this function will be implemented by the caller but prototyped by the unmanaged
DLL.

The next step is to define a function export that can take a pointer to this
function and trigger the client-side implementation at a later time. Again to keep
things simple, your export will verify the current invocation and immediately
trigger the callback using the supplied function pointer:

extern "C" MYCUSTOMCALLBACKDLL API void
VerifyAndReportBack (SIMPLECALLBACKFUNCTION pf)
{

MessageBox(NULL, "You called me...about to call you!",
"Unmanaged DLL", MB_OK);

43

Chapter 1

44

// Call the managed function using incoming pointer.
bool res = (*pf)();

// Get result from callback.
if(res)
MessageBox (NULL, "Callback says TRUE",
"Unmanaged DLL", MB_OK);
else
MessageBox (NULL, "Callback says FALSE",
"Unmanaged DLL", MB_OK);

Notice that when the VerifyAndReportBack() export wishes to call the client-
side callback, it simply makes use of the supplied function pointer:

// This line basically says "I am calling a
// function which matches the calling

// conventions established by the

// SIMPLECALLBACKFUNCTION callback

// definition."”

bool res = (*pf)();

A More Interesting Callback Function

Let’s add one additional callback to your new DLL that allows the caller to pass in
not only a pointer to some function on their end, but also a single argument of
type THEPOINT. The client will allocate a THEPOINT structure that will be manip-
ulated by the export and passed to the client’s callback. Here are the complete
details:

// A basic structure.
typedef struct THEPOINT
{

int x;

int y;
} THEPOINT;

// THEPOINT Callback prototype.
typedef bool (CALLBACK *POINTCALLBACKFUNCTION)(THEPOINT* i);

extern "C" MYCUSTOMCALLBACKDLL_API void
ChangePOINTAndReportBack (POINTCALLBACKFUNCTION pf,
THEPOINT* thePoint)

Understanding Platform Invocation Services

MessageBox(NULL, "Received THEPOINT and am about to change it...",
"Unmanaged DLL", MB_OK);

// Take the incoming THEPOINT and change it.
thePoint->x = 10000;
thePoint->y = 20000;

// Call the managed function.
bool res = (*pf)(thePoint);

// Get result from callback.

if(res)

MessageBox (NULL, "Callback says TRUE",
"Unmanaged DLL", MB_OK);

else

MessageBox(NULL, "Callback says FALSE",
"Unmanaged DLL", MB_OK);

In this case, the client will pass in a function pointer that matches the calling
conventions defined by the POINTCALLBACKFUNCTION callback definition.
Thus, the following unmanaged code:

// Call the managed function.
bool res = (*pf)(thePoint);

says in effect: I will call a function on the client which takes a THEPOINT
parameter and returns a Boolean.

g leeeee CODE The MyCustomCallbackDLL project is located under the
\ YR Chapter 1 subdirectory.

45

Chapter 1

Building a C# Callback Client

Now that you have a custom DLL that defines two callback prototypes, you are in
the position to build a C# application to provide an implementation. When you
wish to interact with a traditional Win32 callback from managed code, you follow a
very fixed set of steps:

1. Define a .NET delegate that represents the unmanaged callback.

2. Build a Dllimport statement for the unmanaged export, using the .NET
delegate as the function pointer parameter.

3. Assign a managed function to the delegate.

4. Trigger the unmanaged export.

Confused? Don't be. To see each piece fit together, ponder the following C#
code, which interacts with the SIMPLECALLBACKFUNCTION prototype:

namespace CustomCallbackClient
{
class ManagedCallBackApp
{
// typedef bool (CALLBACK *SIMPLECALLBACKFUNCTION)();
// 1) Define a delegate representing the unmanaged callback
// prototype.
public delegate bool ReportBackHere();

// 2) Build the D1lImport (note the parameter is our delegate).
[D11Import("MyCustomCallbackDLL.d11")]
public static extern void VerifyAndReportBack(ReportBackHere callback);

[STAThread]
public static void Main()

{
// 3) Assign a function for the delegate to call.

ReportBackHere simpleCallback =
new ReportBackHere(ManagedCallBackApp.Report);

// 4) Call the unmanaged export.
VerifyAndReportBack(simpleCallback);

46

Understanding Platform Invocation Services

// This will be called by the unmanaged DLL.
public static bool Report()

{
Console.Writeline("I was called by the DLL!");

return false;

Notice that the managed delegate maps identically to the unmanaged call-
back prototype, in that both return a Boolean and neither takes any arguments.

// The C++ callback prototype.
typedef bool (CALLBACK *SIMPLECALLBACKFUNCTION)();

// The C# managed delegate.
public delegate bool ReportBackHere();

When you build the DIlImport statement, you make use of this delegate in
place of the unmanaged SIMPLECALLBACKFUNCTION. Again, ponder the rela-
tionship:

// The C++ export takes a pointer to a function that matches.
// SIMPLECALLBACKFUNCTION.

extern "C" MYCUSTOMCALLBACKDLL_ API

void VerifyAndReportBack(SIMPLECALLBACKFUNCTION pf)

-}

// The C# DllImport statement uses the delegate.
[D11Import("MyCustomCallbackDLL.d11")]
public static extern void VerifyAndReportBack(ReportBackHere callback);

The remainder of the logic simply defines and implements the method called
by the delegate. Now, what of the POINTCALLBACKFUNCTION prototype? The
only difference is to build a managed equivalent of the THEPOINT structure.
Other than that, simply repeat the process:

namespace CustomCallbackClient

{
[StructLayout(LayoutKind.Sequential)]

public class THEPOINT
{

47

Chapter 1

public int x;
public int y;

}
class ManagedCallBackApp
{
public delegate bool SendTHEPOINTHere(THEPOINT pt);
[D11Import("MyCustomCallbackDLL.d11")]
public static extern viod ChangePOINTAndReportBack
(SendTHEPOINTHere callback, THEPOINT pt);
[STAThread]
public static void Main()
{
SendTHEPOINTHere theCallBack = new
SendTHEPOINTHere (ManagedCallBackApp.GiveMeThePoint);
THEPOINT pt = new THEPOINT();
pt.x = 10;
pt.y = 10;
Console.WritelLine("Point is:");
Console.WritelLine("X = {o}\nY = {1}", pt.x, pt.y);
ChangePOINTAndReportBack(theCallBack, pt);
}
public static bool GiveMeThePoint(THEPOINT pt)
{
Console.WritelLine("New Point is:");
Console.Writeline("X = {o}\nY = {1}", pt.x, pt.y);
return true;
}
}

. CODE The CustomCallbackClient project is included under the
W eeeee, .
R Chapter 1 subdirectory.

—
~

an

48

Understanding Platform Invocation Services

At this point, you have examined the process of building managed .NET appli-
cations that are able to communicate with traditional C-style DLLs. While not as
sexy as the act of COM/.NET communication, PInvoke is helpful when you need
to access legacy (non-COM) binary modules. Although this chapter focused on the
process of interacting with custom *.dll files, all of the information presented here
applies directly to the process of triggering a Win32 API function.

Summary

PInvoke is the aspect of the .NET Framework that is specifically geared toward the
task of invoking functions defined in non-COM DLLs. As you have seen, the back-
bone of PInvoke is the Dlllmport attribute, which allows you to map a managed
method to an unmanaged equivalent. This class type contains a number of fields
that allow you to specify calling conventions, string representations, and error
information.

In addition to the DllImportAttribute type, activities involving PInvoke typi-
cally make use of the Marshal class, which defines a number of static members
that allow you to transform raw memory (System.IntPtr) into strongly typed UDTs
(for example, Marshal.PtrToStructure() and friends). Finally, this chapter illus-
trated how .NET delegate types can represent traditional Win32 callback proto-
types. Once you have defined an appropriate delegate, this can be passed into the
unmanaged function export as if it were indeed an unmanaged function pointer.

Now that you have seen how to interact with traditional C-based DLLs, the next
chapter drills into the specifics of the internal composition of COM-based DLLs.

49

The Anatomy
of a COM Server

In terms of software longevity, Microsoft’s Component Object Model (COM) has
enjoyed a lengthy and successful life. Formally solidified circa 1993, COM
formalized a specific process for building reusable, binary software components.
When developers abide by the rules of COM, they are presented with a number of
desirable byproducts. One of the great byproducts of COM components is their
language-independent nature. This trait allows software developers to build COM
servers in one language (such as VB 6.0) and reuse them in any number of other
COM-aware languages (such as C++). However, depending on your programming
tool of choice, the internal composition of a COM server may be a bit of a mystery.

Given that the only way to truly comprehend COM/.NET interoperability is to
understand the nuances of both architectures, this chapter is intended to provide
a concise overview of the COM paradigm. During the process, you build a
complete COM binary (using raw C++ and IDL [Interface Definition Language])
that will be accessed by various .NET-aware languages later in this text. Along the
way, you will be reminded of the role of the system registry, the COM library, and
related entities such as the [lUnknown, IClassFactory, and IDispatch interfaces.
However, before you dive into the guts of a COM DLL, let’s begin by formalizing
the role of interface-based programming.

0f Classes and Interfaces

One of the central architectural foundations in COM programming is the separa-
tion of implementation (class) from protocol (interface). Simply put, an interface
is a collection of semantically related methods that may be implemented by a
given COM class (often called a coclass). Once a coclass has been instantiated by a
particular client, the in-memory representation is termed a COM object.

The odd thing about programmatic interfaces (as opposed to GUI interfaces)
is the fact that the interfaces never define member variables, implementation
logic, or other coding items that would mark them as a useful entity. Rather, the

51

Chapter 2

52

sole purpose of a programmatic interface is to specify the calling conventions a
client must abide by to communicate with the implementing coclass.

Once an interface has been defined (using the syntax of your favorite
programming language), any number of COM classes may choose to support the
specified interface. Given that an interface is a grouping of semantically related
methods, it is common (and helpful) to regard an interface as a specific behavior
that the class in question supports. A key point to understand is that it is
completely possible (and very common) for multiple COM classes to support the
identical interface in unique ways. As you may already be aware, this is yet another
form of programmatic polymorphism (more on this tidbit in just a moment). It is
also quite possible (and very common) for a single coclass to support multiple
interfaces.

Interfaces from a Non-COM Perspective

Although using interfaces is inescapable in COM development, it is possible to
make use of this programming discipline from non-COM environments. To illus-
trate the basic mechanics of interfaced-based programming, I'll open this chapter
with a simple C++ example named Interfaces. If you wish to follow along, launch
Visual Studio 6.0 and create a new Win32 Console Application (Figure 2-1).

Files Projects Workspacml Other Documents

L2 ATL COM Apphwizard %] win32 Static Library Project name:
7| Cluster Rezource Type ‘Wizard Ilnlerfaces

g+ Custom Appiwizard

=1 0 atabase Project

Lozation;
IE: “hpress Book s\nteropB ook L J

¥ Cieate new workspace
MFC Activex Controbafizard ¢ Add ta curent workspace

[Dependency of:

| I

Platforms:
Iwm32
|

A OREo cation
@ Win32 Dynamic-Link Library
L] U}] »

QK I Canicel

Figure 2-1. Creating a new Win32 Console Application project

The Anatomy of a COM Server

Once you click the OK button, select A simple application from the resulting
dialog box (Figure 2-2).

Win32 Console Application - 5tep 1 of 1

What kind of Conzole Application do pou
want ko create?

™ An empty project,

& "Hello, World!" application,
™ An application that supports MFC.

¢ Back | et = | Finizh I Cancel

Figure 2-2. A “simple application’ fits the bill.

This option generates a *.cpp file that defines an empty main() function. As you
are most likely aware, each and every C++ executable application requires a main()
function (or in the case of a Windows application, WinMain()) that marks the entry
point to the program. To begin coding your interface example, define the following
interface using generic C++ in the same file that defines the main() function:

// We contend with IUnknown, GUIDs, and IDL soon enough..
class ICar
{
public:
virtual void SpeedUp(long delta) = 0;
virtual void CurrentSpeed(long *currSp) = 0;

};

53

Chapter 2

54

int main(int argc, char* argv[])

{

return 0;

Here, you have defined an interface (ICar) that describes a basic behavior for
any automobile type you may be constructing. Notice that both methods
(SpeedUp() and CurrentSpeed()) have been defined as pure virtual functions
(marked by the “virtual” prefix and “=0” suffix adorning each signature). Again,
given that interfaces simply establish calling conventions for the object and object
user, it stands to reason that the C++ language expresses interfaces as a named set
of abstract methods.

Cleaning Up the Interface Definition

The C++ language does not supply a specific keyword to define an interface
(COM-based or not). Instead, C++ programmers typically make use of the class or
struct keywords. The big difference is the fact that the default visibility of class
members is private, whereas the default visibility of structure members is public.
Thus, if you so choose, you can define the ICar interface as a structure and omit
the public visibility keyword:

// Structure members are public by default.
struct ICar
{
virtual void SpeedUp(long delta) = 0;
virtual void CurrentSpeed(long *currSp) = 0;

};

If you really want to make your interface definitions stand out, you can also
make use of the “interface” symbol defined in objbase.h as follows:

// Must include objbase.h (or simply windows.h) to
// use the 'interface' symbol.
#define interface struct

Given that “interface” is just an alias to the struct keyword, you wind up with
the final iteration of the C++ ICar interface definition:

// The final ICar interface.
interface ICar

The Anatomy of a COM Server

virtual void SpeedUp(long delta) = 0;
virtual void CurrentSpeed(long *currSp) = 0;

};

Building the Class Types

Because interfaces define a set of pure virtual function, any class that wishes to
implement an interface is obligated to flesh out the details of each member. The
simplest way to implement an interface in C++ is to make use of classic inheri-
tance. Assume that you have two concrete classes (Car and HotRod) implementing
the ICar interface in their unique manners (again, feel free to implement these
class in the initial *.cpp file):

// The basic Car.

class Car : public ICar

{

private:
long m_currSpeed;

public:
Car() { m_currSpeed = 0; }
virtual ~Car(){}

// ICar implementation.

void SpeedUp(long delta)

{
cout << "I am a basic car" << endl;
m_currSpeed += delta;

void CurrentSpeed(long *currSp)
{ *currSp = m_currSpeed;}

b

// The wicked cool car.

class HotRod: public ICar

{

private:
long m_currSpeed;

public:
HotRod() { m_currSpeed = 0; }
virtual ~HotRod(){}

55

Chapter 2

// ICar implementation (massive turbo booster!)
void SpeedUp(long delta)
{
cout << "I am a hot rod!" << endl;
m_currSpeed += (delta * 20);

void CurrentSpeed(long *currSp)
{ *currSp = m_currSpeed;}

};

As you can see, when you ask a simple Car to speed up by some amount, the
internal speed is adjusted verbatim. However, if you ask a HotRod to speed up
using the same interface, you find the automobile advances at breakneck speed
(20 times delta!). Because each class supports the same interface, the user of each
object can treat them identically (that’s the point of polymorphism). To see your
cars in action, assume you have updated the application’s main() loop as follows
(the output can be seen in Figure 2-3):

// Don't forget to include iostream.h to access cout.
int main(int argc, char* argv[])
{

// Create an array of two ICar interfaces.

ICar* theCars[2];

theCars[0] = new Car();

theCars[1] = new HotRod();

// Speed up each car 5 times, using the ICar interface.
for (int j = 0; j < 5; j++)
{
for(int i = 0; i < 2; i++)
{
theCars[i]->SpeedUp(10);
long currSp = 0;
theCars[i]->CurrentSpeed(&currSp);

cout << ->Speed: " << currSp << endl;

}

// Clean up memory.
delete[] *theCars;
return 0;

56

The Anatomy of a COM Server

C:\Apress Booksilnterc

am a basic car
—>Speed: 18

am a hot rod?
—>Speed: 20A
am a basic car
—»Speed: 28

am a hot rod?
—>Speed: 468
am a basic car
—»Speed: 38

am a hot »od?
—»Speed: 684
am a basic car
—>Speed:- 48

am a hot rod?
—>Speed: BHA
am a basic car
—»Speed: 58

am a hot rod?
—»Speed: 1888

Preszs any key to continue

Figure 2-3. Driving your cars using interface references

Here, the main() function creates an array of ICar pointers, each member of
which is set to a unique automotive type. Given that both Car and HotRod imple-
ment the behavior defined by ICar, you are able to interact with each type using a
simple ICar reference. However, because each class responds uniquely to the same
request (“Speed up by delta”) we have injected polymorphic behavior into the
application. Consider Figure 2-4, which illustrates this concept using the popular
COM lollipop notation.

57

Chapter 2

58

You do it your way... ICar

%

Car

Client says ~

SpeedUp()
)

HotRod

...and you do it yours. ICar

%

~—

Figure 2-4. Polymorphic behavior a la interface-based programming

Interfaces Are Strongly Typed Variables

In addition to the fact that you can manipulate classes using interface references,
you are able to use interfaces as method parameters (and return types). For
example, if you had a global method named RevEngine() which takes an ICar* as
its sole argument as follows:

// Rev the engine of a given automobile.
void RevEngine(ICar* pCar)

{
long currSp = 0;
for(int i = 0; 1 < 5; i++)
{
pCar->SpeedUp(10);
pCar->CurrentSpeed(&currSp);
cout << "Speed: " << currSp << endl;
}
for(i =5; 1> 0; i--)
{
pCar->SpeedUp(-10);
pCar->CurrentSpeed(&currSp);
cout << "Speed: " << currSp << endl;
}
}

The Anatomy of a COM Server
you can safely pass in any type that supports the ICar interface, as shown here:

// Make some cars and rev the engines.
ICar* pAnotherCar = new Car();

ICar* pAnotherHotRod = new HotRod();
RevEngine(pAnotherCar);
RevEngine(pAnotherHotRod);

delete pAnotherCar;

delete pAnotherHotRod;

If you attempt to pass in an incompatible type (such as a CellPhone object):

// The CellPhone class does not implement ICar!
CellPhone cp;
RevEngine(cp); // Error!

you will (thankfully) be issued a compile time conversion error:

error C2664: 'RevEngine' : cannot convert parameter 1 from 'class CellPhone’
to 'struct ICar *'

Classes Can Support Multiple Interfaces

The next concept you must understand about interface-based programming is
that it is possible for a single class type (COM-based or otherwise) to implement
multiple interfaces. Assume you define another interface named IConvertible:

// Another possible behavior a class may support.
interface IConvertible

{

virtual void LetTheSunIn(bool isOpening) = 0;
15

Certainly not all cars are convertibles. However, you can equip some automo-

biles to support IConvertible (the hot rod, of course) while other cars (say, mini-
vans) do not. Pictorially, you can view the behaviors as shown in Figure 2-5.

59

Chapter 2

ICar
ICar ::

O MiniVan IConvertible HotRod

O—

Figure 2-5. A single class may support multiple behaviors.

When C++ programmers build classes that support numerous interfaces, the
simplest approach is to use standard multiple inheritance. Thus, you could update
the HotRod definition as follows:

// The HotRod now supports two behaviors.
class HotRod: public ICar, IConvertible

{

. same as before..

// IConvertible impl.
void LetTheSunIn(bool isOpening)

{
if(isOpening)
cout << "Opening sun roof" << endl;
else
cout << "Closing sun roof" << endl;

};

Of course, for the object user to make use of this new behavior, there must be
a manner by which to query the type for a discrete interface (ICar or IConvertible).
Ideally, the object itself would be able to return interface references to the user on
request, rather than forcing the object user to perform awkward pointer casting
directly. As you may already know, this is one of the core duties of the standard
COM interface: IlUnknown. You will see this interface in action later in this chapter,
so let’s hold off on discussing the details of client-side usage of classes supporting
multiple interfaces.

60

The Anatomy of a COM Server

Interfaces Provide a Versioning Scheme

The final aspect of interfaced-based programming that I cover here is the fact that
interfaces may be versioned. By way of a simple example, assume that you wish to

update the original behavior defined by the ICar interface to support the following
new member:

// ICar was initially defined March 24th 2001.
interface ICar

{
virtual void SpeedUp(long delta) = 0;
virtual void CurrentSpeed(long *currSp) = 0;
// Added this method April ist 2001.
virtual void TurnOnRadio(bool state) = 0;

};

While this might seem like a rather harmless approach, check out the code
comments. Here you can see that the initial ICar interface was created 3/24/01.
The new member was added some time after the fact (4/1/01). Now, what if you
had a code base that defined two automobile types, each supporting different iter-
ations of the ICar interface? This would be a horrible thing.

A central rule of interface-based programming is that interfaces (once in
production) should never change. If you make a change, you have just broken
polymorphism! Consider the following (problematic) code:

// The MiniVan supports the ICar defined on 3/24/01.
ICar* pMV = new Minivan();
pMV->TurnOnRadio(true); // Bomb!

// The HotRod supports the ICar defined on 4/1/01.
ICar* pHR = new HotRod();
pHR->TurnOnRadio(true); // OK.

As you can see, although both class types claim to support the ICar interface,
the truth of the matter is they each support a version of the same interface. If you
attempt to turn on the radio for your current MiniVan type, you bomb at runtime,
given that the TurnOnRadio() member is not defined as of 3/24/01, and therefore
is not supported by the MiniVan class.

61

Chapter 2

62

When you wish to version an existing interface, the standard approach is to
derive a new interface from an existing base interface. Keeping with convention,
each derived interface is suffixed with a numerical version identifier (following
n+1 increments). That said, ponder the following (safe) extension of the ICar
interface:

// ICar.

interface ICar

{
virtual void SpeedUp(long delta) = 0;
virtual void CurrentSpeed(long *currSp) = 0;

};

// ICar2 (derives from ICar).
interface ICar2 : public ICar

{
// Added this method April 1st 2001.

virtual void TurnOnRadio(bool state) = 0;

};

Notice that the new ICar?2 interface derives from ICar, and therefore inherits
the abstract members defined by its base type. If the HotRod was now derived
from ICar2, the type has brought in support for the simpler ICar interface as well:

// HotRod now supports three interfaces (ICar, ICar2, and IConvertible).
class HotRod: public ICar2, IConvertible

{

;/ ICar impl.

// ICar2 impl.

// IConvertible impl.
15

Using this versioning scheme, the object user can determine if a type in ques-
tion supports the newer ICar2 behavior. If not, you can fall back on the initial ICar
functionality. Again, as you may already know, the [Unknown COM interface
equips a COM type to return “yes” or “no” to the question “Do you support this
interface?” You see the exact details of this functionality a bit later in the chapter.
That wraps up your initial look at interfaces from a simple C++ (non-COM)
perspective. With this introduction aside, you can now focus your attention on
COM proper.

The Anatomy of a COM Server

1 leeeee CODE The Interfaces application can be found under the Chapter 2
- subdirectory.
aal

The Composition of a COM DLL

So much for our brief overview of the key benefits of interface-based program-
ming. For the remainder of this chapter, you focus your attention on the process of
building a COM DLL server (and various clients) using C++ and IDL. Before you
pound out the code, Figure 2-6 illustrates the core atoms of the initial binary
image you will be constructing.

D11RegisterServer() RawComServer.d1l

IUnknown () IUnknown ()

D1lUnregisterServer()

IClassFactory

D11GetClassObject() e——> () ComCar

Class Factory

D11CanUnloadNow()

Figure 2-6. The composition of a COM DLL server

All COM DLLs have the same internal composition regardless of which COM-
aware language you build them in. First, a COM server contains some number of
coclasses (which as you recall is a type supporting at minimum the mandatory
IUnknown interface). Because IUnknown is so critical in COM programming,
this interface is represented as a lollipop mounted on the top of a given coclass.
To the left of the coclass is the set of auxiliary interfaces. Assume that the
RawComServer.dll contains a single coclass named ComCar. This COM type
supports two interfaces, ICar and ITUnknown.

COM servers also support a special sort of COM type termed a class factory
(also termed a class object). COM class factories also support the mandatory
IUnknown, as well as another standard interface named IClassFactory. This inter-
face allows the COM client to create a given coclass in a language- and location-
neutral manner. As you may be aware, it is possible for a COM class factory to
support the IClassFactory2 interface (which derives from IClassFactory).

63

Chapter 2

64

The role of IClassFactory? is to define additional methods to check for a valid
license file before activating the object.

In addition to the set of coclasses and class factories, COM DLLs must support
a small set of function exports. These function exports allow the COM runtime to
interact with the internal types, as well as perform registration and unregistration
of the COM binary itself. Table 2-1 provides a breakdown of each DLL export.

Table 2-1. COM DLL Function Exports

COM DLL Function Export Meaning in Life
DllRegisterServer() This method, which is technically optional, is used to install
the necessary entries into the system registry.

DllUnregisterServer() This method (also technically optional) removes any and all
entries inserted by DIIRegisterServer().

DllCanUnloadNow() This method is called by the COM runtime to determine if
the DLL can be unloaded from memory at the current time.

DllGetClassObject() This method is used to retrieve a given IClassFactory
interface to the COM client based on the CLSID of the COM
class in question. Once this interface has been obtained, the
client is able to create the associated coclass.

The final points of interest are the global variables (realized in Figure 2-6 as
g _ObjectCount and g_lockCount). COM DLLs need to monitor the number of
active coclasses it contains (seen here as g ObjectCount). As you will see, every
time a COM class (including class factories) is created, the server-wide object
counter is incremented by 1. When a given object is destroyed, this same counter
is decremented by 1.

The lock counter (g_lockCount), on the other hand, represents the number of
active locks on the DLL at any given time. Using a valid IClassFactory(2) interface
reference, a COM client can lock (and unlock) the server in memory. In this way, a
COM client can say in effect “although I don't plan on creating coclasses right now,
stay in memory for the time being.”

These two global counters are ultimately consulted by the
DllCanUnloadNow() function export. If the number of active objects
and active locks are both zero, the DLL may be safely unloaded from memory.

The Anatomy of a COM Server

The Role of Type Libraries

Given the language-neutral aspect of COM, it makes little sense to define an inter-
face using the syntax of a particular and specific programming language. For
example, consider the previous C++ definition of ICar. If you wish to build a COM
client using VB 6.0, you are out of luck. Simply put, how can the VB 6.0 compiler
understand an interface defined in C++? It cannot. On a related note, what if you
defined ICar using VB 6.0? Certainly Delphi, C++, C, and Java (J++) clients have
little understanding of the syntax of VB 6.0. What is needed is a way to define a
COM type in a language-neutral format.

The IDL is the metalanguage used to describe COM items in language-
independent terms. Once you have created an *.idl file describing the COM
types in a given COM server, the resulting *.idl file is sent into the Microsoft IDL
compiler: midl.exe. The midl.exe compiler emits a binary equivalent termed a type
library. This library contains the same information as the raw IDL, tokenized into
alanguage-neutral format. By convention, type libraries end with the *.tlb file
extension. This file, however, may be bundled into the COM server itself to keep
the binary image more modular.

As an example, assume that you have created such an IDL file and produced
an equivalent type library using the MIDL compiler. If you were to build a VB 6.0
client, you could reference this information using the IDE’s Project | References
menu option. The resulting dialog (Figure 2-7) lists all type libraries that are regis-
tered on the development machine.

References - Project1

Available References:
O Project1 -~ Cancel |
[Iquery 7.0 Type Library b

[quickTimeCheck object 1.0 Type Library

[1RacReg Browse... |
[rRAD 98 - Wizard Interfaces

[RAD Host Wizard ﬂ

[rAssistance 1.0 Type Libra

Blracomcaro - |
[RBSecDemoSvr 1 Help

[rBSecDemoSwr j

O rebdyctl 1.0 Type Library

[rDCClientHost 1.0 Type Library

[rDSServerHost 1.0 Type Library

[real Plaver ActiveX Control Library

|l 1} |

—RawComCarLib

Location: C:\Apress Books\InteropBook\Labs\Chapter 2\RawComCar\D
Language: Standard

Figure 2-7. Type information is binary IDL (and is thus language-independent).

65

Chapter 2

66

The Full MIDL Output

In addition to the *.tlb file, the MIDL compiler also generates a number of files
that are intended to be used during the development of the COM server and C++
COM clients. Figure 2-8 illustrates the complete MIDL output.

RawComCar.idl

MIDL.EXE
RawComCar.h RawComCar_i.c RawComCar.tlb RawComCar_p.c
Contains Contains Binary IDL . dlldata.c .

C and C++ the GUIDs primarily for Files used to build a
definitions for each non C/C++ custom stub and proxy
for each COM type clients DLL to marshal your

COM type COM interfaces
Language Files Stub Proxy Files

Figure 2-8. Output of the Midl.exe compiler

As you can see, the name of each output file is based on the name of the initial
IDL file. For your purposes, you don’'t need to concern yourself with the *._p.c or
dlldata.c files, as you will not need to marshal your interfaces out of process. You
will see the *._i.c and *.h files in action as you build your C++ client (and the COM
server itself).

The Role of the System Registry

Once a COM server (and the related type information) has been created, the final
step is to catalog the server into the system registry. The role of the system registry
cannot be overstated in COM, given that if a server is not registered (or registered
incorrectly) the COM client is completely unable to make use of the contained
types. Although the system registry is an incredibly complex beast, the good news
is that COM programmers only need to be aware of a very small subset of its
overall functionality. You examine the core set of registry entries later in this
chapter.

Creating the COM DLL Project Workspace

The Anatomy of a COM Server

Now that you have seen the high-level layout of the COM server you will be

constructing, we can get down to the business of building the DLL itself. To begin,
create a new Win32 Dynamic-Link Library project workspace named RawComCar
(Figure 2-9). From the resulting dialog, select “A simple DLL project” (Figure 2-10).

Filez Projects ‘Workspaces | Other Documents

L& ATL COM Apphwfizard] 'win32 Static Library Project name:
7] Cluster Resource Type Wizard IHawEomEar

g Custom sppiafizard .

&0 Databaze Project Logation:

M D evStudio Addin Wizard

Extended Stored Proc Wwizard

e | 54P1 Extenzion Wizard

' Create new workspace

= Add to curent workspace
™ Dependency of:

|E:\AF'F|ESS BOOKSMNTEROP J

IFlawEnmEar ;I
Flatforms:
IW’in32
£ L]] =
Corce |

Figure 2-9. Creating the DLL project workspace

Win32 Dynamic-Link Library - Step 1 of 1

“What kind of DLL waould you like ta create ?

[- o] :
I ¢~ &n empty DLL project.
= & simple DL project’
%-ﬁ " 4 DLL that exports some symbols.
FEEEE

< Back | Hext > | Eirizh I Caticel

Figure 2-10. Selecting the DLL project type

67

Chapter 2

68

As you can see, your project workspace contains a single *.cpp file that
contains a definition for DlIMain(). Technically speaking, COM DLLs do not need
to support DIIMain(), however, if the DLL does indeed support this method, it is
called automatically when the binary is loaded and unloaded from memory (see
Chapter 1). For illustrative purposes, update the dummy implementation to
display a Win32 message box based on the reason for the invocation.

// Need to include <windows.h> to access the MessageBox() function.
#include <windows.h>

BOOL APIENTRY D11Main(HANDLE hModule,
DWORD ul reason_for call, LPVOID lpReserved)
{
// Just for fun...
if (ul reason for call = = DLL_PROCESS_ATTACH)
MessageBox(NULL, "I have been loaded!", "DllMain says:", MB OK);

if (ul_reason for call = = DLL_PROCESS_DETACH)
MessageBox(NULL, "I have been Unloaded!", "DllMain says:", MB_OK);
return TRUE;
}

Understanding COM Interfaces

Like the previous ICar interface, COM interfaces are a collection of semantically
related functions. When you wish to define a true COM interface, you typically
make use of IDL rather than C++. In addition, COM interfaces differ from the
previous C++ ICar interface in the following ways:

e COM interfaces are identified using a Globally Unique Identifier (GUID).

e COM interfaces must eventually derive from IUnknown.

The Role of the GUID

First, let’s qualify the GUID. Given that numerous developers may decide that the
string token “I-C-a-1” is a great alias for a specific interface, name clashes are
almost certain. For example, if you install five COM servers on your development
machine and three of these binaries define an interface named ICar, imagine how
confused the COM runtime becomes, given that there are numerous entities iden-
tified by the same string token.

The Anatomy of a COM Server

To solve these potential name clashes, COM demands that each and every
interface be uniquely specified using a GUID. A GUID is a 128-bit number that is
statically unique. Physically, a GUID is a four-field structure defined as follows:

// GUIDs define numerous COM entities.
typedef struct GUID

{
DWORD Datai;
WORD Dataz;
WORD Data3;
BYTE Data4[8];
} GUID;

When you want to generate a new GUID, you can do so programmatically by
using the COM library function CoCreateGuid():

// Get a GUID on the fly.
GUID myInterfacelD;
CoCreateGuid(8myInterfacelD);

When you need a GUID at design time, it is far simpler to make use of
the guidgen.exe utility supplied with Microsoft Visual Studio. You will find
guidgen.exe installed under your “<drive>:\Program Files\Microsoft Visual
Studio\Common\Tools” directory (provided you used the default install paths).
Guidgen.exe defines four possible formats. However, when you create IDL files,
the only option you care about is the Registry Format selection (Figure 2-11).

Create GUID
Choose the desired format below, then select "Copy'” ta
copy the results bo the clipboard [the results can then be —
pazted into your zource code]. Choogze "Exit' when Mew GUID
dore, =

— GUID Format Exit |

" 1. IMPLEMENT_OLECREATE[.]
" 2 DEFINE_GUID(...]

" 3. stalic const stuct GUID = { .}
4 Reqisty Format [ig. Domemees-mee . smws 1
— Result

184 7CALLS-B4EE -deaf-94001 -CADI4EBOOOSCT

Figure 2-11. Obtaining a GUID at design time

69

Chapter 2

70

A GUID by Any Other Name..

One aspect of COM development that can be a source of confusion is the fact that
the same GUID structure is used to describe any sort of COM-ism. For example,
when a GUID is used to define a COM interface, this is termed an IID (interface
ID). If the GUID is used to specify the coclass itself, the GUID is called a CLSID
(class ID). Similar terms exist to define a COM type library (LIBID), COM category
(CATID), and the COM server application itself (AppID). Always remember that
regardless of what the GUID is referring to, it is the same GUID structure defined
in winnt.h.

Common GUID Helpers

The COM library provides a set of useful functions and types for working with
GUIDs programmatically. Many COM library functions take GUIDs as parameters,
and given that a 128-bit number might be a bit hefty to pass by value, a number of
system defines (found in wtypes.h) are provided to pass these structures around
by reference:

// wtypes.h lists a number of defines to work with GUIDs in code.
#define REFGUID const GUID * const

#define REFIID const IID * const

#define REFCLSID const CLSID * const

You are also given a set of COM library functions to do comparisons of two
existing GUIDs:

// Defined in objbase.h

BOOL IsEqualGUID(REFGUID g1, REFGUID g2);
BOOL IsEqualIID(REFIID i1, REFIID i2);
BOOL IsEqualCLSID(CLSID c1, CLSID c2);

Each function performs a memcmp() of the two structures and returns a
BOOL as the result of the comparison. For example, the implementation of
IsEqualGUID() follows:

// IsEqualGUID can be used to determine if two GUIDs are identical.
BOOL IsEqualGUID(REFGUID rguidi, REFGUID rguid2)
{

return !memcmp(8rguidi, &rguid2, sizeof(GUID));

The Anatomy of a COM Server

In addition to IsEqualGUID(), the COM library has overloaded the C++
equality operator (= =) and the not equal operator (!=), allowing you to compare
two GUIDs as follows:

// We may also use = = and != with two existing GUIDs, as
// we have overloaded operators at our disposal.

if(gl = = g2) {.} // GUIDs are the same!

if(g1 != g2) {.} // GQUIDs are different!

The implementation of the operator = = function calls IsEqualGUID(), while
the operator != implementation simply leverages operator = =:

// The overloaded operators simply call IsEqualGUID()
BOOL operator == (const GUID& guidOne, const GUID& guidOther)

{
return IsEqualGUID(guidOne,guidOther);
}
BOOL operator != (const GUID& guidOne, const GUID& guidOther)
{
return !(guidOne == guidOther);
}

The Role of IUnknown

Next, you must reflect on the role of the kingpin of COM: I[Unknown. This stan-
dard COM interface is like any other COM interface in that it defines a set of
semantically related functions. The official (slightly simplified) definition found
in unknwn.idl is as follows (note the predefined GUID that identifies this
interface):

[object, uuid(00000000-0000-0000-C000-000000000046)]
interface IUnknown
{
HRESULT QueryInterface([in] REFIID riid,
[out, iid is(riid)] void **ppvObject);
ULONG AddRef();
ULONG Release();

};

71

Chapter 2

72

As you see in far greater detail in Chapter 4, IDL supports the notion of
attributes. In IDL, an attribute is simply a set of keywords (or a single keyword)
that is used to disambiguate a given type definition. These keywords are always
placed within square brackets ([,]) and apply to the item directly below or to the
immediate right. Here, you see that the IlUnknown interface is qualified using the
[object] and [uuid] attributes. The two parameters to the Querylnterface() method
take additional attributes: [in] and [out, iid_is()]. Again, I comment on numerous
IDL attributes throughout this text. For the time being, simply understand that
IDL attributes are used to remove any hint of ambiguity as to the function of a
given COM entity.

IUnknown defines three methods, which provide two discrete behaviors to
every coclass:

e Lifetime management of the COM object
 The ability to obtain interfaces from the COM object

First, IUnknown is used to manage the lifetime of a given COM object. One
marked difference from traditional C++ memory management is the fact that the
COM client is completely decoupled from the direct creation and destruction of a
given COM class. Under the COM paradigm, a client never directly creates a
coclass but does so indirectly using COM library calls. On a similar note, a COM
client never directly deletes a given COM type from memory. So how is a coclass
deallocated?

COM memory management is a joint venture between the client and object.
Every COM object maintains a private internal reference counter that reflects the
number of outstanding references on the object (represented by an unsigned long,
or ULONG, data type). When a client receives a given COM interface reference, the
client is obligated to call [lUnknown::Release() when it is finished using the inter-
face pointer. As you may have guessed, this action decrements the internal refer-
ence counter by one. When the reference count is exactly zero, the object
deallocates itself from memory.

On the other side of the coin, you have the COM object. Recall that COM
objects typically support a great number of interfaces, each representing a specific
behavior the COM type is capable of providing. When a COM client asks for an
interface that is supported by the COM type, the COM object itself calls
IUnknown::AddRef() to increment its reference by one. In effect, an object’s refer-
ence counter reflects the current number of active users at any given time.

The second role of IUnknown is to provide a manner in which an external
client can discover the interfaces supported on a particular COM object. Recall
that by definition, a COM class (coclass) must support at least [lUnknown, but will
need to support at least one additional interface to be deemed useful. More often

The Anatomy of a COM Server

than not, a given COM class supports numerous interfaces to fully qualify its
behavior (consider an ActiveX control, which supports anywhere between 10 and
15 COM interfaces). The Querylnterface() method allows a COM client to ask the
object if it supports a particular interface (specified using an IID) at runtime. If
the object in question supports the requested interface, the object returns an
interface reference for use by the client (and increments its internal reference
counter).

Defining the ICar Interface in IDL

Now that you have a better feel for the role of [lUnknown, you are able to define the
ICar interface. Using the File | New menu selection, inset a new *.txt file into your
current project workspace and save it under the name “rawcomcar.idl”. Using IDL
syntax, populate your file as follows:

// Bring in the core COM data types.
import "oaidl.idl";

// The ICar interface.
[uuid(710D2F54-9289-4f66-9F64-201D56FB66C7), object]
interface ICar : IUnknown
{

HRESULT SpeedUp([in] long delta);

HRESULT CurrentSpeed([out, retval] long* currSp);

};

As you can see, this iteration of the ICar interface is quite different than the
previous C++ version. First and foremost, this custom interface has been adorned
with the mandatory [uuid] and [object] attributes. As you may assume, the GUID
used to identify this COM type was generated using the guidgen.exe utility. The
[object] attribute is used to mark this interface as a COM-style interface, rather
than an older RPC interface (which has nothing to do with COM itself).

Of course, the ICar interface derives from the [lUnknown interface (also note
that unlike C++, inheritance is not specified using the public keyword). Recall that
the formal IDL definition of IUnknown is contained within unknwn.idl. However,
given that most IDL files need additional COM type definitions, it is commonplace
to import oaidl.idl, which will import unknwn.idl on your behalf. Oaild.idl defines
anumber of core COM types such as IDispatch, BSTR, VARIANT, and other impor-
tant data types that are typical for most COM applications.

73

Chapter 2

The Role of the HRESULT

Our ICar interface supports two methods. As you can see, each returns the stan-
dard function return type: HRESULT. The COM HRESULT is a 32-bit number that
contains statistics concerning the success or failure of the method invocation.

As you may have seen during your career as a COM developer, there are
numerous predefined HRESULTs that can be used to report information to the
COM client. The most common HRESULTs are simply S_OK (the function
completed without error) and E_FAIL (something went wrong).

As you will see, C++ COM clients often make use of the SUCCEEDED and
FAILED macros to test for a successful method invocation. Visual Basic program-
mers typically do not directly see the returned HRESULT value, however, it is
possible to obtain the return code using the intrinsic VB Err object. Other COM-
aware language mappings contend with the HRESULT in their own ways. As you
see later in this text, NET COM clients map HRESULTs (and COM error objects)
into the paradigm of structured exception handling (SEH).

IDL Parameter Attributes

COM interface method parameters also take IDL attributes that are used to disam-
biguate how a given argument is to be marshaled across a given process boundary.
You examine the exact details of IDL parameter attributes in greater detail in
Chapter 4. For the time being, Table 2-2 hits the highlights.

Table 2-2. IDL Parameter Attributes

IDL Parameter Attribute Meaning in Life
[in] The parameter is passed by value (which is to say, a copy of
the data is supplied to the called function).

[out] [out] parameters are sent into the method as unassigned
values. The called method fills the outbound parameter to a
set value.

[in, out] Value is assigned by caller, but may be reallocated by the

called function. The classic “pass by reference” scenario.

[out, retval] This parameter configuration is used by higher level
languages such as VB 6.0. The role of an [out, retval]
parameter is to map a logical return value to a physical
return value.

74

The Anatomy of a COM Server

Defining the Coclass (ComCar) in IDL

Given that COM interfaces are rather useless on their own, most IDL files also
define the set of coclasses that reside within the binary COM server. When you
want to define a COM class, your goal is to define a unique CLSID value as well as
document each custom interface supported by the COM type. Assume that you
wish to define a COM-aware automobile (ComCar) in IDL syntax (again, use
guidgen.exe to obtain new GUIDs).

// Bring in the core IDL COM data types.
import "oaidl.idl";

// The ICar interface.
[uuid(710D2F54-9289-4f66-9F64-201D56FB66C7), object]
interface ICar : IUnknown
{

HRESULT SpeedUp([in] long delta);

HRESULT CurrentSpeed([out, retval] long* currSp);
b

// The Raw Car Library.
[uuid(D679F136-19C9-4868-B229-F338AE163656), version(1.0)]
library RawComCarLib
{
// Bring in the COM type definitions with our own library.
importlib("stdole32.t1lb");

// Define the COM class.
[uuid(096AC71D-3EB6-4974-A071-A3B1COB7FC8D)]
coclass ComCar
{
[default] interface ICar;
b
b

As you can see, coclass definitions are placed within a special section of an IDL file
termed the library statement (marked by the IDL library keyword). Libraries are
typically attributed with a [version] attribute to mark the current version of the
COM server. COM libraries must also be marked with a [uuid] attribute, which as
you recall is termed a library identifier (LIBID).

Each coclass in the server is marked using the coclass keyword and the
mandatory CLSID. Following the coclass definition is a list of each and every

75

Chapter 2

76

nth-most interface supported by the COM class. By “nth-most” I am referring to
the fact that you do not list the base IUnknown directly in your coclass definition,
given that ICar “is-a” [lUnknown.

Defining the [default] Interface

On a related coclass-centric topic, note the use of the [default] IDL attribute.
Recall that COM demands the use of interfaces. Also recall that some higher level
COM-aware programming languages attempt to hide that simple fact from view to
make the process of working with COM a bit more intuitive. The [default] attribute
is used to mark the interface that is automatically returned to the COM client once
instantiated. Again, using VB 6.0 as an example:

Dim myCar as ComCar
Set myCar = New ComCar ' [default] ICar returned automatically!
myCar.SpeedUp 10

On the other hand, C++ itself does not honor the [default] attribute. Rather,
the user of the ComCar is required to ask directly for the ICar interface via
Querylnterface(). I formalize client-side COM code at later in this chapter.

Defining and Supporting Multiple Interfaces

To make our ComCar coclass a bit more interesting, assume you have defined an
additional COM interface named IRadio.

// The IRadio interface
[uuid(3B6C6126-92A8-47ef-86DA-A12BFFD9BC42), object]
interface IRadio : IUnknown

{
HRESULT CrankTunes();

b

If you want the ComCar to support the ability to blare music and annoy
passersby, you can update the coclass definition as follows:

// Our COM class.
[uuid(096AC71D-3EB6-4974-A071-A3B1COB7FC8D)]
coclass ComCar

{
[default] interface ICar;
interface IRadio;

};

The Anatomy of a COM Server

Compiling the IDL File with the MIDL Compiler

Now that you have created the IDL file that describes the COM types contained in
the RawComCar.dll, you can compile it with the MIDL compiler. While you are free
to run midl.exe from the command line, your task will be much simpler if you
make use of Visual Studio when compiling your *.idl files. First, right-click
anywhere on the open file window and select “Insert File into Project” from the
context menu.

The MIDL compiler itself can be configured using the MIDL tab of the project
settings dialog box (found under the Project | Settings menu). By default, MIDL is
set to the MkTypLib-compatible option, which means all IDL code is expected to
conform under the older ODL syntax rather than modern day IDL. Be sure to turn
this feature off in your raw C++ COM projects (see Figure 2-12).

Project Settings

Settings For: |'vWin32 Debug LI Debug | C/C++ Linkl Besources MIDL | Elrows% EE

ar
Reset |

Outputfile name: Output headerfile narme:

Additional include directaries:
I [~ Stubless Proxies

Freprocessor definitions: LD File:
I_DEEIUG |

[v Suppress startup banner

Froject Options:
Jnologo /D "_DEBUG" fwin32

oK I Cancel

Figure 2-12. Configuring the MIDL compiler

Once you insert a *.idl file into the project workspace, you can simply right-
click the file from FileView and select Compile. This activates the MIDL compiler
and automatically sends the output files into your project directory. The MIDL
compiler also runs automatically when you build your projects, if you have
inserted one or more *.idl files.

7

Chapter 2

78

Examining the MIDL-Generated Files

Assuming your IDL file has compiled without error, you will find the MIDL-gener-
ated files have been dumped into your project folder. First, locate and open the
generated type library file (RawComCar.tlb). As shown in Figure 2-13, the type
library is little more than a binary, tokenized version of the original IDL.

Bn RawComCar.tlb

deltalWyd. .. .
.. v . CurrentSpesd
cLodl gL
Spll . a
IRadicWy.
.. CrankTunesfiy
@ ®_ T
...... L1
S I
H ..s......... ..
LD
P..... . S
....i.L Do =]
SV = [
I3

Figure 2-13. Type libraries are binary IDL.

The contents of the RawComCar _i.c file is quite simple. The MIDL compiler
creates this file to define C/C++ constants for every GUID contained in the IDL. As
you can guess, whenever the MIDL compiler encounters a [uuid] attribute, a new
constant is generated. Note that the name of each constant is prefixed with
CLSID_, IID_, or LIBID_ (depending on what the [uuid] attribute was describing).

const IID IID_ICar =
{0x710D2F54,0x9289,0x4f66,{0x9F,0x64,0x20,0x1D,0x56,0xFB,0x66,0xC7}};

const IID IID_IRadio =
{0x3B6C6126,0%x92A8,0x47ef,{0x86,0xDA, 0xA1,0x2B,0xFF,0xD9, 0xBC,0x42}};

The Anatomy of a COM Server

const IID LIBID_RawComCarLib =
{0xD679F136,0x19C9,0x4868,{0xB2,0x29,0xF3,0x38,0xAE,0x16,0x36,0x56}};

const CLSID CLSID_ComCar =
{0x096AC71D,0x3EB6,0x4974,{0xA0,0x71,0xA3,0xB1,0xC0,0xB7,0xFC,0x8D}};

Finally, you have the generated header file, RawComCar.h. This file contains
C/C++ language definitions for each custom interface (as well as COM enumera-
tions and COM structures) found in the IDL file. For example, here is the C++ ICar
interface definition (IRadio is also defined in this file):

ICar : public IUnknown

{
public:
virtual HRESULT STDMETHODCALLTYPE SpeedUp(
/* [in] */ long delta) = 0;
virtual HRESULT STDMETHODCALLTYPE CurrentSpeed(
/* [retval][out] */ long _ RPC_FAR *currSp) = 0;
b

A Brief Word on COM-Centric Macros

While the MIDL-generated code contains a number of COM-centric macros
(STDMETHODCALLTYPE) to define the interface, the essence of the ICar interface
should look familiar. C++ COM developers typically make use of these COM
macros to provide some degree of platform neutrality. For example, the
STDMETHOD and STDMETHOD_ macros are used in C++ coclass header files to
ensure that the method prototypes expand correctly on various target platforms.
STDMETHODIMP and STDMETHODIMP_ are used in the corresponding C++
implementation files for the same reason. Table 2-3 defines the use of each of
these core COM macros (all of which are defined in objbase.h, so take a peek if you
are interested).

79

Chapter 2

Table 2-3. C++ COM-Centric Macros

COM-Centric Macro Meaning in Life

STDMETHOD Used to define a method prototype that returns the HRESULT
data type.

STDMETHOD_ Used to define a method prototype that does not return an
HRESULT. The first parameter to this macro is the data type to
return.

STDMETHODIMP Used to implement (IMP) a method that returns an HRESULT.

STDMETHODIMP_ Used to implement a method that does not return an HRESULT.

Implementing the ComCar

Since the MIDL compiler was kind enough to generate the *_i.c and *.h files that
express the IDL definitions in C++, you can now implement the ComCar type.
Begin by inserting a new C++ class definition using the Insert | New Class menu
selection (Figure 2-14). Name your class ComCar, and if you desire, change the
names of the header and implementation files to suit your fancy. Finally, specify
ICar as the base class for your new type (ignore the warning generated when you
dismiss the dialog).

Class ype: I Generic Class j ak I
r— Clazs information Cancel |

Mame: IEomCar

File name: |Cornl:ar.cp|:|

Change... |

Baze class(es):

Derived From Ag

Figure 2-14. Inserting the ComCar class

80

The Anatomy of a COM Server

When implementing a coclass in C++, the standard approach is to simply
inherit from each interface you wish the coclass to support. Given that our type
information states that ComCar supports the ICar and IRadio interfaces (which in
turn derive from IUnknown), the ComCar must now implement a total of six inter-
face methods. Here is the class definition (making use of the correct COM macros):

#include <windows.h>
// MIDL generated file!
#include "rawcomcar.h"

// ComCar implements IUnknown, ICar, and IRadio.
class ComCar : public ICar, IRadio // Add IRadio to the list.

{
public:
ComCar();
virtual ~ComCar();

// IUnknown methods.

STDMETHOD_(ULONG, AddRef) ();
STDMETHOD_(ULONG,Release)();

STDMETHOD (QueryInterface)(REFIID riid, void**);

// ICar methods.
STDMETHOD (SpeedUp)(long delta);
STDMETHOD (CurrentSpeed)(long* currSp);

// IRadio impl.
STDMETHOD (CrankTunes)();

// Ref counter for this COM object.
ULONG m_refCount;

// Current speed!
long m_currSpeed;

};

Implementing IUnknown

As you recall, the AddRef() and Release() methods of IUnknown are used to
control the lifetime of a COM object. Simply put, AddRef() increments the class’

reference counter by one. Release decrements this counter by one and checks for
the final release (meaning the Release() invocation that sets the reference counter

81

Chapter 2

82

to zero). At that time, the COM type removes itself from memory. Add the
following implementation code into your ComCar.cpp implementation file.

// Don't forget to set your member variables to a default value!
ComCar::ComCar() : m_refCount(0), m currSpeed(0) {}
ComCar::~ComCar() {}

STDMETHODIMP_(ULONG) ComCar: :AddRef ()
{ return ++m_refCount; }

STDMETHODIMP_(ULONG) ComCar::Release()
{

if(--m_refCount = = 0)
delete this;
return m_refCount;

}

Notice that both AddRef() and Release() return the current number of
outstanding interface pointers to the client. Never use this value for any purpose
other than general debugging. The COM specification does not state that this
returned reference count is a perfect reflection of the object’s number of clients.
Although a client can examine this return value to get a general feel of the object
in use, it should never use this value in production code.

Implementing QueryInterface() is also fairly simple. Recall that this method
allows the client to ask the object “Do you support an interface named X?” The
interface in question is identified (of course) by the associated IID. If the COM
type does indeed implement the requested interface, the client receives a refer-
ence that forces the COM object to AddRefs itself. As for the physical HRESULT
return value, convention dictates that E. NOINTERFACE is used when the client
asks you for an interface you do not support. If you do, simply return S_OK. Given
that ComCar supports three interfaces, you must test for three possible IIDs.

// Note! All standard COM interfaces (such as IUnknown) have a predefined GUID
// constant that can be obtained by simply including windows.h.
STDMETHODIMP ComCar::QueryInterface(REFIID riid, void** ppInterface)
{
// Remember! Always AddRef() when handing out an interface.
if(riid = = IID_IUnknown)
{
ppInterface = (IUnknown)(ICar*)this;
((IUnknown*) (*ppInterface))->AddRef();
return S_OK;

}

The Anatomy of a COM Server

else if(riid = = IID ICar)

{
ppInterface = (ICar)this;
((IUnknown*) (*ppInterface))->AddRef();
return S_0K;

}

else if(riid = = IID IRadio)

{
ppInterface = (IRadio)this;
((IUnknown*) (*ppInterface))->AddRef();
return S_0OK;

}

else

{
*ppInterface = NULL;
return E_NOINTERFACE;

}

}

Implementing ICar and IRadio

The final step in building your coclass is to implement the interface methods
themselves. To keep focused on the COM architecture, I offer the following trivial
implementation:

// Increase the speed of the Car.
STDMETHODIMP ComCar: :SpeedUp(long delta)
{

m_currSpeed += delta;

return S_OK;

// Return the current speed as an output parameter.
STDMETHODIMP ComCar: :CurrentSpeed(long* currSp)
{

*currSp = m_currSpeed;

return S_OK;

// Jam.

STDMETHODIMP ComCar: :CrankTunes()

{
MessageBox (NULL, "Cranking music!", "ComCar", MB_OK);
return S_OK;

}

83

Chapter 2

84

Understanding IClassFactory

Because COM is a language-independent architecture, a client cannot create a
COM object using a language-specific keyword. For example, the C++ “new”
operator has no built-in ability to create a new instance of a binary object. Also, a
COM client can create a server that may be located at any location in the Enter-
prise. Given these two issues (locality- and language-independence), you need a
language- and location-neutral way in which a client can create a COM object.
This is accomplished through another standard COM interface named
IClassFactory. IClassFactory (also defined in unknwn.idl) defines two methods:

// The IClassFactory interface.

[object,
uuid(00000001-0000-0000-C000-000000000046)]
interface IClassFactory : IUnknown

{
HRESULT CreateInstance(
[in, unique] IUnknown * pUnkOuter,
[in] REFIID riid,
[out, iid is(riid)] void **ppvObject);
HRESULT LockServer([in] BOOL flLock);
};

The most critical (and most often called) method is Createlnstance(), which
creates an instance of the associated coclass on behalf of the calling client.
LockServer() is used less often and is used to hold the binary server itself in
memory per client request (recall the global lock counter?).

Class objects exist only to create another type of COM object. This is how
COM provides a language- and location-neutral means by which a client can
create a coclass located in a binary server. If every COM-enabled language has
some way to access the IClassFactory interface, every client is able to create the
object it desires in a language-independent manner. Furthermore, as the actual
implementation of the IClassFactory methods is hidden at the binary level, you
(as the object creator) can use whatever language keywords you have at your
disposal (such as the C++ new operator) to create the associated coclass. If you
like, consider the COM class factory to be a language- and location-independent
new operator.

The Anatomy of a COM Server

Building Your Class Factory

Your class factory, which I will call ComCarCE is responsible for creating ComCar
objects for a client and returning some interface pointer from ComCar. The defini-
tion of ComCarCF should appear straightforward:

#include <windows.h>

// Class factories NEVER implement the interfaces
// of the COM class they create!
class ComCarCF : public IClassFactory
{
public:

ComCarCF();

virtual ~ComCarCF();

// IUnknown methods.

STDMETHOD_(ULONG, AddRef) ();

STDMETHOD_(ULONG, Release)();

STDMETHOD (QueryInterface)(REFIID riid, void** pInterface);

// IClassFactory methods.
STDMETHOD (CreateInstance)(LPUNKNOWN pUnkOuter,

REFIID iid, void** pInterface);
STDMETHOD (LockServer)(BOOL lock);

// Ref counter (set to zero in constructor).
ULONG m_refCount;
};

As with any COM object, the implementation of AddRef() and Release() for a
class factory simply increments or decrements the internal reference counter, and
checks for the final release to remove itself from memory:

// Class objects, being COM objects, maintain a reference count.
STDMETHODIMP_(ULONG) ComCarCF::AddRef()
{ return ++m_refCount; }

STDMETHODIMP_(ULONG) ComCarCF::Release()
{

if(--m_refCount = = 0)

{
delete this;

return 0;

}

return m_refCount;

}

85

Chapter 2

86

QuerylInterface() simply hands out pointers to the standard IlUnknown or
IClassFactory interfaces (if the class factory is checking for a valid license file, you
could also implement and test for IClassFactory?2):

// Note that class factories never supported the
// interfaces of the related coclass (ComCar)!
STDMETHODIMP ComCarCF::QueryInterface(REFIID riid, void** pIFace)
{
if(riid = = IID IUnknown)
pIFace = (IUnknown)this;
else if(riid = = IID IClassFactory)
pIFace = (IClassFactory)this;

if(*pIFace){
((IUnknown*) (*pIFace))->AddRef();
return S _OK;

}
*pIFace = NULL;
return E_NOINTERFACE;

}

Implementing IClassFactory: :CreatelInstance()

As mentioned, Createlnstance() is responsible for creating a new instance of the
associated COM obiject, asking the object for the client-specified interface, and
returning it back to the client.

The first parameter of Createlnstance() is used in conjunction with COM
aggregation. I do not examine the details of aggregation here. Assume this param-
eter is always NULL (which specifies no aggregation support is being requested).
The second parameter is the IID of the interface the client is interested in
obtaining from the coclass once it has been created. The final parameter (of
course) is a pointer to the fetched interface. Without further ado, here is the imple-
mentation of Createlnstance():

// Create the related coclass.
STDMETHODIMP ComCarCF::CreateInstance(LPUNKNOWN pUnkOuter,
REFIID riid, void** ppInterface)

// We do not support aggregation in this class object.
if(pUnkOuter != NULL)
return CLASS E NOAGGREGATION;

The Anatomy of a COM Server

ComCar* pCarObj = NULL;
HRESULT hr;

// Create the car.
pCarObj = new Com(Car;

// Ask car for an interface.
hr = pCarObj -> QueryInterface(riid, ppInterface);

// Problem? We must delete the memory we allocated.
if (FAILED(hr))

delete pCarObj;
return hr;

Implementing IClassFactory::LockServer()

Finally, you need to address the LockServer() method of IClassFactory to finish up
your ComCar class factory. LockServer() provides a way for a client to lock the
COM binary in memory, even if there are currently no active objects in the server.
The reason to do so is client optimization. Once a client obtains an IClassFactory
pointer, it may call LockServer(TRUE), which will bump up a global level lock
counter maintained by the server. When the COM runtime attempts to unload a
server from memory;, this lock count is consulted first. If the value of the global
lock counter is not zero (which signifies that there are locks), COM will stop by
later and ask again.

Any client that calls LockServer(TRUE) must call LockServer(FALSE) before
terminating, to decrement the server’s global lock counter. With that said, create a
global ULONG named g lockCount in your rawcomcar.cpp file. The LockServer()
method may then be implemented as follows:

// Assume that the lock counter has been defined in the rawcomcar.cpp file.
extern ULONG g_lockCount;

// LockServer() simply increments or decrements
// the server level global lock counter.
STDMETHODIMP ComCarCF::LockServer(BOOL lock)
{
if(lock)
g_lockCount++;
else
g_lockCount--;
return S_OK;
}

87

Chapter 2

88

Implementing DLL Component Housing

The next major hurdle facing you before ComCar is ready for client access is
creating a binary home for itself and its class object to dwell. As you recall, every
COM-based DLL exports (through a standard *.def file) four well-known functions.

The implementation of DllGetClassObject() creates a new class factory and
returns the correct IClassFactory interface to the client. If your server contains a
collection of coclasses, you should examine the incoming CLSID parameter of
DllGetClassObject() to determine which class factory to create. This method has
the following signature:

// Creates a given class factory for
// the client based on the CLSID of the coclass.
STDAPI D1lGetClassObject(REFCLSID rclsid, REFIID riid, void** ppv);

Here then is an implementation of the first server export, DlIGetClassObject():

// D11GetClassObject() is in charge of creating a class factory, and returning the
// IClassFactory interface to the COM client.
STDAPI D11GetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)
{
// We only know how to make cars!
if(rclsid = = CLSID ComCar)
{
// Make a ComCarCF and return requested interface.
ComCarCF* pCarCF = new ComCarCF();
return pCarCF->QueryInterface(riid, ppv);
}
else
{
return CLASS E CLASSNOTAVAILABLE;
}
}

Managing Server Lifetime: D11CanUnloadNow()

In addition to the global lock counter, COM DLLs maintain a global object counter
that identifies the number of active objects in the server at any given time. When-
ever a coclass (ComCar) or class object (ComCarCF) is created, the constructors of
these types should bump up this global object counter variable by one. Whenever
a coclass (ComCar) or class object (ComCarCF) is terminated, the destructors

The Anatomy of a COM Server

should decrement this global object counter by one. Here is the revised ComCar
class, which properly adjusts the serverwide object counter (ComCarCF would
also need to be retrofitted in the same way):

// Assume that the object counter has been defined in the rawcomcar.cpp file
extern ULONG g ObjectCount;

ComCar: :ComCar()

{

g_objCount++; // Also increment in class factory.

// Server lost an object.
ComCar ::~ComCar

{

g objCount--; // Also decrement in class factory.

A COM DLL can be unloaded safely by the COM runtime only if there are no
server locks and no active objects within the server. DIlCanUnloadNow() can
check the two global variables maintaining this information, and return S_OK or
S_FALSE accordingly:

// The DllCanUnloadNow() server export informs the COM runtime when it is

// safe to unload the DLL from memory.

ULONG g_lockCount = 0; // Modified by ICF::LockServer.

ULONG g objCount = 0; // Modified by ctor & dtor of any coclass in the server.

STDAPI D11lCanUnloadNow(void)
{
if(g_lockCount = = 0 88 g_objCount = = 0)
return S OK; // Unload me.
else
return S_FALSE; // Keep me alive.

89

Chapter 2

90

Contending with DI1RegisterServer() and
DllUnregisterServer()

If you were to implement these two remaining DLL exports, you would have a
good deal of code to contend with. Not only would you need to build numerous
structures to represent every registry entry, but you would also need to be
comfortable programming the registry using numerous API calls. Given that this
would take you a bit off task, we will simply define the following stub code and
enter your registry information using a (much simpler) *.reg file.

// Typically these methods are called by an installation program or using
// the regsvr32.exe command line tool.
STDAPI D11RegisterServer(void)
{
MessageBox(NULL, "If I had code, I would register these types...",
"D11RegisterServer", MB OK);
return S_OK;

}

STDAPI DllUnregisterServer(void)
{
MessageBox(NULL, "If I had code, I would UN-register these types...",
"DllUnregisterServer", MB_OK);
return S_OK;

}

Exporting the Exports

Now that you have implemented the necessary exports, you need to expose them

to the outside world. To export these DLL functions, you need to assemble a stan-

dard Win32 *.def file, which must be included into your current project. The name
of the library is the exact same name as your project workspace:

; RawComCar.def : Declares the module parameters.
LIBRARY "RawComCar.d1l"

EXPORTS

D11CanUnloadNow @1 PRIVATE
D11GetClassObject @2 PRIVATE
D11RegisterServer @3 PRIVATE
DllUnregisterServer @4 PRIVATE

The Anatomy of a COM Server

At this point, you have created the necessary infrastructure for a C++-based
COM DLL server! (As you can tell, building COM binaries in raw C++ is a labor of
love.) However, before a client could create and use the object, you must enter the
correct information in the system registry.

Registering the COM Server

The registry is a local system database, which specifies (among other things) all
the COM-centric information for a given computer. You may access the Registry
Editor by running regedit.exe from the Run command. The registry is broken into
a series of topmost nodes called hives. The most important hive for COM devel-
opers is HKEY_CLASSES_ROOT (abbreviate to HKCR). Figure 2-15

illustrates the hives found on a Windows XP Professional installation.

«:' Registry Editor

File Edit Wiew Favorites Help

= My Campuker Marne Tvpe
RS JHKEY_CLASSES_ROOT [aB](Default) REG_S57
&-{Z3 HKEY_CURRENT_LISER: -
-2 HKEY_LOCAL_MACHINE
-3 HKEY_UISERS
{23 HKEY_CURRENT COMFIG
[I |]

My Computer\HKEY _CLASSES_ROOT

Figure 2-15. The core COM hive (HKCR)

Entries under a hive are called keys, which may contain subkeys. A given
key or subkey may contain string or numerical values. Entire books have been
written about the layout and programming of the Windows registry; luckily COM
developers only need to understand a small subset of its overall functionality,
beginning with the ProgID.

Programmatic Identifiers (ProgIDs)

The first thing listed under HKCR is a long list of file extensions, which we have no
interest in at all. Scroll past this list until you find the first real text entry located
after the final file extension. When you find that item, expand it as shown in

Figure 2-16.

91

Chapter 2

92

Rep dito L]
File Edit ‘iew Favorites Help

E‘D 2bpfile Marme Data

g} ccClentDochior. AccClen gy [ab]iDefault) AccClientDocMar Class

L-T-_ID Acchictionary, AccDickionars,
L ST A eeMickinmars fecDickinnoe o

] i | >] i | L]

My Cornputer|HEEY _CLASSES ROOTiAccClientDockgr . AccClientDockgr

Figure 2-16. ProgIDs are listed off HKCR.

These strings are termed Programmatic Identifiers (ProglDs). ProgIDs are a
text-based alternative used to refer to a COM object residing in some server.
ProglDs are simply text mappings for CLSIDs. As you can see, every ProglD listing
has a subkey mapping to the corresponding CLSID value as well as an optional
CurVer (current version) subkey. The standard format to follow when creating a
ProglID for your coclass is “ServerName.CoclassName.Version” (the version is
optional). For example: “RawComServer.ComCar.1".

ProglDs are useful for certain COM-enabled languages that have no ability to
refer to the raw GUID associated to your coclass. In effect, a ProgID is a language-
neutral way to identify a COM object. For example, VBScript needs the ProgID of a
coclass to load the server into memory as VBScript does not provide a way to
directly reference the raw 128-bit CLSID of ComCar (as seen later in this chapter).

A Critical Key: HKEY CLASSES ROOT \ CLSID

The next point of interest is the CLSID key. The CLSID key is where SCM ultimately
ends up when it looks for the physical path to your COM server. Each subkey of
HKCR\CLSID begins with the GUID for the entry. Figure 2-17 reveals the CLSID of
Microsoft’s Data Access Object’s (DAO) DBEngine coclass.

The Anatomy of a COM Server

% Registry Editor

File Edit Wew Favorites Help
E‘D CLSID A Mame Data
=R == || 0000001 0-0000-0010 (Defaul) DAC.DEEngine. 35

-3 InprocServeraz
I3 ProgiD

&3 {00000011-0000-0010-
&3 {00000013-0000-0010-

= TR SANnANM A-ARnn.nn no o

2 L3 i | L]
My Computer\HKEY _CLASSES_ROOTICLSID{00000010-0000-0010-8000-008A006D2E A4}

Figure 2-17. CLSIDs are used to resolve the location of a COM type.

Under a given CLSID entry, you may find any of the following core subkeys
listed in Table 2-4.

Table 2-4. Core Entries Under HKCR\CLSID

HKCR\CLSID Subdirectory Meaning in Life

ProgID This key maps to the ProglID associated with the
coclass. When you call ProgIDFromCLSID(), the COM
runtime returns the ProgID subkey for a given CLSID
listing.

VersionIndependentProgID Same value as the ProgID key, without the version
suffix. Recall that ProgIDs do not have to be versioned.

InprocServer32 For in-process COM servers, this is the most
important of all CLSID subkeys. This value is the
physical path to the DLL server (for example,
“C:\MyServers\Cars\Debug\RawComCar.dll”).

LocalServer32 If you have COM objects that live in an EXE,
rather than a DLL, the value of LocalServer32 is the
path to the COM executable (for example,
“C:\MyServers\Cars\Debug\Cars.exe”).

93

Chapter 2

94

Another Critical Key: HKEY CLASSES ROOT\Typelib

A server’s type information file (*.tlb) also needs to be registered if you expect tools
such as the VB 6.0 Add Reference dialog to find the type library automatically. Even
more important, if your COM interfaces are to be marshaled using the universal
marshaler, you must register the location of your type library, given that its
contents are read at runtime to build stubs and proxies on the fly.

Recall that an IDL library statement is qualified using the [version] and [uuid]
attributes:

[uuid(D679F136-19C9-4868-B229-F338AE163656), version(1.0)]
library RawComCarlib

{1

This very same information is listed under HKCR\TypeLib. The location of the
* tlb file is placed under the \0\Win32 subdirectory (“0” marks the default locale of
the type library, which I will assume to be US English). Be aware that many COM
frameworks such as VB 6.0 and ATL embed the *.tlb file as a resource of the binary
DLL or EXE COM server. Thus, the value contained under the \Win32 subdirectory
could be the path to an *.tlb, *.dll, or *.exe file. For example, Figure 2-18 shows the
entry for your current RawComServer (which you have yet to formally register).

%' Registry Editor
File Edit View Favorites Help

ﬂ@ {D6589123-FC70-1 lDU-}\C94-DIL| Name Data
=0 {D679F136-19C9-4868-B229-F2 ||[aB](Defaukt) C:\Apress Books\InteropBook\Labs\Chapter 2.
2@ 10
. =@o

 almE -
: : =
a8 TR 2 |@ | @
My Computer\HKEY_CLASSES_ROOT\Typelib\{D679F136-19C9-4868-B229-F338AE163656 \ 1.0V r

Figure 2-18. Type information is located under HKCR\TypeLib.

Other COM Registration Possibilities

In addition to ProgIDs, CLSIDs, and LIBIDs, there are two other valid registration
entries of note. First, HKCR\Interface is the place to log your custom COM inter-
faces. Understand that you are not required to register your COM interfaces unless
they are intended to be marshaled out of process. Given that our

The Anatomy of a COM Server

RawComServer.dll is always accessed in process (by a client with the same
threading model), you do not have to register the IRadio or ICar interfaces.

The final subfolder of interest is HKCR\Component Categories. It is possible
to generate a GUID termed a CATID, which is used to refer to a COM category.
These GUIDs are used to group like objects together under a unique ID, even if the
members of the category are located in independent COM servers. Using CATIDs,
the COM client may make a request (using the COM library) for a list of all
coclasses that belong to a given Component Category. The result is a set of
CLSIDs, which can then be used to activate each member.

Registering Your COM Servers

So much for your tour of the Windows registry. As mentioned, you will write your
own registry scripts (*.reg files) that can be used to merge your server information
into the registry automatically, bypassing the need to code DllRegisterServer() by
hand. Thus, insert a new *.txt file and save it under the name RawComServer.reg.

Here is the complete registration syntax for the RawComCar.dll. To save your-
self the pain of typing in each line by hand, feel free to simply copy and adjust the
* reg file supplied with the downloaded code. Be aware that the GUIDs used in the
* reg file must match the values found in your IDL code (your paths may differ
from mine, so update accordingly)!

REGEDIT

; This is the ProgID!
HKEY_CLASSES_ROOT\RawComCar.CoCar\
CLSID = {096AC71D-3EB6-4974-A071-A3B1COB7FC8D}

5 A CLSID entry typically has these lines (at minimum).
HKEY CLASSES ROOT\CLSID\
{096AC71D-3EB6-4974-A071-A3B1COB7FC8D} = RawComCar.CoCar

HKEY_CLASSES_ROOT\CLSID\{096AC71D-3EB6-4974-A071-A3B1COB7FC8D}
\InprocServer32 = C:\Apress Books\InteropBook\Labs
\Chapter 2\RawComCar\Debug\RawComCar.d1l

HKEY_CLASSES ROOT\CLSID\

{096AC71D-3EB6-4974-A071-A3B1COB7FCED}I\
TypeLib = {D679F136-19C9-4868-B229-F338AE163656}

95

Chapter 2

96

5 Typelib Settings
HKEY CLASSES_ROOT\TypeLib\

{D679F136-19C9-4868-B229-F338AE163656} = Car Server Type Lib

HKEY_CLASSES ROOT\TypelLib\{D679F136-19C9-4868-B229-F338AE163656}
\1.0\0\Win32 = C:\Apress Books\InteropBook\
Labs\Chapter 2\RawComCar\Debug\RawComCar.tlb

Once you save this file, simply double-click it from within Windows Explorer.
Using regedit.exe, you will now be able to find your ProgID (Figure 2-19), CLSID
(Figure 2-20), and LIBID (seen previously in Figure 2-18).

% Registry Editor

File Edit Mew Favorites Help

IIID RacReq.Regllass -
IIID Rapisrv RAPIServer B
&1 Rapisrv.RAPIServer.2

EH:l rakfile

=3 RawComCar, CoCar =
1. /T7 DECacMamaSarsar™S DRSa ol

£ 1]] l|

Marne Data
[ab](Default) {09BACT1D-3EBE-4974-A071-A:

< 1]] =

My ComputeriHEKEY _CLASSES _ROOTiRawComCar. CoCarlCLSID

Figure 2-19. The ProgID

File Edit Wiew Favorites Help

-0 {09481442-7208-11d3-B30A-44455: A |
{13 {0948E980-3A31-1103-83CF-00C04
-3 {0955AC62-EF2E-4CBA-AZBI-AE3F7
: {096ACT 1D-3EB6-4974-A07 1-A3E1

33 Inprocserversz

D TypeLib

(TR NOT00AER ARET1 141 _ARCT_nnen.)

i | 11T] l|

Marme Data
{Default]l RawZomCar . CoCar

i | 11T] l|

My Computer\HKEY_CLASSES _ROOTYCLSIDY{096ACT 1 D-3EBE-4974-407 1-436 1 COBTFCEDT

Figure 2-20. The CLSID

The Anatomy of a COM Server

Excellent! If you followed along with this example, you have successfully
created a COM DLL from the ground up. As you have seen, building a COM server
using raw C++ can be quite an undertaking. In the next chapter, you briefly
examine two popular COM frameworks (ATL and Visual Basic 6.0) that help lessen
the burden of creating COM binaries.

1 leeeee CODE The RawComCar application is included under the Chapter 2
\ - subdirectory.
aal

Developing a C++ COM Client

Now that you have implemented your first COM-based in-process server, you
need to investigate the necessary COM library calls to access it. Regardless of the
client’s language, under the hood the same basic sequence of COM library calls
are used. Some COM language mappings (such as VB) hide this process so well
that the developer has little exposure to what is happening under the hood.

When COM developers make requests to runtime, they do so by calling COM
library functions, which (for the most part) are contained in the granddaddy of all
COM system DLLs, ole32.dll. This core system file is the gateway between your
client code and the COM runtime. The very first thing COM clients must be sure to
do is initialize the COM subsystem. Each and every thread using the COM libraries
must make a call to Colnitialize() before making any further requests from the
COM runtime. When that thread is finished with the COM subsystem, a comple-
menting call to CoUninitialize() must be made to clean things up.

Activating COM Objects

Once the COM runtime is ready to receive your requests, clients typically

make calls to one of two COM activation functions, CoGetClassObject() or
CoCreatelnstance(), to load a server and create a new COM object. You examine
the use of CoGetClassObject() first, as CoCreatelnstance() is simply a helper func-
tion, wrapping the call to CoGetClassObject() on your behalf. CoGetClassObject()
tells COM runtime to locate, load, and retrieve the IClassFactory pointer for a
given coclass.

97

Chapter 2

98

From this pointer, you can create an instance of the associated coclass, (via
Createlnstance()) and go to town. Here is the signature of CoGetClassObject():

// This activation function is used to return the

// IClassFactory pointer for a given

// class factory. Using this interface, the client

// can then create the corresponding class object.

HRESULT CoGetClassObject(REFCLSID rclsid, DWORD dwClsContext,
COSERVERINFO * pServerInfo,
REFIID riid, LPVOID * ppv);

The first parameter is the CLSID of the coclass you wish to create, for example
CLSID_ComCar. As you entered this information into the system registry, the COM
SCM knows where to find the path to the binary and load the server. The second
parameter is a member from the CLSCTX enumeration, which specifies the class
context of the server. You know that COM offers you location transparency, and
this parameter allows you to specify if you wish an in-proc, local, or remote
version of the server. The core values of the CLSCTX are as follows:

// The class context allows a COM client to specify
// which 'local' they are interested in.
enum tagCLSCTX

{
CLSCTX_INPROC_SERVER = 0x1, // In-proc server.
CLSCTX_LOCAL_SERVER = 0x4, // Local server.
CLSCTX_REMOTE_SERVER = 0x10 // Remote server
FCLSCTX;

You specify CLSCTX_INPROC_SERVER if you desire in-proc servers,
CLSCTX_LOCAL_SERVER for local servers, or CLSCTX_REMOTE_SERVER for a
remote server. You may also combine any of the CLSCTX flags, and SCM finds the
server closest to the client. If you specify the predefined CLSCTX_SERVER (which
is an OR-ing together of INPROC, LOCAL, and REMOTE) you can effectively say to
SCM “Just give me the one closet to me.” If SCM finds an in-proc version, you get
this version. Next is local, followed by remote (resolved using the AppID).

The third parameter, COSERVERINFO, is a structure that specifies useful
information about a remote server machine. Of course, if you are not accessing a
remote COM server, you can simply send in NULL. The fourth and fifth parame-
ters identify the IID of the interface you want from the coclass and a place to store
it (void**).

The Anatomy of a COM Server

Let’s write some client code that loads up the RawComCar.dll server and
returns the IClassFactory pointer for the ComCarCF coclass. Before you do so, you
must copy over the MIDL-generated RawComCar_i.c and RawComCar.h files from
your server project into the new this Win32 Console application (given that the
client must be able to understand the IRadio, ICar, and GUID definitions). Once
you have done so, you can take your car out for a test drive as follows.

// Client side C++ COM code.
#include "RawComCar_i.c" // Defines GUIDs.

#include "RawComCar.h" // Defines interface definitions.

int main(int argc, char* argv[])

{
CoInitialize(NULL);
ICar* pCar = NULL;
HRESULT hr = E_FAIL;

IClassFactory* pCF = NULL;

// Use CoGetClassObject().

hr = CoGetClassObject(CLSID ComCar, CLSCTX_INPROC_SERVER,
NULL, IID IClassFactory, (void**)8pCF);

hr = pCF->CreateInstance(NULL, IID ICar, (void**)&pCar);

// Speed up car.

if(SUCCEEDED(hr))

{
for(int i = 0; 1 < 5; i++)
{

long currSp = 0;
pCar->SpeedUp(10);
pCar->CurrentSpeed(&currSp);

cout << "Car Speed: " << currSp << endl;

// Turn on radio.

IRadio* pRadio = NULL;
pCar->QueryInterface(IID IRadio, (void**)8pRadio);
pRadio->CrankTunes();

// Clean up.

if(pCar != NULL) pCar->Release();
if(pCF!= NULL) pCF->Release();

99

Chapter 2

100

if(pUnk!= NULL) pUnk->Release();
if(pRadio!= NULL) pRadio->Release();
CoUninitialize();

return 0O;

When using CoGetClassObject(), the client is required to directly create the
COM class using the returned IClassFactory interface. Once you have exercised
your ComCar type, you must call Release() on each acquired interface when you
are finished in order for the server’s object counter to eventually reach zero (and
thus be unloaded).

Accessing a Coclass Using CoCreatelInstance()

Having seen CoGetClassObject() in action, you can now look at CoCreatelnstance().
This function is useful if you only require a single instance of the coclass.
CoCreatelnstance() finds the class object and calls Createlnstance()from the
IClassFactory pointer automatically. All you do is pass in the CLSID and IID you
are looking for:

// CoCreateInstance() creates the class factory for you automatically.
HRESULT CoCreateInstance(REFCLSID rclsid, LPUNKNOWN pUnkOuter,

DWORD dwClsContext, REFIID riid,

LPVOID * ppv);

The only difference from CoGetClassObject() is the second parameter,
pUnkOuter. This parameter is used only in COM aggregation. Do not worry about
this now; simply pass in NULL. Because CoCreatelnstance() does not provide
direct access to IClassFactory, you can alter the client code using CoCreatelnstance(),
thus bypassing any reference to the class object. For illustrative purposes, let’s ask
for the IUnknown interface right off the bat. Here is the relevant update:

int main(int argc, char* argv[])
{

CoInitialize(NULL);

IUnknown* pUnk = NULL;

ICar* pCar = NULL;

HRESULT hr = E_FAIL;

// Specify CLSID, context and IID (and a place to store the pointer).
hr = CoCreateInstance(CLSID ComCar, NULL, CLSCTX_INPROC,
IID IUnknown, (void**)&pUnk);

The Anatomy of a COM Server

// Now ask for ICar.
i (SUCCEEDED(hr))
hr = pUnk->QueryInterface(IID ICar, (void**)&pCar);

Regardless of which COM library function you use, the result is seen in Figure
2-21 followed by a message box informing you the radio has been turned on.

"C:\Apress Books\InteropBook\lLa

Speed: 1@
Speed: 20
Speed: 30

Speed: 4@
Speed: 56
Prezz any key to continue

Figure 2-21. The C++ COM client

So, using this function looks a lot easier than CoGetClassObject(). Why
would you not use CoCreatelnstance() every time? Realize that when you use
CoCreatelnstance(), the class object is created and destroyed each and every time.
Thus, if you are interested in creating, say, ten ComCar objects, CoCreateInstance()
creates and destroys the class factory ten times. CoGetClassObject() is far more
efficient when you wish to create a batch of objects, as you are directly holding the
IClassFactory pointer.

Furthermore, as CoCreatelnstance() does not give you back an IClassFactory
pointer directly, your client could never lock the server. Whenever you wish to lock
a server into memory, you must do so using an IClassFactory pointer, and thus
must use CoGetClassObject().

1 Leeeee CODE The CppRawComcClient application is included under the
\ s - Chapter 2 subdirectory.

C

101

Chapter 2

102

Building a C++ Client Using the #import Directive

When developers make use of the COM library “in the raw,” tradition dictates
making manual calls to the methods of I[Unknown, CoCreatelnstance(), Colnitialize(),
and other COM primitives. While this allows developers to get rather close to the
action, direct manipulation to the COM API can be a bit verbose. To help lessen
the burden, many C++ programmers choose to make use of the Visual C++
#import directive.

Essentially, the #import directive reads the type information of a given COM
server and generates entities named smart pointers. These generated types wrap
up the raw COM types into more convenient object instances. While I do not want
to dive into a full discourse of this C++ directive, here is some sample usage (do
understand that MSDN online help contains complete details of this aspect of C++
COM client programming).

// CppImportClient.cpp
#include "stdafx.h"
#include <iostream.h>

// Import the type info for the rawcomcar.dll (adjust your path accordingly).
#import "C:\ RawComCar\Debug\RawComCar.tlb" \
no_namespace named guids

int main(int argc, char* argv[])

{
CoInitialize(NULL);

// Create the ComCar and get ICar..
ICarPtr spCar(__uuidof(ComCar));

spCar->SpeedUp(10);
cout << "Speed is:

<< spCar->CurrentSpeed() << endl;

// Now turn on the radio.
IRadioPtr spRadio = spCar; // Calls QueryInterface().
spRadio->CrankTunes();

// Clean up.
spCar = NULL;
spRadio = NULL;
CoUninitialize();
return 0O;

The Anatomy of a COM Server

As you may be able to tell, the generated smart pointers make C++ client-side
programming look a bit more like VB 6.0 programming and a bit less like raw COM
API development (depending on your view, this may be either a good thing or a
bad thing). Speaking of Visual Basic 6.0...

e CODE The CppImportClient application is included under the
RIS
\ YR Chapter 2 subdirectory.

—
~

L

A Visual Basic 6.0 COM Client

Given that you have described the types within your C++ RawComServer.dll, you
are able to build client applications using any number of languages. To illustrate,
assume you have launched Visual Basic 6.0 (not VB .NET!) and created a brand-
new Standard EXE application. Using the VB 6.0 ToolBox, assemble a simple GUI
that allows the user to speed up the ComCar (and view the current speed) as well
as turn on the radio. Figure 2-22 shows a possible UI .

| Project1 - Form1 (Form)

I CurentSpeed - . ||:| =

Figure 2-22. The VB 6.0 client Ul

103

Chapter 2

104

Now, before you are able to build the code base, you must set a reference to
the COM server’s type information using the Project | References menu option.
Given that you registered the type library, you see the RawComCar library is listed
alphabetically. Once you have set a reference to this type information, open the VB
6.0 Object Browser utility (F2 is the hotkey). Check out Figure 2-23.

m' Object Browser,

IR;awCumCarLih - 4| >| Ha il
! ~| dl vl

Claszes Members of 'ComCar’

@ =globals= =2 CurrentSpeed

IR ComCar =3 SpeedlUp

B IRadio

Class ComCar
Membet of RBawComCarLily

Figure 2-23. Viewing the type information

As you can see, the ICar interface is nowhere to be found! Recall that you
assigned the [default] attribute to this interface in our IDL file. As you may also
recall, higher-level languages such as Visual Basic hide the default interface from
view to simulate a direct object reference. Thus, our client-side code is greatly
simplified.

' The car.
Private theRawCar As ComCar

Private Sub btnUseRawCar Click()

' Speed up raw car.

theRawCar.SpeedUp 10

txtCurrSpeed.Text = theRawCar.CurrentSpeed()
End Sub

Private Sub Form Load()
Set theRawCar = New ComCar
End Sub

The Anatomy of a COM Server

Private Sub Form Unload(Cancel As Integer)
' Explicitly decrement ref count.
Set theRawCar = Nothing

End Sub

Notice that VB 6.0 client-side code hides the low-level COM library calls from
view. Remember, when you create a new instance of a COM class as follows:

Dim o as ComCar
Set o = New ComCar ' Really holds a reference to ICar!

Visual Basic automatically calls CoCreatelnstance(), obtains the default interface,
and stores it into the declared variable. VB 6.0 automatically calls Release() on all
interfaces when they fall out of scope. However, if you wish to explicitly force a call
from Release() using VB, simply set the variable to Nothing.

Finally, when you wish to trigger QueryInterface() using VB syntax, declare a
variable of the type of interface you desire and set it to an active interface refer-
ence. Thus, to trigger the CrankTunes() method of IRadio from VB 6.0, you can
write

Private Sub btnTurnOnRadio Click()
' Declare an IRadio variable.
Dim itfRadio As IRadio
Set itfRadio = theRawCar ' Calls QueryInterface() for IID IRadio
itfRadio.CrankTunes
Set itfRadio = Nothing
End Sub

T ovee CODE The Vb6RawCarClient application is included under the
\\L ., .
YR Chapter 2 subdirectory.

—
~

L

Understanding COM Properties

Until this point you have created interfaces supporting a collection of semantically-
related methods. Beyond this, COM supports the use of properties in an interface
definition. In a nutshell, properties are a shorthand notation for traditional
accessor and mutator methods (for example, GetPetName() and SetPetName()).
In Visual Basic 6.0, a class property (such as PetName) is internally represented by
a pair of Property Let (or Property Set if the property wraps an object type) and

105

Chapter 2

106

Property Get methods. The VB object user indirectly triggers the correct variation
based on the calling syntax. If you, as a VB class builder, write the following code
in a CLS file (named CVBCar), you can define a property (PetName) for a single
private String called mName:

Private mName as String

' A read/write COM property.

Public Property Get PetName() as String
PetName = mName

End Property

Public Property Let PetName(n as String)
mName = n
End Property

IDL Syntax for Interface Properties

As you would expect, COM properties have a particular IDL notation. Given the
previous VB 6.0 example, you can see that your single PetName property has been
mapped to two separate function definitions. In IDL, the [propget] attribute marks
amethod as an accessor function, whereas [propput] marks a mutator. Here is the
IDL generated by VB for the PetName property (you address IDispatch and the [id]
attribute later in the chapter):

// Properties do not have to be part of an IDispatch derived
// interface!
// They can be supported by any IUnknown derived interface.
interface CVBCar : IDispatch
{

[1d(0x68030000), propget]

HRESULT PetName([out, retval] BSTR*);

[1d(0x68030000), propput]

HRESULT PetName([in, out] BSTR*);
};

Keep in mind that COM properties are always represented internally as
methods. Interfaces can only contain methods, and the fact that some languages
support properties is not much more than “syntactic sugar” provided by COM
languages.

If you write an IDL property definition by hand and examine the MIDL-
generated header file, you would see two functions named put_PetName() and

The Anatomy of a COM Server

get_PetName():

// IDL property syntax.

interface ICarStats: IUnknown

{
[propget] HRESULT PetName([out, retval] BSTR*);
[propput] HRESULT PetName([in, out] BSTR*);

};

// A single property resolves to 'get' and 'put' functions.
STDMETHOD(get PetName)(/*[out, retval]*/ BSTR *pVal);
STDMETHOD (put_PetName) (/*[in]*/ BSTR newval);

Properties: The Client’s Point of View

Clients using straight C++ access the PetName property as any other interface
method (more on BSTRs in Chapter 4):

// Create a new car named Fred.
BSTR carName;

carName = SysAllocString(L"Fred");
pMyCar -> put_PetName(carName);
SysFreeString(carName);

// Print out name of my car.

char buff[80];

pMyCar -> get_PetName(&carName);

WideCharToMultiByte(CP_ACP, NULL, carName, -1, buff, 80, NULL, NULL);
cout << "Your car is called" << buff << endl;

SysFreeString(carName);

Visual Basic developers can get at the PetName property as follows:
" A little VB code illustrating property manipulation.
Dim myCar as New ComCar
myCar.PetName = "Fred" " [propput]
MsgBox myCar.PetName, , "My car is named." ' [propget]

107

Chapter 2

108

Building Scriptable Objects (Using IDispatch)

The final topic of this chapter is to refresh the role of IDispatch. As you have just
seen, C++ and Visual Basic 6.0 are able to exercise early binding when making use
of COM types. Early binding describes the process of understanding the calling
conventions for a given interface method at compile time rather than at runtime.
Using this (preferred) technique, a COM client is able to make sure that the
method name and parameter format is abiding by the contract laid out in the
server’s type library. This is quite helpful given that any syntactic errors are found
at compile time.

Other COM clients are not so fortunate in having a detailed understanding of
an interface’s methods at compile time for the simple reason that they are not
compiled! Consider for example Web-scripting languages such as VBScript. When
aWeb developer wishes to make use of a COM object from an HTML or classic ASP
page, the only way to do so is by using an intrinsic method named CreateObject(),
which returns a loosely typed Object variable (stored in a COM VARIANT). As the
late-bound client interprets the scripting code, it is at runtime that the caller is
able to determine if a given method exists, and if so, whether the parameters are of
the correct type and order. Obviously, this is far less robust a programming model
than early binding. However, for scripting clients, this is the only option given that
the external GUIDs and type information have not been compiled into the code
base of the scripting engine!

When a coclass wishes to allow late-bound clients to access its functionality, it
must support a standard COM interface named IDispatch. This standard COM
interface allows a late-bound client to call any method or property on the object’s
IDispatch implementation (termed a dispinterface) using two well-known
methods: GetIDsOfNames() and Invoke(). In addition to these core members,
IDispatch defines two members of lesser importance (as far as the client is
concerned) named GetTypelnfo() and GetTypelnfoCount(). The latter members
are of great importance when you wish to read type information at runtime (as
you will do in Chapter 4). Here is the IDL definition of IDispatch (defined in
oaidl.idl):

[object, uuid(00020400-0000-0000-C0O00-000000000046)]

interface IDispatch : IUnknown

{
// Allows a client to see if the object can provide a type library.
HRESULT GetTypeInfoCount([out] UINT * pctinfo);

// Get type information for the supporting type.
HRESULT GetTypeInfo([in] UINT iTInfo, [in] LCID lcid,
[out] ITypeInfo ** ppTInfo);

The Anatomy of a COM Server

// Find the numerical ID of some method or property in the object.
HRESULT GetIDsOfNames([in] REFIID riid,

[in, size is(cNames)] LPOLESTR * rgszNames,

[in] UINT cNames, [in] LCID lcid,

[out, size is(cNames)] DISPID * rgDispld);

// Call a method or property.
HRESULT Invoke([in] DISPID dispIdMember,

in
in

] REFIID riid, [in] LCID 1lcid, [in] WORD wFlags,
in, out] DISPPARAMS * pDispParams,

out] EXCEPINFO * pExcepInfo,
out] UINT * puArgErr);

b

[
[
[out] VARIANT * pVarResult,
[
[

Table 2-5 gives a breakdown of the role of each method.

Table 2-5. The Methods of IDispatch

Method of IDispatch
GetTypelnfoCount()

GetTypelnfo()

GetIDsOfNames()

Invoke()

Meaning in Life

This method is used by clients wishing to know if the
object’s functionality is described in an associated type
library. This coclass fills the [out] parameter to zero (0) if the
object does not support type information.

Allows a client to obtain type information for a given
COM type.

A client calls this method to retrieve a numerical cookie
(termed a DISPID) that identifies the number of the method
or property it is attempting to call.

This is the method that invokes the property or method on
behalf of the client, based on the numerical cookie (DISPID)
obtained from GetIDsOfNames().

Understanding Dispinterfaces and DISPIDs

A dispinterface is the term for a specific implementation of IDispatch by a given
coclass. As a scriptable coclass exposes its functionality using a single interface, it
must identify each property and method with a numerical cookie called a DISPID

(dispatch identifier), which is defined in oaidl.idl as a simple LONG:

typedef LONG DISPID; // DISPIDs are not GUIDs.

Chapter 2

110

If you build a COM class that can only be accessed using IDispatch (which is
not typical in this day and age), you could define your dispinterface using the
following IDL (note that the dispinterface keyword must be contained in a library
statement):

[uuid(D679F136-19C9-4868-B229-F338AE163656), version(1.0)]
library RawComCarlLib

{
[uuid(0899D87E-80FE-4e9e-A831-6FCFOA149A9B) |
dispinterface CarDispinterface
{
properties:
methods:
[id(1)] HRESULT PopTheTrunk(VARIANT BOOL popIt);

};

[uuid(1A57D988-6A5F-4ef6-B991-7D64C51003A0) |
coclass LateBoundOnlyCar

{
[default] dispinterface CarDispinterface;
};
};

Notice that when you build an IDispatch-only based COM class, you simply
add all your properties and methods to the [default] dispinterface. The reason is
simple: Late-bound clients can only access members defined by the [default].
Thus, although you could write the following IDL coclass statement:

[uuid(1A57D988-6A5F-4ef6-B991-7D64C51003A0)]
coclass LateBoundOnlyCar

{

[default] dispinterface _CarDispinterface;
interface ICantBeUsed;
interface ICantBeUsedEither;

};

a late-bound client can only make use of the members defined by the IDispatch-
based _CarDispinterface (by the way, the under-bar prefix is not required. It is
simply a naming convention that informs various object browsers to hide this
interface from view).

The Anatomy of a COM Server

Obtaining DISPIDs

Because late-bound clients do not have compile-time access to a server’s type
information, the first step to triggering the object’s functionality is to see if the
type in question supports a given method. To obtain the associated DISPID for
some property or method, the late-bound client sends in the textual name of the
method or property it hopes the object supports by calling GetIDsOfNames().
Using this method, a late-bound client is able to obtain the numerical value of a
given property or method in the dispinterface. GetIDsOfNames() takes a total of
five parameters:

// Breaking down GetIDsOfNames().

HRESULT GetIDsOfNames(
[in] REFIID riid, // Reserved, and will always be IID NULL.
[in] LPOLESTR * rgszNames, // Text name of method/property.
[in] UINT cNames, // Number of names.
[in] LCID lcid, // The language ID.
[out] DISPID * rgDispId); // Place to hold the DISPIDs.

The first parameter is reserved for (possible) future use, and is always
IID_NULL. The second and third parameters represent the string name and the
number of names requested, respectively. The fourth parameter is the “locale”
requested (for example, US English). The final parameter is a place to store the
numerical value of the method or property (aka, the DISPID).

Invoking the Member

Once the client knows the DISPID that identifies the property or method, a call to
Invoke() may be made to actually trigger the item in the dispinterface. As you can
guess, one of the parameters to Invoke() is the DISPID. Here is a breakdown of
each parameter of the Invoke() method:

// Breaking down the Invoke() method.
HRESULT Invoke(
[in] DISPID dispIdMember, // DISPID of method or property.
[in] REFIID riid, // Reserved (also IID NULL)
[in] LCID 1lcid, // Locale ID (again).
[in] WORD wFlags, // Flag used to specify a property or method.
[in, out] DISPPARAMS * pDispParams, // An array of parameters for the method.
[out] VARIANT * pVarResult, // A place to store the logical return value.
[out] EXCEPINFO * pExcepInfo, // Error information (if any).
[out] UINT * puArgErr); // Error information index (if any).

111

Chapter 2

112

Because of the fact that a dispinterface can contain properties and/or
methods, the value of the WORD parameter (wFlags) specifies if the client
wants to invoke a method (DISPATCH_METHOD), a “put” version of a
property (DISPATCH_PROPERTYPUT), or a “get” version of the property
(DISPATCH_PROPERTYGET). Recall that an interface property is identified by
two methods in the object and marked in IDL with the [propput] or [propget]
attributes. Using this flag, Invoke() can call the correct get_ or put_method in
the coclass.

The DISPPARAMS structure is an array of VARIANT-compatible data types,
which contains the parameters for the invoked method (you see the details of this
structure in a moment). Finally, beyond the final two parameters (which are used
for automation error-handling), you have a [out] parameter of type VARIANT*.
This is used to hold the logical return value of the method (if any).

The VARIANT Data Type

As you can see, the DISPPARAMS structure and the VARIANT data type are
interrelated. COM programmers have long been aware of a special data type
termed the VARIANT. The VARIANT itself is realized in C++ as a union of all
possible [oleautomation] compatible data types. Beyond specifying the union of
all possible data types, the VARIANT structure also specifies a VARTYPE field. You
use this field to specify what sort of thing the VARIANT represents (a BSTR, long,
short, IlUnknown pointer, and so forth). The definition of the VARIANT is
expressed in IDL (oaidl.idl) as the following:

// The VARIANT structure may take on the value of any possible automation
// data type.
struct tagVARIANT {

union {

VARTYPE vt; // What is my current type?
union {
LONG 1val; /¥ NT_I4 */
BYTE bval; /* VT _UI1 */
SHORT ival; /% VT 12 %/
FLOAT fltval; /* NT_R4 */
DOUBLE dblval; /* VT _R8 */
VARIANT BOOL boolVal; /* VT _BOOL */
_VARIANT BOOL bool; /* (obsolete) */
SCODE scode; /* VT_ERROR */
cY cyVal; /* VT _CY */
DATE date; /* VT_DATE */

};
};

defining, set the VARTYPE field of the structure using the correct VT_ flag.

BSTR bstrVal;
IUnknown * punkVal;
IDispatch * pdispVal;

SAFEARRAY * parray;

BYTE * pbVal;
SHORT * pival;
LONG * plval;
FLOAT * pfltval;
DOUBLE * pdblval;

VARIANT BOOL * pboolVal;
_VARIANT BOOL * pbool;

SCODE * pscode;
Cy * pcyVal;
DATE * pdate;
BSTR * pbstrVval;

IUnknown ** ppunkVal;
IDispatch ** ppdispVal;
SAFEARRAY ** pparray;
VARIANT * pvarVal;
PVOID byref;

CHAR cVal;

USHORT uival;
ULONG ulval;
INT intval;
UINT uintval;
DECIMAL * pdecVal;
CHAR * pcVal;
USHORT * puiVal;
ULONG * pulVal;
INT * pintval;
UINT * puintval;
1

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

VT BSTR */

VT_UNKNOWN */
VT_DISPATCH */
VT_ARRAY */

VT BYREF|VT UT1 */

VT BYREF|VT T2 */

VT BYREF|VT 14 */

VT BYREF|VT R4 */

VT BYREF|VT R8 */
VT_BYREF|VT_BOOL */
(obsolete) */

VT _BYREF|VT_ERROR */
VT BYREF|VT_CY */

VT _BYREF|VT_DATE */

VT BYREF|VT BSTR */
VT_BYREF|VT_UNKNOWN */
VT_BYREF|VT_DISPATCH */
VT_BYREF|VT_ARRAY */
VT _BYREF|VT_VARIANT */
Generic ByRef */

VT 11 */

VT _UT2 */

VT _UT4 */

VT_INT */

VT UINT */

VT BYREF|VT _DECIMAL */
VT BYREF|VT I1 */

VT BYREF|VT UT2 */
VT_BYREF |VT UI4 */

VT BYREF|VT_INT */

VT _BYREF|VT_UINT */

The Anatomy of a COM Server

The comments that appear in the definition of the VARIANT type are the flags
used to set the underlying type of VARIANT you are working with. In essence, the
VARIANT structure allows you to express any [oleautomation]-compatible data
types that can be understood by all COM-aware languages. The whole of these
data types is expressed as a C style union. To specify the sort of VARIANT you are

113

Chapter 2

114

Working with VARIANTs (in C++)

When you want to create a VARIANT data type in the C++ programming language,
you make use of a handful of COM library functions, which shield you from the
need to manage the memory associated with a given VARIANT. To create a brand-
new VARIANT, you begin by defining a VARIANT variable and initialize it using the
VariantInit() COM library function:

// Create and initialize a VARIANT in C++
VARIANT myVar;
VariantInit(&myvar);

At this point, you have an empty (but safe) VARIANT structure. To establish
what sort of data the variant is holding (BSTR, long, short, pointer to a BSTR, and
so on) you set the VARTYPE field, by specifying the correct VT_ flag. Let’s say you
want to create a VARIANT that starts out life as a short, which is to say VT_I2:

VARIANT myVar;
VariantInit(8myVar);
myVar.vt = VT_I2;

Next, you need to establish the value of this short, by setting the correct
member in the union with an appropriate value. As you can see from the defini-
tion of the VARIANT structure, a short is identified as the iVal member of the
union. Thus, to create a short with the value of 20 using the VARIANT data type:

VARIANT myVar;
VariantInit(8myVar);
myVar.vt = VT_I2;
myVar.iVal = 20;

As another example, here is a VARIANT of type long, with the value of 5000:

VARIANT myOtherVar;
VariantInit(8myOtherVar);
myVar.vt = VT_I4;
myVar.lVal = 5000;

In addition to VariantInit(), the COM library defines a set of additional func-
tions that operate on the VARIANT data type. Some of the most common are
shown in Table 2-6.

The Anatomy of a COM Server

Table 2-6. VARIANT COM Library Functions

VARIANT-Centric Meaning in Life

COM Library Function

Variantlnit() Initializes a VARIANT structure.

VariantClear() Frees up any memory consumed by the current VARIANT.

This method automatically frees BSTRs, release interface
pointers, and so forth.

VariantCopy() Copies the content of one VARIANT to another VARIANT.
This method also frees any memory of the destination before
performing the copy.

VariantChangeType() Sets the underlying type of the VARIANT to another type.

Working with VARIANTs (in VB 6.0)

As you would expect, all this nastiness is hidden from view when using the Visual
Basic Variant data type:

Dim v as Variant

v = "Hello there" " vt = VT_BSTR
v = 100 "vt = VT 14
Set v = txtCarPetName " vt = VT _BYREF | VT _DISPATCH

The DISPPARAMS Structure

Once you can create a single VARIANT, you can build the DISPPARAMS structure.
Using IDispatch from a C++ client can be difficult. The trouble comes from
needing to package any necessary parameters to the method in the form of

an array of VARIANTS, which is represented by the DISPPARAMS structure.
DISPPARAMS is defined in <oaidl.idl> as the following (do note that the
VARIANTARG type is a simple typedef to the VARIANT structure):

// The DISPARAMS structure allows you to send over all required parameters to
// a method using one data structure.
typedef struct tagDISPPARAMS {
[size_is(cArgs)] VARIANTARG * rgvarg; // Array of arguments.
[size is(cNamedArgs)] DISPID * rgdispidNamedArgs; // Array of named arguments.
UINT cArgs; // # of items in array.
UINT cNamedArgs; // # of named arguments.
} DISPPARAMS;

115

Chapter 2

116

More often than not, you only need to concern yourself with the first and third
fields of the DISPPARAMS structure. As for the other fields, automation objects
can support the idea of named arguments. The Visual Basic language allows devel-
opers to call a method and send in any required parameters in an order different
from the one in which the method was declared. To keep things simple, I will not
support any named arguments, so the values of these fields will be NULL.

The other fields of the DISPARAMS structure specify the upper bound of the
array of VARIANT parameters and the array itself. If a C++ client is calling a
member of a dispinterface that takes no parameters, the DISPPARAMS structure
can be assembled quite easily:

// When you are calling a member of a dispinterface that does not require
// any arguments at all (named or otherwise) set up your DISPPARAMS as follows:
DISPPARAMS params = {0, 0, 0, O};

A C++ IDispatch Example

Most members of a dispinterface do, of course, take parameters, and thus you are
required to create some VARIANTS. For example, the _CarDispinterface defines
the PopTheTrunk() method which takes a single VARIANT Boolean. If you call this
method using C++, you would build the following DISPPARAMS structure:

// C++ late binding code.
void main()
{
CoInitialize(NULL);
IDispatch* pDisp = NULL;
CLSID clsid;
DISPID dispid;

// Go look up the CLSID from the ProgID.
CLSIDFromProgID(OLESTR("RawComCar.LateBoundOnlyCar"),&clsid);
LPOLESTR str = OLESTR("PopTheTrunk");

// Create object and get IDispatch..
CoCreateInstance(clsid, NULL, CLSCTX_SERVER, IID IDispatch,
(void**)8pDisp);

// Get DISPID from object..
pDisp->GetIDsOfNames(IID NULL, &str, 1,
LOCALE_SYSTEM_DEFAULT, 8dispid);

The Anatomy of a COM Server

// Build dispatch parameters.

VARIANT myVars[1];

VariantInit(8myVars [0]);

myVars [0].vt = VT_ BOOL;

myVars [0].1val = VARIANT TRUE;
DISPPARAMS myParams = { myVars, 0, 1, O};

// Call PopTheTrunk() using Invoke().
pDisp->Invoke(dispid, IID NULL, LOCALE_SYSTEM DEFAULT,
DISPATCH_METHOD, 8myParams, NULL, NULL, NULL);

// Clean up..
pDisp->Release();
CoUninitialize();

}

Assuming that you have indeed implemented the LateBoundOnlyCar COM
type (including the methods of IDispatch) and registered the server with the
system, you would be able to activate and manipulate this coclass using nothing
but the well-known IDispatch interface. In the previous code, notice that there are
no #includes for MIDL-generated files or #imported type information. Everything
is happening on the fly at runtime. For example, notice that you obtain the
CLSID of the LateBoundOnlyCar dynamically using the type’s ProgID (and
the CLSIDFromProgID() COM library function).

A Visual Basic IDispatch Client

Although you may never need to build a C++ client that makes use of pure late
binding, you hopefully have a better idea (and appreciation) what Visual Basic is
doing on your behalf. For example, here is a late-bound Visual Basic 6.0 client:

' obj is pointing to IDispatch!
Dim obj as Object
Set obj = CreateObject("RawComCar.LateBoundOnlyCar")

obj.PopTheTrunk True

117

Chapter 2

118

Understanding the Dual Interface

As mentioned, most COM classes do not support pure dispinterfaces, given that
this would force all clients to interact with the type using IDispatch (which can be
a pain). Objects that support dual interfaces provide both an IDispatch implemen-
tation as well as the set of custom COM interfaces supported by the object. In this
way, early-bound clients can simply access your custom interfaces (ICar, IRadio)
as expected (and by pass any dynamic lookup of DISPIDs) while the late-bound
clients are still able to make use of your coclass using IDispatch.

Building a dual interface object is quite simple if you make use of the COM
library. For the most part, you write the IDL to describe the dual interface and use
the associated COM library calls to fill in the details of GetTypelnfoCount(),
GetTypelnfo(), GetIDsOfNames(), and Invoke(). This leaves your only task to
implement your interface methods as usual.

However, dual interfaces do have one very important restriction. If you build a
dual interface object, every single parameter of every single method must be
variant compliant (meaning, it must be able to be represented in a VARIANT struc-
ture). Just like a raw dispinterface, it is important to understand that late-bound
clients are only able to access the [default] dual interface (even though it is techni-
cally possible to build a COM class with multiple [dual] interfaces).

Defining a Scriptable Object

To illustrate the use of [dual] interfaces and see a complete implementation of
IDispatch, let’s add a new coclass to the current RawComCar project. As with most
things in COM, writing a dual interface begins with the IDL code. Defining a dual
interface in IDL looks like the following (note you are defining a COM property):

// The IScriptableCar interface
[uuid(DBAA0495-2F6A-458a-A74A-129F2C45B642), dual, object]
interface IScriptableCar : IDispatch

{
[id(1), propput] HRESULT Speed([in] long currSp);
[id(2), propget] HRESULT Speed([out, retval] long* currSp);
[id(2)] HRESULT CrankTunes();

};

Like any COM interface, dual interfaces are marked with the [uuid] and
[object] attributes. However, you must also specify the [dual] attribute and derive
your custom interface directly from IDispatch. Furthermore, each member in the
dispinterface must be marked with a unique DISPID using the [id] attribute.

The Anatomy of a COM Server

As you can see, [dual] interfaces are a hybrid of traditional COM interfaces and the
pure dispinterface.

Now assume that you have updated your library statement to support the
following coclass (notice that we are making use of the interface keyword rather
than the dispinterface keyword when specifying a [dual] interface):

[uuid(D679F136-19C9-4868-B229-F338AE163656), version(1.0)]
library RawComCarlLib

{
importlib("stdole32.t1lb");

// The first ComCar as before..

// Our other COM class.
[uuid(7AD9AFC9-771C-495c-A330-006D54A23650)]
coclass ScriptableCar
{
[default] interface IScriptableCar;
};
b

Implementing IScriptableCar

If you insert a new C++ class named ScriptableCar, you would suddenly be in the
position of implementing a total of ten methods on the type. Here is the header file:

class ScriptableCar : public IScriptableCar
{
public:

ScriptableCar();

virtual ~ScriptableCar();

// TIUnknown.

STDMETHOD_(DWORD, AddRef)();

STDMETHOD_(DWORD, Release)();

STDMETHOD (QueryInterface)(REFIID riid, void** ppv);

// IDispatch.
STDMETHOD (GetTypeInfoCount)(UINT *pctinfo);
STDMETHOD (GetTypeInfo)(UINT iTInfo, LCID lcid, ITypeInfo **ppTInfo);
STDMETHOD (GetIDsOfNames)(REFIID riid, LPOLESTR *rgszNames,
UINT cNames, LCID lcid, DISPID *rgDispId);

119

Chapter 2

120

STDMETHOD (Invoke)(DISPID dispIdMember, REFIID riid, LCID lcid,
WORD wFlags, DISPPARAMS *pDispParams,
VARIANT *pVarResult, EXCEPINFO *pExcepInfo,
UINT *puArgErr);

// Members of IScriptableCar.
STDMETHOD (put_Speed)(long delta);
STDMETHOD (get Speed)(long* currSp);
STDMETHOD (CrankTunes)();

long m_currSpeed;
ULONG m_refCount;
// To hold onto our type information (see below).
ITypeInfo* m ptypelnfo;
};

Like any COM class, ScriptableCar needs to implement the three methods of
IUnknown. I won't bother listing this here, but check your companion code for full
details (it should be no surprise that QueryInterface() is returning three possible
interfaces!).

When it comes down to the process of implementing the methods of IDispatch,
you have a number of possible techniques ranging from building a custom lookup
table to leveraging your own type information. The simplest possible way to
support IDispatch is to make use of your own type information and a small set of
COM library functions as shown in Table 2-7.

Table 2-7. IDispatch Helper Functions

IDispatch-Centric Meaning in Life
COM Library Function
LoadRegTypeLib() This COM library function loads a type library into memory.

The returned ITypeLib interface represents this in-memory
hook, and from it you are able to obtain a valid ITypelnfo
interface that describes the current COM type.

DispGetIDsOfNames() This method of the COM library maps a string name to the
correct DISPID by reading your type information.

DispInvoke() This COM library function calls a method on our C++ class
based on the current DISPID.

Using these members of the COM library, you are able to equip your COM
class to read its own type information to obtain the correct DISPID for the caller,
as well as route the invocation request to a member on your C++ class type.

The Anatomy of a COM Server

Notice how the ScriptableCar type maintains a private ITypelnfo interface
member variable. This standard COM interface represents a pointer to a specific
COM type in a loaded type library. You learn much more about this interface later
in the text. Just understand for the time being that this standard COM interface
allows you to read type information about a COM item at runtime.

Given the fact that ITypelnfo represents the type information for the
ScriptableCar, the first step is to load the type information into memory (repre-
sented by the ITypeLib interface), and hold onto your type information using the
ITypelnfo member variable. When the COM class self-destructs, you need to
release the interface reference. Here is the initial update:

// Load our type information on start up.
ScriptableCar::ScriptableCar() : m_currSpeed(0), m ptypeInfo(NULL),
m_refCount(0)

++g_ObjectCount;

// When our object is constructed, we are going to
// load up the *tlb file and store it in our ITypeInfo pointer.
ITypelLib* pTypelibrary = NULL;
HRESULT hr;
hr = LoadRegTypelib(LIBID RawComCarLib, 1, O,
LANG_NEUTRAL, 8&pTypelibrary);
if(SUCCEEDED(hr))
{
pTypeLibrary->GetTypeInfoOfGuid(IID IScriptableCar, &m_ptypeInfo);
pTypeLibrary->Release();
}
}

// Release our type information on shut down.
ScriptableCar::~ScriptableCar()

{
--g_ObjectCount;
m_ptypeInfo->Release();

}

Now that you have a handle to your type information, the implementation of
IDispatch is rather straightforward. Here is the code (with analysis to follow):

STDMETHODIMP ScriptableCar::GetTypeInfoCount(UINT *pctinfo)

{
// Return type info count.
*pctinfo = 1;
return S_OK;

121

Chapter 2

STDMETHODIMP ScriptableCar::GetTypeInfo(UINT iTInfo,
LCID lcid, ITypeInfo **ppTInfo)
{

// Return reference to our ITypeInfo interface.
*ppTInfo = m_ptypeInfo;

m_ptypeInfo->AddRef();

return S_0K;

STDMETHODIMP ScriptableCar::GetIDsOfNames(REFIID riid,
LPOLESTR *rgszNames, UINT cNames, LCID lcid, DISPID *rgDispId)

{
// Now we just delegate the work of the look-up to our type library.

return DispGetIDsOfNames(m ptypeInfo, rgszNames, cNames, rgDispId);
}

STDMETHODIMP ScriptableCar::Invoke(DISPID dispIdMember, REFIID riid,
LCID lcid, WORD wFlags, DISPPARAMS *pDispParams,
VARIANT *pVarResult, EXCEPINFO *pExcepInfo, UINT *puArgErr)

{
// Again, delegate work to the type library.

return DispInvoke(this, m ptypeInfo, dispIdMember, wFlags, pDispParams,
pVarResult, pExcepInfo, puArgErr);

The implementation of GetTypeInfoCount() fills the incoming UINT to 1,
which is the standard way of informing the caller that this COM object has access
to its own type information (1 being the number of ITypelnfo interfaces the type is
maintaining). If the client wishes to obtain access to our type information,
GetTypelnfo() returns a reference to the caller.

The real point of interest is GetIDsOfNames(), which delegates the work to the
COM library function DispGetIDsOfNames(). Using our type information, this
function obtains the correct DISPID for the client based on the incoming string
value. Invoke() is also rather simple, given that DispInvoke() will do the work of
calling the correct method on the ScriptableCar based on the incoming DISPID
(note that the first parameter to this COM library function is a pointer to the
implementing object!).

122

The Anatomy of a COM Server

Building the Class Factory

Given that the ScriptableCar is a creatable COM class, it must have a unique class
factory to activate it. The truth of the matter is that all COM class factories have a
very similar look and feel and are quite boilerplate in nature. In fact, if you copy
and paste the ComCar’s class factory definition (changing the name of the class of
course), the only update of note is in the implementation of CreateInstance(). This
time you construct a ScriptableCar type:

STDMETHODIMP ScriptableCarCF::CreateInstance(LPUNKNOWN pUnkOuter,
REFIID riid, void** ppInterface)

{
if(pUnkOuter != NULL)
return CLASS_E_NOAGGREGATION;
ScriptableCar* pCarObj = NULL;
HRESULT hr;
// Create the scriptable car.
pCarObj = new ScriptableCar;
hr = pCarObj -> QueryInterface(riid, ppInterface);
if (FAILED(hr))
delete pCarObj;
return hr;
}

The remainder of the ScriptableCarCF class is identical to ComCarCE

Updating DllGetClassObject

Recall that the role of DIIGetClassObiject() is to return the correct IClassFactory
interface based on the CLSID of the coclass provided by the client. Given that

our COM server now contains two coclasses, you must update your previous
DIIGetClassObject() implementation to test against two MIDL-generated constants:

// Don't forget to #include "scriptablecarcf.h"
STDAPI D11GetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)
{
// Which Car do you want?
if(rclsid == CLSID_ComCar)
{

123

Chapter 2

124

ComCarCF* pCarCF = new ComCarCF();
return pCarCF->QueryInterface(riid, ppv);

}
else if(rclsid == CLSID_ScriptableCar)

{
ScriptableCarCF* pCarCF = new ScriptableCarCF();
return pCarCF->QueryInterface(riid, ppv);

}

else
return CLASS E CLASSNOTAVAILABLE;

Updating the Server’s Registration File

Finally, like all COM objects, you must ensure that the type is registered in the
system registry. Here are the new entries to your current *.reg file (be sure to rereg-
ister this information by double-clicking the file!).

; Scriptable car entries.
HKEY_CLASSES_ROOT\RawComCar.ScriptableCar\CLSID
= {7AD9AFC9-771C-495c-A330-006D54A23650}

HKEY_CLASSES ROOT\CLSID\{7AD9AFC9-771C-495c-A330-006D54A23650}
= ScriptableCar.CoCar

HKEY_CLASSES ROOT\CLSID\{7AD9AFC9-771C-495c-A330-006D54A23650}
\InprocServer32 = C:\Apress Books\InteropBook\Labs\Chapter 2
\RawComCar\Debug\RawComCar.dl11

HKEY_CLASSES ROOT\CLSID\{7AD9AF(C9-771C-495c-A330-006D54A23650}
\TypelLib = {D679F136-19C9-4868-B229-F338AE163656}

Building a VBScript Late-Bound Client

The point of IDispatch really hits home when you look at the process of using a
COM object from an existing piece of software. Consider, for example, Microsoft
Internet Explorer. Obviously, you do not have the source code for this desktop
application, and therefore cannot simply #include the MIDL-generated files into
the code base. Nevertheless, IE still needs to make use of the same GUIDs,
member names, and type information as would an application that you

The Anatomy of a COM Server

constructed yourself. Using your HTML editor of choice, activate the COM type
using the VBScript CreateObject() method and trigger some functionality:

<HTML>
<HEAD>
<TITLE>Document Title</TITLE>
</HEAD>
<BODY>
<H1>Behold, the need for <i>IDispatch</i>.</H1>
<SCRIPT language="VBScript">
Dim o
Set o = CreateObject("RawComCar.ScriptableCar")
o.CrankTunes
0.Speed = 100
MsgBox o.Speed
</SCRIPT>
</BODY>
</HTML>

If you now load this file (simply by double-clicking) you find something like
what you see in Figure 2-24.

‘3 Document Title - Microsoft Internet Explorer X
Hle Edit View Favorites Tools Help a"

@Back - @ - @ @ @ pSearch *Favorites @ Media

Address |@ oks\InteropBook\Labs\Chapter 2\ScriptableCar.htm | :a| Go | Links

Behold, the need for
IDispatch.

ScriptableCar |z|

Cranking music!

@Opening page ﬁe:HC:\Apd II] | | | ¥ My Computer

Figure 2-24. IDispatch in action

125

Chapter 2

126

So, with this you reach the conclusion of Chapter 2. Based on your current
exposure to the guts of COM, this chapter may have been quite illuminating, or a
rather obvious reiteration of facts you have committed to memory long ago. In
either case, I hope this chapter has clarified the core aspects of COM develop-
ment. The next chapter offers a quick-and-dirty compare and contrast between
two popular COM frameworks: ATL 3.0 and Visual Basic 6.0.

1 leoree CODE The ScriptableCar.htm file as well as a C++ late-bound client
\ s - (CppLateBoundClient) are included under the Chapter 2 subdirectory.
aal
Summary

The stated goal of this chapter was to examine the internal composition of a COM
DLL server. To reach this objective, you spent a good deal of time digging into the
inner goo that constitutes the COM infrastructure. As you have learned, all COM
types (interfaces, coclasses, enumerations, and structures) are defined in IDL. IDL,
as a language-neutral way to define COM types, is sent into the MIDL compiler to
produce language-specific language binding (the most important of which is the
type library file).

All COM classes must support the IUnknown interface, which provides
memory management and interface navigation for the implementing coclass.

To be activated in a language-neutral manner, each coclass is assigned a COM class
factory, which by definition supports the IClassFactory interface. Finally, COM
classes and the related class factories are packaged into DLL or EXE file formats.
Here, you focused on the composition of DLL servers and came to understand

the role of DIIGetClassObject(), DIlCanUnloadNow(), DlIRegisterServer(), and
DllUnregisterServer(). You also spent time examining how COM classes can be
activated and manipulated by various COM-aware languages such as C++ and
Visual Basic 6.0.

Finally, you took a quick tour of the role of IDispatch and related late-binding
atoms such as the VARIANT data type, and the ITypeLib and ITypelnfo interfaces.
Using IDispatch, a late-bound client is able to invoke members on a COM type
without needing to reengineer its code base to reference external dependencies
(GUIDs, interface constants, and whatnot).

Now on to a (very) short course on ATL 3.0 and VB 6.0.

CHAPTER 3

A Primer
on COM Programming
Frameworks

The previous chapter introduced you to the process of building COM DLLs using
raw C++ and IDL. Although it is illuminating to see exactly what takes place under
the hood to build a COM server from the ground up, I am sure you agree that the
process is tedious and error prone. In this chapter, I draw your attention to the
creation of COM servers using two popular frameworks, namely the Active
Template Library 3.0 (ATL 3.0) and Microsoft Visual Basic 6.0. This chapter also
illustrates how to make use of a core development tool: the OLE/COM Object
Viewer (oleview.exe), which will be used throughout this text.

Obviously, entire books have been written about COM development using
ATL 3.0 and VB 6.0. To be sure, a single chapter cannot do justice to each COM
framework. However, given that this book is all about getting the COM and .NET
architecture to coexist in harmony;, I feel compelled to cover the basics of each of
these COM toolkits. Even if you are a seasoned veteran of ATL 3.0 and VB 6.0, I
invite you to read along and build the sample applications, given that you make
use of these COM servers later in the text. So without further introductory fluff,
let’s formalize the role of ATL.

The Role of the Active Template Library

ATL is a very popular C++ COM development framework that consists of a
number of templates, magic macros, and base class types. The overall goal of ATL
is to provide default boilerplate implementations for the necessary COM infra-
structure (IUnknown, class factories, IDispatch, and so on), giving you more time
to concentrate on the business problem you are trying to solve. Consider for

127

Chapter 3

128

example the C++ ComCar you created in Chapter 2. Although all you really wanted
to do was allow the outside world to access this functionality:

// The essence of the ComCar.
STDMETHODIMP ComCar: :SpeedUp(long delta)

{
m_currSpeed += delta;
return S_OK;
}
STDMETHODIMP ComCar: :CurrentSpeed(long* currSp)
{
*currSp = m_currSpeed;
return S_OK;
}
STDMETHODIMP ComCar: :CrankTunes()
{
MessageBox (NULL, "Cranking music!", "ComCar", MB OK);
return S_OK;
}

you were required to implement the methods of IUnknown, build IDL type defini-
tions, and construct a class factory, as well as contend with several DLL exports
(not to mention register the critical server information in the system registry). If
you choose to build your COM servers using C++, ATL will be a welcome addition
to your programmer’s bag of tricks.

Understand that even though ATL does provide stock implementations of
numerous COM atoms, you are always able to extend and override this default
behavior if you so choose. In any case, ATL does not exonerate you from the need
to understand IDL or the constructs of COM. To illustrate the basics, you will
construct an ATL DLL that mimics the functionality of the previous
RawComCar.dll.

Generating the Component Housing

Every ATL project begins by making use of the ATL COM AppWizard utility, which
can be activated from the File | New menu of the Visual Studio 6.0 IDE (Figure 3-1).
If you wish to follow along, name your project AtlCarServer and click the OK
button.

A Primer on COM Programming Frameworks

Files Projects Workspacesl Other Documents

ATL COM Appwizard %] win32 Static Library Project name:
#| Cluzter Rezource Tepe Wizard I-"—"-“':E"S EMvEr
g+] Cuztom Appisizard ;
=1 Database Project Locatior:
B D Studio Add-in \wizard IC:\Apress BookshInterapB ook’ J
2% Extended Stared Proc Wwizard
B |SAF Estension Wizard
=1 M akefile ' Create new workspace

i 1P Active) Controbyizard ¢ Add to cunent workspace

MFC Appiwizard [di] ™ Dependency of
LA 1FC Appwizard [2xs] I ;I
3% Mew Database Wizard

T4 Utility Project

A|Wwind2 Application

Wlind2 Conzale Application
|%] wina2 Dynamic-Link Library
L] il] >

Platforms:
Iwm:az
|

QK. I Cancel

Figure 3-1. ATL projects begin here.

The ATL COM AppWizard allows you to choose among a small set of options.
Most important, you are able to specify if you wish to build an in-process server
(DLL) or a COM-based EXE server (used for local or remote access). For the
current example, leave all the default settings to receive a new DLL. The only
purpose of this tool is to generate the necessary files for a COM server. Thus, at
this point you do not have any interface or coclass IDL definitions or C++ coclass
implementations.

The ATL Project Files

When you create a new ATL DLL project workspace, you are provided with a
number of files that represent the component housing. Table 3-1 documents the
role of each file.

129

Chapter 3

130

Table 3-1. Generated ATL Project Workspace Files

ATL COM AppWizard Meaning in Life
Generated File

stdafx.h Precompiled header files. Includes the core ATL files into your
stdafx.cpp current project.
AtlCarServer.cpp Implements the DLL export functions for this server, enlisting

help from the ATL class, CComModule. Also defines a DIIMain()
implementation to initialize and terminate the CComModule
instance and declares the server’'s OBJECT_MAP data structure.

AtlCarServer.def Exports your DLL functions.

AtlCarServer.idl Your project’s IDL file, doing nothing more at this point than
declaring an empty library statement.

AtlCarServer.h MIDL-generated files to hold your C/C++ interface bindings,
AtlCarServer_i.c GUID definitions, proxy/stub code (including DLL exports), and
AtlCarServer_p.c the binary type library. These files will not be generated until
dlldata.c. after your first compile (which triggers the midl.exe compiler).
AtlCarServer.tlb

AtlCarServer.mk ATL-generated makefile and DEF file used to build a custom

AtlCarServer.def stub/proxy DLL using the nmake.exe utility.

resource.h Minimal resource files for this project.
AtlCarServer.rc

At this point, if you view the list of global members using ClassView, you will
be pleased to find that each of the required DLL exports have been implemented
on your behalf (Figure 3-2).

Workspace

E|- AtiICarServer classes

- & DICanUnloadMow(]
- & DIGetClazz0bject(REFCLSID relsid, REFID rid, LFVOID *ppy]
- & DIMainHINSTANCE hinstance, D'W0ORD dwReason, LFVOID]

oo @ DIIRegisterServer(]

@ DllUnreqgisterServer]

b g _Module

i | M|] >

B Clazsiew ! Resouncelisw ! Filetigw I

Figure 3-2. ATL autogenerates the necessary DLL exports.

A Primer on COM Programming Frameworks

Now compile this project (to run the MIDL compiler) and switch to FileView.
You should now be able to see the full set of files that constitute the empty COM
DLL (Figure 3-3).

Workspace
Workspace BHCarServer' 1 projectz)

ERE1 AtlCarServer files]
Ea Source Files

' j AHCarServer. cpp
% AHCarS erver. def
3 AtCarS erver.idl
(2] sCarServerc
[3 Stdafx.cpp
Header File:

E] Resource.h

S stdafxh
Resource Files
Estermal Dependencies
3 AtCarServer.h
E] atiCarServer b
B ANCarServer_ic
2] basetzd h

B8 Clazshiew Resourceliew Fileigw

Figure 3-3. Initial project files

Although you do not need to examine the contents of each and every file, take
the time to check out three important files. (I'll assume you'll investigate the
remaining files in whatever level of detail you so choose.)

The Initial IDL File

If you open the generated IDL file, you will see an empty library definition,
complete with a generated LIBID, version, and a new IDL attribute termed a
[helpstring]:

import "oaidl.idl";
import "ocidl.idl";
[
uuid(B6D55CDA-D4AA-42E5-A5E3-D3034DE6AS75),
version(1.0), helpstring("AtlCarServer 1.0 Type Library")

]
library ATLCARSERVERLib

131

Chapter 3

132

{
importlib("stdole32.tlb");
importlib("stdole2.t1b");

};

The [helpstring] attribute may be applied to the libraries, coclasses, interfaces,
and methods. These simple text strings are displayed in various tools (such as the
VB 6.0 Object Browser utility) and provide a convenient way to document the
functionality of your COM binary.

The AtlCarServer.cpp File

Every ATL project contains a primary *.cpp file that takes the same name as the
current project. Within this C++ implementation file are the full implementations
of the four required DLL exports. In addition to a number of #include directives
(including references to the MIDL-generated *_i.c and *.h files), you also see a
global object of type CComObject (whose usefulness you will understand shortly)
and a server-wide “object map.” Here are the abbreviated contents:

// A1l ATL projects have a single global CComModule..
CComModule _Module;
// .and a server-wide object map.
BEGIN OBJECT MAP(ObjectMap)
END_OBIECT MAP()
extern "C"
BOOL WINAPI D11Main(HINSTANCE hInstance, DWORD dwReason,
LPVOID /*1pReserved*/)
{
if (dwReason == DLL_PROCESS ATTACH)
{
_Module.Init(ObjectMap, hInstance, &LIBID ATLCARSERVERLib);
DisableThreadLibraryCalls(hInstance);
}
else if (dwReason == DLL_PROCESS DETACH)
_Module.Term();
return TRUE; // ok
}
STDAPI D11CanUnloadNow(void)
{ return (_Module.CGetLockCount()==0) ? S OK : S FALSE; }
STDAPI D11GetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)
{ return Module.GetClassObject(rclsid, riid, ppv); }
STDAPI D11RegisterServer(void)

A Primer on COM Programming Frameworks

{ return Module.RegisterServer(TRUE); }
STDAPI DllUnregisterServer(void)
{ return Module.UnregisterServer(TRUE); }

The Project’s *.def File

Finally, you are provided with a properly configured *.def file that is used to expose
your DLL exports.

; AtlCarServer.def : Declares the module parameters.
LIBRARY "AtlCarServer.DLL"
EXPORTS
D11CanUnloadNow @1 PRIVATE
D11GetClassObject @®2 PRIVATE
D11RegisterServer @3 PRIVATE
DllUnregisterServer @4 PRIVATE

Inserting COM Objects Using the ATL Object Wizard

Once you have established the component housing using the ATL. COM
AppWizard, you make use of another integrated tool, the ATL Object Wizard, when
you wish to insert COM objects into the binary DLL. You can use numerous
methods to activate this wizard, the simplest of which is the Insert | New ATL
Object menu selection. When you make this selection, you are greeted by the
dialog box in Figure 3-4.

ATL Object Wizard

Categan Objects

Enntrol& m'%

Mizcelaneous
Data fccess Simple Object s Y= Internet
Ewplor...

& [©

Activer{ Server MMC Snapln
Component Tlansactl

Mewt » I Cancel |

l

Figure 3-4. The ATL Object Wizard

133

Chapter 3

134

As you can tell, the ATL Object Wizard defines a number of COM object types
ranging from a simple coclass (Simple Object) to complete ActiveX controls (found
under the Controls category). For the purposes of this example, you only need to
concern yourself with Simple Object types. These COM object types are initially
configured using two tabs: Names and Attributes.

The Names tab is simple enough. Here, you are able to specify the names of
each generated C++ file as well as various COM atoms (such as the ProgID and
name of the default interface). Insert a new type named ComCar (Figure 3-5).
Notice the ProgID is based on the name of your COM server and the object you are
about to insert.

ATL Object Wizard Properties

Names | Attributes |
= C+t — COM
Short Mame: Wl Eg[llass:lm
Class: IW Interface: IIEnmCar
H File: IW Type: ICumEal Class
.CPP File: IW Praog [D: Im

QK I Carncel |

Figure 3-5. Establishing the names of your new coclass

The Attributes tab is used to configure numerous settings such as support for
COM error handling, COM connection points (the COM event model), and various
threading details. Here, the only modification you need to make is to select a
custom rather than dual interface (Figure 3-6).

If you select the default Dual option, your class will be equipped to support
the standard IDispatch interface. When you do, your ATL coclass will be derived
from the IDispatchImpl<> template, which provides a full implementation of the
four members of IDispatch. In fact, ATL is making use of the exact same COM
library calls you did in the previous chapter (DispInvoke() and so on). Also, when
you choose a dual interface, the integrated wizards will automatically assign
DISPIDs to each new member. ATL hides IDispatch so well that you can more or
less forget about the details and simply add your custom methods.

A Primer on COM Programming Frameworks

ATL Object Wizard Properties

Marnes Attibutes

Threading Model Interface Aggregation

" Single " Dual v Yes

{* Apartment o ; " No

i~ Both Orly

" Free
I Support [SupportE mor ko ™ Free Thieaded Marshaler
I~ Support Connection Paints

QK I Canicel

Figure 3-6. Configuring various coclass attributes

Code Updates

Once you have inserted your new Simple Object, the coclass and [default] inter-
face will be reflected in your original IDL. Although the Object Wizard is kind
enough to make this initial IDL update, don't be lulled into believing that you can
forget about manually editing your *.idl files. When you wish to add support for
additional COM interfaces, you will need to do so manually. Here are the relevant
changes:

[object, uuid(16C19100-5881-40E0-8844-8C0B8436B603),
helpstring("IComCar Interface"), pointer default(unique)]
interface IComCar : IUnknown
185
[uuid(B6D55CDA-D4AA-42E5-A5E3-D3034DE6ASTS),
version(1.0),helpstring("AtlCarServer 1.0 Type Library")]
library ATLCARSERVERLib
{

importlib("stdole32.t1b");

importlib("stdole2.tlb");

[uuid(8225387E-8453-484C-96D4-CBBAFF3A5329),
helpstring("ComCar Class")]
coclass ComCar
{
[default] interface IComCar;
s
b

135

Chapter 3

136

In addition to updating your type information, the Object Wizard also alters
your server-wide “object map” with a new OBJECT_ENTRY macro.

// Each object in your ATL server will be listed here.
BEGIN_OBJECT MAP(ObjectMap)

OBJECT_ENTRY(CLSID ComCar, CComCar)
END_OBJECT MAP()

The major code updates come by way of the addition of three new source
code files:

e ComCar.h: The header file for your new coclass
¢ ComCar.cpp: The implementation file for your new coclass
¢ ComCar.rgs: The registration script file for your new coclass

Let’s examine each file in turn, focusing on the provided functionality.

ATL’s Implementation of Your Coclass

Once of the best things about the ATL framework is that you never need to
manually implement the methods of [Unknown for your COM types. The frame-
work provides a default implementation using two core base-class templates:
CComObjectRootEx<> and its immediate parent, CComObjectRoot<>. These
templates work in conjunction with another entity termed the COM map. This
may be one of the most misnamed entities in the ATL class libraries, given that the
COM map is used to catalog the set of interfaces supported by the current COM
class. Although the internal construction of the ATL COM map (and related
templates) is a bit outside the scope of this text, do understand that helper func-
tions of these templates will make calls to the COM map whenever an external
QuerylInterface() request is made on the object. Thus, keeping your COM map
up-to-date is just as critical to the health of your COM object as manually
updating the QueryInterface() of a coclass written in raw C++.

In addition to providing a default implementation of IUnknown, ATL provides
a free default implementation of the IClassFactory interface. Each creatable ATL
class has CComCoClass<> as a member of its inheritance chain. Nested deep
within this template definition is a macro named DECLARE_CLASSFACTORY.
When expanded, this macro defines a C++ class that implements
IClassFactory::LockServer() and IClassFactory::Createlnstance() on your behalf.
Here then is the initial header file definition of ComCar:

A Primer on COM Programming Frameworks

// Recalll These base class templates provide an automatic
// implementation of IUnknown and IClassFactory.
class ATL_NO VTABLE CComCar :

// Core IUnknown support here.

public CComObjectRootEx<CComSingleThreadModel>,

// Class factory defined here!

public CComCoClass<CComCar, &CLSID_ ComCar>,

// Custom interface(s) here!

public IComCar
{
public:

CComCar(){}
DECLARE_REGISTRY_RESOURCEID(IDR_COMCAR)
DECLARE_PROTECT _FINAL CONSTRUCT()
// Table driven QueryInterface().
BEGIN_COM MAP(CComCar)

COM_INTERFACE_ENTRY(IComCar)
END_COM_MAP()

};

ATL’s Registration Support

Recall from Chapter 2 that a given COM server requires a good deal of system
registration. If you were to build a C++ implementation of DIIRegisterServer() and
DllUnregisterServer(), you would have a good deal of code on your hands. Using
* reg files is a less code-intensive alternative; however, the syntax of a *.reg file is
hardly friendly. One extra bit of white space (or not enough in the correct places)
can cause a number of corrupt entries to be encoded under
HKEY_CLASSES_ROOT. The ATL framework takes a middle-of-the-road approach
using *.rgs files.

When an ATL COM server is told to register itself with the system (via
regsvr32.exe or some installation software package), the implementation of
DIIRegisterServer() simply makes a call on the global CComModule helper class:

STDAPI D11RegisterServer(void)

{
return Module.RegisterServer(TRUE);

}

137

Chapter 3

138

CComModule::RegisterServer() in turn consults the server-wide object map
and walks the list of entries (that is, each OBJECT_ENTRY listing), calling each
member’s UpdateRegistry() method. For this example, you have a single listing in
your object map for the ComCar type. Notice how the second parameter to the
OBJECT_ENTRY macro is the name of the C++ class that has the implementation
code for the given CLSID.

// The CComModule type walks the list of
// entries and tells each C++ class to register
// itself by calling the UpdateRegistry() method.
BEGIN_OBJECT MAP(ObjectMap)

OBJECT_ENTRY(CLSID ComCar, CComCar)
END_OBJECT MAP()

Sadly, if you look in the CComCar header file, you will not see a method
named UpdateRegistry(). You should, however, notice the following macro:

class ATL_NO_VTABLE CComCar :
public CComObjectRootEx<CComSingleThreadModel>,

{
DECLARE_REGISTRY_RESOURCEID(IDR_COMCAR)
};

If you examine the expansion of this macro, you will see a method named
UpdateRegistry(). Notice how the macro parameter (IDR_COMCAR) is passed
as an argument to the CComModule::UpdateRegistryFromResource() helper
function:

// This ATL macro expands to define UpdateRegistry()
// for your class.
#fdefine DECLARE_REGISTRY_RESOURCEID(x)\
static HRESULT WINAPI UpdateRegistry(BOOL bRegister)\

{\

return _Module.UpdateRegistryFromResource(x, bRegister);\

}

So, if you are following the bouncing ball, you will see that ATLs default
implementation of DlIRegisterServer() calls CComModule::RegisterServer().
This method calls the UpdateRegistry() method (supplied via the
DECLARE_REGISTRY_RESOURCEID macro) for each C++ class listed in the object
map. The final question is, what is this magical parameter IDR_COMCAR that is
passed into CComModule.UpdateRegistryFromResource()? If you examine your
ResourceView tab, you will see a new custom resource folder named “REGISTRY”
(Figure 3-7).

A Primer on COM Programming Frameworks

Workspace

El- a AtlICarServer resources
EI E-l "HEGISTFW"
W oE IDR_COMCAR
l [:l Stnng Table
-2 Wersion

B Clazsiem Resourceifiew Filetigw

Figure 3-7. IDR_xxx is a custom resource.

These “IDR_” resources are a binary equivalent of the autogenerated *.rgs file.
This file is compiled into a “REGISTRY” resource, which is then embedded in your
COM DLL (or EXE). Thus, each ATL COM server has all the necessary information
to register and unregister itself on demand. Here is the *.rgs file that describes
ComCar:

HKCR
{
AtlCarServer.ComCar.1 = s 'ComCar Class'
{
CLSID = s '{8225387E-8453-484C-96D4-CBB4FF3A5329}"
}
AtlCarServer.ComCar = s 'ComCar Class'
{

CLSID = s '{8225387E-8453-484C-96D4-CBB4FF3A5329}"
CurVer = s 'AtlCarServer.ComCar.1'

}
NoRemove CLSID

{
ForceRemove {8225387E-8453-484C-96D4-CBB4FF3A5329} = s 'ComCar Class'
{

ProgID = s 'AtlCarServer.ComCar.1'
VersionIndependentProgID = s 'AtlCarServer.ComCar'
InprocServer32 = s '%MODULE%'
{

val ThreadingModel = s 'Apartment’

}
'Typelib' = s '{B6D55CDA-DAAA-42E5-A5E3-D3034DE6A575}

139

Chapter 3

140

Even if you have never seen ATLs Registry Scripting Language, you should be
able to pull out the ProgID and CLSID registration information. For example, you
can see that the value stored under HKCR\CLSID\ {<your GUID>}\InprocServer32
is based on a placeholder named %MODULE%. At runtime, this placeholder is
replaced by the current location of the DLL or EXE on the target machine.

Adding Members to the [Default] Interface

Now that you have a better feel for how ATL composes your COM server, you can
begin to add your custom logic. When you wish to add methods to a given COM
interface, you certainly could make the necessary code adjustments by hand.
However, ATL projects support yet another wizard to facilitate this process. Simply
right-click an interface icon from ClassView and select Add Method (or if you
wish, Add Property) from the context menu (Figure 3-8).

Workspace

E|--- AtlCar5erver classes
&+ CComCar

23 Glat 5o ko Definition

Add Method. ..

add Eroperty. ..,
(4 Mew Folder...

|7 Diocking View
Hide

Properties

B8 Classhisw R esourcelisw Filet i

Figure 3-8. Adding methods a la ATL

The resulting dialog box prompts you for the name, return type, and param-
eter list of the new interface method. Be aware that all parameters are entered as
IDL (so don'’t forget about the [in], [out], [in, out], and [out, retval] attributes). If
you add the SpeedUp() method shown in Figure 3-9, you will find that your *.idl,
ComCar.h, and ComCar.cpp files have been updated as follows:

// IDL file update.
interface IComCar : IUnknown

{
[helpstring("method SpeedUp")] HRESULT SpeedUp([in] long delta);

A Primer on COM Programming Frameworks

1

// Header file update.

class ATL_NO VTABLE CComCar :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CComCar, &CLSID ComCar>,
public IComCar

{
public:

STDMETHOD(SpeedUp) (/*[in]*/ long delta);
1

// Implementation file update.

STDMETHODIMP CComCar: :SpeedUp(long delta)

{
// TODO: Add your implementation code here
return S_OK;

}

Add Method to Interface

Ao Tvee
|HRESULT =]

Caticel |
ethad Marme:
|SpeedU|:- Attributes. .. |
Barameters:
I[in] long delta

Implementation;

[helpztringl'method SpeedUp™]]
HRESULT Speedlplfin] lohg delta);

Figure 3-9. Adding interface methods

As you can see, ATL is making use of the same COM-centric macros shown in
Chapter 2. Now assume you have added a private data member (m_currSpeed) to
your ATL ComCar to hold the current speed. The implementation of SpeedUp() is
trivial:

STDMETHODIMP CComCar: :SpeedUp(long delta)
{
// Speed up.
m_currSpeed = m_currSpeed + delta;
MessageBox (NULL, "Speeding Up", "ATL ComCar", MB OK);
return S_OK;
}
141

Chapter 3

142

Adding a More Interesting Method

SpeedUp() is a step in the right direction for this iteration of ComCar. However, to
make things a bit more enticing (and preview some additional COM types), add
one more method to the IComCar interface. The TurnOnRadio() method takes a
single inbound argument that just happens to be a COM enumeration. Like C(++)
enumerations, the IDL enum keyword is used to define a custom user-defined
type with a fixed set of name/value pairs. When defining enums in IDL, you are
not required to add any IDL attributes to the enum type itself, but you are required
to make use of the C typedef syntax. To illustrate, assume your IDL file now has the
following COM type:

// IDL COM enum definition.
typedef enum RADIOTYPE
{
EIGHT _TRACK,
D,
AM_RADIO,
FM_RADIO
} RADIOTYPE;

The RADIOTYPE enumeration has four possible values, numerically identified
as {0, 1, 2, 3}. The TurnOnRadio() method can now take a RADIOTYPE parameter
in the exact same manner as any intrinsic IDL data type (which are all fully
defined in the next chapter). Here is the updated ICar interface:

interface IComCar : IUnknown

{
[helpstring("method SpeedUp")]
HRESULT SpeedUp([in] long delta);
[helpstring("method TurnOnRadio")]
HRESULT TurnOnRadio([in] RADIOTYPE make);

b

When this IDL file is processed by the MIDL compiler, the IDL enumeration is
embedded in the type library and is therefore usable by any COM-aware language.
C++ clients (as well as the COM server) can also opt to make use of the definition
placed in the MIDL-generated header file:

// MIDL-generated C++ enum definition.
typedef enum RADIOTYPE
{ EIGHT_TRACK = 0,
CD = EIGHT_TRACK + 1,
AM_RADIO = CD + 1,
FM_RADIO = AM RADIO + 1
}RADIOTYPE;

A Primer on COM Programming Frameworks

To flesh out the details of the TurnOnRadio() method, you can take the

easy route and display a message based on the value of the client-supplied
RADIOTYPE:

// Play some tunes.
STDMETHODIMP CComCar: : TurnOnRadio(RADIOTYPE make)
{
switch(make)
{
case EICHT TRACK:
MessageBox(NULL, "Upgrade your system!", "ATL ComCar", MB_OK);
break;
case (D:
MessageBox (NULL, "Good choice...", "ATL ComCar", MB OK);
break;
case AM RADIO:
MessageBox(NULL, "Sports talk radio on!", "ATL ComCar", MB_OK);
break;
case FM RADIO:
MessageBox(NULL, "Top 40 crap on...", "ATL ComCar", MB_OK);
break;
}
return S_OK;

You'll see your COM enum in action a bit later in this chapter.

Supporting Additional COM Interfaces

The final ATL topic I address here is how to add additional COM interfaces to an
ATL-based coclass. The process begins by writing an empty interface definition in
your IDL file. Once the interface has been defined, you must add it to the list of
supported interfaces for each implementing coclass. For example:

[object,

uuid(E98B898C-5C0A-4318-AFCB-541695E4945D),
helpstring("This interface floors it")]

interface ITurbo: IUnknown

{

};

[uuid(2EE867E1-C237-48FC-B6C7-D2804FB52C68),

version(1.0), helpstring("AtlCarServer 1.0 Type Library")]
library ATLCARSERVERLib

143

Chapter 3

coclass ComCar
{
[default] interface IComCar;
interface ITurbo;
b
¥

You now need to compile your IDL file once again to correctly activate the
Implement Interface Wizard utility. To do so, right-click the CComCar icon in
ClassView (Figure 3-10).

Workspace

-2 AHCarServer classes
-0 |ComCz G0 ta Definition

”'O [Turba Add Menmber Function...
-1 Globaks Add Member variable, .

Implement Interface. ..

Implement Connection Paint. ..
ﬁ References. ..
ﬁ Derived Classes, .,
Base Classes. ..
Add ko Gallery
dé Mew Folder...

Group by Access

|7 Docking View
Hide

Propetties

B Classiiew Resourceview FileWiew

Figure 3-10. Activating the Implement Interface Wizard

The resulting dialog box lists each IDL interface that is currently not
supported by the C++ ATL coclass. Once you check off support for ITurbo
(Figure 3-11), you see the following source code modifications:

¢ The new interface has been added to the class’ inheritance chain.

¢ The class’ COM map has been updated with a new
COM_INTERFACE_ENTRY listing.

144

A Primer on COM Programming Frameworks

Implement Interface

ATLCARSERVERLD
Cancel |
Interfaces
Add Typelib... |
ITurba

Figure 3-11. Supporting a new COM interface using ATL
Here are the relevant code updates:

// After running the wizard, your ATL coclass is
// equipped to return the new interface.
class ATL_NO VTABLE CComCar :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CComCar, &CLSID ComCar>,
public IComCar,
public ITurbo

BEGIN_COM MAP(CComCar)
COM_INTERFACE_ENTRY(IComCar)
COM_INTERFACE_ENTRY (ITurbo)

END_COM_MAP()

At this point, you can make use of the Add Method tool as before:

STDMETHODIMP CComCar: :TurboBlast()

{
MessageBox (NULL, "Turbo blast!!", "ATL ComCar", MB_OK);
return S_OK;

}

So, that wraps up this rapid-fire tour of developing basic COM servers with
ATL. As I am sure you would agree, ATL greatly simplifies the creation of C++-
based COM servers. Obviously, there is a great deal more to ATL than what I have

145

Chapter 3

146

covered here. You will see additional aspects of ATL when you examine COM
connection points, COM error handling, and the COM enumeration object
(IEnumXXXX). Nevertheless, at this point you should be able to move around the
ATL framework a bit more fluidly.

1 [IREE CODE The AtlCarServer application is included under the Chapter 3
\ YA subdirectory.
N

The Role of Visual Basic 6.0

ATL is a vast improvement to the raw C++/IDL development cycle, yet it poses one
minor problem (depending on your point of view): ATL still uses C++. To be frank,
C++ will never win an award for the most elegant programming language (or most
user friendly, or most intuitive, or . . .). C++ is a powerful language, and when you
need to build a very complex COM server that makes use of numerous advanced
techniques such as tear-off interfaces, COM categories, custom marshaling, and
so forth, C++ is an absolute necessity. However, when it comes to raw productivity,
nothing comes close to Visual Basic 6.0.

When developers build COM servers using VB 6.0, they are making a
conscious choice to focus on nothing but the business logic of the current
problem domain. As alluded to in the previous paragraph, VB COM servers are
unable to take advantage of advanced COM programming patterns. Likewise, VB
6.0 does not allow you to directly establish GUID values, edit (or alter) the gener-
ated IDL code, or participate in exotic COM threading models. Nevertheless, VB
6.0 is the most popular COM development paradigm in use, given that many
applications don't need to use these advanced features in the first place. To see just
how simple building a COM server can be, let’s re-create the essence of ComCar
from the cozy confines of VB 6.0.

Building COM Servers Using Visual Basic 6.0

Visual Basic supports two core project workspace types used to build in-proc or
local (and remote) COM servers: ActiveX DLLs and ActiveX EXEs (see Figure 3-12).

A Primer on COM Programming Frameworks

New Project

2| =

Standard EXd Activer EXE

Al oK

Cancel

Activel
Cantrol

Help

4l

NN B e

WE Application WE Wizard Activel Activex
‘Wizard Manager Document Dl Docurment Exe
B B B X
Addin Drata Project DHTML 115 Application
Application
IR |

Figure 3-12. Core VB 6.0 COM project types

Having chosen an ActiveX DLL project workspace, you will be presented with
a single *.cls file. Unlike most programming languages, VB 6.0 does not support
specific language keywords that are used to build class and interface definitions.
Rather, each COM type is placed in a *.cls file (as you may be aware, VB .NET does
support specific keywords). To begin, change the name of this initial class type to
CoCar using the (Name) property in the Properties window (Figure 3-13).

Properties - CoCar

CoCar ClassModule =
Alphabetic Categnrizedl

CoZar
DakaBindingBehavior |0 - wbhone
DakasourceBehavior |0 - vbhone

Instancing 5 - Mulkillse

MT3TransactionMode |0 - NokARMTSObject

Persistable 0 - MotPersistahle
{Name)

Returns the name used in code ko identify a Form,
contral, or data access abject,

Figure 3-13. Naming your coclass

147

Chapter 3

148

As you learned in the previous chapter, COM development demands the use
of interfaces. However, given that VB 6.0 generally attempts to hide interfaces from
view, you receive a [default] interface automatically as you add Public properties,
functions, and subroutines to a given *.cls file. Put another way, each *.cls file is
expressed as the [default] interface of the coclass. Therefore, if you add the
following VB code to CoCar.cls, you are actually defining the members of the
[default] interface of the CoCar coclass.

Option Explicit

' Define class level variables in the

' [General][Declaration] section.

Private mCurrSpeed As Long

Public Property Get Speed() As Long
Speed = mCurrSpeed

End Property

Public Property Let Speed(delta As Long)
mCurrSpeed = mCurrSpeed + delta

End Property

Defining Auxiliary Interfaces

As mentioned, Visual Basic 6.0 does not supply a keyword to define a COM inter-
face. Rather, interfaces are placed into *.cls files and are represented as empty
method (or property) implementations. This is just about as close as VB 6.0 comes
to the concept of a pure virtual function. If you insert a new *.cls file (using the
Project | Add Class Module menu selection), you are free to define the following
IVBTurbo interface (be sure to change the name of the class file accordingly):

" A VB 6.0 interface definition
Option Explicit

Public Sub TurboBlast()

End Sub

When you are building a VB 6.0 interface definition, it is good practice to set
the type’s Instancing property to PublicNotCreatable (Figure 3-14).

A Primer on COM Programming Frameworks

Properties - I¥BTurbo

I¥BTurbo ClassModule -
Alphabetic Categcnrizedl

(Mame) IWEBTurbo
DataBindingBehavior |0 - wbhone
DakaSourceBehavior |0 - wbhlone

Instancing 2 - PublichotCreatable ;I

MT3TransactionMode |0 - MotanMT3Object

Persistable 0 - MotPersistable
Instancing

Sets a value that specifies whether vou can create
instances of a public class outside a project.

Figure 3-14. Interfaces should not be directly creatable.

This is considered good practice because it will prevent the COM client from
directly “New-ing” the interface. Any attempt to do so will result in a compiler
error:

' PublicNotCreatable types cannot be directly created!
Dim itfIVBTurbo as New IVBTurbo ' Nope!

Implementing Interfaces in VB 6.0

When you wish to implement additional interfaces on an existing COM type,
make use of the Implements keyword. Note that Implements definitions must
appear in the [General][Declarations] section of a given *.cls file. Once you have
specified which behaviors your coclass supports, you may make use of the VB 6.0
IDE to generate stub code for each member of a particular interface. Simply select
the interface (by name) from the left-hand drop-down list and each interface
member from the right-hand drop-down list. The finished product is shown in
Figure 3-15.

149

Chapter 3

+ Vb6CarServer - CoCar (Code)

IVBTurbo j ITurhuBIast j

Option Explicit el
Implements IVETurbo

Priwvate mCurrZpeed L= Long

' L COM property.

FPublie Property et 3peed()] As Lonhg
Fpeed = mturrZpeed

End Property

FPublie Property Let 3peedidelta As Long)
mcurrZpeed = mwCurr3peed + delta
End Property

Private Sub IVETurbo TurkboBlasti)
miurrSpeed = mCurr3peed + 50
End Suhb

Figure 3-15. The completed VB 6.0 CoCar

When you make use of the VB 6.0 IDE to generate default stub code, notice
that the members are declared as Private rather than Public:
' This seems strange..
Private Sub IVBTurbo TurboBlast()
mCurrSpeed = mCurrSpeed + 50
End Sub

The reason for this is simple. If you declare this type as Public, you will
suddenly have a member named IVBTurbo_TurboBlast() as a member of the
[default] public interface! In such a case, the object user would need to make use
of the following oddball syntax:

" Yuck.

Dim c3 as CoCar

Set ¢3 = New CoCar
c3.IVBTurbo TurboBlast

150

A Primer on COM Programming Frameworks

By defining the TurboBlast() method of the IVBTurbo interface as Private, you
force the user to obtain the IVBTurbo interface explicitly:

' Better.

Dim c4 as CoCar

Set c4 = New CoCar

Dim iftIVBTurbo as IVBTurbo
Set iftIVBTurbo = c4
IftIVBTurbo.TubroBlast

At this point, you are free to compile your VB 6.0 COM server using the File |
Make menu selection. Notice that you don’t need to manually create any IDL defi-
nitions. Also notice that each DLL export and the required class factory have been
supplied on your behalf.

As a final positive note, VB 6.0 will automatically register this COM server on
your development machine as part of the compilation cycle (thus you can hunt
down the registration entries using regedit.exe).

Setting Binary Compatibility

I have one final point to make regarding VB 6.0 COM development. Because VB is
attempting to simplify the creation of COM servers, GUIDs are assigned automati-
cally behind the scenes. In fact, each time you compile your project, VB 6.0 will
generate new GUIDs for your COM types! This is obviously a huge annoyance,
given that any existing clients using this COM server are effectively broken.

To prevent this GUID generation madness from occurring, get in the habit of
enabling binary compatibility as soon as you have performed your first compile.
When you do so, VB will stop generating new GUIDs and freeze the current identi-
fiers. If you attempt to alter the definition of any interface, you will be warned
through a series of dialog boxes. To specify this type of version compatibility,
choose the Binary Compatibility option in the Project Properties dialog box
(Figure 3-16).

151

Chapter 3

152

Vb6CarServer - Project Properties

Generall ake I Compile Companent |Debugging

—Skart Mode
" standalone

g Ackiver Component

—Remote Server

[~ Remote Server Files

—Wersion Compatibility

Mo Compatibilicy
£ Project Compatibilit

| vhaCarserver.dl J

ak. I Cancel | Help |

Figure 3-16. Freezing the current GUID values

Viewing the Generated IDL Using Oleview.exe

To prove that the VB 6.0 IDE is maintaining the same binary standard as a COM
server created using C++ or ATL, you need to be introduced to the oleview.exe
utility. This tool, which ships with Visual Studio, allows you to investigate the set of
registered COM servers on your development machine. Using oleview.exe, you are
able to view the set of interfaces supported on a given object (provided the inter-
face has been registered under HKCR\Interface), the underlying IDL, and the
numerous registration entries for the COM binary. Figure 3-17 shows the set of
expandable nodes.

A Primer on COM Programming Frameworks

« OLESCOM Object Viewer,
File object Miew Help

|3 & EE M

EI@ Object Classes Al Objects

#-[&5 Grouped by Component Cakegory
@ OLE 1.0 Obijects
P ComM LiI:urary Objects

=-[E Appllcatu:un IDs
-3 Type Libraries
-] Interfaces

Ready S

Figure 3-17. The oleview.exe utility

The most important node in this instance is the All Objects category. Once
you expand this node, you will be able to find the CoCar and IVBTurbo types listed
alphabetically by ProgID (Figure 3-18).

« OLE/COM Object Viewer
File Object Wiew Help

E?I:*I EAREIEEY

¥beCarServer.CoCar A pojen VbECarServerCoCar
----- _Dclass Awahls e Qon BEFG. SF 7E-4BES-A547-5 3988 20A4CF 7
----- ? CoCar

..... 9 IConneckionPaink Registry | Implementation | Activation | Launch Permiz 4 I 'I

----- ? IConnectionPointContainer
----- % IDispatch

----- ? IExternalConnection

----- ‘? IProvideClassInfo

----- % ISupportErrorinfo

CLSID = |
----- {E93D5FF5 -3F7E-4BE9-A547-5398B2A84CF 7 [<n _|
----- {E93D5FF5 -3F76-4BE9-A547-5393B2004CF7} [Ap—

Implemented Cakegories
. {40FC6EDS-2436-1 1 CF-A3DE-080036F 125

""" $ IUnkno;\ln . InprocServer32 [<no name>] = C\Apress Boc
..... T8 Turbo b i InprocServer32 [ThreadingModel] = Apartmenl
H-@ VheCarServer, IWETurbo D et Lt e i)|
R YBECom3erver, CoCale ™| i 2
Lo | Bl s
Ready Y

Figure 3-18. Locating your VB 6.0 COM types

153

Chapter 3

154

As you can see, VB has automatically implemented a number of standard
COM interfaces on the CoCar type. You will get to know the role of these interfaces
as you progress through the text, but for now Table 3-2 provides a quick rundown
of the core behaviors (grouped by related functionality).

Table 3-2. COM Interfaces Automatically Supported by VB 6.0 COM

VB 6.0 Autoimplemented
Interface

IUnknown

<_ClassName>

IConnectionPointContainer
IConnectionPoint

IDispatch
IProvideClassInfo

ISupportErrorInfo

Meaning in Life

VB automatically implements AddRef(), Release(), and
Querylnterface() for each COM type.

Recall that VB 6.0 automatically generates a [default]
interface, which is populated with each Public member
defined in the *.cls file. The name of the [default]
interface is always _NameOfTheClass. Thus, if you have
a class named CoCar, the default interface is _CoCar.

These two interfaces allow a COM class to send events
to a connected client.

Provide late-binding capabilities. Required for late-
bound scripting languages such as VBScript.

Allows a COM class to send COM “error” objects to
report a processing error.

Now on to viewing the IDL itself. Simply right-click the coclass icon and
select View Type Information from the context menu. The end result is shown in

Figure 3-19.

s [TypeLib Viewer

File View

8 ol 2

=-F¥ vbsCarserver
-4 dispinterface _CoCar
#- 9 interface _CoCar
é ooclass CoCar
f' dispinterface _IWBTurbo
#-§ interface _IVETurbo
é coclass IWETurbo

Ready

s Generated .IDL file (by the OLE-COM ~
CObject Viewesr)
o =
< typelib filenams: VbeCarServer . dll

uuid({B1CO1A96—CBEI—-4DAN-AZEE—
FFAST1AD7542) .
wversionid. 0}

1
library VbheCarServer

b 2

Figure 3-19. Viewing the IDL

A Primer on COM Programming Frameworks

If you select the CoCar type, you will see an IDL definition that should look
quite familiar at this point.

// The VB CoCar type definition.
[uuid(E93D5FF5-3F76-4BE9-A547-5398B2AA4CF7),
version(1.0)]
coclass CoCar {
[default] interface CoCar;
interface _IVBTurbo;

};

Here, you can see that the [default] interface is indeed _CoCar. This interface
defines a single COM property. As you may remember, COM properties are
defined using the [propget] and [propput] IDL keywords.

// The [default] interface.
[odl, uuid(BFC753BA-4CEB-4682-BD63-8973D3CB2186),
version(1.0), hidden, dual,
nonextensible, oleautomation]
interface CoCar : IDispatch {
[id(0x68030000), propget]
HRESULT Speed([out, retval] long*);
[1d(0x68030000), propput]
HRESULT Speed([in, out] long*);
};

You can see from the _CoCar IDL definition that VB 6.0 always creates dual
interfaces, which by definition support the [dual] interface and are derived
directly from IDispatch rather than IlUnknown. As mentioned in Chapter 2, this
core COM interface provides a way for late-bound clients (such as scripting
clients) to determine the functionality of a COM class at runtime.

The auxiliary IVBTurbo interface is not directly listed in the coclass statement,
however. Rather, an intermediate interface, _VBTurbo, is listed, and it has the
following IDL definition:

[odl, uuid(OFE9EC86-7959-42CA-97B3-61B14214718D),
version(1.0), hidden, dual, nonextensible,
oleautomation]
interface _IVBTurbo : IDispatch {

[1d(0x60030000)] HRESULT TurboBlast();
b

155

Chapter 3

While examining the remaining IDL definitions, also notice that VB has
assembled a COM library statement listing each type, as well as a raw dispinter-
face definition for each COM interface. In the next chapter, I drill much deeper
into the world of COM type information. For the time being, simply understand
that VB 6.0 manually generates the correct COM metadata.

1 leeeee CODE The Vb6CarServer project is included under the Chapter 3
\ Y subdirectory.

Making Use of Your COM Servers

To test the functionality of your ATL and VB 6.0 COM servers, you wrap up by
creating a new standard EXE VB application. As always, before you can use the
COM types created in a separate binary file, you must set references to the COM
type information (Figure 3-20).

References - Project1.vbp

Available References: oK

¥ visual Basic For Applications |~ Cancel |
¥ visual Basic runtime objects and procedures =1

¥ visual Basic objects and procedures

OLE Automation Browse...
[ElAtiCarServer 1.0 Type Library
W vb6CarServer ﬂ
[145 Helper COM Component 1.0 Type Library

[145 RADIUS Protocol 1.0 Type Library Priority
[A QuickStart Tutorial Assembly

[A QuickStart Tutorial Assembly j
[Acrobat

[Acrobat Distiller

[Active DS TIS Extension DIl

[Active DS IS Namesbace Provider Ll

Ll 1}] |

—AtlCarServer 1.0 Type Library

Location: C:\Apress Books\InteropBook\Labs\Chapter 3\AtlCarServer\L
Language: Standard

Figure 3-20. Setting references to the COM type libraries

156

A Primer on COM Programming Frameworks

If you examine the Object Browser (Figure 3-21), you will see that the COM
enumeration you defined in your ATL server project has mapped correctly to the
Visual Basic language (observe as well that the various [helpstrings] are displayed
in the lower pane of the tool).

w Object Browser,

InTLCMRSEIWERLih

| ~| 8l v

Classes Memhers of RADIOTYPE'
@ =glohals= E AM_RADIO

M ComcCar @ CD

B 1Turbo E EIGHT_TRACK

e FADIOTYPE E FM_RADIO

Enum RADIOTYPE
Member of ATLCARSERVERL iy

Figure 3-21. Viewing IDL COM types

The user interface of your VB client is short and sweet. As shown in Figure
3-22, you are simply providing a way for the client to activate the ATL ComCar and
VB 6.0 CoCar.

& ComCar Command Center

Uze ATL ComCar

ze WB 6.0 ComCar

Current Speed

Figure 3-22. Another COM client

157

Chapter 3

As for the code, things look much like they did when you accessed your
RawComCar types in Chapter 2. Here is the complete code behind the VB form:

Option Explicit
' The cars.
Private vbCar As Vb6CarServer.CoCar
Private atlCar As ATLCARSERVERLib.ComCar
Private Sub btnATLCoCar Click()

' Speed up ATL car and crank some tunes.
atlCar.SpeedUp 10

atlCar.TurnOnRadio AM RADIO

' Get ITurbo.
Dim itfTurbo As ATLCARSERVERLib.ITurbo
Set itfTurbo = atlCar
itfTurbo.TurboBlast
Set itfTurbo = Nothing
End Sub
Private Sub btnUseVb6Car Click()
' Use [default] interface of VB 6.0 coclass.
vbCar.Speed = vbCar.Speed + 10

' Get IVBTurbo
MsgBox "Turbo boosting", , "Message from Car Command..."
Dim itfVbTurbo As IVBTurbo
Set itfVbTurbo = vbCar
itfVbTurbo.TurboBlast
txtCurrVbSpeed.Text = vbCar.Speed
Set itfVbTurbo = Nothing
End Sub
Private Sub Form Load()
Set vbCar = New Vb6CarServer.CoCar
Set atlCar = New ATLCARSERVERLib.ComCar
End Sub
Private Sub Form Unload(Cancel As Integer)
' Explicitly decrement ref counts.
Set vbCar = Nothing
Set atlCar = Nothing
End Sub

158

A Primer on COM Programming Frameworks

1 e oo CODE The Vb6CarsClient application is included under the Chapter 3

\ YR subdirectory.

=
=

i

Excellent! At this point, you have learned the basic process of building COM
servers using raw C++, the Active Template Library, and Visual Basic 6.0. Better yet,
you now have a total of three COM servers that you make use of through various
.NET-aware languages later in this text.

Summary

This chapter and the preceding one have guided you through the process of
building three COM servers, beginning with the most complex (but most
powerful) technique of using raw C++/IDL. The Active Template Library (ATL)
attempts to lessen the burden of C++ COM server development by defining a
number of base-class templates (and integrated wizards). Visual Basic 6.0 is far
and away the least painful approach to COM server development, given that VB
hides the low-level COM grunge from view. Now that you have seen the process of
building various COM servers, the next (and final) COM-centric chapter drills into
the type system of classic COM.

159

CHAPTER 4

COM Type
Information

The previous two chapters were more concerned with the internal composition of
COM in-process servers than the finer details of IDL (or COM type information in
general). Understanding COM type information is critical when exploring the
issues behind COM and .NET interoperability for one simple reason: When a .NET
type attempts to access a legacy COM type, an intermediate object (termed a
Runtime Callable Wrapper, or simply RCW) is responsible for translating between
COM types and .NET types. For example, COM SAFEARRAY types map into the
.NET System.Array class, COM BSTR types map into System.String, and so on. A
similar operation occurs when a .NET type makes use of a legacy COM type (using
an intervening COM Callable Wrapper, or simply CCW). Because IDL types are
mapped into managed equivalents (and vice versa), this chapter pounds out the
finer details of COM IDL.

In this chapter, you not only solidify the set of core COM types and intrinsic
data types, but you also learn how to generate COM type information at runtime.
The COM library contains a small set of interfaces, functions, and data structures
that allow developers to generate COM type information on the fly, and save out
the resulting *.tlb file to storage. It is also possible to build applications that are
capable of reading type information at runtime (think the VB 6.0 Object Brower
utility).

Just in case you are thinking that the topics of dynamically reading and
writing COM type information are obsolete with the advent of .NET, understand
that the System.Runtime.InteropServices namespace defines a good number of
members that expose identical functionality using managed types. Therefore
(hang onto your hat) it is completely possible to build a .NET application that
emits and reads COM type libraries (!). In fact, you explore this very topic during
the second half of this chapter.

As a friendly heads-up, understand that the only unmanaged language that is
directly capable of dynamically writing and reading COM IDL is (alas) C++. For my
fellow Visual Basic friends not familiar with C++, and who may not be thrilled with
another chapter of pointer arithmetic, just grin and bear it for the time being.

161

Chapter 4

162

The Format of a COM IDL File

To open this chapter, I want to ensure that you are comfortable with the overall
structure of an IDL file. In general, an IDL file can be stratified into two regions:
the library statement and everything else outside the library statement. To be
specific, if a given COM type is only defined outside the IDL library statement,

you have created an item that is only usable from the C(++) COM language
mapping. Be aware that it is the case that some IDL constructs (such as cpp_quote
and const) are only valid outside an IDL library statement in the first place and
(therefore) are only applicable to C(++) COM projects. On the other hand, any type
that is referenced (or explicitly defined) within a library statement is visible from
any COM-aware language mapping (provided that the language in question
honors the IDL). Here then, is the general layout of an IDL file:

// Bring in core IDL definitions.
#import "oaidl.idl";

// Ttems outside of the library statement

// will be placed in the MyIDL i.c and

// MyIDL.h C(++) files. If these items are

// not referenced within the library statement,
// they will not be part of the type library!

// The library statement.
[uuid(<some GUID>), version(<major.minor>)]
library MyIDL Library
{
// Bring in any standard COM
// definitions using importlib().
importlib("stdole32.tlb");

// Any item referenced or defined within
// the library will be placed
// within the *.tlb file,
// and (typically) usable from all
// COM language mappings.
15

COM Type Information

Recall from Chapter 2 that type information defined outside an IDL library
statement is placed in the MIDL-generated *_i.c and *.h files. The * i.c file
contains C(++)-friendly GUID constants that are created based on the [uuid] value
of each item. The *.h file contains C(++)-friendly interface definitions. Clearly,
these two files will be used during the construction of a C(++) COM server as well
as a C(++) COM client.

Although alibrary statement is not a mandatory requirement of a well-formed
IDL file, as far as the language-independent nature of COM is concerned, a given
COM type is only usable if (and only if) it is accounted for within the library state-
ment. Even if you define dozens of elaborate COM interfaces, enums, and struc-
tures outside a library statement (and fail to reference the item within the library
statement), they will be unreachable from any language other than C(++).

The IDL library statement itself must be qualified with the [uuid] attribute
(which functions as the LIBID for the type information) at minimum. In addition,
most type libraries support a [version] attribute that is of the form <Major.Minor>
(if you do not specify a [version] attribute, the default version is <0.0>). As you are
aware, whenever you update a type library that is in production, the numerical
version should be updated and reregistered on each target machine.

Defining COM Types

As you have seen over the course of the previous two chapters, COM is all about
coclasses and their supported interfaces. In COM IDL, the coclass and interface
keywords are used to define these core types. However, COM also defines addi-
tional data types that may (or may not) be recognized in a given COM-aware
programming language. When I speak of COM types I am not referring to COM
data types. Simply put, COM types are the set of custom user defined types (UDTs)
that you can express using IDL syntax. COM data types, on the other hand, repre-
sent a set of intrinsic data members (int, long, BSTR and so forth) that you can
send between COM binaries as method parameters or as building blocks for other
COM types (such as enums and structures).

To make things a bit more intriguing, understand that you can also create
COM interface methods that take other COM types as method parameters (as seen
in the previous chapter when you examined COM enumerations). Table 4-1
defines the core set of COM types.

163

Chapter 4

Table 4-1. COM Types

COM Type IDL Keyword
Interface interface
Coclass coclass

Enumerations enum

Structures struct
and Unions union

Meaning in Life

By now you should understand that the COM
universe demands that clients and server
objects communicate using interface
references (the same is not true for .NET).

An interface is little more than a named set of
semantically related methods that ultimately
derive from IUnknown.

A coclass is simply a concrete implementation
of some number of interfaces.

Enumerations are a way to programmatically
express a range of name/value pairs. Using
enums, you are able to avoid cluttering your
global namespace with magic numbers.

Structures can best be understood as a
lightweight class type. Specifically, structures
are a collection of disparate data types bound
under a shared name.

C(++) style unions are also supported in IDL:
however, the only language that can make use
of them is C(++). Given this, I do not address
this COM type in this chapter (after all,
interoperating with the same language is not
all that interesting . . .).

Primitive COM Data Types

In addition to the set of COM types, IDL also supports a set of COM data types.
Now be clear on the distinction here. COM types represent the set of possible
UDTs you can create to represent the programming entities in your programs.
COM data types represent the intrinsic data types of COM IDL (pardon the redun-
dancy). Given that COM IDL does not allow you to define global-level data types,
understand that COM data types must be used within the context of a method

parameter or structure field.

164

COM Type Information

NOTE COM IDL does allow you to make use of the const keyword. Like C++, the IDL
const keyword can be used to define shared programming constants. Understand,
however, that IDL constants are translated into C(++) #define statements and are not
understood by other COM-aware languages (such as VB 6.0).

As you may already be aware, Microsoft IDL is based on an older IDL format

that was specifically geared to the task of describing C-style data types for RPC

(remote procedure calls). Given COM IDLs legacy in a very C-centric description
language, MIDL supports the following core base types (Table 4-2). Do note that
most of these core data types may support the signed and unsigned IDL keywords
and each may be declared as a pointer variable.

Table 4-2. The Core IDL Data Types

Base MIDL Data Type
boolean

byte
char
double
float
hyper

int

__int32

__int3264

__int64
long

short

Meaning in Life

8 bits. This Boolean data type is not
usable from any language other
than C(++).

8 bits.

8 bits.

64-bit floating-point number.
32-bit floating-point number.
64-bit integer.

32-bit integer. On 16-bit platforms,
cannot appear in remote functions
without a size qualifier such as short,
small, long, or hyper.

32-bit integer. Equivalent to long.

An integer that is 32-bit on 32-bit
platforms, and is 64-bit on 64-bit
platforms.

64-bit integer. Equivalent to hyper.
32-bit integer.

16-bt integer.

Default Sign
Unsigned

(not applicable)
Unsigned

(not applicable)
(not applicable)
Signed

Signed

Signed

Signed

Signed

165

Chapter 4

Table 4-2. The Core IDL Data Types (continued)

Base MIDL Data Type Meaning in Life Default Sign
small 8-bit integer. Signed
void Indicates that the procedure (not applicable)

does not return a value.

wchar_t 16-bit predefined type for wide
characters. Unsigned

If you build COM interface definitions (or structures) using these core IDL
base types, the chances are very good that you have built a COM entity that can
only be accessed by C and C++ clients. For example, the IDL boolean data type
does not translate into a VB 6.0 Boolean. C(++)-style string representation (null
terminated character arrays) does not translate correctly into other COM-aware
languages. Because one of the driving forces behind COM is language independ-
ence, most programmers make use of an alternate set of COM IDL data types
termed the oleautomation-compatible data types (also known as the variant-
compliant types).

The Oleautomation (aka Variant) Data Types

The term oleautomation is used to describe a COM interface that is accessible
through late binding (that is, using IDispatch). Any oleautomation interface
(which is to say a dispinterface) must make use of the set of oleautomation data
types, given that the universal marshaler can only build stubs and proxies for
interfaces making use of this well-known set. Formally speaking, this well-known
set is any data type that can be represented as a VARIANT data type (see Chapter 2).
The core oleautomation data types (and constructs) are showcased in Table 4-3.

Table 4-3. The Core [oleautomation]-Compatible Data Types

Oleautomation-Compatible Description

Data Type/Construct

VARIANT_BOOL The VARIANT-compliant Boolean data type.
double 64-bit IEEE floating-point number.

float 32-bit IEEE floating-point number.

int Integer whose size is system dependent. On 32-bit

platforms, MIDL treats int as a 32-bit signed integer.

166

COM Type Information

Table 4-3. The Core [oleautomation]-Compatible Data Types (continued)

Oleautomation-Compatible
Data Type/Construct

long
short
BSTR

CY

DATE

enum

struct

IDispatch *

IUnknown *

VARIANT

SAFEARRAY

Description

32-bit signed integer.
16-bit signed integer.
The de facto COM string type.

8-byte fixed-point number (formerly represented as the
CURRENCY data type).

64-bit floating-point fractional number of days since
December 30, 1899.

Signed integer, whose size is system dependent. In
remote operations, enum objects are treated as 16-bit
unsigned entities. Applying the [vl_enum] attribute to an
enum type definition allows enum objects to be
transmitted as 32-bit entities.

C(++) and Visual Basic 6.0 clients are able to map IDL
structures. This IDL construct is not supported by all
COM language mappings.

Pointer to IDispatch interface (VT_DISPATCH).

Pointer to interface that is not derived from IDispatch.
(Any COM interface can be represented by its IUnknown
interface.)

Parameters can be expressed as a VARIANT, which allows
you to pass any variant-compliant type as a single
argument.

When you wish to send arrays of data between the caller
and COM class, use the SAFEARRAY structure. In essence,
a SAFEARRAY is a self-describing array of VARIANTS.

IDL Method Parameter Attributes

As you recall from Chapter 2, parameters can take the [in], [out], [in, out], and
[out, retval] attributes. Using these attributes, you are able to configure how a
parameter should be passed to and from an interface method. You can also
directly influence how a given parameter is represented in various COM language
mappings. In Table 4-4, you see a bit more detail of these attributes than seen

earlier in this text.

167

Chapter 4

168

Table 4-4. IDL Parameter Attributes

IDL Parameter Attribute

[in]

[out]

[in, out]

[out, retval]

Meaning in Life

Indicates that this parameter is allocated by the caller and
passed into the method. Be aware that if an IDL
parameter attribute is not used, [in] is assumed. This IDL
attribute maps to the VB 6.0 ByVal parameter modifier.

Indicates that this parameter is a pointer supplied by the
caller and filled by the method. Be aware that while VB
COM clients are able to call methods taking [out]
parameters, VB COM objects cannot implement interfaces
with methods containing [out] parameters.

When a parameter has both [in] and [out] IDL attributes
on a single parameter, this represents passing a data item
by reference. Thus, the caller supplies an initial value that
may be changed within the method implementation. Be
aware that [in, out] parameters must be defined as
pointers (realized in VB 6.0 as the ByRef parameter
modifier).

This combination of parameter attributes is a cue to
higher level languages (such as VB 6.0) that this parameter
should be mapped as a physical return value. The literal
HRESULT return value will be mapped to some other
language-specific entity (such as the intrinsic VB Err
object).

To illustrate, assume you have the following IDL interface:

interface IParams : IUnknown

{

[helpstring("This method only takes [in] params")]
HRESULT InParamsOnly([in] long x, [in] long y);
[helpstring("This method only takes [out] params")]
HRESULT OutParamsOnly([out] long* x, [out] long* y);
[helpstring("Takes two [in, out] params.")]
HRESULT InAndOutParams([in, out] long* x, [in, out] long* y);
[helpstring("method SumByRetVal")]
HRESULT SumByRetVal([in] long x, [in] long vy,

[out, retval] long* answer);

b

Also assume you have an ATL Simple Object (see Chapter 3) that implements
these methods as follows:

STDMETHODIMP CParams::InParamsOnly(long x, long y)
{

// Just use the incoming data..

return S_OK;

}
STDMETHODIMP CParams::OutParamsOnly(long *x, long *y)
{
// Allocate data for the caller.
*Xx = 100;
*y = 200;
return S _OK;
}

STDMETHODIMP CParams::InAndOutParams(long *x, long *y)
{
// Client sends us some initial data, but we can
// reallocate.
*x = *x + 100; // Add 100 to x.
*y = *y 4+ 100; // Add 100 to y.
return S_OK;
}
STDMETHODIMP CParams::SumByRetVal(long x, long y, long *answer)
{
// Return sum.
*answer = X + Y;
return S_OK;

A Visual Basic client could call each of the methods of interest as follows:

Private Sub btnUseMethods Click()
Dim o As Params
Set o = New Params
Dim x As Long, y As Long, z As Long

' Use [out] params.
0.0utParamsOnly x, y
MsgBox "x = " & x & vbLf & "y = " &y, , "After [out] call"

Use [in, out] params.

COM Type Information

169

Chapter 4

o.InAndOutParams x, y
MsgBox "x = " & x & vbLf & "y = " & vy, , "After [in, out] call"
' Use [out, retval]
z = 0.SumByRetVal(x, y)
MsgBox "x = " & x & vbLf & "y = " & y & vbLf & "z ="&z _
, , "After [out, retval] call"
End Sub

The output of this application is seen in three message boxes, as shown in
Figures 4-1 to 4-3.

After [out] call |g|

%= 100
y = 200

Figure 4-1. Using [out] parameters

After [in, out] call |E|

% = 200
y =300

Figure 4-2. Using [in, out] parameters

After [out, retwval] call |g|

% = 200
y = 300
z =500

Figure 4-3. Using [out, retval] parameters

170

COM Type Information

[in], [out], and [in, out] parameters in C++ are self-explanatory (raw C++ COM
clients ignore [out, retval] parameters).

// Assume we have already created the coclass
// and obtained an IParams interface.

long x = 0; long y = 0; long z = 0;
pIParams->OutParamsOnly(&x, &y);
pIParams->InAndOutParams (8x, 8y);
pIParams->SumByRetVal(8x, &y, &z);.

Now that you have seen the set of COM types and IDL data types, you are
ready to formalize the IDL syntax used to express each COM type. Understand
that each COM type can be qualified using various IDL keywords. Although this
chapter does not provide an exhaustive description of each and every IDL
keyword, I will point out items of interest. If you require additional information,
check out the MIDL Language Reference document using online Help.

Defining COM Interface Types in IDL

You have already seen how to build interface types in the previous two chapters.
However, now that you have seen IDL data types in a more formal light, let’s walk
through the IDL syntax used to define the COM interface type, while at the same
time making further mention of oleautomation compliance.

Defining Raw Dispinterfaces

The first form of a COM interface is termed a dispinterface, which is always
defined within the scope of an IDL library statement. Each member of the
dispinterface is assigned a corresponding DISPID using the IDL [id] keyword

(by necessity, DISPIDs are numbered beginning at 1 and must be unique within
the definition. Microsoft has reserved all negative DISPID values). Recall from
Chapter 2 that dispinterfaces are a set of properties and methods that can only be
invoked using late binding (via IDispatch). When you build raw dispinterfaces,
every member is automatically oleautomation compliant. Here is the syntax
behind a raw dispinterface:

// Raw dispinterfaces must be within a type library!
[uuid(E5909DB1-F271-433C-BB02-4DOBFA95D387),
version(1.0), helpstring("My Type Library 1.0")]
library MyTypelibrary

171

Chapter 4

172

importlib("stdole32.tlb");
importlib("stdole2.tlb");
// A pure IDispatch based interface (dispinterface).
[uuid(A8B2AA3A-1138-4C43-8596-D99CBD2BDAA3),
helpstring("IDispOnlyInterface")]
dispinterface _IDispOnly
{
properties:
methods:
[id(1), helpstring("method LateBoundMethod")]
HRESULT LateBoundMethod([in] BSTR msg);
};
};

In this day and age, raw dispinterfaces are most commonly used when you
wish to build an outbound interface with the COM connection point model
(more details on this later in this text). When you are building an inbound inter-
face designed to be supported by a given COM obiject, dispinterfaces are not all
that helpful, given that the only way to access the object’s members is through
late binding.

Defining Dual Interfaces

Recall that COM also supports dual interfaces. This form of COM interface is very
helpful when you wish to build an interface that can be accessed using both early
and late binding. When you build a dual interface, you make use of the [dual]
attribute to force the MIDL compiler to ensure oleautomation conformance (recall
that Visual Basic 6.0 COM classes are always configured to support [dual] inter-
faces automatically). The core IDL is as follows:

// A dual interface.
[object,
uuid(62401BC6-7892-46A0-939E-5D19D3B764D2),
dual, helpstring("Dual Interface")]
interface IDualInterface : IDispatch
{
[id(1), helpstring("method MethodA")]
HRESULT MethodA();

};

COM Type Information

Dual interfaces are indeed a hybrid of a raw dispinterface as well as a standard
IUnknown-derived interface. Note that dual interface members still must have an
associated DISPID (for the late-bound clients) and derive from IDispatch (to
ensure the implementing object contends with the four methods of IDispatch).
However, the interface itself (IDuallnterface) may also be directly accessed by
type-safe, early-bound clients such as VB 6.0 and C(++). When a client makes use
of the custom IDualInterface reference, the members of IDispatch are generally
ignored.

Building IUnknown-Derived Interfaces

Finally, you should be aware that it is completely possible to build standard
IUnknown-derived interfaces that are also oleautomation compliant, by explicitly
making use of the [oleautomation] attribute (note the lack of the [id] attribute):

[object,
uuid(60FBF1E1-3F08-4893-94BB-4A2C4B341342),
oleautomation, helpstring("IDispOnly Interface")]
interface IUseUniversalMarshaling : IUnknown
{

[helpstring("method MethodA™)]

HRESULT MethodA();

};

[oleautomation]-compatible custom interfaces can be helpful for two reasons.
First, if you intend your COM interfaces to be used by any COM-aware language,
the presence of the [oleautomation] attribute again forces the MIDL compiler to
perform sanity checks. Furthermore, if you wish to leverage the universal
marshaler (and therefore avoid the need to build your own stub and proxy DLL),
the ATL compilation cycle registers each interface to use the universal marshaler
(oleaut32.dll).

Common IDL Interface Modifiers

COM interfaces (excluding dispinterfaces) are required to take the [object] and
[uuid] attributes at minimum. In addition to the [dual] and [oleautomation]
attributes seen in the previous sections, IDL does allow COM interfaces to be
defined with other attributes to further qualify their usage. Table 4-5 lists some of
the more interesting attributes.

173

Chapter 4

174

Table 4-5. Additional IDL Interface Attributes

IDL Interface Attribute Meaning in Life

hidden When a COM type (including a type library) is marked with
the [hidden] attribute, it will not be displayed within the
Visual Basic 6.0 Object Browser utility. Other browser types
may or may not honor this IDL keyword.

pointer_default This IDL attribute is used to describe how parameters
expressed as C(++) pointers should be marshaled between
boundaries. When set to “ref,” pointers are handled in the
same manner as a C++ reference (and is typically what you
require).

local If an interface is marked with the [local] attribute, it cannot
be marshaled across boundaries and is only usable from
another in-process COM object. Local interfaces are
permitted to return values other than the mandatory
HRESULT.

Defining COM Classes in IDL

Coclasses are defined in IDL using the coclass keyword and must be configured
with the [uuid] attribute. Within the scope of the coclass definition is a list of each
interface supported by the COM class. For example, here is a library containing
two coclasses, each of which supports two distinct COM interfaces (recall that the
[default] attribute is used to identify which interface is returned automatically
when used by a higher level language such as VB 6.0).

// This type library contains two coclasses.
[uuid(E5909DB1-F271-433C-BB02-4DOBFA95D387),
version(1.0), helpstring("My Type Library 1.0")]
library MyTypelibrary
{
importlib("stdole32.t1lb");
importlib("stdole2.tlb");
[uuid(5C3D4955-17C1-4ACC-BB1C-72F6B63D22F2),
helpstring("First COM Class")]
coclass CoClassOne
{
[default] interface IA;
interface IB;

};

COM Type Information

[uuid(5C3D4955-17C1-4ACC-BB1C-72F6B63D22F3),
helpstring("Another COM Class")]
coclass AnotherCoClass
{
[default] interface IOne;
interface ITwo;
b
b

In addition to the mandatory [uuid] IDL attribute (and optional help-centric
modifiers), coclasses can be assigned additional IDL keywords, to help further
qualify their usage. Table 4-6 documents two of the more common coclass modi-
fiers (both of which are ignored by C(++) COM clients).

Table 4-6. Additional IDL Coclass Attributes

IDL Coclass Attribute Meaning in Life

appobject When a coclass is marked with the [appobject] attribute,
Visual Basic will automatically create an instance of the
object for use at the global level (therefore, the client code
does not need to make use of the VB New keyword).

noncreatable At times, you might want to have a coclass only directly
creatable by another coclass. In this situation, the object
user must obtain the noncreatable object from a method of
the creatable object.
By using the IDL [noncreatable] attribute, you force higher-
level languages such as VB 6.0 to generate compiler errors if
the client attempts to “New” the object.

For example, if your library contained the following coclass definitions:

[uuid(E817E78F-E13E-4954-AC63-FF1B36A46C05),
helpstring("GlobalObject Class"), appobject]
coclass GlobalObject
{

[default] interface IGlobalObject;
b
[uuid(E1B45767-3909-4838-B035-D04F9B459D98),
noncreatable, helpstring("CantCreateDirectly Class")]
coclass CantCreateDirectly
{

[default] interface ICantCreateDirectly;
b

175

Chapter 4

176

Visual Basic 6.0 could make use of the application object as follows (note the lack
of the New keyword):

' VB 6.0 Client calling [appobject] aware COM type.
GlobalObject.SomeMethod

On the other hand, VB would not be able to directly ‘New’ a [noncreatable] object:

Dim wontWork as CantCreateDirectly
Set wontWork = New CantCreateDirectly ' Error!

Defining IDL Enumerations

As you have seen, COM also supports enumerations. These name/value pairs are
defined by the IDL enum keyword. Like C(++), the first member of an enumeration
is automatically assigned the value of zero, following an n+1 incrementation. COM
enums may be assigned a [uuid] value, and may be defined as [hidden] should the
need arise. The only enum attribute that deserves special mention is [vl_enum].
By default, enumerations are transmitted between boundaries as 16-bit entities.
When you qualify your custom enumerations to support [vl_enum], variables of
this type are transmitted as 32-bit entities:

[vi_enum, uuid(2358F2E6-3887-405e-BD25-4F73EDF32400)]
enum MyEnum
{ FIRST, SECOND, THIRD };

As you have already seen in Chapter 3, COM IDL enums translate directly into
C(++) enumerations and VB 6.0 Enum constants.

Defining IDL Structures

The final COM type you examine is the structure. Structures have long been used
in C to represent a user-defined data type. Like classes, structures allow you to
group related data under a common name. Unlike classes, you have no true
support for polymorphic behavior or type extension. Nevertheless, structures can
be helpful when you want to build lightweight types. Consider the classic
MYPOINT example:

// IDL structures may take the [uuid] attribute,
// especially if the structure is to be stuffed
// into a VARIANT or SAFEARRAY.
[uuid(FB58A440-ABDS-43a3-969D-0B7D8700664A)]

COM Type Information

typedef struct
{
long xPos;
long yPos;
JMYPOINT;

Be aware that if you intend your IDL structures to function correctly in Visual
Basic 6.0, you must pass all structures by reference! Therefore, the following IDL
interface definition translates correctly in both C(++) and VB 6.0:

// Structures must be passed by reference ([in, out])
// not by value ([in]) to work correctly in VB 6.0.
[object, uuid(C3CBCB15-901F-44d6-885C-16836DD267F5)]
interface IDraw
{

HRESULT DrawALine([in, out] MYPOINT* p1,

[in, out] MYPOINT* p2);

b

If you had an implementing class named Drawer that supported IDraw as the
[default] interface, you would make use of DrawALine() from VB 6.0 as follows:
' Assume Drawer specified IDraw as the
' default interface.
Dim o As Drawer
Set o = New Drawer
' COM structs map to VB 6.0 Types.
Dim p1 As MYPOINT, p2 As MYPOINT
pl.xPos = 100

pl.yPos = 100
p2.xPos = 300
p2.yPos = 100

o.DrawAlLine p1, p2

COM String Representation

COM strings should always be exposed as BSTR data types, period. The reason is
that different COM languages internally represent string data in different ways.
For example, C(++) programmers view strings as a null-terminated array of char
data types (char*). However, you should understand that (a) COM strings demand
to be expressed as Unicode and (b) Visual Basic can't understand strings repre-
sented as char*. While you might be tempted to represent your strings as wchar_t*

177

Chapter 4

178

(a null-terminated array of Unicode characters) you have resolved issue (a) but are
still left to contend with issue (b).

Visual Basic does not internally represent string data as an array of null-termi-
nated characters (char* or wchar_t) but rather a byte-length prefixed null-termi-
nated array of Unicode characters. This string format is termed a BSTR (BASIC
String). Visual Basic programmers generate BSTR data types whenever they
declare a variable of type String:

' A VB 6.0 BSTR data type.
Dim s as String

C(++) programmers, on the other hand, make use of a set of COM library
functions specifically geared toward the creation, manipulation, and destruction
of BSTRs. Whenever you work with the raw BSTR data type, be sure to make use of
the core library functions defined in Table 4-7, as they will properly configure the
byte-length prefix of the BSTR.

Table 4-7. BSTR COM Library Functions

BSTR COM Meaning in Life
Library Function
SysAllocString() Creates a BSTR based on an array of Unicode characters.

Typically this array of Unicode characters is represented
programmatically as an array of OLECHAR data types
(OLECHAR®).

SysReAllocString() Reallocates an existing BSTR to a new value (with new byte-
length-prefix) given a new OLECHAR*.

SysFreeString() Used to free the memory attached to a BSTR created by
SysAllocString().
When C(++) COM clients obtain a BSTR from a method
invocation, be sure to call SysFreeString()!
If you create a BSTR locally in some scope (and don’t pass it back
to the client) be sure to call SysFreeString()!

SysStringLen() Returns the character length of an existing BSTR.

While it is completely possible to make use of these raw COM API functions, it
is a bit of a hassle. It is far more common to make use of (or create) a C++ class
that hides these raw calls from view. For example, ATL programmers typically
make use of the CComBSTR class to manipulate raw BSTRs. CComBSTR also

COM Type Information

defines a set of helper functions (and overloaded operators) to simplify COM
string types. For example:

// ATL CComBSTR at work.
STDMETHODIMP CCoClass::UseABstr()

{
USES_CONVERSION;

// SysAllocString() called automatically.

CComBSTR message("Hello There!");

message. ToLower();

MessageBox (NULL, W2A(message), "Lower case BSTR", MB OK);
message. ToUpper();

MessageBox (NULL, W2A(message), "Upper case BSTR", MB_OK);
// SysFreeString() called when object drops out of scope.
return S_OK;

A Brief Comment on ATL Conversion Macros

The previous code block made use of two ATL string conversion macros:
USES_CONVERSION and W2A. These macros (defined in atlconv.h) allow the
programmer to translate between Unicode and ANSI string encoding with
minimal fuss and bother. Although a great many of these macros exist, the pair to
be aware of is W2A (Unicode to ANSI) and A2W (ANSI to Unicode), both of which
require that the USES_CONVERSION macro be placed in the method performing
the conversion.

In the previous code example, you converted the Unicode BSTR into an ANSI
char* to place the value into the MessageBoxA() method. No, that is not a typo.
Recall from Chapter 1 that under Win32, there is actually no function called
MessageBox(). Rather, an ANSI version and Unicode (or wide) version both exist.
Based on your project settings, all API calls taking textual parameters expand to
the wide (that is, Unicode) or ANSI equivalent. Unless you are willing to create a
Unicode-only build of your project (and work incorrectly on various versions of
Windows), you need to do such manual conversions. In this case, W2A and A2W
are your greatest allies.

COM (Safe)Array Representation

Arrays are also supported in COM IDL, and as you would expect, different COM
language mappings express arrays in unique manners. When you wish to use

179

Chapter 4

180

arrays that can be used from all COM-aware language mappings, you should stick
to the SAFEARRAY data type as opposed to variable or fixed-length C-style arrays.
The COM SAFEARRAY (which has multidimensional capabilities) may contain any
[oleautomation]-compliant data type, which is to say, is able to hold any data type
that can be expressed as a VARIANT. The SAFEARRAY itself is a structure defined in
oaidl.idl as follows:

// The COM SAFEARRAY structure.

typedef struct tagSAFEARRAY {
USHORT cDims; // Number of dimensions.
USHORT fFeatures; // Flags which describe the data.
ULONG cbElements; // Holds size of an element in the array.
ULONG clocks; // Holds number of locks on this array.
PVOID pvData; // Pointer to the actual data.
SAFEARRAYBOUND rgsabound[];

} SAFEARRAY;

Notice that the last field of the SAFEARRAY structure is an array of yet another
structure of type SAFEARRAYBOUND. This entity is used to catalog the upper and
lower bound for each dimension in the array:

typedef struct tagSAFEARRAYBOUND {
ULONG cElements;
LONG 1Lbound;

} SAFEARRAYBOUND, * LPSAFEARRAYBOUND;

As you might be suspecting, Visual Basic always represents array types as
SAFEARRAYs. Thus, if you build an interface definition as follows:

' [default] interface of the VB 6.0 CoSafeArray class.
Option Explicit
' This parameter is a COM SAFEARRAY.
Public Sub UseArrayOfStrings(theStrings() As String)
Dim i As Integer
For i = 0 To UBound(theStrings)
MsgBox theStrings(i), , "BSTR says:"
Next i
End Sub

you would find the resulting IDL:

// Recall! VB 6.0 always builds [dual] interfaces.
interface _CoSafeArray : IDispatch

{
[1d(0x60030000)]
HRESULT UseArrayOfStrings([in, out] SAFEARRAY(BSTR)* theStrings);

b

COM Type Information

The manipulation of the SAFEARRAY type is far more robust (which is to say
far more complex and painful) than when using Visual Basic. Much like the BSTR
data type, C++ programmers make use of the COM library to allocate, fill, access,
and destroy items in this complex data type. Table 4-8 lists some (but by no means
all) of the core library functions.

Table 4-8. SAFEARRAY COM Library Functions

SAFEARRAY COM Meaning in Life
Library Function
SafeArrayCreate() Allocates a SAFEARRAY based on the underlying type,

SafeArrayCreateVector() dimensions, and bounds. The vector variation allocates a
fixed-size SAFEARRAY.

SafeArrayDestroy() Cleans up all memory stuffed in the SAFEARRAY. By reading
the fFeatures flag, this function is able to call Release() on
interface references, SysFreeString() on BSTR references,
and so forth.

SafeArrayGetUBound() Gets the upper/lower bounds for a given dimension of the
SafeArrayGetLBound() safe array.

SafeArrayAccessData() ~ These methods lock/unlock the SAFEARRAY (by adjusting
SafeArrayUnaccessData() the cLocks field) and provide access to the underlying data.
Unaccessing the data results in NULLing the pointer to
the data.

Making use of these C++ COM library APIs in not impossible, but it is very
(very) verbose. To illustrate, assume you have an interface that allows the user to
send in a SAFEARRAY of BSTRs for display by the COM object, as well as another
method that returns an array of BSTRs for use by the COM client. Here is the IDL:

// One of many ways to define safe array parameters.
interface ISafeArray : IUnknown
{
[helpstring("Pass in a SafeArray of Strings.")]
HRESULT UseThisSafeArray([in] SAFEARRAY(BSTR)* ppStrings);
[helpstring("Return a SafeArray of Strings.")]
HRESULT GiveMeSomeStrings([out, retval] SAFEARRAY(BSTR)* ppStrings);

};

181

Chapter 4

If you had an ATL coclass that supports this COM interface, you could
make use of the SAFEARRAY COM library functions to build the following
implementation:

// Show each item in the array.
STDMETHODIMP CCoWidget::UseThisSafeArray(SAFEARRAY** ppStrings)
{
USES_CONVERSION;
SAFEARRAY* pSA = *ppStrings;
// Be sure we don't have a multidimensional array.
UINT numbOfDims = SafeArrayGetDim(pSA);
if(numbOfDims != 1)
return E_INVALIDARG;
// Be sure we have strings in the array.
VARTYPE vt = 0;
SafeArrayGetVartype(pSA, &vt);
if(vt 1= VT _BSTR)
return E_INVALIDARG;
// Get upper bound of array.
long ubound = 0;
SafeArrayGetUBound(pSA, 1, &ubound);
// Now show each string.
BSTR* temp = NULL;
SafeArrayAccessData(pSA, (void**)&temp);
for(int i = 0; i <= ubound; i++)
{
MessageBox(NULL, W2A(temp[i]), "BSTR says...", MB_OK);
}
SafeArrayUnaccessData(pSA);
return S_OK;
}
// Build an array and return to the caller.
STDMETHODIMP CCoWidget: :GiveMeSomeStrings(SAFEARRAY** ppStrings)
{
// Send back some strings to the client.
SAFEARRAY *pSA;
SAFEARRAYBOUND bounds = {4, 0};

// Create the array

pSA = SafeArrayCreate(VT BSTR, 1, &bounds);

// Fill the array with data.

BSTR *theStrings;

SafeArrayAccessData(pSA, (void**)&theStrings);

182

COM Type Information

theStrings[0] = SysAllocString(L"Hello");
theStrings[1] = SysAllocString(L"from");
theStrings[2] = SysAllocString(L"the");
theStrings[3] = SysAllocString(L"coclass!");
SafeArrayUnaccessData(pSA);

// Set return value.

*ppStrings = pSA;

return S _OK;

For ease of use, assume a simple VB 6.0 COM client that triggers each function
as follows (VB destroys the SAFEARRAY structure automatically):

Private Sub btnSafeArray Click()
Dim w As CoWidget
Set w = New CoWidget
Dim itfSA As ISafeArray
Set itfSA = w

' Send strings to object.
Dim theStrings(2) As String
theStrings(0) = "Hello"
theStrings(1)
theStrings(2) = "Visual Basic!"
itfSA.UseThisSafeArray theStrings

"from"

Get strings from object.
Dim moreStrings() As String
moreStrings = itfSA.GiveMeSomeStrings()
Dim i As Integer
For i = 0 To UBound(moreStrings)
MsgBox moreStrings(i), , "Strings from COM object"
Next i
End Sub

As you would expect, when you run the application you see a total of six
message boxes pop up as the array of BSTRs is sent across boundaries. Under-
stand that the SAFEARRAY structure is capable of containing more complex types
(such as custom structures, interface pointers, and so forth). You see additional
examples of COM array manipulation later in this text.

183

Chapter 4

184

ATL 4.0 SAFEARRAY Helper Templates

Until the advent of ATL 4.0, C++ developers were forced to pound out dozens of
lines of code all for the sake of creating a simple array of types (Visual Basic
programmers are free to emit a hearty belly laugh at this point). However, ATL 4.0
now supplies the CComSafeArray and CComSafeArrayBounds helper templates.
I'll assume you will check out online Help for further details.

- The ATL WidgetServer server and VB 6.0 client application
e CODE Th idgetS d li pplicati
\ v s (WidgetClient) are included under the Chapter 4 subdirectory.

—
~

.

COM Interface Types As Method Parameters

As mentioned at the start of this chapter, COM interface methods may take other
COM types (including interfaces) as parameters. During the course of this chapter,
you have already seen how to pass structures and enumerations between caller
and callee, however, you have not yet examined how to pass interface types
between COM entities. Notice that I did not say “how to pass coclass types.” It is
always important to remember that COM clients can never access an object’s
functionality except using an interface pointer. Therefore, it is not possible to pass
a COM object reference to another part of your system.

Passing interface references is quite common when building a COM collection
object that exposes a set of inner objects. For example, you might have a coclass
named Garage that maintains a set of internal Car types. In IDL, you might
concoct the following IGarage interface:

interface IGarage : IUnknown

{
HRESULT CetCar([in] long carID, [out, retval] ICar** pTheCar);
HRESULT InsertNewCar([in] ICar* pTheCar);

};

Assuming you do indeed have an implementation of the IGarage and ICar
interfaces, we would be able to make use of these types in VB 6.0 as follows:
' Make a Garage and insert new Car.
Dim g as Garage
Set g = New Garage

COM Type Information

Dim c as Car

Set ¢ = New Car

g.InsertNewCar c

' Get back car number with ID 123
Dim c123 as Car

€123 = g.GetCar (123)

You examine the code behind this sort of collection (and other related
patterns) later in this text. At this point in the chapter you should now have a
better understanding (or received a painless refresher) of the core COM types,
intrinsic data types, and various IDL constructs. Understand that you will see
additional IDL keywords (and COM concepts) where necessary during the
remainder of this text. The remainder of this chapter examines the process of
programmatically generating and reading COM type information at runtime using
both unmanaged (C++) and managed (C#) code.

The ITypeInfo Interface

As you know, once you have defined your COM types in IDL syntax, you compile
the IDL into a binary equivalent termed a type library (that may or may not be
embedded into the COM binary). Programmatically speaking, when you wish to
read information from a type library, you make use of the methods of the standard
ITypeInfo COM interface. This single interface is able to return a wealth of infor-
mation about any COM type (interface, coclass, enum, struct) at runtime. Sadly,
there is not a unique one-to-one mapping of COM interface to COM type (thus
you will not find a specific standard COM interface that only reads interface infor-
mation, another that reads only coclass information, and so forth). ITypelnfo is
your one-stop shop, and it is defined in IDL (within oaidl.idl) as follows:

// This interface allows you to examine COM types at runtime.
[object,
uuid(00020401-0000-0000-C000-000000000046)]
interface ITypeInfo : IUnknown
{
HRESULT CetTypeAttr([out] TYPEATTR ** ppTypeAttr);
HRESULT GetTypeComp([out] ITypeComp ** ppTComp);
HRESULT GetFuncDesc([in] UINT index,
[out] FUNCDESC ** ppFuncDesc);
HRESULT GetVarDesc([in] UINT index,
[out] VARDESC ** ppVarDesc);

185

Chapter 4

HRESULT GetNames([in] MEMBERID memid,
[out,size is(cMaxNames),length is(*pcNames)] BSTR * rgBstrNames,
[in] UINT cMaxNames, [out] UINT * pcNames);
HRESULT GetRefTypeOfImplType([in] UINT index,
[out] HREFTYPE * pRefType);
HRESULT GetImplTypeFlags([in] UINT index,
[out] INT * pImplTypeFlags);
HRESULT GetIDsOfNames(
[in, size is(cNames)] LPOLESTR * rgszNames,
[in] UINT cNames,
[out, size is(cNames)] MEMBERID * pMemId);
HRESULT Invoke([in] PVOID pvInstance,
[in] MEMBERID memid,
[in] WORD wFlags,
[in, out] DISPPARAMS * pDispParams,
[out] VARIANT * pVarResult,
[out] EXCEPINFO * pExcepInfo,
[out] UINT * puArgErr);
HRESULT GetDocumentation([in] MEMBERID memid,
[out] BSTR * pBstrName,
[out] BSTR * pBstrDocString,
[out] DWORD * pdwHelpContext,
[out] BSTR * pBstrHelpFile);
HRESULT GetDllEntry([in] MEMBERID memid,
[in] INVOKEKIND invKind,
[out] BSTR * pBstrD11Name,
[out] BSTR * pBstrName,
[out] WORD * pwOrdinal);
HRESULT GetRefTypeInfo([in] HREFTYPE hRefType,
[out] ITypeInfo ** ppTInfo);
HRESULT AddressOfMember (
[in] MEMBERID memid,
[in] INVOKEKIND invKind,
[out] PVOID * ppv);
HRESULT CreateInstance([in] IUnknown * pUnkOuter,
[in] REFIID riid, [out, iid is(riid)] PVOID * ppvObj);
HRESULT GetMops([in] MEMBERID memid,
[out] BSTR * pBstrMops);
HRESULT GetContainingTypeLib(
[out] ITypeLib ** ppTLib,
[out] UINT * pIndex);
void ReleaseTypeAttr([in] TYPEATTR * pTypeAttr);
void ReleaseFuncDesc([in] FUNCDESC * pFuncDesc);
void ReleaseVarDesc([in] VARDESC * pVarDesc);
};
186

COM Type Information

Even though ITypelnfo defines a good number of members, the truth of the
matter is that only a subset of these items are necessary when attempting to
programmatically investigate a COM type library. Table 4-9 shows the highlights.

Table 4-9. Core Members of ITypelnfo

Relevant ITypeInfo Method

Createlnstance()

GetContainingTypeLib()

GetDocumentation()

GetFuncDesc()

GetIDsOfNames()
Invoke()

GetImplTypeFlags()

GetNames()

GetRefTypelnfo()

GetRefTypeOflmplType()

GetTypeAttr()

GetVarDesc()

ReleaseFuncDesc()
ReleaseTypeDesc()
ReleaseVarDesc()

Meaning in Life

If the current ITypelnfo interface is pointing to a COM
class (coclass), this method allows you to activate the
object (assuming the coclass is implemented in a
registered COM server).

This method allows you to gain an ITypeLib reference of
the type library containing the COM type.

Fetches the [helpstring] value for the type, as well as
any help file information for the type.

Retrieves information about an interface method held
in a FUNCDESC structure.

Much like the IDispatch equivalents, these methods
allow you to obtain a DISPID given a string token and
trigger a member of the dispinterface using late
binding.

Returns a set of flags that describe the IDL attributes of
a coclass’ supported interface (e.g., [default], [hidden]).

Returns an array of BSTRs that describe a given
member.

If the current type description references other type
descriptions, this method returns the associated
ITypelnfo for the referenced type.

If a type description describes a COM class, it retrieves
the type description of the implemented interface

types.
Returns a TYPEATTR structure that describes the

current type.

Returns a VARDESC structure that defines a variable in
the type library.

These methods free the structure allocated for you
when calling GetFuncDesc(), GetTypeDesc(), and
GetVarDesc().

187

Chapter 4

188

A Brief Word on ITypelInfo2

In addition to ITypelnfo, COM also defines a derived interface named (of course)
ITypelnfo2. This interface extends the functionality of ITypelnfo by adding
members that allow you to retrieve custom IDL attributes (identified with the
[custom] attribute). You'll see the ITypelnfo2 interface in action a bit later in this
chapter.

Related ITypeInfo Data Types

If you were reading over the previous table carefully, you should have noticed that
many of the ITypelnfo accessor methods return various related structures. These
structures are your key to ciphering among the numerous members that lurk
within a COM type library. Table 4-10 documents some (but not all) of the items
of interest.

Table 4-10. ITypelnfo-Related Structures (and Enums)

Related ITypelnfo Meaning in Life
Structure Type

ARRAYDESC Array description referenced by TYPEDESC, containing the
element type, dimension count, and a variable-length array.

ELEMDESC Includes the type description and process-transfer information
for a variable, a function, or a function parameter.

FUNCDESC Describes a function.

FUNCFLAGS Enumeration containing constants that are used to define
properties of a function.

FUNCKIND Enumeration for defining whether a function is accessed as a
virtual, pure virtual, nonvirtual, static, or through IDispatch.

HREFTYPE A handle identifying a type description.
PARAMDESC Describes the type of the parameter.

IMPLTYPEFLAGS Represents various flags that may adorn COM implementation
types (interfaces and coclasses).

MEMBERID Identifies the member in a type description. For IDispatch
interfaces, this is the same as a DISPID.

COM Type Information

Table 4-10. ITypelnfo-Related Structures (and Enums) (continued)

Related ITypelnfo Meaning in Life
Structure Type

TYPEATTR Contains attributes of the current type.

TYPEDESC Describes the type of a variable, the return type of a function, or
the type of a function parameter.

TYPEFLAGS Defines the properties and attributes of a type description.
TYPEKIND Defines properties of a type.

VARDESC Describes a variable, constant, or data member.
VARFLAGS Used to set attributes of a variable.

VARKIND Defines the kind of variable.

Generating COM Type Information Programmatically

Unless you happen to be a tool builder by trade, chances are that you will build
your COM type information using the Keyboard Wizard and the MIDL compiler.
However, it is worth pointing out that the COM library defines a small set of stan-
dard interfaces (used in conjunction with a small set of COM library functions)
that allow you to programmatically generate type information at runtime. Of
course, this in-memory type information may be then committed to file for later
use. In a nutshell, creating type information requires the use of three core COM
interfaces and a single COM library function. Table 4-11 hits the highlights.

Table 4-11. Type Library Creation Elements

COM Type Information Meaning in Life
Creation Element

ICreateTypeLib This interface is used to establish the characteristics of the type
ibrary itself (i.e., the library statement and its attributes).

ICreateTypelnfo This interface is used to insert COM types into a type library.

CreateTypeLib() This COM library function creates a coclass that supports the
ICreateTypeLib interface.

ITypelnfo As seen, while not really an interface that directly creates a COM
type, this interface represents a COM type description in
memory.

189

Chapter 4

190

A Brief Word on ICreateTypelib2 and ICreateTypelnfo2

In addition to this small set of COM type creators, you may wish to know that both
the ICreateTypeLib and ICreateTypelnfo interfaces function as a base interface to
two versioned equivalents (ICreateTypeLib2 and ICreateTypelnfo2). These inter-
faces support the ability to remove a given element from an existing library state-
ment or COM type. If you wish to interact with these interfaces, you need to first
call the CreateTypeLib2() COM library function (rather than CreateTypeLib()
proper) to obtain the ICreateTypeLib2 interface. However, to keep things simple, I
avoid using these interfaces (but check out online Help for a full description of the
defined interface members).

The Target IDL

To illustrate the basic functionality of building type information at runtime, you
make use of the items defined in Table 4-11 to build the following type informa-
tion programmatically:

[uuid(<some guid>), version(1.0),
helpstring("The Hello Library")]
library HellolLibrary
{
importlib("stdole32.tlb");
[odl, uuid(<some guid>),
helpstring("Hello Interface"), hidden]
interface IHello : IUnknown
{
[helpstring("This method says hello...")]
HRESULT _stdcall SayHello();
b
[uuid(<some guid>), helpstring("Hello Class")]
coclass Hello
{
[default] interface IHello;
b
b

As you can see, your COM class (Hello) supports a single [default] interface
(IHello). The IHello interface contains a single method named (of course)
SayHello(). To keep things simple, the SayHello() method does not take any
parameters and returns the standard HRESULT. Do note, however, that you are

COM Type Information

making use of the [helpstring] attribute at various levels to help document the
functionality of the type information. Finally, notice that the values assigned to
the [uuid] attributes are generated on the fly using CoCreateGuid().

If you wish to follow along and build your own COM type generator (and I'm
sure you do), begin by creating a brand-new Win32 Console Application named
CppComTypeWriter using Visual Studio 6.0 (a simple application will be fine). All
of your programming logic will be contained within the initial C++ file.

Building the Type Library (ICreateTypelib)

The first step in your endeavor is to create a helper function that will create a new
* tlb file and return a valid ICreateTypeLib interface. Using this interface reference,
you will be able to insert the individual types into the library definition. Here is the

prototype:

// This global method will be called by main() in order
// to create the *.tlb file and obtain an ICreateTypelib interface.
ICreateTypelib* CreateTypelibrary();

The ICreateTypeLib interface defines a number of methods that allow you to
establish numerous library attributes ([version], [uuid], [helpstring], and so forth).
The official IDL definition can be found in oaidl.idl and looks like the following
(see Table 4-12 for an explanation of each method):

[object,
uuid(00020406-0000-0000-C000-000000000046) ,
pointer default(unique), local]
interface ICreateTypelib : IUnknown
{
HRESULT CreateTypeInfo([in] LPOLESTR szName,
[in] TYPEKIND tkind,
[out] ICreateTypeInfo ** ppCTInfo);
HRESULT SetName([in] LPOLESTR szName);
HRESULT SetVersion(
[in] WORD wMajorVerNum,
[in] WORD wMinorVerNum);
HRESULT SetGuid([in] REFGUID guid);
HRESULT SetDocString([in] LPOLESTR szDoc);
HRESULT SetHelpFileName(
[in] LPOLESTR szHelpFileName);

191

Chapter 4

192

HRESULT SetHelpContext(

[in] DWORD dwHelpContext);
HRESULT SetLcid([in] LCID lcid);
HRESULT SetLibFlags([in] UINT ulLibFlags);
HRESULT SaveAllChanges();

};

Table 4-12. Members of ICreateTypeLib

ICreateTypelib Method
CreateTypelnfo()

SaveAllChanges()
SetDocString()
SetGuid()

SetHelpContext()
SetHelpFileName()

SetLcid()

SetLibFlags()

SetName()

SetVersion()

Meaning in Life
Creates a new type description instance (interface, coclass,
and so forth) within the type library.

Saves the type library to file.
Sets the [helpstring] attribute for the type library.
Sets the [uuid] attribute (LIBID) for the type library.

Sets the Help context ID and help file name for the type
library.

Sets the locale identifier (LCID) code indicating the national
language associated with the library.

Sets any library flags for the type library. Valid values are
taken from the LIBFLAGS enumeration.

Sets the name of the type library.

Sets major and minor version numbers for the type library
(the [version] attribute).

Now that you have a better idea of the behavior offered by the ICreateTypeLib
interface, you can build the implementation of your custom CreateTypeLibrary()

method:

// Create a type library and gain an ICreateTypelib

// interface to reference it.

ICreateTypelib* CreateTypelibrary()

{

cout << "Creating COM type library!" << endl;
ICreateTypelib *pCTL = NULL;

GUID theGUID;

CoCreateGuid(&theGUID);

// Make the type 1lib file and get the ICreateTypelib interface.

COM Type Information

CreateTypelLib(SYS_WIN32, L"MyTypelLib.tlb", &pCTL);

// Set version, name and LIBID and return ICreateTypelib.
pCTL->SetVersion(1, 0);

pCTL->SetName(L"HelloLibrary");

pCTL->SetGuid(theGUID);

pCTL->SetDocString(L"The Hello Library");

return pCTL; // Caller will Release().

This process begins filling our GUID (which will become the LIBID) using
CoCreateGuid(). After this point, make use of the CreateTypeLib() COM library
function to (a) define the target platform for this type information, (b) the name of
the *.tlb file, and (c) specify storage for the returned ICreateTypeLib interface. The
first parameter used to establish the target OS is a value from the SYSKIND
enumeration:

// Yes, the Macintosh does support

// COM type information.

typedef [v1_enum] enum tagSYSKIND {
SYS WIN16 = 0,
SYS_WIN32, // This is all we care about..
SYS_MAC

} SYSKIND;

Once you obtain a reference to the returned ICreateTypeLib interface, you
make a number of calls to establish the form of the type library statement. In
effect, you have just built the following IDL in memory:

// The story thus far.
[uuid(<some guid>), version(1.0),
helpstring("The Hello Library")]
library Hellolibrary

{

}

Creating the IHello Interface

Now that you have a valid ICreateTypeLib interface, you are able to insert the indi-
vidual COM types. Now, let me warn you that you are about to view some terse C

193

Chapter 4

194

code (remember, knowledge is power). Assume you have defined the following
new function prototype:

// Creates the IHello interface and returns an associated
// ITypeInfo pointer.
ITypeInfo* CreateInterface(ICreateTypelLib *pctlib);

The purpose of this helper function is to create the characteristics of the
IHello interface ([uuid], base interface, and the single SayHello() method) and
then insert it into the previously created type library. Notice that you need to
pass in the ICreateTypeLib interface you obtained from the previous call to the
CreateTypeLibrary() helper function. As you may expect, the returned ITypelnfo
reference represents the in-memory representation of the IHello interface. Here is
the complete method implementation (with analysis to follow):

// Add an interface to the incoming type library.

ITypeInfo* CreateInterface(ICreateTypelLib* pctlib)

{
cout << "Creating IHello interface!" << endl;
ICreateTypeInfo *pctinfo = NULL;
HREFTYPE hreftype;
ITypeInfo *ptinfoIUnknown = NULL;
ITypelib *ptlibStdOle = NULL;
ITypeInfo* ptinfoIHello = NULL;
GUID theGUID;
FUNCDESC funcdesc; // Used to define IHello::SayHello().
CoCreateGuid(&theGUID);
// Get type info for IUnknown (as it is the base interface
// of IHello).
LoadTypeLib(OLESTR("stdole32.tlb"), &ptlibStdole);
ptlibStdOle->GetTypeInfoOfGuid(IID_IUnknown, &ptinfoIUnknown);
ptlibStdOle->Release();

// Make the IHello interface.
pctlib->CreateTypeInfo(OLESTR("IHello"), TKIND INTERFACE, &pctinfo);
pctinfo->SetGuid(theGUID);

pctinfo->SetDocString(OLESTR("Hello Interface"));
pctinfo->SetTypeFlags(TYPEFLAG FHIDDEN);

// Save typeinfo of IHello for others who may refer to it.
pctinfo->QueryInterface(IID ITypeInfo, (void**)8ptinfolHello);

COM Type Information

// Output base interface of IHello (IUnknown)
pctinfo->AddRefTypeInfo(ptinfolUnknown, &hreftype);
pctinfo->AddImplType(0, hreftype);

// Make SayHello() method (using FUNCDESC structure).
cout << "Creating IHello.SayHello() method!" << endl;
OLECHAR * rgszFuncArgNamesSH[1] = {OLESTR("SayHello")};
funcdesc.memid = 1;

funcdesc.lprgscode = NULL;

funcdesc.lprgelemdescParam = NULL;

funcdesc.funckind = FUNC_PUREVIRTUAL;

funcdesc.invkind = INVOKE_FUNC;

funcdesc.callconv = CC_STDCALL;

funcdesc.cParams = 0;

funcdesc.cParamsOpt = 0;

funcdesc.oVft = 0;

funcdesc.cScodes = 0;

funcdesc.elemdescFunc.tdesc.vt = VT_HRESULT;
funcdesc.elemdescFunc.idldesc.dwReserved = NULL;
funcdesc.elemdescFunc.idldesc.wIDLFlags = IDLFLAG_NONE;
funcdesc.wFuncFlags = 0;

pctinfo->AddFuncDesc(0, &funcdesc);
pctinfo->SetFuncAndParamNames(0, rgszFuncArgNamesSH, 1);
pctinfo->SetFuncDocString(0, OLESTR("This method says hello..."));
pctinfo->LayOut();

pctinfo->Release();

// Return ITypeInfo for IHello.

return ptinfoIHello;

Breaking Down the CreateInterface() Helper Method

Hmmm. This looks a bit more complex than the process of creating the type
library itself. Well, that’s why you get paid the big bucks. In reality it isn’t all that
bad if you break things down bit by bit. The function begins by loading the stan-
dard OLE type library (stdole32.tlb) to obtain a reference to the type information
for IUnknown. This reference is held in an ITypelnfo interface (described in detail
earlier in this chapter). Why do you need to do this? Well, as you recall, all COM
interfaces must ultimately derive from this base interface, and therefore you best

195

Chapter 4

have access to its type information! Like all things in COM, once you have made
use of a given interface, you call Release():

// Get type info for IUnknown (as it is the base interface
// of IHello).

ITypeInfo *ptinfoIUnknown = NULL;

ITypelib *ptlibStdOle = NULL;

LoadTypeLib(OLESTR("stdole32.t1lb"), &ptlibStdOle);
pt1ibStdOle->CetTypeInfoOfGuid(IID_IUnknown, &ptinfoIUnknown);
pt1ibStdOle->Release();

Once you have a reference to the base interface of [Hello, you perform a series
of steps to establish IHello. Here is the relevant code under dissection:

// Make the IHello interface.
HREFTYPE hreftype;
ICreateTypeInfo *pctinfo = NULL;
ITypeInfo* ptinfoIHello = NULL;

pctlib->CreateTypeInfo(OLESTR("IHello"), TKIND INTERFACE, 8pctinfo);
pctinfo->SetGuid(theGUID);

pctinfo->SetDocString(OLESTR("Hello Interface"));
pctinfo->SetTypeFlags(TYPEFLAG_FHIDDEN);

// Save typeinfo of IHello for others who may refer to it.
pctinfo->QueryInterface(IID ITypeInfo, (void**)8ptinfoIHello);

// Output base interface of IHello (IUnknown)
pctinfo->AddRefTypeInfo(ptinfoIUnknown, &hreftype);
pctinfo->AddImplType(0, hreftype);

The key point to this code block is the call to ICreateTypeLib::CreateTypelnfo().
As you can see, you are specifying a name for your type (IHello as a
Unicode string), storage for the returned ICreateTypelnfo interface, and the
TKIND_INTERFACE member of the TYPEKIND enumeration (due to the fact that
we are creating a COM interface type). Here is the IDL description of TYPEKIND:

// This IDL enum defined in oaidl.idl
typedef [vi_enum] enum tagTYPEKIND {
TKIND_ENUM = O,
TKIND_RECORD,
TKIND_MODULE,
TKIND_INTERFACE,
TKIND DISPATCH,

196

COM Type Information

TKIND_COCLASS,

TKIND_ALIAS,

TKIND_UNION,

TKIND_MAX // End of enum marker
} TYPEKIND;

Once the [uuid] and [helpstring] values have been set (a la the
ICreateTypelnfo::SetGuid() and ICreateTypelnfo::SetDocString() methods), you
make a call to ITypelnfo::SetTypeFlags(). As suggested by the name of the method,

SetTypeFlags() is used to further qualify the COM type with various IDL attributes.

Given that a COM type may be any number of entities (interfaces, coclasses, and
so forth), the parameters sent into SetTypeFlags()depend on the type you are
attempting to generate. All in all, you may specify any of the following values of
the TYPEFLAGS enumeration:

typedef enum tagTYPEFLAGS {
TYPEFLAG_FAPPOBJECT = oxo01,
TYPEFLAG_FCANCREATE = 0x02,
TYPEFLAG _FLICENSED = 0x04,
TYPEFLAG_FPREDECLID = 0x08,
TYPEFLAG_FHIDDEN = o0x10,
TYPEFLAG _FCONTROL = 0x20,
TYPEFLAG_FDUAL = 0x40,
TYPEFLAG_FNONEXTENSIBLE = 0x80,
TYPEFLAG_FOLEAUTOMATION = 0x100,
TYPEFLAG_FRESTRICTED = 0x200,
TYPEFLAG_FAGGREGATABLE = 0x400,
TYPEFLAG FREPLACEABLE = 0x800,
TYPEFLAG_FDISPATCHABLE = 0x1000,
TYPEFLAG_FREVERSEBIND = 0x2000

} TYPEFLAGS;

Hopefully, Table 4-13 provides some degree of insight as to what the core
TYPEFLAGS values mean in terms of COM IDL.

197

Chapter 4

198

Table 4-13. Various TYPEFLAGS Values

TYPEFLAGS (Values You
Might Actually Care About)

TYPEFLAG_FAPPOBJECT

TYPEFLAG_FCANCREATE

TYPEFLAG_FLICENSED
TYPEFLAG_FHIDDEN
TYPEFLAG_FDUAL

TYPEFLAG_FOLEAUTOMATION

TYPEFLAG_FRESTRICTED

TYPEFLAG_FAGGREGATABLE

TYPEFLAG_FDISPATCHABLE

Meaning in Life

Defines an application object. These types are
automatically created on the loading of the COM
server (think VB 6.0’s Instancing =GlobalSingleUse).

Instances of the type can be created by
ITypelnfo::CreateInstance().

The type is licensed.
The type should not be displayed to browsers.
The interface supplies both late and early binding.

The types used in the interface are fully compatible
with Automation, including early binding support.
Basically, this flag sets the [oleautomation]
attribute.

Should not be accessible from macro languages.
This flag is intended for system-level types or types
that type browsers should not display.

The class supports aggregation.

Indicates that the interface derives from IDispatch,
either directly or indirectly. This flag is computed.

Building the SayHello() Method

The final block of code within the CreateInterface() helper method (and the largest
block of said code) is the establishment of the SayHello() method. Members of a
COM interface are ultimately described using a FUNCDESC structure:

// Defined in oaidl.idl
typedef struct tagFUNCDESC
{

MEMBERID memid;

SCODE _ RPC_FAR *lprgscode;

ELEMDESC _ RPC_FAR *1prgelemdescParam;

FUNCKIND funckind;
INVOKEKIND invkind;
CALLCONV callconv;

COM Type Information

SHORT cParams;
SHORT cParamsOpt;
SHORT oVft;
SHORT cScodes;
ELEMDESC elemdescFunc;
WORD wFuncFlags;

} FUNCDESC;

As you may be able to tell, many of the fields of the FUNCDESC are in fact
enumeration values. Rather than detailing each and every possible value of each
and every FUNCDESC-centric structure, let’s just focus of the behavior established
for the SayHello() method:

// Establish the SayHello() function.
FUNCDESC funcdesc;

OLECHAR* rgszFuncArgNamesSH[1] = {OLESTR("SayHello")};
funcdesc.memid = 1;

funcdesc.lprgscode = NULL;

funcdesc.lprgelemdescParam = NULL;

funcdesc.funckind = FUNC_PUREVIRTUAL;

funcdesc.invkind = INVOKE_FUNC;

funcdesc.callconv = CC_STDCALL;

funcdesc.cParams = 0;

funcdesc.cParamsOpt = 0;

funcdesc.oVft = 0;

funcdesc.cScodes = 0;

funcdesc.elemdescFunc.tdesc.vt = VT_HRESULT;
funcdesc.elemdescFunc.idldesc.dwReserved = NULL;
funcdesc.elemdescFunc.idldesc.wIDLFlags = IDLFLAG NONE;
funcdesc.wFuncFlags = 0;

// Remember! pctinfo is a handle to IHello!
pctinfo->AddFuncDesc(0, &funcdesc);
pctinfo->SetFuncAndParamNames(0, rgszFuncArgNamesSH, 1);
pctinfo->SetFuncDocString(0, OLESTR("This method says hello..."));
pctinfo->LayOut();

pctinfo->Release();

In essence what we are saying is “Build a method named SayHello()
that takes no parameters and returns an HRESULT” via various fields of the
FUNCDESC structure (I'll assume you will check out each possible value at your
leisure). Do note that it is critical to call ICreateTypelnfo::LayOut() once you have

199

Chapter 4

established a COM type to commit the changes (if you will). At this point, you have
effectively created the following IDL in memory:

[uuid(<some guid.>),
helpstring("Hello Interface"), odl, hidden]
interface IHello : IUnknown
{
[helpstring("This method says hello...")]
HRESULT SayHello(void);
s

In case you are wondering why you attributed the [hidden] attribute to the
[Hello interface, understand that you are using type library creation interfaces to
insert COM type definitions within a library statement (rather than outside the
scope of the type library). Recall that if an interface is referenced within the scope
of a library statement, it will be visible to higher-level languages such as VB 6.0.
Given that the Hello coclass supports IHello as its [default] interface, it would be
redundant (and a bit confusing) to have this same interface visible from the VB
Object Browser.

Building the Hello Coclass

The final step of this exercise is to create type information for the Hello coclass
itself. Given that coclasses support interfaces and are defined in a type library, it
makes sense that your final function prototype takes the following parameters:

// Create a coclass using this type library (ICreateTypelib)
// and list the IHello interface (ITypeInfo).
void CreateCoClass(ICreateTypelib* pctlib, ITypeInfo* pCurrType);

The implementation is far less formidable than the creation of the interface
itself:

void CreateCoClass(ICreateTypelib* pctlib, ITypeInfo* ptinfoIHello)
{

cout << "Creating Hello CoClass!" << endl;

GUID theGUID;

CoCreateGuid(&theGUID);

ICreateTypeInfo *pctinfo = NULL;

HREFTYPE hreftype;

200

COM Type Information

// Create the coclass.

pctlib->CreateTypeInfo(OLESTR("Hello"), TKIND COCLASS, 8&pctinfo);
pctinfo->SetGuid(theGUID);

pctinfo->SetTypeFlags(TYPEFLAG FCANCREATE);
pctinfo->SetDocString(OLESTR("Hello Class"));

// List IHello in the coclass.
pctinfo->AddRefTypeInfo(ptinfoIHello, &hreftype);
pctinfo->AddImplType(0, hreftype);
pctinfo->SetImplTypeFlags(0, IMPLTYPEFLAG_FDEFAULT);
pctinfo->LayOut();

pctinfo->Release();

Again, take the incoming ICreateTypeLib interface and make use of the call
CreateTypelnfo(), this time specifying a TYPEKIND value of TKIND_COCLASS.
Using the resulting ICreateTypelnfo reference, you are able to set the GUID,
type flags, and [helpstring]. To specify IHello as the default interface requires
little less than adding the correct ITypelnfo reference while specifying the
IMPLTYPEFLAG_FDEFAULT flag. Once ICreateTypelnfo::LayOut() has been
called, you have the following in-memory type IDL information:

[uuid(<some guid>),
helpstring("Hello Class")]
coclass Hello

{
[default] interface IHello;

Testing the Application

With each of your three helper functions established, you can now configure
main() as follows (without excessive error checking):

// Make that type information!
int main(int argc, char* argv[])
{
CoInitialize(NULL);
ICreateTypelib *pCTL = NULL;
ITypeInfo *pCurrType = NULL;
// Create the type library.
pCTL = CreateTypelibrary();

201

Chapter 4

202

// Create IHello interface.
pCurrType = CreateInterface(pCTL);

// Now create the coclass.
CreateCoClass(pCTL, pCurrType);
// Save the type lib!
pCTL->SaveAllChanges();

// COM clean up.

if(pCTL != NULL) pCTL->Release();
if(pCurrType != NULL) pCurrType->Release();
CoUninitialize();

return 0;

Once you execute this application, you will find the MyTypeLib.tlb file is

present and accounted for (Figure 4-4).

File Edit View Favorites Tools Help

@Back - @ @ ,OSearch [Folders | [x]~

Address |3 C:\Apress Books\InteropBook\Labs\Chapter 4\CppComTypeWriter| ¥ | Go

" CppComTy... [Nk

File and Folder Tasks

®

= Rename this file
By Move this file

) copy this file

&8 Publish this file to the
Web

& E-mail this file

ct

Dol b e e oo '_J

Figure 4-4. Proof that the exotic world of runtime COM type generation is possible

If you open this *.tlb file using the VB 6.0 Project | References menu option
(and manually navigate to location of your new file using the Browse button), you
will be able to view the types using the Object Browser tool (F2) as seen in Figure

4-5 (note the [helpstring] for the SayHello() method).

COM Type Information

w" Object Browser

[HettoLibrary -]« | " | a il -

| | #Al¥
Classes Members of 'Hella'
@ =globals= Egd SayHello
B1iHelln {

Sub SayHello()
Member of HelloLibrary Hello
This method says hella...

Figure 4-5. Recall! IHello is the [default] interface of Hello.

1 leeee CODE The CppComTypeWriter application is located under the
\ v Chapter 4 subdirectory.

—
~

i

Programmatically Reading COM Type Information

So at this point you have received a lesson in the process of building COM type
information on the fly using a small subset of the COM library. As you would
expect, there are equivalent types that allow you to read COM type information at
runtime. For example, consider the VB 6.0 Object Browser. Essentially all this tool
does is load a *.tlb file from disk, read the contents, and display the binary IDL
within a functional user interface.

Your next goal is to build your type library browser application. Of course, it
will not look as sharp as the GUI-based tool (as you opt for a simple console
window UI) but it should get the point across that it is completely possible to
programmatically read type libraries at runtime. Formally speaking, this process is
termed reflection. The key players involved in COM reflection services are listed in
Table 4-14.

203

Chapter 4

204

Table 4-14. Type Library-Centric COM Library Items

COM Type Information Meaning in Life
Reader Atom
LoadTypeLib() This COM API function is used to load (and optionally

register) a COM type library.

ITypeLib This interface represents a handle to aloaded COM type
library.

As you may suspect, the process of reading a COM type library is far simpler
than creating one in memory. Again, if you wish to follow along, create a new
Win32 Console Application (CppComTypeReader).

The Program Skeleton

Basically, your console application will prompt the user for input that specifies
the path to the COM *.dll, *.exe, or *.tlb file he or she is interested in browsing.
Given this input, you will attempt to programmatically load the file using the
LoadTypeLib() COM library function, and pass the obtained ITypeLib interface
into two helper functions:

// Displays general statistics about the type library.
void DumplibraryStats(ITypelib* pTypelib);

// Tterates over each COM type and dumps

// selective information for each.

void DumpComTypes(ITypelLib* pTypelib);

You will also construct a do/while loop to keep prompting for path names
until the user tells you to stop this madness by typing n (No). Before you see the
implementation of each function, here is the general form of the main() function
(and some important preprocessor include directives to leverage ATL string
conversion macros):

// Include these ATL files to get the string stuff...
#include <atlbase.h>
#include <atlconv.h>
#include <iostream.h>

int main(int argc, char* argv[])

COM Type Information

USES_CONVERSION;
char oneMoreTime; // ('n' or 'y")
char pathToComServer[100] = {0};
do
{
// Get path to COM server.
cout << "Please enter path to COM server (or *tlb file)";
ITypelib* pTypelib = NULL;
cin.ignore(0, '\n');
cin.get(pathToComServer, 100);

// Load type information for a COM server.
if(SUCCEEDED(LoadTypeLibEx(A2W(pathToComServer),
REGKIND DEFAULT, &pTypelib)))

// Read info about the type lib.
DumplLibraryStats(pTypelib);
// Read info about COM types.
DumpComTypes (pTypelLib);
// COM clean up.
pTypelLib->Release();
}
// Want another?
cout << "Do you want to enter another? (y or n)";
cin >> oneMoreTime;
twhile (oneMoreTime != 'n');
return 0;

}

Displaying COM Library Information
The implementation of DumpLibraryStats() takes the incoming ITypeLib interface

and calls a series of methods to print out general traits. Table 4-15 showcases the
core members of [TypeLib.

205

Chapter 4

206

Table 4-15. Core Members of [TypeLib

ITypelLib Meaning in Life

Interface Member

FindName() Finds occurrences of a type description in a type library.
GetDocumentation() Retrieves the library's documentation string, name of the

complete Help file name and path, and the context
identifier for the library Help topic.

GetLibAttr() Retrieves the structure (TLIBATTR) containing the library's
attributes. The returned TLIBATTR must be released by
calling ReleaseTLibAttr() to free the allocated memory.

GetTypelnfo() Retrieves an ITypelnfo interface for a given COM type in the
library.

GetTypelnfoCount() Retrieves the number of types in the type library.

GetTypelnfoOfGuid() Retrieves the type description corresponding to the

specified globally unique identifier (GUID).
GetTypelnfoType() Retrieves the type of a type description.

ReleaseTLibAttr() Releases the TLIBATTR structure, originally obtained from
ITypeLib::GetLibAttr().

With this, here is the implementation of DumpLibraryStats():

void DumplibraryStats(ITypelib* pTypelib)
{
pTypelLib->AddRef();
cout <« "FFREEEX Stats about the Library ******" << endl;
USES_CONVERSION;
TLIBATTR* libAttr;
pTypelLib->GetLibAttr(81ibAttr);
CComBSTR bstrGuid(libAttr->guid);

cout << "Major: " << libAttr->wMajorVerNum << endl;

cout << "Minor: " << libAttr->wMinorVerNum << endl;
cout << "LibID: " << W2A(bstrGuid.Copy()) << endl;
cout << "Locale ID: " << libAttr->lcid << endl;
pTypeLib->ReleaseTLibAttr(1ibAttr);

pTypelLib->Release();

COM Type Information

If you take a test run of the logic thus far (assuming you do not yet call the
DumpComTypes() function), you will be able to read the MyTypeLib.tlb file gener-
ated by the CppComTypeWriter application (see Figure 4-6 for output).

"C:\Apress Books\InteropBook\ abs\Ch

{3?533351—CF13—4D7C—91DB—D3366954?959}
Do you want to enter another? (y or nin
Presz any key to continue

Figure 4-6. Reading type library attributes at runtime

Dumping COM Type Information

Recall that every COM type can be represented by an ITypelnfo interface refer-
ence. Also recall that the TYPEKIND structure allows you to specify a given type
programmatically. Given these two factoids, the DumpComTypes() helper func-
tion begins by asking the incoming ITypeLib interface to return the number of
type definitions via GetTypelnfoCount(). Once you know exactly how many COM
types are in the library, you are able to enter a loop to test for each member of the
TYPEKIND enumeration. Here is the skeleton code (you fill in the case statements
in just a bit):

void DumpComTypes(ITypelLib* pTypelib)

{
// Get number of COM types in this library.
USES_CONVERSION;
pTypelLib->AddRef();
ULONG typeCount = pTypelib->GetTypeInfoCount();
cout << "\n¥FFEXX The COM Types *¥****" << endl;

cout << "There are " << typeCount <<
// Now list out each COM type.
for (ULONG typeIndex = 0; typeIndex < typeCount; typeIndex++)
{

ITypeInfo* pInfo = NULL;

TYPEATTR* typeAtt;

CComBSTR temp;

in this type lib" << endl << endl;

Chapter 4

208

ULONG index = 0;

ULONG numbMembers = 0;
pTypelLib->GetTypeInfo(typeIlndex, &pInfo);
pInfo->GetTypeAttr(&typeAtt);
switch(typeAtt->typekind)

{
case TKIND COCLASS: // type is a coclass.
break;
case TKIND_DISPATCH: // type is a IDispatch derived interface.
break;
case TKIND_INTERFACE: // Type is an IUnknown derived interface.
break;
case TKIND ENUM: // Type is an COM enumeration.
break;
default:
cout << "Some other type I don't care about..." << endl;
}

cout << endl;
pInfo->ReleaseTypeAttr(typeAtt);
pInfo->Release();

}
pTypelib->Release();

}

Listing CoClass Statistics

The case statement for TKIND_COCLASS prints out the number of interfaces on
the object, its CLSID, its friendly name, and any supplied [helpstring]. To do so
requires some COM string conversion mumbo-jumbo (simplified using the ATL
CComBSTR helper class). Beyond this fact, the code is not too painful to observe:

case TKIND_COCLASS: // type is a coclass.
cout << "(" << typeIndex << ")" << " Coclass with "
<< typeAtt->cImplTypes << " interface(s). ***¥*" << endl;
temp = typeAtt->guid;
cout << "->CLSID: " << W2A(temp.Copy()) << endl;
pInfo->GetDocumentation(-1, &temp, NULL, NULL, NULL);
cout << "->Name: " << W2A(temp.Copy()) << endl;

break;

COM Type Information

Listing IDispatch-Based Interface Statistics

TKIND_DISPATCH-based COM types will be asked to return the number of
methods they define, each of which is represented by FUNCDESC. Using
FUNCDESC, you will obtain the number of parameters for each method:

case TKIND_DISPATCH: // type is a IDispatch derived interface.
cout << "(" << typeIndex << ")" << " IDispatch based interface with "
<< typeAtt->cFuncs << " method(s). **FF*E" < endl;
temp = typeAtt->guid;
cout << "->IID: " << W2A(temp.Copy()) << endl;
pInfo->GetDocumentation(-1, &temp, NULL, NULL, NULL);
cout << "->Name: " << W2A(temp.Copy()) << endl;
numbMembers = typeAtt->cFuncs;
for(index = 0; index < numbMembers; index++)
{
FUNCDESC* fx;
pInfo->CetFuncDesc(index, &fx);
pInfo->GetDocumentation(fx->memid, &temp, NULL, NULL, NULL);
cout << " ->" << W2A(temp.Copy()) << " has "
<< fx->cParams << " params" << endl;
pInfo->ReleaseFuncDesc(fx);
}

break;

Listing IUnknown-Based Interface Statistics

The story here is short and sweet. Basically, TKIND_INTERFACE is implemented
identically as the case for TKIND_DISPATCH. In fact this is so much the case, I'll
just assume you copy and paste the implementation between implementations
(and tweak the cout statements).

Listing COM Enumeration Statistics
TKIND_ENUM is along the same lines as the other cases. This time, however, you

are interested in printing out the number of members (identified by the VARDESC
structure) for the enum and any specified [helpstring].

209

Chapter 4

case TKIND_ENUM: // Type is an enum.

cout << "(" << typeIndex << ")" << " Enum with "
<< typeAtt->cVars << " member(s). **FRE*" (¢ endl;
pInfo->GetDocumentation(-1, &temp, NULL, NULL, NULL);

cout << "->Name: " << W2A(temp.Copy()) << endl;

numbMembers = typeAtt->cVars;
for(index = 0; index < numbMembers; index++)
{
VARDESC* var;
pInfo->CetVarDesc(index, &var);
pInfo->CGetDocumentation(var->memid, &temp, NULL, NULL, NULL);
" >" << W2A(temp.Copy()) << endl;
pInfo->ReleaseVarDesc(var);

cout <«

Reading the MyTypelib.tlb file

So! If your fingers are not worn to the bone from the typing of these last two appli-
cations, you are now in the position to take the current application out for a test
drive. For example, Figure 4-7 shows the output for specifying MyTypeLib.tlb as
the input (which I have moved to my C:\ drive to save myself some typing).

C:\Apress Books\interopBook
Fleaze enter path to COM server (or *t1b file>C:-“MyTypeLibh_t1lb

s Btats about the Librapy s

Major: 1

Minor: @

LibID: {3753C621-CF13-4D?C-A1DB-D3I36695479593
Locale ID: 1833

pexseses® The COM Types soeseess
There are 2 in this type 1lih

(A IUnknown bhaszed interface with 1 method(s). oemex
—>I1D: {D?@@3ABE-FFDC—1FA?-8BA5—4ACDF?BADE3Y>
—>Name: IHello

—>%ayHello has B paramis?

(1) Coclass with 1 interfaceds). meemox
—>»CLSID: {3A6AA4B5—7FBA-4BA9-957C-5CC4827C788D>
—>*Mame: Hello

Do you want to enter another? (y or ndn
Prezs any key to continue

Figure 4-7. Reading the MyTypeLib.tIb file

210

COM Type Information

Now, let’s try something more exotic. If you enter in the path to msado15.dll
(the COM server describing the Active Data Objects, or ADO), you see 96 different
COM types whirl down the console application (you may want to update your
code to print out 10 or so at a time to see them all). Figure 4-8 shows item 85
(remember, numbering starts at zero), which happens to be the Connection type.

\Apress Books\inter

—>11D: {AAABAS51-AROA-AP1A—-80PA—-ARAABAGRD2ZEA4 Y
—>Mame : ADOConnectionConstruction

(84} Coclass with 2 interface(s). *»aooos
—>CLSID: {AAAAA514-AABA—A61A-8AAR-ARAABARGD2ZEA4:
—>*Mame: Connection

(85> IDispatch baszed interface with 27 methodd(s). »eaoox
—>11D: {APWABAS62-ABEA-BE1 B-8RBA—BRANBAG D2EA4 >
—»*Mame: _Record
—>Queryinterface has 2 params
—>AddRef has B params
—>Release haz @ params
—»GetTypelnfoCount has 1 params
—>GetTypelnfo has 3 params
—>GetIDs0fMames has 5% params
—>*Invoke has 8 params
—>Propevrtiesz hasz B params
—*ActiveConnection has B params
—*ActiveConnection has 1 params
—>ActiveConnection has 1 params
—*5tate haz B params
—>2ource has B pavams
—*3ource has 1 params
—>2ource has 1 params
—*Mode has B params
—>*Mode has 1 params
—>»ParentURL has B params
—*MoveRecord has 6 params
—>CopyRecord has 6 params
—*DeleteRecord has 2 params
—>0pen has 7 params
—>Close has O params
—»*Fields has B params
—>RecordType haz B params
—»*GetChildren has @ params
—»Cancel has B params

(86> Coclass with 1 interfaceCs). oewsas
—>CLSID: {ABPEA568—-000E—001-800B-00AABBGD2EA4>
—*Mame : Record

Figure 4-8. Reading the ADO type library
Of course you could reflect on the COM servers you created back in the

previous chapters as well. For example, here is the Vb6CarSever.dll dump
(Figure 4-9).

211

Chapter 4

212

:\Apress Books\interopBook\ abs
Fleaze enter path to COM server Cor =#tlh filedC:-“\Ubh&tCarServer.dll Il

xuuwad Stats ahout the Lihrary s

Major:

Minor: @
{B1CA1A?6—CBE?-4DAR-AZ268-FFAS71AD?5423
ID: A

The COM Types e
There are 4 in this type 1lih

B> IDispatch based interface with ? method<s).
—>IID: {BFC?53BA-4CEB-4682-BD63-8973D3CB21863
—>Mame : _CoCar

—»querylnterface has 2 params

—>AddRef has B params

—*Release haz B parans

—»GetTypeInfoCount has 1 params

—»GetTypelnfo has 3 parans

—»GetIDs0fHamesz has 5 parans

—*Invoke has 8 params

—»Epeed has B params

—*Speed has 1 params

(1> Coclass with 2 interfaced(s). »ewesx
—>CLSID: {E93D5FF5-3F76-4BE?-A547-5328B2AA4CE?>
—»Mame : CoCar

(2> IDispatch based interface with 8 method<s).
—>IID: {WFE?EC86—7?57-42CA-97B3-61B14214718D>
—>Mame : _IUBTurbo

—»querylnterface has 2 params

—*AddRef haz B params

—>Release haz B parans

—»GetTypeIlnfoCount has 1 params

—»GetTypeInfo has 3 parans

—»GetIDs0fHames hasz 5 paramns

—>»Invoke has 8 params

—»TurhoBlast has B params

(3> Coclass with 1 interface{s). mxsess
{39788FBA-?5C9-465E—-8A34-57A6AA2ZIDFRC
IUBTurhbo

Do you want to enter another? <y or nl

Figure 4-9. Reading your VB 6.0 COM server

I think you get the general idea. Using the COM library, you are able to build
type information and commiit it to file as well as programmatically read COM type
information at runtime.

Defining Custom IDL Attributes

The IDL language is, to some extent, extendable. Using the [custom] IDL attribute,
you are able to add your annotations to a COM type library. In effect, when you
make use of the [custom] attribute, you are building new IDL attributes that can

COM Type Information

be programmatically obtained at runtime using the ITypeLib2 and ITypelnfo2
interfaces.

The key point to understand about defining custom IDL attributes is the fact
that the semantics of these data points is meaningless unless some other piece of
software is “aware” of their presence. If you do not specifically poll a type library
for a chunk of custom data, it is completely ignored by COM-centric tools.
However, as you will see later in this text, the [custom] attribute is quite helpful
when working with COM/.NET interoperability issues.

Custom IDL attributes are realized as simple name/value pairs. The name of a
custom attribute is (of course) a GUID. The value of the attribute can be any
[oleautomation]-compliant data type (that is, the data type must be able to be
represented as a VARIANT). To illustrate, assume you have the following *.idl file
that establishes three custom attributes (each GUID has been generated using
guidgen.exe):

[object,

uuid(267943B0-50E4-400C-8F79-4B68D4A839FA),

custom(1403B3A5-38FE-4ba9-94E2-54577F712E7A,
"ToDo: Implement methods..."),

helpstring("IFoo Interface"),

pointer default(unique)]

interface IFoo : IUnknown

{

[helpstring("method MethodA")] HRESULT MethodA();
15
[uuid(365739ED-EE97-4F7C-A050-BC157F04663A),
version(1.0),
helpstring("CustomIDLServer 1.0 Type Library"),
custom(FF69F249-3FC0-4062-9CB6-7901E4DD3B7A,

"Updated: 3/24/01")]
library CUSTOMIDLSERVERLib
{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

[uuid(EAOAF1B1-5EA7-4352-AF6D-E78606614CCA),

helpstring("Foo Class"),

custom(97240DA1-C8DD-4548-95B7-DFBEF217C026,
"ProgID: CustomIDLServer.Foo")]
coclass Foo

{

[default] interface IFoo;

1

15

213

Chapter 4

214

As you can see, each [custom] attribute makes use of a BSTR data type to
represent its value. Again, these annotations are only of use to a software entity
that is on the lookout for these GUIDs. What the application in question does with
this information is a matter of choice. Here, your first two [custom] attributes are
little more than internal notes for our development team (or simply ourselves).
The third attribute however does have some value. Using the custom attribute
named 97240DA1-C8DD-4548-95B7-DFBEF217C026, a client is able to automati-
cally obtain the ProgID of the COM type (can anyone say late binding?).

Understand that the [custom] IDL attribute may be assigned to numerous
aspects of a COM IDL file. Specifically, you are free to assign custom annotations
to library statements, coclasses, interfaces (including dispinterfaces), methods,
and even individual method parameters.

Reading Custom Attributes
Now that you have established a set of [custom] attributes, you need to learn how

to extract these name/value pairs at runtime. Before you see the code, Figure 4-10
shows the output you are shooting for.

C:\Apress Books\InteropBook\l abs\Chapter 3

Custom data name is: (FF69F249-3FCB-4862—9CB6—7981E4DD3E7A>
Custom data value is: Updated: 3.-24-81

Custom data name is: {97240DA1-C8DD-4548-95B7-DFBEF217CA263
Custom data value is: ProgID: CustomlDLServer.Foo

Custom data name is: {1483B3AS-38FE-4BA?-94E2-54577F712E7A>
Custom data value is: ToDo: Implement methods...

Press any key to continue

Figure 4-10. Reading [custom] IDL attributes

When you wish to read [custom] IDL attributes, you must make use of the
ITypeLib2 and ITypelnfo2 interfaces (in addition to the LoadTypeLibEx() COM
library function). First, get to know ITypeLib2. This interface derives from ITypeLib
and adds a number of methods specifically designed to read [custom] metadata
from a COM type library. Table 4-16 lists the methods of interest.

COM Type Information

Table 4-16. Core Members of TypeLib2

ITypelLib2 Method Meaning in Life
GetCustData() Returns a VARIANT containing the value of a given [custom]
attribute, based on the GUID of said [custom] attribute.

GetAllCustData() Returns a CUSTDATA structure that contains the name/value
pairs for all [custom] data in the library statement.

While ITypeLib2 allows you to read any [custom] attributes applied at the
library level, when you wish to read [custom] information for a given COM type,
you need to work with ITypeInfo2 (which of course derives from ITypelnfo). This
interface actually defines a number of helpful methods that are not necessarily
related to reading [custom] IDL metadata. I'll allow you to check out the full set of
members from online Help and focus on the members listed in Table 4-17.

Table 4-17. Core Members of ITypelnfo2

ITypeInfo2 Method
GetCustData()
GetAllCustData()

GetFuntCustData()
GetAllFuntCustData()

GetParamCustData()
GetAllParamCustData()

GetVarCustData()
GetAllVarCustData()

GetImplTypeCustData()

Meaning in Life
Returns a VARIANT or CUSTDATA structure for all custom
attributes for the current COM type

Returns a VARIANT or CUSTDATA structure for all custom
attributes for all functions of the COM type

Returns a VARIANT or CUSTDATA structure for all custom
attributes for all parameters of a method supported by the
COM interface

Returns a VARIANT or CUSTDATA structure for all custom
attributes for variables in the type library

Returns a VARIANT or CUSTDATA structure for all custom

GetAlllmplTypeCustData() attributes for all COM types

Both the ITypeLib2 and ITypelnfo2 interfaces define a number of methods
that return a single VARIANT. If you know the exact GUID of the custom attribute
you are looking for, you are able to crack of the value of the VARIANT and act
accordingly. If you would rather obtain all custom attributes for a given COM type

215

Chapter 4

216

(or type library) you will call one of the “all” methods (that is, GetAllCustData()
and friends) and obtain a CUSTDATA structure:

typedef struct tagCUSTDATA
{
DWORD cCustData; // Number of CUSTDATAITEMs.
LPCUSTDATAITEM prgCustData; // Array of CUSTDATAITEMs.
}CUSTDATA;

The cCustData field of the CUSTDATA structure represents the number of
items in the CUSTDATAITEM array (LPCUSTDATAITEM). The CUSTDATAITEM
structure contains (as you may guess) a GUID and VARIANT field:

typedef struct tagCUSTDATAITEM

{

GUID guid; // Name of custom attribute.

VARIANTARG varValue; // Value of custom attribute.
}CUSTDATAITEM;

Now that you understand the various types used to read [custom] IDL attrib-
utes, you can take a look at the code behind the CustomIDLDataReader console
application. Here is the code used to read the [custom] attribute found in the
library statement:

// .various #include statements..
int main(int argc, char* argv([])
{
USES_CONVERSION;
CoInitialize(NULL);
ITypelib2* pTLib2 = NULL;
ITypeInfo2* pTInfo2 = NULL;

// Load the type library and get ITypelib2 interface.
LoadTypeLibEx(L"customIDLServer.tlb",
REGKIND NONE, (ITypelib**)&pTLib2);
// Read out the custom data from the library.
CUSTDATA theCustomData;
pTLib2->CetAllCustData(&theCustomData);
for(ULONG i = 0; i < theCustomData.cCustData; i++)
{
VARIANT customValue;
VariantInit(&customValue);
VariantCopy(&customvalue, &theCustomData.prgCustData[i].varValue);
if(customValue.vt == VT _BSTR)
{

COM Type Information

// Display custom data.

CComBSTR customGUID(theCustomData.prgCustData[i].guid);

cout << "Custom data name is: " << W2A(customGUID) << endl;

cout << "Custom data value is: " << W2A(customValue.bstrVal) << endl;
VariantClear(&customValue);

Begin by obtaining an ITypeLib2 interface via LoadTypeLibEx(). Notice how
you are able to obtain the number of [custom] attributes found on the library
statement using the cCustData field of the CUSTDATA structure. As you look
over each bit of metadata, you obtain the embedded GUID and VARIANT of the
CUSTDATAITEM and (if the VARIANT is a BSTR) dump out the values to the
console. You also make use of various ATL helper types (CComBSTR and various
conversion macros) to ease the pain of BSTR manipulation.

Reading custom attributes for each type is more or less the same operation.
Using the current ITypeLib2 interface, obtain each ITypelnfo2 interface (that is,
get each COM type in the library) and act accordingly:

// For each COM type in the library...
for (UINT j = 0; j < pTLib2->GetTypeInfoCount(); j++)
{
pTLib2->CetTypeInfo(j, (ITypeInfo**)8pTInfo2);
pTInfo2->GetAllCustData(&theCustomData);
// .get the custom data..
for(ULONG k = 0; k < theCustomData.cCustData; k++)
{
VARIANT customValue;
VariantInit(&customvalue);
VariantCopy(8customvalue, &theCustomData.prgCustData[k].varValue);
if(customValue.vt == VT_BSTR)
{
// ..and display it.
CComBSTR customGUID(theCustomData.prgCustData[k].guid);
cout << "Custom data name is: " << W2A(customGUID) << endl;
cout << "Custom data value is: " << W2A(customValue.bstrVal) << endl;
VariantClear(&customValue);
}

}
pTInfo2->Release(); // Release current type.

cout << endl;

}

So! This concludes our examination of the core pieces of the COM architecture.
217

Chapter 4

218

At this point you may be wondering why is it important to understand how to
read and write COM type information. Now, think this one through just a bit. If a
piece of software is able to read a description of all the COM types contained
within a given server, it would be quite possible to build a translator, would it not?
For example, you could say “Every time I find a COM BSTR, translate that type into
a .NET System.String data type.” You could also do more exotic things such as
saying “Every time I find a coclass supporting a hierarchy of versioned interfaces
(for example, ICar2 deriving from ICar), build a .NET class that is a union of all
methods.”

These exact rules (as well as many others) are the foundation of .NET to COM
interoperability. As you'll see in later chapters, whenever a .NET type wishes to
make use of a COM type, a translator termed the RCW (Runtime Callable Wrapper)
reads COM type information and builds corresponding .NET equivalents. All that
is required is a set of rules that make that translation possible (for example,
BSTR/System.String). As mentioned, the bulk of this book is concerned with
explaining these rules.

1 leeeee CODE The CustomIDLServer and CustomIDLDataReader projects are
\ YA included under the Chapter 4 subdirectory.

=
=

i

Introducing the System.Runtime.InteropServices
Namespace

To close the chapter, let’s take a first look at the key .NET namespace that makes
COM/.NET interoperability possible: System.Runtime.InteropServices. Using the
types within this namespace, you are able to dynamically create, load, manipulate,
and generate COM type information. Of course, this namespace also defines a
number of .NET types that allows you to marshal information between the COM
and .NET architectures, define how a .NET type should appear to COM, and
various other interoperability-related tasks. You will see the full glory of this
namespace throughout this text, but for the time being, Table 4-18 lists the .NET
items specifically used to interact with COM type information.

COM Type Information

Table 4-18. A Tiny Sampling of the System.Runtime.InteropServices Namespace

InteropServices
COM Type Library-
Centric Member

UCOMITypeComp
UCOMITypelnfo
UCOMITypeLib

ELEMDESC

FUNCDESC

PARAMDESC

TYPEATTR

TYPEDESC

TYPELIBATTR

VARDESC

CALLCONV

DESCKIND
FUNCFLAGS
FUNCKIND

IMPLTYPEFLAGS

LIBFLAGS

PARAMFLAG

SYSKIND
TYPEFLAGS
TYPEKIND

VARFLAGS

Meaning in Life

Managed definition of the ITypeComp interface
Managed definition of the ITypelnfo interface
Managed definition of the ITypeLib interface

Contains the type description and process transfer information
for a variable, function, or function parameter

Defines a function description

Contains information about how to transfer a structure element,
parameter, or function return value between processes

Contains attributes of a UCOMITypelnfo

Describes the type of a variable, return type of a function, or the
type of a function parameter

Identifies a particular type library and provides localization
support for member names

Describes a variable, constant, or data member

Identifies the calling convention used by a method described in
a METHODDATA structure

Identifies the type description being bound to
Identifies the constants that define the properties of a function
Defines how to access a function

Defines the attributes of an implemented or inherited interface
of a type

Defines flags that apply to type libraries

Describes how to transfer a structure element, parameter, or
function return value between processes

Identifies the target operating system platform
Defines the properties and attributes of a type description
Specifies various types of data and functions

Identifies the constants that define the properties of a variable

219

Chapter 4

220

The first item of note is the fact that many interfaces defined within the
System.Runtime.InteropServices namespace have a UCOM prefix, which stands
for “unmanaged COM.” As you can see, you have managed equivalents for
ITypelnfo, ITypeLib, and ITypeComp (which I have not addressed in this chapter).
Next, notice that you have managed equivalents for a number of different COM
structures (FUNCDESC, TYPEDESC, and so forth). Last but not least, you can see
that numerous COM enumerations that are used during type library development
also have a managed equivalent (VARFLAGS, SYSKIND, and so on).

It is important to note that System.Runtime.InteropServices does not define a
managed equivalent for each and every possible COM interface or each and every
COM type. Quite the contrary. The major purpose of this .NET namespace is to
provide types that hide the raw COM infrastructure from view. Nevertheless,
numerous managed COM types are present. If a required COM type is not repre-
sented in this namespace, you are free to build your managed equivalent (as you
will soon see).

Building a C# COM Type Information Viewer

To take the System.Runtime.InteropServices namespace out for a spin, the
remainder of this chapter illustrates how to build a C# .NET application that is
able to load and display COM type library information. This Windows Forms—
based application has a simple menu system that defines a File | Open and File |
Exit option.

Your Form-derived type defines a number of ListBox member variables that
will hold the coclasses, interfaces (IDispatch and [lUnknown based), and COM
enums found in the *.dll, *.exe, or *.tlb file. Finally, you have a simple Label object
that will display some basic information about the type library itself. Figure 4-11
shows a test run after loading the MyTypeLib.tlb file that was generated by the
CppComTypeWriter application you created earlier in this chapter.

COM Type Information

= c# coM Type Library Reader
File

Number of COM LIBID: 3753c621-cf13-4d7c-a1 d0-d3366954 7959
Lo Wergian [Major] 1
Types in file: 2 Yersion [Minor): 0

Here are the COM classes

tame; Hello CLSID; 13abaadbh-7f0a-4809-95 c-hocd s io/eld)

Here are the COM Interfaces

|Name: IHello I1D: {d3003ab8-ffdc-4f09-Bb05-4acdfI0ade39}

Here are the COM Enums

Figure 4-11. A C# application reading a COM type library

Loading the COM Type Library

If you checked out the COM type library-centric .NET types defined in
System.Runtime.InteropServices, you may have noticed that this namespace does
not define managed equivalents of COM library functions. Thus, you will not find
a .NET version of LoadTypeLib(), CoCreatelnstance(), CoGetClassObject(), or
what have you. When you need to make a call to the Win32 API (COM library or
otherwise) you need to make use of PInvoke. Recall that the core .NET type that
constitutes the services of PInvoke is the DllImport attribute (see Chapter 1).
Given this, ponder the following update to our initial Form type:

221

Chapter 4

namespace ManagedComTypeReader

{
// This enum is a .NET version of the COM REGKIND

// enum used in conjunction with the LoadTypeLibEx()
// API COM library function.
internal enum REGKIND

{
REGKIND_DEFAULT = 0,
REGKIND_REGISTER = 1,
REGKIND_NONE = 2

}

public class mainForm: System.Windows.Forms.Form

{
// Need to leverage the LoadTypelLibEx() API to do our dirty work.

// Param 3: UCOMITypelLib is the .NET version of ITypelib.
[D1lImport("oleaut32.d1l", CharSet = CharSet.Unicode, PreserveSig = false)]
private static extern void LoadTypelibEx(string strTypelLibName,

REGKIND regKind, out UCOMITypelib Typelib);
// The Type Library.
UCOMITypelib theTypelib;

Here you can see that you have declared an external function
(LoadTypeLibEx()) which is mapped to the COM library function of the same
name using DllImport. Thus, any time our Form wishes to load a type library, it is
able to make a call to LoadTypeLibEx() and trigger the raw COM API. Also notice
that you have rolled your managed version of the REGKIND enumeration. The
reason is simple. Given that there is not a managed REGKIND equivalent, you
need to establish the same entity for use by the LoadTypeLibEx() COM library call.
The process of manually defining COM types using managed code is formally
examined in Chapter 12 during your examination of advanced .NET to COM
interop topics. Finally, notice that your Form defines a private member variable of
type UCOMITypeLib to represent the loaded COM type information (recall that
this is the managed version of ITypeLib).

Loading the COM Type Library

To allow the user to pick a file to open, you make use of the Windows Forms
OpenFileDialog type. After prepping the object to our desired look and feel, you
extract the file name (if you click on the OK button) and call the DLLImported
LoadTypeLibEx() method. Also note that you pass in the name of the file to a
helper function (LoadTypeLibrary()) to save the handle to the loaded COM library
in your UCOMITypeLib member variable and print out various traits about the

222

COM Type Information

type library. Finally, you pass the UCOMITypeLib variable into a private helper
function named FillListBoxes(), which I define in just a moment. Here is the code
behind the File | Open menu Click handler:

private void mnuOpen Click(object sender, System.EventArgs e)
{
string typelibFile = "";
// Configure look and feel of open dlg.
OpenFileDialog myOpenFileDialog = new OpenFileDialog();
myOpenFileDialog.InitialDirectory = ".";
myOpenFileDialog.Filter = "Type library files (*.tlb)|*.tlb|In-proc COM server"
+ "(*.d11)|*.d11|Local COM server (*.exe)|*.exe|All files (*.*)[*.*" ;
myOpenFileDialog.FilterIndex = 1 ;
myOpenFileDialog.RestoreDirectory = true ;
// Do we have a file?
// If so, open the type library.
if(myOpenFileDialog.ShowDialog() == DialogResult.OK)
{
typelLibFile = myOpenFileDialog.FileName;
LoadTypeLibrary(typelLibFile);
// Fill ListBoxes.
FilllListBoxes(theTypelib);

The LoadTypeLibrary() helper function needs to do a bit of grunt work to
handle the translation of COM structures into .NET equivalents. Recall that the
ITypeLib COM interface defines a method named GetLibAttr(), which returns a
TYPELIBATTR structure. The managed UCOMITypeLib interface also defines
the GetLibAttr() method, however (alas), this method does not simply return
amanaged TYPELIBATTR type. Rather, UCOMITypeLib.GetLibAttr() takes a
System.IntPtr type as an out parameter. The task, then, is to map a System.IntPtr
type into a new managed TYPELIBATTR equivalent.

This involves the use of the System.Runtime.InteropServices.Marshal type.
To keep focused on the reading of COM type information, I'll hold off on the
details of the Marshal class, System.IntPtr types, and mapping pointers to struc-
tures until later in this book. Again, just ponder the following implementation of
the LoadTypeLibrary() helper function:

private void LoadTypelibrary(string typelibFile)
{

223

Chapter 4

224

// Load type library via D1lImported COM f(x).
LoadTypeLibEx(typeLibFile, REGKIND.REGKIND DEFAULT, out theTypelib);
string typlLibStats;
// Translate unmanaged TYPELIBATTR structure
// into a managed TYPELIBATTR type.
TYPELIBATTR 1libAtts = new TYPELIBATTR();
Type TYPELIBATTRType = libAtts.GetType();
int structSize = Marshal.SizeOf(TYPELIBATTRType);
IntPtr ptr = IntPtr.Zero;
ptr = Marshal.AllocHGlobal(structSize);
theTypelib.GetLibAttr(out ptr);
libAtts = (TYPELIBATTR) Marshal.PtrToStructure(ptr, TYPELIBATTRType);
// Print out stats and release memory.
typLibStats = "LIBID: " + libAtts.guid.ToString()
+ "\nVersion (Major): " + libAtts.wMajorVerNum.ToString()
+ "\nVersion (Minor): " + libAtts.wMinorVerNum.ToString();
1blTypelibStats.Text = typlLibStats;
theTypelib.ReleaseTLibAttr(ptr);
}

In a nutshell, this helper function creates a managed TYPELIBATTR structure
and extracts its .NET type information (represented by System.Type). Using the
static Marshal.SizeOf() method, you calculate the size of this structure, allocate the
memory, and obtain a pointer to the memory (stored in a System.IntPtr type).
Finally, you translate this pointer into the managed TYPELIBATTR structure. From
here, you are able to read out various bits of information (version and LIBID).

Displaying the COM Types

The FillListBoxes() helper function will dump minimal but complete statistics
about each COM type in the type library. I assume that you will extend the code to
dump method names, parameters, or whatever suits your fancy. As you look over
the following code, notice that it is basically the same look and feel as the
CppComTypeReader program you created in C++ (in fact, I simply copied and
pasted the C++ source code and performed the required cleanup). Also note that
you are making use of numerous managed types defined within the
System.Runtime.InteropServices namespace:

private void FilllistBoxes(UCOMITypelib itfTypelib)
{

COM Type Information

// Clear out current contents.

1stBoxCoclasses.Items.Clear();

1stBoxInterfaces.Items.Clear();

1stBoxEnums.Items.Clear();

// Get # of COM types in the library.

int typeCount = itfTypelib.GetTypeInfoCount();

1b1NumbOfTypes.Text = "Number of COM Types in file: "
+ typeCount.ToString();

// Switch between COM type.
for(int typeIndex = 0; typelIndex < typeCount; typeIndex++)
{
string typeInfoString;
UCOMITypeInfo pInfo;
// Get TYPEATTR structure set up.
TYPEATTR typeAtt = new TYPEATTR();
Type TYPEATTRType = typeAtt.GetType();
int structSize = Marshal.SizeOf(TYPEATTRType);
IntPtr ptr = IntPtr.Zero;
ptr = Marshal.AllocHGlobal(structSize);

// Get next type info.
itfTypelib.CetTypeInfo(typeIndex, out pInfo);
pInfo.GetTypeAttr(out ptr);
typeAtt = (TYPEATTR) Marshal.PtrToStructure(ptr, TYPEATTRType);
// Based on the kind of COM type, print out some information.
string typeName, helpFile, docString;
int helpID;
switch(typeAtt.typekind)
{
case TYPEKIND.TKIND COCLASS: // type is a coclass.
pInfo.GetDocumentation(-1, out typeName, out docString,
out helpID, out helpFile);
typeInfoString = "Name: " + typeName + "\tCLSID: {"
+ typeAtt.guid.ToString() + "}";
1stBoxCoclasses.Items.Add(typeInfoString);
break;
case TYPEKIND.TKIND INTERFACE: // type is an interface.
case TYPEKIND.TKIND DISPATCH:
pInfo.GetDocumentation(-1, out typeName, out docString,
out helpID, out helpFile);
typeInfoString = "Name: " + typeName + "\tIID: {"
+ typeAtt.guid.ToString() + "}";

225

Chapter 4

226

IstBoxInterfaces.Items.Add(typeInfoString);
break;
case TYPEKIND.TKIND ENUM: // type is an enum.
pInfo.GetDocumentation(-1, out typeName, out docString,
out helpID, out helpFile);
typeInfoString = "Name: " + typeName;
1stBoxEnums.Items.Add(typeInfoString);
break;

}
Marshal.DestroyStructure(ptr, typeAtt.GetType());

}
}

As you can see, you again need to deal with translating structures to
System.IntPtr types. The bulk of this method looks much like the previous C++
COM type reader application. Using the managed TYPEKIND type, you iterate
over the number of types in the loaded type library and check for coclasses,
interfaces (both IUnknown based and IDispatch based), and COM enums. The
only major change is the need to make use of the C# out keyword when you
wish to pass a parameter defined as an IDL [out] attribute. As another example,
Figure 4-12 shows the dump of the ATL server created in Chapter 3.

Not too shabby, huh? By virtue of the System.Runtime.InteropServices
namespace (and a bit of elbow grease) it is completely possible to create NET
applications that can read unmanaged COM type information. Although this key
namespace does not support managed equivalents for COM type library creation
entities (ICreateTypeLibrary and friends), you could build managed equivalents
and make your own C# COM type library generator. You will look at building your
own managed ICreateTypeLibrary interface later in this text when you examine
the .NET to COM conversion process. However, as for the task of building a
managed COM type library generator, I'll leave that to you.

COM Type Information

™ c# com Type Library Reader
File

Number of COM LIBID: 2ee867el-c237-48fc-bbcy-d2804fb52c68
Yergion (Major): 1

T}’pes in file: 4 Yersion [Minar: 0

Here are the COM classes

CLSID; $3cdfeby a423e-47 ar-acil-224dddad da3t

Mame; Comar

Here are the COM Interfaces

IID: {bB3EIE94-B09c-4F1 2-a423-bbe031b1bb2a}

Marme: [ComCar
ID: {e386898c-5c0a-4318-afch-54169524 3454}

Marne: [Turbo

Here are the COM Enums

Wame: RADIOTYPE

Figure 4-12. Reading your ATL COM server

CODE The ManagedComTypeReader application is included under the

- leveee
K Chapter 4 subdirectory.

7

=
=

C

227

Chapter 4

228

Summary

This chapter has covered quite a bit of ground. The initial goal was to solidify the
format of an *.idl file as well as the core set of COM types and intrinsic IDL data
types (most important, the [oleautomation]-compatible data types). During the
process you were exposed to a number of IDL keywords (appobject, custom,
hidden) that come in handy. As a bonus, this chapter also illustrated how to anno-
tate your type information with custom IDL attributes.

A majority of this chapter, however, was devoted to understanding how to
programmatically read and write COM type information using the COM library.
To be sure, the more you understand the COM type system, the more obvious
COM <« .NET interoperability issues become. As you have seen, ITypeLib(2) and
ITypelnfo(2) allow you to examine the contents of a *.tlb file at runtime. Given
your work here, you should now be able to envision the code behind any number
of COM object browser tools and have some insight as to how COM types can be
mapped into managed equivalents.

This chapter wrapped up by taking a tour of some (but by no means all) of the
members of the System.Runtime.InteropServices namespace. As you have seen,
this namespace does define a number of managed equivalents for COM-type-
library-centric data structures. Using these types, you built a .NET application that
was able to read COM type libraries (which besides being quite a head trip is also
very illuminating).

Now that you have pondered the intricacies of COM type metadata, the next
two chapters pound out the details of .NET types. Then you will have all the infor-
mation you need to dive into COM and .NET interoperability.

The Anatomy
of a .NET Server

Now that you have learned the core aspects of COM, it stands to reason that you
should tackle the core building blocks of the .NET platform. Over the course of
this chapter, you are given a grand tour of the composition of .NET code libraries
as well as the opportunity to solidify your understanding of intermediate language
(IL), type metadata, and assembly manifests. During the process, you build a
private C# assembly (and a shared VB .NET assembly) that will be consumed by
unmanaged COM clients later in this text. This chapter also pounds out the core
details of the .NET runtime, such as the use of application configuration files
(*.config) and the construction of shared assemblies.

I conclude this chapter by examining a very interesting .NET namespace that
you may have not yet been introduced to formally: System.CodeDOM. Using this
well-organized set of .NET types, you are able to represent managed code in
memory using language-independent terms. Once you have defined the coding
atoms, you are then able to save these tokens into language-specific source files
(*.cs or *.vb) as well as compile the files at runtime into .NET assemblies. As you
will see, the ability to represent (and possibly compile) code in memory is one
aspect of COM/.NET interoperability and should be of special interest to the tool
builders of the world.

Before you get started, do understand that the point of this chapter is not to
discuss the syntax or semantics of the C# or VB .NET programming languages.

My assumption is that you already have a handle of one (if not both) of these
languages, and are already comfortable with the famed pillars of OOP (encapsula-
tion, inheritance, and polymorphism) as well as interfaced-based programming. If
you require additional information regarding the specifics of either language, I'll
assume that you will consult your favorite language reference for further details.

229

Chapter 5

230

The Philosophy of .NET

Traditionally, building applications for the Windows OS required an intimate
understanding of the Win32 API, a set of C++ API wrapper classes such as MFC, or
amore elaborate wrapper such as Visual Basic 6.0. The problem with these
approaches is that they each rely on a specific programming language (C, C++, or
VB 6.0, respectively) that makes the sharing of implementation logic extremely
difficult; each language has its own type system, each language has its own set of
supported syntactical constructs, and each language contends with the pillars of
OOP in its own particular manner. To contend with this great lack of symmetry,
developers tend to take one of two paths to make their lives simpler: the path of
COM or the path of Java.

The path offered by classic COM is a standard binary format. As you have seen
during the previous three chapters, each COM-aware language generates files that
are up to snuff with the COM architecture. If COM programmers are disciplined
enough to only expose [oleautomation] compatible types, COM servers (written in
different programming languages) can communicate with each other rather well.
The bottom-line vision of COM states “If you stick to the rules of COM, you can
choose among different programming languages . . . as long as you only expect to
run on the Windows OS.”

The path of Java (and the numerous Java APIs) is to establish a way for a single
code base to be compiled on the fly to different platforms using a just-in-time
compiler. Although the capability to have a single code base run on numerous
operating systems is a great boon, one obvious downfall with the Java solution is
the fact that many solutions do not lend themselves to a single programming
language for every need. The bottom-line vision of Java states “If you only make
use of Java, your code can be run on any OS supporting the Java runtime.”

.NET takes the philosophy of COM and the philosophy of Java and blends
them into a brand-new architecture. For example, like Java, .NET binaries contain
platform-neutral instructions (IL code) that can be compiled on the fly to .NET-
aware operating systems using a just-in-time compiler. Like COM, .NET binaries
written in different programming languages can communicate with each other in
harmony. In effect, the bottom-line vision of .NET is “Build a code base using your
choice of programming language (or combination thereof) and you can run on
any operating system targeting .NET.”

The ultimate endgame of .NET is to make the concept of programming
language and operating system a matter of personal choice. At the time of this
writing, literally dozens of languages are being retrofitted to take advantage of the
.NET architecture (APL, COBOL, PL1, and so forth). As well, the .NET platform is
already being ported to non-Microsoft-specific operating systems. When you
combine the language- and platform-agnostic nature of .NET with the frame-

The Anatomy of a .NET Server

work’s liberal use of XML, SOAP, and other industry standards, developers can
build extremely neutral and accessible software.

The Building Blocks of .NET

The fabric of the .NET philosophy can be summed up by three new acronyms:
CLR, CTS, and CLS. First, let’s check out the Common Type System (CTS). The CTS
defines in gory detail the full set of valid programming constructs supported by
the .NET architecture. For example, the CTS establishes the intrinsic data set
supported by a .NET-aware programming language and defines all the possible
ways in which classes, enumerations, structures, interfaces, and delegates may be
represented. Obviously, if your job is to build a new .NET programming language
(and the related compiler), the rules of the CTS are extremely important to under-
stand.

However, the full set of programming idioms defined by the CTS may or may
not be supported by every .NET programming language. For example, C# and
Managed C++ both support the definition and use of overloaded operators (unlike
VB .NET). As well, some languages (such as C#) support the use of unsigned types
(for example, unsigned long), whereas others (VB .NET) do not. To offer program-
mers a well-defined set of agreed-on programming atoms, we are provided with
the Common Language Specification (CLS). The CLS can be viewed as the
modern day equivalent of the IDL [oleautomation] attribute. Recall that
the [oleautomation] attribute defines a subset of known COM data types.

The CLS builds upon this concept by not only defining a subset of possible data
types, but programming constructs as well. In a nutshell, the CLS is a specific
subset of the CTS, which is guaranteed to be supported by each and every .NET
language mapping.

The rule of thumb is quite simple: If you wish to build a .NET code library that
can be consumed by any .NET-aware programming language, be sure to expose
only CLS-compliant types from your custom .NET assemblies. By default, VB .NET
will always emit CLS-compliant assemblies. However, if you make use of a
managed language (such as C#) that does allow you to use non-CLS-compliant
idioms, you can apply the following assembly-level attribute to force the C#
compiler to check your code for CLS compliance (you can examine the topic of
attributes in full detail in Chapter 6):

// Ci# applications can force CLS compliance as so.
[assembly: System.CLSCompliant(true)]

The final building block of .NET is the common language runtime (CLR).

The CLR can be viewed as two complementary pieces: a new runtime engine
(mscoree.dll) and a plethora of existing code that can be leveraged (and extended)

231

Chapter 5

232

in your own custom solutions. The runtime engine is responsible for launching
your application, locating the types within the binary using the contained meta-
data, managing allocated memory on your behalf, and performing numerous
security checks.

The prefabricated code base (often called the .NET base class libraries) has
been semantically divided into numerous “assemblies” (defined shortly) that can
be referenced by your current application. As you are most likely aware, the base
class libraries define types that can be used for file 10, object serialization, GUI-
based development, XML manipulation, and the construction of Web applica-
tions/Web services (among many other common programming tasks).

Working with Managed Languages

When a programming language has a .NET-aware compiler, the source code itself
is referred to as managed code. Code that does not target .NET (including classic
COM languages) is thus termed unmanaged code. Visual Studio .NET ships with
four managed languages out of the box. First you have C#, which is a brand-new
programming language specifically geared for the construction of managed code.
Like other members of the C++ family, C# is full of curly brackets, semicolons, and
a streamlined (or, depending on your view, terse) set of language tokens. If you
already have a background in other C++-based languages (Java, C[++], or
Objective C), you will find the syntax of C# very natural.

Visual Basic .NET (VB .NET) is another key managed language, which is (of
course) a member of the BASIC family of languages. VB .NET is not a simple
upgrade from Visual Basic 6.0, however. Rather, VB .NET is best viewed as a brand-
new language that just happens to look a little like VB 6.0. If that seems a bit
alarmist in nature, understand that for the first time in BASIC’s history, VB .NET
offers developers full OOP support (inheritance, polymorphism, and encapsula-
tion), parameterized constructors, method overloading, and so forth. Although VB
.NET is a far cry from VB 6.0, VB .NET is likely to be the preferred choice for those
with a VB 6.0 background.

Finally, VS .NET also provides JScript .NET (a compiled OO language) as well
as a new set of keywords to the C++ programming language that enables program-
mers to build C++ applications that target the .NET platform. Formally speaking,
this dialect of C++ is termed C++ with managed extensions, also known as
Managed C++, and referred to by myself as the acronym MC++. To be honest, I
really can’t comment on the usefulness of JScript .NET. In fact, [will not make any
real mention of this language outside of this paragraph.

As for MC++, the language can best be viewed as a great tool for migrating
existing C++ code into the .NET platform. Even if you are a proficient C++
programmer, you will most likely find yourself more drawn to C# than MC++,

The Anatomy of a .NET Server

given that (a) MC++ requires more typing and (b) numerous aspects of the C++
language are not supported under .NET (such as templates and multiple
inheritance).

During the course of this book, I make use of C# for a majority of my managed
code examples. This is really for no other reason than the fact that C# code is more
compact on the printed page than the corresponding VB .NET code. In the spirit of
fairness, however, this text will make use of VB .NET (as well as VB 6.0) where
appropriate.

The Composition of a .NET Binary

Regardless of which managed language you choose, all .NET-aware compilers emit
binaries that share the same internal composition. Although .NET binaries share
the same file extension as a classic COM server (*.dll and *.exe), they are
completely different under the hood. First and foremost, .NET binaries do not
contain platform-specific instructions, but rather platform-agnostic IL code that is
compiled to platform-specific instructions using a just-in-time compiler. In addi-
tion to the IL instruction set, .NET binaries contain full and complete metadata
that describes each and every .NET type referenced within the binary. Finally, a
.NET compiler emits binaries containing a manifest that describes the binary shell
itself.

In addition to a unique internal fabric, .NET binaries have been given a new
name, assembly. Assemblies are the unit of deployment and unit of versioning
under the .NET platform. Specifically speaking, an assembly can be a single-file
assembly or multifile assembly. Single-file assemblies (which are far and away the
most common) are a single *.dll or *.exe file that contains all .NET types in a single
unit. Multifile assemblies, on the other hand, are a collection of related files. When
developers build multifile assemblies (using the command line compilers
supplied with the .NET SDK), the end result is a collection of files that are
versioned as a single unit. More interesting, the individual modules of a multifile
assembly (which by convention take the file extension *.netmodule) are loaded on
demand by the .NET runtime. This can be especially useful if a remote client
needs to download an assembly to the local machine, given that the runtime will
only need to download a subset of the entire file set (which can save time).

.NET assemblies differ from classic COM servers in other ways as well.
Perhaps the most marked difference is that .NET assemblies are not registered in
the system registry. To whet your appetite, Table 5-1 enumerates some key differ-
ences between COM binaries and .NET binaries (I drill into more specifies where
necessary).

233

Chapter 5

Table 5-1. COM Binaries and .NET Binaries Side by Side

Trait of the Binary Unit COM Approach
What is the code contained Platform-specific
within the binary? OS instructions

How are types described? Using Interface
Definition Language
(IDL) code, which is
compiled into a

binary type library
How is the binary Using the IDL [library]
itself described? attribute and numerous

locations in the system

registry, specifically:
HKEY_CLASSES_ROOT\<ProgID>
HKEY_CLASSES_ROOQOT\CLSID
HKEY_CLASSES_ROOT\AppID
HKEY_CLASSES_ROOT\Interface

HKEY_CLASSES_ROOT\Component

Category
How are external N/A (COM IDL has no way to
dependencies document externally required
documented? binaries.)
How can I generate Using the [custom] IDL attribute
custom metadata?
How is the binary By consulting the system registry
located by the runtime?

.NET Approach
Platform-agnostic
IL code

Using .NET metadata

Using assembly
metadata (aka the
manifest)

Using assembly
metadata (aka
the manifest)

By creating a new
type derived from
System.Attribute

By looking in

the application
directory, the GAC,
or elsewhere using
an application
configuration file

As you can see, a central theme in .NET is to place the required metadata and
IL code base into the same location (the assembly). Given that a single assembly
contains all the information it needs to be used by the runtime and by an inter-
ested client, assemblies are typically regarded as “self-describing” entities.

234

The Anatomy of a .NET Server

Building a C# Code Library

Now that I have wrapped up my brief but necessary .NET architecture preamble,
I can turn your attention to the construction of your first C# .NET code library.
Understand that you will reuse this assembly during the course of the text to be
reachable by various COM clients. If you wish to follow along, open up VS .NET
and build a new Class Library solution named CSharpCarLibrary (Figure 5-1).

New Project |g|

Project Types: Templates:

{23 visual C++ Projects

Windows
Control Library

Windows
Application

Class Library

% Setup and Deployment Projects
=-E3 Other Projects

----- (£ visual Studio Solutions

-. -=-.
ASP.MET Web ASP.MET Web Web Control
Application Service Library

[

A project for creating classes to use in other applications

Name: I CSharpCarLibrary

Location: I C:\Apress Books\InteropBook\Labs\Chapter 5

LI Browse... |

Project will be created at C:\Apress Books\InteropBook'\Labs\Chapter S\CSharpCarLibrary.

¥ More | oK I

Cancel | Help |

Figure 5-1. The C# Class Library
Given that your application will make use of the MessageBox class defined

within the System.Windows.Forms.dll assembly, be sure to add a project reference
(Figure 5-2).

235

Chapter 5

236

Add Reference |£|
MET ICOM | Projects |
Browse, .. |
Component Mame | Wersion | Path |1I
Syskem, Funtime, Remoting 1.0.3300.0 CAWIMMT Microsoft METYFra.. Select |
System,Runtime, Serialization.... 1.0.3300.0 CAWIMNT Micrasoft METVFra..
Syskem, Security 1.0.3300.0 CWINNTMicrosoft ., MET\Fra. ..
Syskem, ServiceProcess. dll 1.0.3300.0 CAWIMMT Microsoft METVFra..
Syskem, Wb, dll 1.0.3300.0 CAWIMMT Microsoft METYFra..
System.Wweh ReqularExpressi,., 1.0.3300.0 CAWIMNT Micrasoft METVFra..
System.Web, Services. dll 1.0.3300.0 CWINNTMicrosoft . MET\Fra...
Syskem, Windows, Forms, dil 1.0.3300.0 CAWIMMT Microsoft METVFra..
Syskem, xml.dl 1.0.3300.0 CAWIMMT Microsoft METYFra..
W3LangProj 7.0.3300.0 C\Program Files\Microsaft wi.., | =
WsMacroHierarchyLib 7.0.3300.0 C:\Progran Files\Micrasaft vi.., ‘:I
Selected Components:
Campaonent Marme Type Source ﬂl
] ndows.Faorms.dll C W INMTIM FE NET\Fram. ..
oK Zancel Help

Figure 5-2. Referencing the necessary external assembly

The class library that you will be constructing contains a small number of
.NET types that reside in the CSharpCarLibrary namespace. Here is a quick
rundown of each item:

e An abstract base class named Car

¢ Three derived types named HotRod, MiniVan, and Roadster

¢ An enumeration (CarColor) used to specify the color of the automobile

¢ The IConvertible interface, which will be implemented by a subset of the
automobiles

Figure 5-3 shows a logical view of the assembly you are constructing.

Namespace: CSharpCarlLibrary
Assembly: CSharpCarlLibrary.dll

Interface Types:

IConvertible

Car

MiniVan

Enum Types:

CarColor

HotRod
Roadster

Class Types:

Figure 5-3. The logical view of your C# car assembly

The Anatomy of a .NET Server

Physically speaking, CSharpCarLibrary.dll will be constructed as a single-file
assembly (as opposed to a number of discrete *.netmodule files). In terms of the
class library itself, Figure 5-4 shows the relationships of the core types (using the

familiar COM lollipop notation to represent supported interfaces).

MiniVan

IConvertible

HotRod

Figure 5-4. The automobile hierarchy

237

Chapter 5

238

Building the Abstract Car Type

Your endeavor begins by defining an abstract base class named Car (which directly
derives from System.Object). This type defines three private data members to
represent the pet name, color, and current speed of a specific automobile. As you
would imagine, these private data points are accessible using three public proper-
ties and initializable using a set of class constructors. Here is the story thus far:

// The enumeration.
public enum CarColor
{
Red, Green, Blue,
Pink, Yellow, Black

// The interface.
public interface IConvertible
{void OpenSunRoof(bool openIt);}

// The base class.
public abstract class Car
{
// State data.
protected string mPetName;
protected CarColor mCarColor;
protected int mCurrSpeed;
firegion Class Constructors
public Car(){}
public Car(string name, CarColor color)
: this(name, color, 0){}
public Car(string name, CarColor color, int sp)
{
mPetName = name;
mCarColor = color;
mCurrSpeed = sp;
}
#endregion
firegion Properties
public string PetName
{
get{ return mPetName;}
set{ mPetName = value;}

}

The Anatomy of a .NET Server

public CarColor Color
{

get{ return mCarColor;}

set{ mCarColor = value;}
}
public int Speed // Read only!
{get{ return mCurrSpeed;}}
#endregion

Like all well-behaved base classes, the Car type defines a polymorphic inter-
face for each derived type. First, you have an abstract method named SpeedUp(),
which allows each type to adjust its internal speed in a specific manner. The
virtual DisplayBumperStickerText() method provides a default text string, which
may be overridden by child types:

public abstract class Car
{
// Polymorphic interface.
public abstract void SpeedUp();
public virtual void DisplayBumperStickerText()
{
MessageBox.Show("If you can read this you're too close.”,
"C# Car Library");

Finally, the Car base class overrides System.Object.ToString() to dump out its
state data to interested invokers (using the StringBuilder type, which is defined
within the System.Text namespace):

// Change ToString() for Cars.
public override string ToString()
{
StringBuilder sb = new StringBuilder();
sb.AppendFormat (" [C#] PetName: {0} Color: {1} CurrentSpeed: {2}",
mPetName, mCarColor, mCurrSpeed);
return sb.ToString();

}

239

Chapter 5

240

Building the Derived MiniVan Type

The MiniVan class, which extends Car, does not define any additional state data;
however, it contends with the polymorphic interface as follows:

public class MiniVan : Car
{
firegion Constructors
public Minivan(){}
public MiniVan(string name, CarColor color)
: base(name, color){}
public MiniVan(string name, CarColor color, int sp)
: base(name, color, sp){}
#iendregion
// Implement abstract SpeedUp(), but leverage the
// default implementation of DisplayBumperStickerText().
public override void SpeedUp()
{ mCurrSpeed += 10; }

}

Implementing the Convertibles

The HotRod and Roadster types each implement the IConvertible interface,
speed up appropriately, and sport a custom bumper sticker. Notice that you are
making use of explicit interface implementation to force the caller to obtain the
IConvertible before letting the sunshine in. First, the HotRod:

public class HotRod : Car, IConvertible

{
// IConvertible impl.
void IConvertible.OpenSunRoof(bool openIt)

{
if(openIt)
MessageBox.Show("Sun roof is open!", "C# Car Library");
else
MessageBox.Show("Closing sun roof...", "C# Car Library");
}

firegion Overrides
public override void SpeedUp()
{mCurrSpeed += 20;}

The Anatomy of a .NET Server

public override void DisplayBumperStickerText()

{
MessageBox.Show("Taking names and kickin' butt...",
"C# Car Library");
}
#endregion

#region Constructors

public HotRod() {}

public HotRod(string name, CarColor color)
: base(name, color){}

public HotRod(string name, CarColor color, int sp)
: base(name, color, sp){}

#endregion

The Roadster type does define a new property (TrunkSpace) that allows the
world to manipulate a private data member representing just how much luggage
you can fit into the cramped confines of your super car (the overridden ToString()
has also been updated to account for this new member):

public class Roadster : HotRod, IConvertible
{

#region Constructors

public Roadster(){}

public Roadster(string name, CarColor color)
: base(name, color){}

public Roadster(string name, CarColor color, int sp)
: base(name, color, sp){}

public Roadster(string name, CarColor color, int sp, short trunkSpace)
: base(name, color, sp)
{ mTrunkSpace = trunkSpace;}

#iendregion

firegion Overrides

public override void SpeedUp()

{mCurrSpeed += 20;}

public override void DisplayBumperStickerText()

{
MessageBox.Show("Faster is better...", "C# Car Library");

}

public override string ToString()

{
StringBuilder sb = new StringBuilder();
sb.Append(base.ToString());

241

Chapter 5

sb.AppendFormat (" Trunk space: {0}", mTrunkSpace);
return sb.ToString();

}

#iendregion

// IConvertible impl.

void IConvertible.OpenSunRoof(bool openIt)

{
if(openIt)
MessageBox.Show("Sun roof is open!", "C# Car Library");
else
MessageBox.Show("Looking through small plastic window...",
"C# Car Library");
}

// Custom state data.
private short mTrunkSpace;
public short TrunkSpace
{
get{return mTrunkSpace;}
set{mTrunkSpace = value;}
}
}

Establishing the Assembly Manifest

Before you compile, let’s update your assemblyinfo.cs file to establish the current
version of this .NET binary (1.0.0.0), enforce CLS compliance, and add any other
bits of information you feel the need to express:

[assembly: System.CLSCompliant(true)]

[assembly: AssemblyTitle("The CSharp Car Library")]

[assembly: AssemblyDescription("Another book, more Car types")]
[assembly: AssemblyCompany("Intertech, Inc")]

[assembly: AssemblyVersion("1.0.0.0")]

With this, you are able to compile your single-file assembly. You will build a

managed client in just a moment; however, for now let’s check out your binary
using ILDasm.exe.

242

The Anatomy of a .NET Server

Introducing ILDasm.exe

The ILDasm.exe tool allows you to view the internal types, underlying IL, type
metadata, and assembly manifest for a given managed binary. As you will see
in the next chapter, you are also able to build custom applications that can
bind to a given assembly and reflect on the contained types at runtime using
the System.Reflection namespace. For now, simply open up your new
CSharpCarLibrary.dll using ILDasm.exe (Figure 5-5).

¥ C:\Apress Books\InteropBoo... |:||E||X|

File Wiew Help

SRR " orezs BookshnteropBookhLabs\Chapter 44C5
MAMIFEST

=-- W CSharpCarLibrary

ﬁt Car

w-BF CarCaolor

- [HotRod

-l |Convertible

w-JJE Minivan

mt Roadster

4 | 11T] >

.azzembly CSharpCarlibran |
{ |

Figure 5-5. Viewing the types within your custom assembly

Viewing the Assembly Manifest

As you recall, every .NET binary contains assembly-level metadata, which is
termed the manifest. The manifest is used to describe the version of the binary,
the required external references and other assembly-level attributes. Later in this
chapter, you will find that if (and only if) your assembly has been constructed to
function as a shared assembly, the manifest also documents the public key for this
binary. In its simplest form, the format of an assembly’s manifest begins by listing

243

Chapter 5

244

each external assembly referenced by the current assembly using the
[.assembly extern] directive:

.assembly extern mscorlib

{

.publickeytoken = (B7 7A 5C 56 19 34 EO 89)
.ver 1:0:3300:0

}

.assembly extern System.Windows.Forms

{

.publickeytoken = (B7 7A 5C 56 19 34 EO 89)
.ver 1:0:3300:0

}

Note how the [.assembly extern] tag documents the specific version of the
external assembly referenced at compile time. Furthermore, because each
of the referenced assemblies has been configured as shared assemblies, the
[.publickeytoken] is used to specify the initial bytes of the full public key.

The assembly itself is identified using the [.assembly] tag followed by the
friendly name of the .NET binary (in our case, CSharpCarLibrary). In addition to
specifying the version of this assembly (using the [.ver] tag), the [.assembly] tag
documents each assembly-level attribute specified in the assemblyinfo.cs file.
Here is a partial (and slightly formatted) snapshot:

.assembly CSharpCarlLibrary
{

.custom instance void
[mscorlib]System.Reflection.AssemblyCompanyAttribute::.ctor(string)
= (01 00 OE 49 6E 74 65 72 74 65 63 68 2C 20 49 6E
// ...Intertech, Inc.

.custom instance void [mscorlib]
System.Reflection.AssemblyDescriptionAttribute::.ctor(string)
= (01 00 1C 41 6E 6F 74 68 65 72 20 62 6F 6F 6B 2C
// ...Another book, more Car types.

.custom instance void [mscorlib]
System.Reflection.AssemblyTitleAttribute::.ctor(string)
= (101 00 16 54 68 65 20 43 53 68 61 72 70 20 43 61
// ...The CSharp Car Library.

.custom instance void
[mscorlib]System.CLSCompliantAttribute::.ctor(bool)
= (01 00 01 00 00)
// true.

.hash algorithm 0x00008004

.ver 1:0:0:0

}

The Anatomy of a .NET Server

The last item of note regarding the CSharpCarLibrary.dll assembly is the
[.module] tag, which is located at the end of the [.assembly] tag block and docu-
ments the name of the physical binary. Given that you have created a single-file
assembly, the value assigned to the [.module] tag is simply the following:

.module CSharpCarlLibrary.dll

As you can see, the assembly manifest is a great improvement to the IDL
(library] keyword. Unlike classic COM, .NET manifests are able to document the
necessary external binaries, which are required for this assembly to function
correctly. This of course is a good thing, given that .NET assemblies “understand”
the additional binaries that they have been compiled against (in this case,
mscorlib.dll and System.Windows.Forms.dll).

Viewing the Type Metadata

In COM, IDL is used to describe the internal COM types found within a given
COM server. In the same spirit of self-describing binaries, .NET code libraries
support type metadata. Of course, the .NET type metadata does not have the same
syntax as COM IDL! Rather, type metadata is listed as a more “tabular” format.
Using ILDasm.exe, you are able to view the metadata that describes all types in the
assembly, using the Ctrl-m keyboard option. The end result of applying this
keystroke is seen in Figure 5-6.

¥ Metalnfo
ScopeName : CSharpCarLibrary.dll A
HUID : {62DF7054-3825-48D9-A142-8541E59CM3EE} —

TypeDef i1
TypDefHame : CSharpCarLibrary.CarColor {8288
Flags : [Public] [AutoLayout] [Class] [St
Extends : B1008881 [TypeRef] System.Enum
Field #1
Field Hame: value (94000001)
Flags : [Public] [SpecialName] [I
ol
< i | B

Figure 5-6. Viewing an assembly’s metadata

245

Chapter 5

246

.NET type metadata is very verbose when compared to COM IDL (for good
reason). Using this embedded metadata, the .NET runtime is able to locate and

load a given type for a calling client as well as obtain a complete description

of each item. If were to list the entire set of metadata generated for your
CSharpCarLibrary.dll assembly, it would span several pages. Given that this

would be a woeful waste of your time (and paper), let’s just take a quick look at

some of the key items.

Viewing (Partial) Metadata for
the CarColor Enumeration

First, understand that each type contained within an assembly is documented
using a “TypeDef #n” token. Given that the CarColor enumeration is the first type
encountered by the C# compiler, you will find the following metadata description:

TypeDef #1

TypDefName: CSharpCarLibrary.CarColor (02000002)
Flags : [Public] [AutoLayout] [Class] [Sealed] [AnsiClass] (00000101)
Extends : 01000001 [TypeRef] System.Enum

Field #3

Field Name: Green (04000003)

Flags : [Public] [Static] [Literal] [HasDefault] (00008056)
DefltValue: (I4) 1

CallCnvntn: [FIELD]

Field type: ValueClass CSharpCarlLibrary.CarColor

As you can see, TypDefName is used to establish the name of the given type.

The Extends metadata keyword is used to document the base class of a given .NET

type (in this case, System.Enum). Each field of an enumeration is marked using
the “Field #n” value. For brevity, | have simply listed the metadata for
CarColor.Green (field 3).

The Anatomy of a .NET Server

Viewing (Partial) Metadata for
the IConvertible Interface

The second metadata type definition (IConvertible) marks this entity as an inter-
face and promptly documents the calling conventions of each member (notice
how each member is automatically marked as abstract):

TypeDef #2
TypDefName: CSharpCarLibrary.IConvertible (02000003)
Flags : [Public] [AutoLayout] [Interface] [Abstract] [AnsiClass] (000000a1)
Extends : 01000000 [TypeRef]
Method #1
MethodName: OpenSunRoof (06000001)
Flags : [Public] [Virtual] [HideBySig] [NewSlot] [Abstract] (000005c6)
RVA : 0x00000000
ImplFlags : [IL] [Managed] (00000000)
CallCnvntn: [DEFAULT]
hasThis
ReturnType: Void
1 Arguments
Argument #1: Boolean
1 Parameters
(1) ParamToken : (08000001) Name : openIt flags: [none] (00000000)

Viewing (Partial) Metadata for a Derived Type

Each of the class types is also completely documented using the .NET metadata
format. As you may expect, the complete metadata dump for a given type would
again be pages worth of data. To hit the highlights, here is a partial dump of the
Roadster type that illustrates (a) how a single type property is mapped to two
discrete member functions and (b) how an interface is bound to an implementing
type using the InterfaceImpl keyword:

TypeDef #6

TypDefName: CSharpCarLibrary.Roadster (02000007)
Flags : [Public] [AutoLayout] [Class] [AnsiClass] (00100001)
Extends : 02000005 [TypeDef] CSharpCarLibrary.HotRod

247

Chapter 5

248

Method #9
MethodName: get_TrunkSpace (0600001F)
Flags : [Public] [HideBySig] [ReuseSlot] [SpecialName] (00000886)
hasThis
ReturnType: I2
No arguments.
Method #10
MethodName: set_TrunkSpace (06000020)
Flags : [Public] [HideBySig] [ReuseSlot] [SpecialName] (00000886)
hasThis
ReturnType: Void
1 Arguments
Argument #1: I2
1 Parameters
(1) ParamToken : (0800001e) Name : value flags: [none] (00000000)
Property #1

Prop.Name : TrunkSpace (17000004)

DefltValue:
Setter : (06000020) set TrunkSpace
Getter : (0600001f) get TrunkSpace

InterfaceImpl #1 (09000002)

Class : CSharpCarlLibrary.Roadster
Token : 02000003 [TypeDef] CSharpCarLibrary.IConvertible

Remaining Bits of Interesting Metadata

.NET metadata does far more than document the custom types you have defined
using your managed language of choice. In addition, you will find metadata
descriptions for every base class library item you referenced in your coding
effort. For example, TypeRef tokens exist for each attribute type found in

your assemblyinfo.cs file, the System.Windows.Forms.MessageBox type

(because you displayed a number of message boxes), and the layout of the
System.Text.StringBuilder class (because you made use of this type during

the overriding of System.Object.ToString()).

The Anatomy of a .NET Server

Finally, at the very end of the metadata dump, you will find an “AssemblyRef
#n” listing for each external assembly and a list of all string literals contained
within the binary, as shown in this example:

AssemblyRef #2

Token: 0x23000002

Public Key or Token: b7 7a 5c 56 19 34 e0 89

Name: System.Windows.Forms

Major Version: 0x00000001

Minor Version: 0x00000000

Build Number: 0x00000ce4

Revision Number: 0x00000000

Locale: <null>

HashValue Blob:

Flags: [none] (00000000)

User Strings

70000001 : (38) L"If you can read this you're too close."
7000004f : (14) L"C# Car Library"

7000006d : (46) L"[C#] PetName: {0} Color: {1} CurrentSpeed: {2}"
700000cb : (17) L"Sun roof is open!"

700000ef : (19) L"Closing sun roof..."

70000117 : (32) L"Taking names and kickin' butt..."
70000159 : (19) L"Faster is better..."

70000181 : (17) L" Trunk space: {0}"

700001a5 : (39) L"Looking through small plastic window..."

Now, at this point you should not be too concerned with the exact syntax of
each piece of .NET metadata. The bigger issue to be aware of is that .NET meta-
data is very descriptive and lists each custom (and referenced) type found in the
code base. Thinking again along the terms of COM/.NET interoperability, you can
most likely imagine a tool that could read .NET metadata and produce an equiva-
lent COM type library. You will see this topic in action a bit later.

(Not) Viewing the Underlying IL Code

Although the ILDasm.exe utility also allows you to view the underlying IL code for
a given item (simply by double-clicking an expanded node), you really don’t need
to check out the instructions that have been generated. To be honest, the crux of
COM/.NET interoperability has to do with translating COM metadata into .NET

249

Chapter 5

250

metadata (not IL into OS-specific instructions). In most cases, any IL that is
lurking under the hood is not as important (especially given that the interop-
centric tools will generate it automatically). However, you certainly get a chance
to take a look at relevant IL where necessary during the remainder of this text.

a leeeee CODE The CSharpCarLibrary and VbNetCarLibrary code libraries are
\ YR located under the Chapter 5 subdirectory.

Building a Managed Client

Before examining other interesting aspects of the .NET Framework, assume you
have created a brand-new Windows Forms application that is making use of the
CSharpCarLibrary type. The GUI of this Form-derived type simply maintains a
single Button type, which has the following implementation in the Click event
handler:

private void btnCSharpCars Click(object sender, System.EventArgs e)
{
// Make array of Ci Cars.
Car[] myCars =
{
new HotRod("Viper", CarColor.Red),
new MiniVan("Clunky", CarColor.Green),
new Roadster("Zippy", CarColor.Green, 50, 5)
b
// Loop over each array element using IEnumerator.
foreach(Car ¢ in myCars)
{
// Call each car's ToString()
MessageBox.Show(c.ToString(), c.GetType().Name);
// Display each car's bumper sticker.
c.DisplayBumperStickerText();
// Do we have a convertible?
if(c is IConvertible)
{
IConvertible itfConvert;
itfConvert = (IConvertible)c;
// Enjoy the day!
itfConvert.OpenSunRoof(true);
}

The Anatomy of a .NET Server

The code is quite straightforward. Using an array of base class Car types, you
create a set of derived types. As you loop over the array, you call each member of
the polymorphic interface defined by the abstract Car type, and check to see if the
current automobile is IConvertible compatible. If so, open the sunroof and enjoy
the ride!

1 leeeee CODE The CarClientApplication is included under the Chapter 5
\ Y subdirectory.

Configuring Private Assemblies

When you set a reference to an external assembly using VS .NET, the IDE responds
by placing a copy of the assembly directly within the folder containing the client
that is making use of the contained types. Formally speaking, the directory that
contains the client application is known as the application directory (Figure 5-7).
® C:\Apress Books\InteropBook\l abs\Chapter 4\CarClientApplication\bin\De... |Z||i||z|
File Edit Wiew Favorites Tools Help #

eBack - O @ pSearch E Folders v

Address |IC) Crapress Books)InkeropBookiLabs\Chapter 41CarClisntapplicationibin|Debug e | Go
Marne - Size | Type

CcarClienkapplication. exe 8KE Application
@Carclient.ﬂpplication.pdb 16 KE Program Debug

File and Folder Tasks

Other Places CSharpCarLibrary.dll 7KB Application Extg
@CSharpCarLibrary.pdb 28 KE Program Debug
j . YbMetCarLibrary . dil IKB Application Extg
Details ;
@VbNetCarUbrary.pdb 42 KE Program Cebug
54l Ll] | *

Figure 5-7. Viewing the application directory

Assemblies that reside in the same folder as the launching client are called
private assemblies. By its very nature, a private assembly is not intended to be used
by any other application on the machine other than the client it was compiled
against. Obviously, this approach makes the deployment of the application a
breeze: Simply copy the client and any referenced private assembly to a given
location on a given hard drive and run the program (no registration required).

251

Chapter 5

252

Although the process of placing all the required binaries into a single applica-
tion directory greatly simplifies the deployment of a .NET solution, this has the
unappealing byproduct of a rather unorganized file structure. What if you would
rather have a subdirectory off the application directory called MyAsms, which
contains the CSharpCarLibrary.dll assembly? The truth is that if you relocate the
referenced assemblies and attempt to run the client once again, you will crash at
runtime, as the location of the assemblies listed in the client manifest cannot be
resolved.

When you wish to instruct the runtime to probe for referenced assemblies
located within a given subfolder of the application directory, you must author an
application configuration file. These XML-based files contain any number of
“privatePath” attributes that will be read by the runtime as it attempts to resolve
the location of a private assembly. You must be aware, however, that the runtime
expects the name of the configuration file to be <NameOfTheClient>.exe.config.
For example, the configuration file for your CarClientApplciation.exe client would
be CarClientApplication.exe.config. Furthermore, the *.config file must be in the
client’s application directory.

Assume you have created a *.config file for your current client and moved the
CSharpCarLibrary assembly into a subdirectory named MyAsms (Figure 5-8).

@& C:\Apress Books\InteropBook\L abs\Chapter 4\CarClientApplication\bin...

File Edit YWiew Favorites Tools Help #
@ Back - O @ p Search [E Folders v
Address I3 C:\apress Books\InteropBookLabs\Chapter 4\ CarClientApplicationibin|Debug V| Go

Marme - Size | Type
Clcarclientapplication.exe 3EE Application
v@CarCIient.|5'.|:|:||in:aI:i|:|n.|:||:II:| 16 KB Program Deb
@CSharpCarLibrary.pdb Z3KE Program Deb
@VbNetCarLibrary.pdb 4Z KB Program Deb
My asms File Folder

jin i 1kE webh Configul

T
¥)
f.
¥)

v
¥

File and Folder Tasks

Other Places

Details

Figure 5-8. The private assemblies have been relocated under the MyAsms
subdirectory.

The Anatomy of a .NET Server

To instruct the runtime to probe under \MyAsms, you would author the
following XML:

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1i">
<probing privatePath="MyAsms" />
</assemblyBinding>
</runtime>
</configuration>

Configuration files must begin with the root element <configuration>. Before
you specify the <probing privatePath> attribute, you must first specify the
<runtime> and <assemblyBinding> elements. Also understand that you may
specify multiple subfolders to be included in the probing process using a semi-
colon delimited list:

<probing privatePath="MyCSharpAsms;MyVbNetAsms" />

If you were to now launch the CarClientApplication.exe client program, the
execution engine would be able to locate the referenced assemblies using the
corresponding *.config file.

Specifying Arbitrary Assembly Locations

As you may already be aware, you can create *.config files containing additional
XML elements that instruct the runtime to load a specific localized assembly, as
well as consult other subdirectories (for example, C:\AllMyAssemblies) during the
probing process. Using the <codeBase> element, you are able to instruct the
runtime engine to probe under any folder on your machine, a remote networked
machine, or a given URL. For example, if you move C# car assembly under
C:\MyCoolAsms, you will need to update the CarClientApplication.exe.config file
as follows (the publicKeyToken value will be defined shortly):

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1i">
<dependentAssembly>
<assemblyIdentity name="CSharpCarLibrary"
publicKeyToken="xxXXXXXXXXXXXXXX"
culture="neutral" />

253

Chapter 5

254

<codeBase
href="file://c:/MyCoolAsms\CSharpCarLibrary.d11"/>
</dependentAssembly>
</assemblyBinding>
</runtime>
</configuration>

Now that you understand the basic configuration of a private assembly, let me
wrap up with a few final thoughts. First, although it is good protocol to document
a specific assembly version (1.0.0.0, 2.0.0.0, and so on) for each assembly you may
author, the runtime will ignore the version number when attempting to locate a
private assembly. The reason is simple. Given that private assemblies are intended
to be used by a single client, versioning is a bit of a nonissue. Second, private
assemblies will more likely than not end up being exactly what you desire for a
vast majority of your .NET development efforts. In fact, Visual Studio .NET is only
able to compile code libraries that are intended to be deployed as private binaries.
If you wish to build a shared assembly, you will need to make use of the command
line compiler csc.exe (C#) or vbc.exe (VB .NET).

Understanding the Shared Assembly

Although it is true that private assemblies will most likely be your configuration
option of choice, at times you will wish to share an assembly among multiple
clients on a single machine. Consider the System.Windows.Forms.dll assembly
(which, as you know, contains the types for building GUI desktop applications). If
this binary were created as a private assembly, this would mean that every .NET
application that has to show a simple message box would need to have a copy of
the same *.dll. This would be insane, of course, given that such a situation would
require hundreds of copies of the same binary to be installed on a given machine.

Rest assured that the .NET platform does provide a way for you to share a
single copy of a given assembly among multiple clients. When you wish to build a
shared assembly, you will ultimately place the binary into a very specific folder
named the Global Assembly Cache (GAC), which is located under
%windir%\Assembly (Figure 5-9).

The Anatomy of a .NET Server

& C:\WINNT\assembly

File Edit Yew Favorites Tools Help #
@ Back = O @ p Search H—E‘ Folders | L x -

fiddress |IE] CWINNT assembly v| G
Global Assembly Mame « Tvpe Wersion Culture | Public Key Toke)|

'@System.Windows.Fnrms Mative Images 1,0.:3300.0 b77ascea1934e

kern, Windows, Forms 1.0 .0 b7 725561934

jﬁ'l Systern, mml Mative Images 1.0.3300.0 b77a5c5a1 934
jli'l Systern. =l 1.0.3300.0 b77a5c56a1934
3I§1Test55rver 1.0.0.0 F7b33558c0Fdac
3&!Test5&rver 1.0.0.0 caFIFIF182e3F7
:I%lTestServer 1.0.0.0 B4429804542a] o
< | @

Figure 5-9. Shared assemblies are placed into the GAC.

However, you cannot simply take a private assembly, install it in the GAC, and
expect to end up with a shared assembly. Rather, you must retrofit an assembly to
support a strong name (also known as a shared name). A strong name is a combi-
nation of the simple name (for example, CSharpCarLibrary), culture information
(for example, English, Urdu), a version number (for example, 1.0.0.0), a public key,
and a digital signature. This strict level of identification provided by the strong
name is far superior to the COM ApplID given that (a) multiple versions of the
same assembly can be installed in the GAC and (b) your company can create a
unique identity used to identify each assembly that has been shipped.

Generating a Strongly Named Assembly

So, as mentioned, shared assemblies must have a strong name. A strong name
consists of a friendly name, numerical version, culture ID, a public key, and a
digital signature. Gathering all the pieces of a string name is much simpler than
you may be thinking. To illustrate, let’s create a brand-new code library (this time
using VB .NET) named SharedVbNetAirVehicles (Figure 5-10).

255

Chapter 5

New Project |Z|

Project Types: Templates:

‘A Visual Basic Projects
{2 visual C# Projects
3 visual C++ Projects windows Class Library Windows
(Z2 Setup and Deployment Projects Application Control Library
({3 other Projects

ASP.NET Web ASP.NET Web Web Control
Application Service Library

]

A project for creating classes to use in other applications

MName: I SharedVbNetAirvehicles

Location: I C:\Apress Books\InteropBook\Labs\Chapter 5 LI Browse... |

Project will be created at C:\Apress Books\InteropBook\Labs\Chapter 5\SharedvbNetairvehicles.

¥ More | OK Cancel | Help |

Figure 5-10. The VB .NET project workspace

To keep focused on the process of configuring a shared assembly, the VB .NET
code library will be minimal but complete (as shown in Figure 5-11).

AirVehicle

IHover

UFO O JumboJet

Figure 5-11. The AirVehicles hierarchy

256

The Anatomy of a .NET Server

Prepping the Project Workspace

Like the C# automobile assembly, your VB .NET AirVehicles library will make use
of types contained within the System.Windows.Forms.dll assembly (go ahead and
set a reference to this binary now). Recall that in C#, you make use of the using
keyword whenever a source code file needs to reference external types. Although
you could make use of the VB .NET Imports keyword for the same purpose, VB

.NET also allows you to establish project-wide imports using the Project Property
window (Figure 5-12).

SharedVbMetAirVehicles Property Pages |§|
Configuration: IN.I’P. ;I Elatform: IN.I’P. ;I Configuration Manager. .. |
23 Common Properties Mamespace:
General I Syskem.Windows Forms
Build
g Imports Add Impork Update
Reference Path
Designer Defaults Project imports:
(23 Configuration Properties Microsaft, YisualBasic
System
System. Collections
System.Data

Svystem,Diagrostics
Syskem. Windows .Forms

Remove |

ak. I Cancel Apply Help

Figure 5-12. Setting up project-wide imports

As you would expect, this VB .NET shortcut allows each *.vb file in the project
to make direct reference to types contained in external assemblies (without the
need to explicitly use the Imports keyword).

Also be aware that every VB .NET project maintains an entity known as the
root namespace (located under the General node of the Project Property window).
The root namespace is another nicety provided by VB .NET, given that you can
avoid the need to wrap each type definition within a namespace specification. Do
note, however, that VB .NET does support the Namespace keyword when you wish
to explicitly define a namespace definition.

257

Chapter 5

Building the Air Vehicles

Your base type, AirVehicle, defines a single abstract method and a property of type
AirLine (which happens to be a custom enumeration).

Public Enum AirLine
SunnyCountry
SouthEastAirlines
Unknown
ChucksInternationalAir

End Enum

Public MustInherit Class AirVehicle
' Polymorphic interface
Public MustOverride Sub RetractlLandingGear()
' State data
Protected mAirLineName As Airline
#Region "Constructors"”
' Constructors.
Public Sub New()
End Sub
Public Sub New(ByVal al As AirLine)
mAirLineName = al
End Sub
#End Region
' Properties
Public Property AirLineName() As Airline
Get
Return mAirLineName
End Get
Set(ByVal Value As Airline)
mAirLineName = Value
End Set
End Property
End Class

The JumboJet type derives from AirVehicle and implements
RetractLandingGear() by issuing a friendly salutation:

Public Class JumboJet
Inherits AirVehicle
Public Overrides Sub RetractlLandingGear()
Dim s As String
s = "Thanks for flying with " & Me.AirLineName.ToString()

258

The Anatomy of a .NET Server

MessageBox. Show(s)
End Sub
Public Sub New(ByVal al As AirLine)
Me.AirLineName = al
End Sub
End Class

The UFO contends with the abstract RetractLandingGear() method by issuing
a more ominous message. The [Hover interface is also implemented as follows:

Public Class UFO
Inherits AirVehicle
Implements IHover
Private canHover As Boolean
' Overrides
Public Overrides Sub RetractlLandingGear()
Dim s As String
s = "UF0's don't have landing gear" _
& vbLf & "Activating molecule stimulator..."
MessageBox. Show(s)
End Sub
#Region "IHover Impl"
Public Function CanHoverWithoutDetection() As Boolean _
Implements IHover.CanHoverWithoutDetection
Return canHover
End Function
Public Sub Hover() _
Implements IHover.Hover
If (CanHoverWithoutDetection()) Then
MessageBox.Show("waiting and watching...")
Else
MessageBox.Show("Located by Earthling...Applying InvisoShield")
End If
End Sub
#End Region
Public Sub AbductHuman()
MessageBox.Show("Welcome aboard human...")
End Sub
Public Sub New()
AirlineName = AirLine.Unknown
canHover = True
End Sub
End Class

259

Chapter 5

Generating the Strong Name

Now that you have your hierarchy in place, you can establish the necessary strong
name. Recall that this requires a number of individual pieces:

* The friendly name (for example, SharedVbNetAirVehicles)
¢ Culture information (for example, English, Urdu)

¢ Aversion number (for example, 1.0.0.0)

* A public key

¢ A digital signature

The friendly name is simply the name of the code library (not including the
exact file extension). Also recall that your project’s assemblyinfo.vb file allows you
to establish the version of your assembly using the AssemblyVersion attribute.
Given that the runtime takes the version of a shared assembly quite seriously, be
sure you set the AssemblyVersion attribute accordingly:

<Assembly: AssemblyVersion("1.0.0.0")>

As far as the culture identity of an assembly goes, you will make use of the
default “neutral” culture. Culture applies only if you are building an assembly that
contains resources, such as strings and bitmaps, which need to be customized for
various human languages. This type of assembly is called a satellite assembly,
which by definition does not contain any IL code. Therefore, given that your
SharedVbNetAirVehicles assembly does indeed contain implementation code, you
will not be applying a specific culture.

Your final task is to create a public key (and thus your digital signature). To do
so, you must make use of a command line tool named sn.exe to generate the *.snk
file that represents a public/private key pair (which is accomplished by specifying
the -k command line flag). Check out Figure 5-13.

260

:n2>sn —k theKey.snk

The Anatomy of a .NET Server

icrosoft (R> _.NET Framework Strong Mame Utility Version 1.8.3328.4
opyright (C> Microsoft Corporation 1998-2801. All rights reserved.

ey pair written to theKey.snk

IND

Figure 5-13. Generating the *.snk file

To bind the *.snk file into your current assembly, you make use of the

assembly-level attribute AssemblyKeyFile:

<Assembly: AssemblyKeyFile("C:\theKey.snk")>

At this point, when you compile your project, the key pair will be used to

sign the assembly.

Recall that assemblies containing strong names will have their public
keys recorded within the assembly manifest. If you examine your completed
SharedVbNetAirVehicles.dll using ILDasm.exe, you will find the [.publickey]

value shown in Figure 5-14.

£ MANIFEST

.custom instance void [mscorlib]System.Reflection.Assemba|
.custom instance
.publickey =

-hash algorithm Bx880880884
ver 1:8:8:8

b

.module SharedUbHetfirUehicles.dll

f/f MUID: {FEBF4F7F-DF19-4249-AES1-CSEEBECHCO2A}
.imagebase Bx11800888

.subsystem @x@@800082

-file alignment 512

.corflags @x@0080007

// Image base: Bx831708008

£ Il]

System._Reflection.Assemh

= |

oA

Figure 5-14. The mark of a shared assembly

261

Chapter 5

Now that your assembly has been assigned a strong name, you are able to drag
and drop your .NET binary into the GAC. Figure 5-15 shows the end result.

s C:\WINNTAassembly

File Edit ‘“iew Faworites Tools Help #
@Back - l,'-i @ pSearch [[\?:“ Folders | [} x v
Address |E| CWINMT assembly M | S
Global Assembly Mame Tvpe Version Culture | Public Key Token © |
aﬁ'ICrystaIF‘luginMgrLib 1.0.0.0 £9z2fbeassz 121304
aﬁ'lCrystalReportPluginLib 1.0.0.0 89zZfbeatsz 121304

¢ SharedvbMetairvehicles 1.0.,0.0 a1eff 005
H@OPDBmDSW 0.0.0.0 S43c030ba4454F 46
:ﬁ'ICR'\-'sPackageLib 1.0.0.0 4F3430cFF 154024
Hﬁ'lCrystaIDecisinns.Cryst. . 9.1.0.0 4F3430cFF 15424 |
:@CrystalDecisinns.Repo. " 9.1.0.0 4F3430cFF1S4c24c
aﬁ'ICrystaIDecisions.Shared 3.1.0.0 4F3430cfF 15424 |

Figure 5-15. The VB .NET binary installed in the GAC

1 e oo CODE The SharedVbNetAirVehicles project is included under the
\ YR Chapter 5 subdirectory.

—
~

L

Using the Shared Assembly

As far as the client is concerned, using a shared assembly is identical to the act of
using a private assembly. If you have a new VB .NET Windows Forms application at
your disposal, you set a reference to the assembly (as always), and code away. For
example, if the Form has a single Button that makes use of the shared UFO, you
might write the following:

Private Sub Buttoni Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Buttoni.Click
Dim u As New SharedVbNetAirVehicles.UFO()
u.Hover()
u.AbductHuman()
End Sub

262

The Anatomy of a .NET Server

The only additional point of interest is that when the IDE encounters a refer-
ence to a shared assembly (meaning the IDE is able to detect a [.publickey] value),
it will not make a local copy of the binary (as noted in Figure 5-16).

Properties
Shared¥bMetAir¥ehicles FReference Properties j
% [5][=]
(Mame) Sharedvbhetdirvehicles -
Zopy Local False -
Culbure
Descripkion
Tdenkity Sharedvbhetdirvehicles
Path A\ Apress BooksInkeropBook),
Skrong Mame True -
Copy Local
Indicates whether the reference will be copied to the output
directory.

i Properties ﬂ Crynamic Help |

Figure 5-16. By default, strongly named assemblies are not copied into the
application directory.

Also, recall that when a .NET client makes reference to a strongly named
assembly, the manifest will record a token of the public key (marked with the
[.publickeytoken] tag). This can be verified using ILDasm.exe (Figure 5-17).

£ MANIFEST

-publickeytoken = (B7 7A 5C 56 19 34 EG 89)
.ver 1:8:3380:98

e

.assembly extern System.Xml

4
.publickeytoken = (BY 7A 5C 56 19 34 EQ 89)
.ver 1:8:3380:8

[

.assembly SharedAsmClient
4
/f ——— The following custom attribute is added av

< 1 | E

Figure 5-17. Recording a shared assembly

263

Chapter 5

264

1 leeeee CODE The SharedAsmClient project can be found under the Chapter 5
Y subdirectory.

Sl

Versioning Shared Assemblies

Like a private assembly, shared assemblies can also be configured using an appli-
cation configuration file. Of course, given that shared assemblies are placed in a
well-known location (%windir%\Assembly), you are not interested in specifying
privatePath attribute values. To understand the role of *.config files and shared
assemblies, you need to step back and take a closer look at the .NET versioning
scheme.

As you have observed during this chapter, the AssemblyVersion attribute is
used to control the four-part numerical version of an assembly (private or shared).
Specifically speaking, these four numbers represent the major, minor, build, and
revision numbers:

' Format: <Major version>.<Minor version>.<Build number>.<Revision>
<Assembly: AssemblyVersion("1.0.0.0")>

When an assembly’s version is recorded into the manifest, clients are able to
record the assembly’s version as well. For example, the SharedVbNetAirVehicles
assembly was set to version 1.0.0.0. The SharedAsmClient application in turn
records this value in its own assembly using the [.assembly extern] tag:

.assembly extern SharedVbNetAirVehicles

{
.publickeytoken = (61 EF FA 33 A2 52 B0 08)
.ver 1:0:0:0

}

Now, by default, the .NET runtime will only launch the client without error if
indeed there is a shared assembly named SharedVbNetAirVehicles, version 1.0.0.0
with a public key token of the value 61 EF FA 33 A2 52 B0 08 in the GAC. If any of
these elements is not correct, the runtime will throw a LoadTypeException excep-
tion. Again, remember that version checking only applies to shared assemblies.
Even though private assemblies can support a four-number version, this will be
ignored by the runtime.

Application configuration files can be used in conjunction with shared assem-
blies whenever you wish to instruct the runtime to bind to a different version of a

The Anatomy of a .NET Server

given assembly. For example, imagine that you have shipped version 1.0.0.0 of a
given assembly and suddenly realized, to your horror, a major bug (or to be more
politically correct, a runtime anomaly) has reared its ugly head. Your first option
for corrective action would be to rebuild the client application to reference the
correct version of the bug-free assembly (say, 1.0.0.1) and redistribute the new
binaries to every client machine. Obviously, this would not be a very elegant
solution.

Your other option is to ship the new code library and a simple *.config file that
automatically instructs the runtime to bind to the new (bug-free) version. As long
as the new version has been installed in the GAC, the client runs without recompi-
lation or redistribution (or your fear of having to update your resume).

Another example: You have shipped the first version of a bug-free assembly
(1.0.0.0) and after a year or two, you have added a number of new types to the
current project to yield version 2.0.0.0. Obviously, previous clients that were
compiled against version 1.0.0.0 have no clue about these new types (given that
their code base makes no reference to them). New client applications, however,
may need to make reference to the new functionality found in version 2.0.0.0.

Under the COM model, programmers were forced to deal with the simple-in-
concept-but-hard-in-practice notion of interface versioning. A healthy dose of
code versioning is also very important under .NET; however, it is equally possible
to simply install both versions of the shared assembly into the GAC and allow a
client to bind to whichever version has been recorded in the manifest.

Versioning the Shared VB .NET AirVehicles Assembly

To illustrate versioning shared assemblies, assume that you have frozen version
1.0.0.0 of the SharedVbNetAirVehicles assembly and added the following new
class type:

Public Class MotherShip
Inherits UFO
Public Sub AbductOtherUFOs()
MessageBox.Show("You have failed your mission...beam aboard.")
End Sub
End Class

Assume as well that you have updated the version as follows:

<Assembly: AssemblyVersion("2.0.0.0")>

265

Chapter 5

Once compiled, you are then able to place the new version into the GAC. Lo
and behold, you have installed two versions of the same assembly on the same
machine (a technique not possible under classic COM). Check out Figure 5-18.

M C:\WINNTAassembly

File Edit ‘Wiew Faworites Tools Help ,ﬂ'
@ Back * [i @ p Search [{Z’ Folders | [3% x v

Address |[E] CHWINNT assenmbly 4 | G
Global Assembly Mame Type Wersion Culture | Public Key ...)
3@1Crysta|ReportP|uginLib 1.0.0.0 692fbeassz e

haredvbhetairvehicles
haredvbMetairvehices — 1.0.0.0

ﬁlOF‘DBmDSW 0.0.0.0 S4GcA30haddE

ﬂﬁ'ICRVsPackagELib 1.0.0.0 4F3430cFF 1S |
aﬁ'ICrystaIDecisinns.CrystalReports.Engine 2.1.0.0 4F3430cFF154c
ﬂﬁ:lCrystaIDecisinns.ReportSource 2.1.0.0 4F3430cff154c@
< E

Figure 5-18. Side-by-side execution

Now, if you wish to redirect your existing SharedAsmClient to make use of
version 2.0.0.0, for example, you could author the following *.config file:

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1i">
<dependentAssembly>
<assemblyIdentity name="SharedVbNetAirVehicles"
publicKeyToken="61effa33a252b008" />
<bindingRedirect oldVersion="1.0.0.0"
newVersion="2.0.0.0" />
</dependentAssembly>
</assemblyBinding>
</runtime>
</configuration>

Here, the bindingRedirect element specifies two attributes: oldVersion
(the version documented in the client manifest) and newVersion (the, well,
new version you wish to bind to). As long as the configuration file
SharedAsmClient.exe.config is placed in the same directory as the client
application, the runtime will automatically bind to the newer version, and
thereby override the version listed in the client’s manifest.

266

The Anatomy of a .NET Server

Of course, in this example you really have no need to redirect to version
2.0.0.0, given that the client code base is unable to make use of the MotherShip
type without recompiling in the first place. To understand the big picture, assume
that version 2.0.0.0 also fixed a bug (or two) found with the JumboJet type. In this
case, the use of a *.config file is much more clear. Nevertheless, even if version
2.0.0.0 of the SharedVbNetAirVehicles assembly did not contain any additional
bug fixes, there are still great benefits to having multiple copies of the same *.dll
safely installed on a single machine.

Working with Publisher Policy Assemblies

I wish to comment on one additional aspect of *.config files termed publisher
policy. As you have already seen, *.config files can be used by private assemblies to
instruct the runtime to probe under various subdirectories when resolving the
location of a given assembly. Shared assemblies can also make use of *.config files
to dynamically bind to an assembly other than the version recorded in the client
manifest. Do note that both of these approaches require that somebody (such as a
system administrator) create and edit the *.config file on each client machine.

Publisher policy allows the publisher of a given assembly to ship a special
binary version of a *.config file that is installed in the GAC along with the assembly
it is responsible for influencing. When these unique *.config files are placed into
the GAC, the client’s application directory does not need to support a specific
*.config file. Given this, the redirecting of shared assemblies is less of a burden on
the individual responsible for configuring individual .NET clients. All he or she
needs to do is install the new binary *.config file shipped by the publisher in the
GAC and walk away.

To be honest, the *.config file itself is not literally installed in the GAC, due to
the fact that the GAC will only accept files with a *.dll file extension. Rather, the
publisher of the bug-ridden assembly is responsible for creating is a *.xml file that
will be used to build a *.dll that contains the binary equivalent of the underlying
XML using a tool named al.exe (assembly linker). Understand that VS. NET does
not support the construction of publisher policy binaries, so you will be forced to
drop down to the command prompt.

The good news is that the syntax of a XML publisher policy configuration file
is identical to that of an application-specific *.config file. If you wish to retrofit the
previous SharedAsmClient.exe.config file into the publisher policy format, you can
run the following command at the command line:

al /link:SharedAsmClient.xml/out:policy.1.0.SharedVbNetAirVehicles.dll
/keyf:C:\theKey.snk /v:1.0.0.0

267

Chapter 5

Asyou can see, you do need to specify the input *.xml file, the name of the output
file (which must be in the format “policy.<major>.<minor>.assemblyToConfigure”),
and the name of the file containing the public/private key pair.

Once the al.exe tool has executed, the end result is a new assembly that can be
placed into the GAC (Figure 5-19) to force all clients to bind to version 2.0.0.0 of

the SharedVbNetAirVehicles.dll file.

M C:\WINNTAassembly
File Edit ‘Wiew

@Back - O @ pSearch [-E:’ Falders

Fawvorites Tools Help

B v X |[E-

address |[E] CWINNTY assembly

L

Global Assembly Mame Type
aﬁ'ICrystaIF‘luginMgrLib
aﬁ'lCrystalReportPluginLib

¢ nolicy, 1.0,SharedvbMetairvehicles
E@SharedUbNetAir\p‘ehicles
s@15haredvbnetairvehicles
Hﬁ'lOPDemUSW
:@lcwspackageub

{_| 1ii}

Wersion Culture | Public Key ... #%|
1.0.0.0 69Zfbeassz e
1.0.0.0 692fbeatszle

61effa33azs2

1.0.0.0 >
6leffa3zazsal

2.0.0.0

1.0.0.0 6leFFaSSa252l_l

0.0.0.0 S45c950ba44E

1.0.0.0 4F3430cff154c@
| 8.

Figure 5-19. The policy assembly

If you are curious about exactly what is contained within the new .NET
assembly, you can use ILDasm.exe to see that this binary contains little more than

a bit of assembly metadata (Figure 5-20).

C:\Apress Books\InteropBook\Labs\Chapter ... |:||E||X|

File Miew Help

Baye CAApress BookshnteropB ooki\LabshChapter 44 5ShareddsmClient\bin'g
: MAMNIFEST

[

4 i |

.azzembly 'policy.1.0.SharedvbM ethirehicles'
{

|

bl

Figure 5-20. Inside the policy assembly

268

The Anatomy of a .NET Server

The manifest itself is rather bland. Simply put, the manifest lists the name of
the XML file that was used to generate the assembly, which is embedded as an
internal resource (Figure 5-21).

£ MANIFEST H=1E3
.hash algorithm 8x00008004 ~
ver 1:8:0:0
’
.File nometadata SharedAsmClient.xml
.hash = (31 A4 3D 9E D6 23 49 2C 7B F1 95 AR 2
C8 B7 CB 72)

.mresource public RETENGE TS ETT ST
{

.file SharedfsmClient.xml at 0x00000000

H
.module ‘policy.1.0.SharedUbHetAirUehicles. dll’

/f MUID: {55EB7YE38-B7DB-4EB2-B7DE-95FFF545C59B}
.imagebase @8x00400080

.subsystem 8x000008083

.file alignment 512 v

< >

Figure 5-21. The XML-based configuration file is embedded as an internal resource.

When the .NET runtime attempts to bind to the SharedVbNetAirVehicles
assembly for a client specifying version 1.0.0.0, the policy assembly automatically
redirects to version 2.0.0.0.

The Binding Process in a Nutshell

At this point, you have been exposed to each of the major facets of resolving the
location of an external assembly. To summarize the process that is followed by the
.NET runtime, here is a concise synopsis:

1. The runtime reads the client manifest for each [.assembly extern] tag and
determines the friendly name of the referenced assembly (for example,
CSharpCarLibrary).

2. The runtime then examines the [.assembly extern] tag to determine if a
[.publickeytoken] is listed. If so, the GAC is consulted for (a) a publisher
policy assembly and then (b) the shared assembly itself.

3. [Ifthe referenced assembly does not contain a [.publickeytoken], the
runtime attempts to locate a *.config file. If a *.config file is present and
accounted for, the underlying XML is parsed to locate the assembly in
question. If a *.config file is not found, the application directory is probed.

269

Chapter 5

270

4. Ifany of the preceding steps fail, a LoadTypeException exception is raised.

To be sure, other aspects of the .NET binding process exist that I do not need
to comment on at this time (such as the machine-wide *.config file). Nevertheless,
at this point you should have a much better idea how .NET has divorced itself
from the COM-centric approach of server registration.

And Now for Something Completely Different:
System.CodeDOM

To wrap up this chapter, I wish to introduce a namespace with which you may not
be readily familiar: System.CodeDOM. Now I will be perfectly honest from the
onset and admit that the types contained within this namespace do not directly
relate to COM/.NET interoperability per se. In other words, when you are
attempting to make COM types and .NET types coexist, you will not need to
directly make use of the Code Document Object Model (CodeDOM), unless
perhaps you happen to be a tool builder who needs to dynamically generate
source code on the fly. However, to understand my rationale for discussing a
seemingly unrelated namespace, let’s begin by checking out a practical use of the
System.CodeDOM namespace.

If you have worked with the ASPNET Web Services, you are likely familiar with
a utility named wsdl.exe (WSDL, being short for Web Service Description
Language). When you build a Web Service, the exposed [WebMethods] are
described using the WSDL metalanguage. Like other metalanguages (such as IDL
and .NET metadata), WSDL lives to document the entities it is describing in a
neutral format. For example, assume you have defined the following proverbial
HelloWorld Web Service in C#:

// A very simple Web Service.
public class HelloWorldWS : System.Web.Services.WebService

{

// This attribute qualifies this method as being "invokible" using HTTP
// requests.

[WebMethod]

public string HelloWorld()

{ return "Hello World"; }

}

Once compiled, the generated WSDL describes how to access the
HelloWorld() [WebMethod] using the HTTP GET, HTTP POST, and SOAP proto-
cols. As you may know, WSDL documentation is expressed using XML syntax. You

The Anatomy of a .NET Server

may also know that when a Web Service client wishes to activate a given
[WebMethod], it is completely possible to build a client-side code base that is able
to read the XML elements one-by-one in order to interact with the remote Web
Service. Doing so, however, would be a very tedious and lengthy task, as suggested
by Figure 5-22.

‘A http:/llocalhost/ASPNetTests/MyWebService/Service1.asmx?WSDL -... |

File Edit ‘Mjew Favorites Tools Help #

@Back - Q @ @ L{h pSearch *Favorites @ redia @

Address |@ hittp:/localhost/ ASPMetTests MyWebServiceService L, asmxwW3DL V| Go Links *
=Moo dge Name= Feng W ornasodpoat A

<part name="parameters"
element="s0:HelloWorldResponse" />
</messagex
<message name="HelloWorldHttpGetIn" />
- =message name="HelloWorldHttpGetOut">
<part name="Body" element="s0:string" />
</message:=
«zmessage name="HelloWorldHttpPostIn" />
- <message name="HelloWorldHttpPostOut">
<part name="Body" element="s0:string" />
</messagex
- <portType name="HelloworldWS5Soap">
- =operation name="HelloWorld">
<input message="s0:HelloWorldSoapIn" /=
<output message="s0:HelloworldSoapOut" />
«/operationz
< /portTwpes
- <portType name="HelloworldWSHttpGet"> a3

= Il] 2|

@ Done [R | "Q Local inkranet

[

Figure 5-22. The raw WSDL

Given the verbose nature of WSDL syntax, few programmers are willing to
manually parse the individual XML nodes. Lucky for you, using the wsdl.exe tool,
you don’t have to. This tool will read WSDL descriptions and dynamically generate
a corresponding proxy class, which behaves like any other .NET type.

Under the hood, however, the proxy class itself contains methods that map to
each exposed [WebMethod] at the given URL. In addition to specifying the wire
protocol you wish to leverage to interact with the remote Web Service (GET, POST,
or SOAP), the wsdl.exe tool also supports the “/language” flag, which allows you to
instruct the wsdl.exe utility to generate the proxy using C#, VB .NET, or JScript
.NET syntax. Enter System.CodeDOM.

271

Chapter 5

272

System.CodeDOM: Its Meaning in Life

Tools such as wsdl.exe require the ability to generate and output source code in
multiple languages at runtime. Using the CodeDOM you are able to build custom
applications that can also output source code in multiple programming languages
at runtime, using a single, unified .NET object model that represents the code to
render.

The System.CodeDOM namespace provides a number of types that can be
used to represent the structure of source code, independent of a specific program-
ming language. Currently, the languages supported by CodeDOM include C# and
VB .NET. However, compiler vendors who develop CodeDOM support for their
language can do so by deriving from various base class types.

Although the thought of representing code in memory is a mind-expanding
concept, also understand that the System.CodeDOM namespace also provides
types that allow you to compile the source code represented by a CodeDOM object
graph at runtime. Given the ability to generate and compile code dynamically, it
should come as no surprise that tools such as wsdl.exe make heavy use of the
CodeDOM.

So, now that you have a better idea of what System.CodeDOM is used for, you
still might be wondering exactly why I am discussing its use (beyond the fact that
it is extremely interesting). Well, if you have been reading this book from the
beginning, I hope you are starting to see that the whole concept of interoperability
is a matter of type: COM types, .NET types, and the rules that translate them. In
this light, the ability to represent coding elements (constructors, nested classes,
properties, decision and iteration constructs, and so forth) in memory certainly
lends itself to a deeper understanding of the composition of the .NET type system
as well as how various interop-related tools can generate source code files for use
in your managed applications. So, without further ado, let’s check out
System.CodeDom and build an example application.

Introducing the System.CodeDOM Namespace

Given that CodeDOM is in charge of representing any possible .NET type (class,
interface, structure, enumeration, or delegate), its members (properties, methods,
and events), and their implementation (foreach loops, if/else statements, object
manipulation), you are correct to assume that System.CodeDOM contains
numerous types of interest. Although I will not bother to pound out the details of
each and every type located in the System.CodeDOM namespace (to be sure, a
small book in and of itself), let’s just focus on the highlights. Before you drill into a
number of tables, consider the generalized format of a .NET source code file,
presented in dazzling pseudo-code:

The Anatomy of a .NET Server

// A namespace contains types.
NAMESPACE myNameSpace
[

// Interfaces types.

INTERFACE : <Other Interfaces>

[
{PROPERTY, METHOD, EVENT}

]
// Class types.
CLASS : <BaseClass>
[
{PROPERTY, METHOD, EVENT}
[NESTED TYPES] * n where n >= 0
]
// Enum types.
ENUM : System.Enum : STORAGE
[
NAME = VAULE
]
// Structure types.
STRUCTURE : System.ValueType
[
{PROPERTY, METHOD, EVENT}
]
// Delegates.
DELEGATE : System.MulticastDelegate
[
{METHOD}
]
]

Where:
PROPERTY[OPTIONAL PARAMS]
[
GET
SET
]
METHOD[OPTIONAL PARAMS][RETURN VALUE]
EVENT[DELEGATE]
And:
{PROPERTY, METHOD, EVENT}
[
[PARAMETER] * n where n >= 0

]

273

Chapter 5

274

Obviously the previous skeleton is not using the syntax of a “real” managed
language. Rather, notice how the pseudo-code is simply representing the layout of
the possible types that can populate a .NET namespace. Once the form is under-
stood, you can represent this layout in memory using a number of types of the
CodeDOM. Next question: How exactly does System.CodeDOM represent these
programming atoms?

The Types of System.CodeDOM

First, System.CodeDOM defines a number of types that allow you to programmati-
cally represent a .NET namespace. In essence, you have two core types; however,
Table 5-2 documents each namespace-centric type.

Table 5-2. Namespace-Building Types of CodeDOM

Namespace-Building CodeDOM Type Meaning in Life

CodeNamespace Represents a single namespace declaration, or a
CodeNamespaceCollection collection of namespaces
CodeNamespacelmport Represents a single namespace import or a

CodeNamespacelmportCollection collection of namespace imports

As you know, .NET namespaces contain any number of types (classes, struc-
tures, enumerations, interfaces, and delegates). Each of these constructs can be
represented by the CodeTypeDeclaration/CodeTypeDelegate types (or, if you
rather, by a collection of related types). Check out Table 5-3.

Table 5-3. Type-Building Types of CodeDOM

Type-Building CodeDOM Type Meaning in Life

CodeTypeDeclaration A type declaration for a class, structure,
enumeration, or interface (as well as a nested type
contained within another type).
The underlying type is established using the
IsClass, IsInterface, IsStruct, and IsEnum
properties.

CodeTypeDeclarationCollection A type declaration collection.

CodeTypeDelegate A delegate declaration.

The Anatomy of a .NET Server

Just as namespaces contain types, types contain any number of members
(properties, methods, and events). As you would expect, System.CodeDOM also
defines a number of members that allow you to represent the members of an in-
memory type. Table 5-4 hits the core items of interest.

Table 5-4. Member-Building Types of CodeDOM

Member-Building CodeDOM Type Meaning in Life
CodeTypeMember An abstract base class that represents a
member of a type

CodeTypeMemberCollection A collection of members of a type
CodeMemberMethod A class method declaration
CodeMemberField A class field declaration
CodeMemberProperty A class property declaration
CodeConstructor A constructor for a type
CodeTypeConstructor A static constructor for a type
CodeEntryPoint A member that is the entry point of a

program (for example, Main())

MemberAttributes Attributes with identifiers that are used by
CodeTypeMember
CodeMemberEvent A class event declaration

CodeParameterDeclarationExpression A parameter declaration

System.CodeDOM also defines a number of types that allow you to represent
various looping and decision constructs, code comments, structured exception
handling logic (try, catch, throw), and even the infamous Goto keyword. Again, the
point of this final task of the chapter is not to provide an exhaustive description of
System.CodeDOM types, but rather to facilitate the importance of type. In this
light, let’s see a concrete CodeDOM example and get to know various members
of this namespace.

275

Chapter 5

276

Building a CodeDOM Example

The application you will now construct is a console application (written in C#)
named SimpleCodeDOM. The program is responsible for performing a series of
steps in addition to generating a set of CodeDOM nodes. Here are the specifics:

¢ The user will be prompted to specify C# or VB .NET as the target of the
source code.

* Once the code target has been obtained, you will build a namespace
containing a single class using System.CodeDOM. As you will see, this class
supports a property that manipulates a private string data type and a
method to display the value.

¢ Once the *.vb or *.cs file has been saved to file, you will dynamically compile
the source code into a .NET assembly (way cool).

¢ Finally, you prompt the user for a string value and make use of late binding
to interact with the generated assembly and its internal types.

Basically, this exercise allows you to build a (painfully) simplified custom
compiler that emits C# or VB .NET source code! Of course, the major limitation of
this example program is that it only knows how to compile the following class
(shown here in C#):

// This is the wicked cool Hello class.
namespace SimpleCodeDOMHelloClass {
using System;
using System.Windows.Forms;

public class HelloClass : object {

// The state data...
private string mMsg;

public HelloClass(string msg) {mMsg = msg;}
public HelloClass() {}

// The Message property.

public string Message {
get {return this.mMsg;}
set {mMsg = value;}

}

The Anatomy of a .NET Server

// Show 'em what we got!
public void Display() {
MessageBox. Show(mMsg) ;
}
}
}

I will assume that you will take this example and add additional user interac-
tivity to fix this limitation as you see fit.

Building the Main() Function

The CodeDOM program is driven by a Main() function that is in charge of trig-
gering each aspect of your design specification. You do need to import a number
of namespaces to interact with the C# and VB .NET code providers
(Microsoft.CSharp and Microsoft.VisualBasic, respectively) as well as the types
necessary to facilitate late binding (System.Reflection). I drill into the details of
System.Reflection in the next chapter. Until then, here is your initial crack at the
SimpleCodeDom application:

using System;

using System.CodeDom;

using System.CodeDom.Compiler;
using Microsoft.CSharp;

using Microsoft.VisualBasic;
using System.IO;

using System.Reflection;

namespace SimpleCodeDOM
{
class HelloCodeGen
{
// Access to the code generator.
private static ICodeGenerator itfCG;
// Access to the code compiler.
private static ICodeCompiler itfCC;
// cs or vb?
private static string syntaxTarget;
private static string assemblyName;

[STAThread]
static void Main(string[] args)

277

Chapter 5

// Prompt for target language.
Console.Write("Do you want to generate C# or VB .NET code?
syntaxTarget = Console.Readline();

// Get interface references from code provider type.
switch(syntaxTarget.ToUpper())
{
case "C#":
case "CSharp":
case "CS":
syntaxTarget = "cs";
CSharpCodeProvider cdp = new CSharpCodeProvider();
itfCG = cdp.CreateGenerator();
itfCC = cdp.CreateCompiler();

break;

case "VB .NET":
case "VB.NET":
case "VB":

syntaxTarget = "vb";
VBCodeProvider vbdp = new VBCodeProvider();
itfCG = vbdp.CreateGenerator();
itfCC = vbdp.CreateCompiler();

break;

default:

Console.WritelLine("Sorry...can't do it...");

syntaxTarget = null;

break;

}

// Only proceed if they picked a valid language

// supported by System.CodeDOM.

if(syntaxTarget != null)

{
// Now create the file and generate the code!
TextWriter txtWriter = CreateFile(syntaxTarget);
PopulateNamespace(itfCG, txtWriter);
txtWriter.Close();
Console.WriteLine("Done!");

// Now compile the code into a .NET DLL.

Console.WriteLine("Compiling code...");
CompileCode(itfCC, syntaxTarget);

278

The Anatomy of a .NET Server

// Now launch the application!
Console.Write("Enter your message: ");
string msg = Console.ReadlLine();
LoadAndRunAsm(msg) ;
Console.WriteLine("Thanks for playing...");

The crux of the Main() method is to build a “code provider” based on the user’s
choice of managed language. The Microsoft.CSharp and Microsoft.VisualBasic
namespaces each define a code provider type (CSharpCodeProvider and
VBCodeProvider, respectively) that support two interfaces, ICodeGenerator and
ICodeCompiler (note that you have declared a member variable of each type in
your HelloCodeGen class). Once you have figured out which language the user
wishes to use, you extract interface references from the correct code provider type
(also note that these interfaces are defined within the System.CodeDOM.Compiler
namespace).

ICodeGenerator provides a number of methods that enable CodeDOM to
create code in memory, given various aspects of the System.CodeDOM object
model (that is, a namespace, a type, a code statement, and so forth). Here is the
formal C# definition:

// This interface is used to generate source code using CodeDOM.
public interface System.CodeDom.Compiler.ICodeGenerator
{
string CreateEscapedIdentifier(string value);
string CreateValidIdentifier(string value);
void GenerateCodeFromCompileUnit(CodeCompileUnit e,
TextWriter w, CodeGeneratorOptions o);
void GenerateCodeFromExpression(CodeExpression e,
TextWriter w, CodeGeneratorOptions o);
void GenerateCodeFromNamespace(CodeNamespace e,
TextWriter w, CodeGeneratorOptions o);
void GenerateCodeFromStatement(CodeStatement e,
TextWriter w, CodeGeneratorOptions o);
void GenerateCodeFromType(CodeTypeDeclaration e,
TextWriter w, CodeGeneratorOptions o);
string GetTypeOutput(CodeTypeReference type);
bool IsValidIdentifier(string value);
bool Supports(GeneratorSupport supports);
void ValidateIdentifier(string value);

279

Chapter 5

280

The ICodeCompiler, as you would guess, is used to compile a source code file
(or set of source code files) into a .NET assembly:

// Used to compile code into a .NET assembly.
public interface System.CodeDom.Compiler.ICodeCompiler
{
CompilerResults CompileAssemblyFromDom(CompilerParameters options,
CodeCompileUnit compilationUnit);
CompilerResults CompileAssemblyFromDomBatch(CompilerParameters options,
CodeCompileUnit[] compilationUnits);
CompilerResults CompileAssemblyFromFile(CompilerParameters options,
string fileName);
CompilerResults CompileAssemblyFromFileBatch(CompilerParameters options,
string[] fileNames);
CompilerResults CompileAssemblyFromSource(CompilerParameters options,
string source);
CompilerResults CompileAssemblyFromSourceBatch(CompilerParameters options,
string[] sources);

Finally, once a reference to each interface has been obtained, the Main() loop
calls a set of static helper functions to do the dirty work. Let’s see each helper
member in turn.

Building the File via Createfile()

The first helper function, CreateFile(), simply generates a new *.vb or *.cs file and
saves it in the current application directory. To make things a bit simpler, the name
of this file will always be Hello.vb or Hello.cs:

// Build the physical file to hold the source code.
private static TextWriter CreateFile(string syntaxTarget)
{
string fileName = String.Format("Hello.{0}", syntaxTarget);
Console.Writeline ("Creating source file {0}.", fileName);
TextWriter t = new StreamWriter (new FileStream (fileName, FileMode.Create));
return t;

}

The Anatomy of a .NET Server

Building the HelloClass (and Containing Namespace)

The PopulateNamespace() helper method is where most of the action happens.
Although this is a rather lengthy code block, fear not. It is actually quite readable:

private static void PopulateNamespace(ICodeGenerator itfCG, TextWriter w)
{
// Add a code comment.
CodeCommentStatement c =
new CodeCommentStatement("This is the wicked cool Hello class");
itfCG.GenerateCodeFromStatement(c, w, null);

// Build root namespace.
CodeNamespace cnamespace =
new CodeNamespace("SimpleCodeDOMHelloClass");

// Reference other namespaces.
cnamespace. Imports.Add(new CodeNamespaceImport ("System"));
cnamespace. Imports.Add(new CodeNamespaceImport ("System.Windows.Forms"));

// Insert the HelloClass.

CodeTypeDeclaration co = new CodeTypeDeclaration ("HelloClass");
co.IsClass = true;

co.BaseTypes.Add (typeof (System.Object));

co.TypeAttributes = TypeAttributes.Public;

cnamespace. Types.Add(co);

// Make a custom constructor.
CodeConstructor ctor = new CodeConstructor();
ctor.Attributes = MemberAttributes.Public;
ctor.Parameters.Add(new CodeParameterDeclarationExpression
(new CodeTypeReference(typeof(string)), "msg"));
ctor.Statements.Add((new CodeAssignStatement(new
CodeArgumentReferenceExpression("mMsg"),
new CodeArgumentReferenceExpression("msg"))));
co.Members.Add(ctor);

// Add the default constructor.

ctor = new CodeConstructor();
ctor.Attributes = MemberAttributes.Public;
co.Members.Add(ctor);

281

Chapter 5

282

// Insert a String field (mMsg).

CodeMemberField cf = new CodeMemberField("System.String", "mMsg");
cf.Comments.Add(new CodeCommentStatement("The state data..."));
cf.Attributes = MemberAttributes.Private;

co.Members.Add(cf);

// Add the Message property.

CodeMemberProperty cp = new CodeMemberProperty();

cp.Name = "Message";

cp.Attributes = MemberAttributes.Public | MemberAttributes.Final ;
cp.Type = new CodeTypeReference("System.String");
cp.Comments.Add(new CodeCommentStatement("The Message property"));

// Getter.

cp.GetStatements.Add(new CodeMethodReturnStatement
(new CodeFieldReferenceExpression(new
CodeThisReferenceExpression(), "mMsg")));

// Setter.

cp.SetStatements.Add(new CodeAssignStatement(
new CodeArgumentReferenceExpression("mMsg"),
new CodeArgumentReferenceExpression("value")));

co.Members.Add (cp);

// Add the Display() method.
CodeMemberMethod c¢cm = new CodeMemberMethod();
cm.Name = "Display";
cm.Attributes = MemberAttributes.Public | MemberAttributes.Final ;
cm.Comments.Add(new CodeCommentStatement("Show 'em what we got!"));
cm.Statements.Add (new CodeMethodInvokeExpression

(new CodeTypeReferenceExpression("MessageBox"), "Show",

new CodeExpression [] {new CodeArgumentReferenceExpression ("mMsg")}));
co.Members.Add(cm);

// Generate the code!
itfCG.CGenerateCodeFromNamespace (cnamespace, w, null);

As you can see, you begin by defining the name of the namespace

(SimpleCodeDOMHelloClass) and establish the set of additional namespaces
that will be referenced.

The Anatomy of a .NET Server

// Build namespace.
CodeCommentStatement c =
new CodeCommentStatement("This is the wicked cool Hello class");
itfCG.GenerateCodeFromStatement(c, w, null);
CodeNamespace cnamespace =
new CodeNamespace("SimpleCodeDOMHelloClass");
cnamespace. Imports.Add(new CodeNamespaceImport ("System"));
cnamespace. Imports.Add(new CodeNamespaceImport ("System.Windows.Forms"));

Next, you create the HelloClass type, establish the characteristics of your class
type, and add it to the namespace itself:

// Insert the HelloClass.

CodeTypeDeclaration co = new CodeTypeDeclaration ("HelloClass");
co.IsClass = true;

co.BaseTypes.Add (typeof (System.Object));

co.TypeAttributes = TypeAttributes.Public;

cnamespace. Types.Add(co);

The HelloClass itself defines two constructors (one taking a System.String and
the other being the default constructor), a private field (or type System.String), a
property named Message, and a method called Display(), which shows the value
of the private string using the Windows Forms MessageBox class. Most of the
code is quite readable; however, when you wish to represent a method
invocation in memory using System.CodeDOM, you will need to build a
new CodeMethodInvokeExpression type.

The CodeMethodInvokeExpression type takes as constructor arguments a
new CodeTypeReferenceExpression type that represents the name of the type you
wish to invoke (MessageBox), the name of the member to invoke (Show), and a list
of parameters to send into the method (represented as an array of CodeExpression
types). For example, the following CodeDOM logic:

// Add the Display() message.
CodeMemberMethod cm = new CodeMemberMethod();
cm.Name = "Display"”;
cm.Attributes = MemberAttributes.Public | MemberAttributes.Final ;
cm. Comments.Add(new CodeCommentStatement("Show 'em what we got!"));
cm. Statements.Add (new CodeMethodInvokeExpression
(new CodeTypeReferenceExpression("MessageBox"), "Show",
new CodeExpression [] {new CodeArgumentReferenceExpression ("mMsg")}));
co.Members.Add(cm);

283

Chapter 5

284

represents the following C# method implementation:

// Show "em what we got!
public void Display()
{

MessageBox. Show(mMsg) ;
}

Finally, before exiting your helper function, you save the object graph to your
source code file using the namespace you have just created and the incoming
TextWriter:

private static void PopulateNamespace(ICodeGenerator itfCG, TextWriter w)
{

// .. all the CodeDOM stuff..

// Generate the code!

itfCG.GenerateCodeFromNamespace (cnamespace, w, null);

}

Compiling the Assembly

Now that you have a source code file saved to disk, the CompileCode() method will
make use of the obtained ICodeCompiler interface and build a .NET DLL
assembly (always named HelloCSAsm.dll or HelloVBAsm.dll). If you have worked
with the raw C# or VB .NET compilers at the command line before, this should
look very familiar:

private static void CompileCode(ICodeCompiler itfCC, string syntaxTarget)
{

// Set assembly name.

assemblyName = String.Format("Hello{0}Asm", syntaxTarget.ToUpper());

// Compile the code.

CompilerParameters parms = new CompilerParameters();

parms.OutputAssembly = assemblyName + ".d11";

parms.CompilerOptions = "/t:library /r:System.Windows.Forms.d1l";

itfCC.CompileAssemblyFromFile(parms,

String.Format("Hello.{0}", syntaxTarget));

The Anatomy of a .NET Server

Running the Assembly (Using Late Binding)

The final helper function of the application LoadAndRunAsm() loads the assembly
into a new AppDomain and exercises the HelloClass using late binding. I
comment on reflection and late binding in the next chapter. Until then, ponder
the following code:

private static void LoadAndRunAsm(string msg)

{
// Load the assembly into a new AppDomain.
AppDomain ad = AppDomain.CreateDomain("HelloAppDomain");
Assembly a = ad.Load(assemblyName);

// Get the HelloClass type.
Type helloClass = a.GetType("SimpleCodeDOMHelloClass.HelloClass");
object obj = Activator.CreateInstance(helloClass);

// Set message property.

PropertyInfo pi = helloClass.GetProperty("Message");
MethodInfo mi = pi.GetSetMethod(true);
mi.Invoke(obj, new object[]{msg});

// Display message!
mi = helloClass.CGetMethod("Display");
mi.Invoke(obj, null);

Running Your Application

Now then, take your application out for a test drive. Assume you have run the
application once for each target language. If you were to look at the application
directory for your project, you would find four dynamically generated files (two
source code files and two .NET assemblies). Check out Figure 5-23.

285

Chapter 5

® C:\Apress Books\InteropBook\Labs\Chapter 5\SimpleCodeDOM\... |__| |E| |z
Fle Edit WView Favorites Tools Help ﬁ'

Back - € ¥ | SO search [Folders | [fi3]~
€ @ ¢ s

Address |3 C:\Apress Books\InteropBook\Labs\Chapter S\SimpleCodeDOM\bin\Deb| v | Go

3

Hello.vb HelloCsAsm.dl

File and Folder Tasks

& Make a new folder
&8 Publish this folder to the

Web e
k? Share this folder i ﬁ D

HellovBAsm.dl SimpleCod... SimpleCod...

Other Places

b |

Figure 5-23. Your generated files, thanks to System.CodeDOM

The resulting console output (and message box display) would look some-
thing like what you see in Figure 5-24.

= _[5]x

Do you want to generate CH or UB _NET code? vh
Creating source file Hello.vh.

Donet

Compiling code...

Enter your message: Suystem.CodeDOM iz way cool...

Syskem, CodeDOM is way cool...

Figure 5-24. The completed application

286

The Anatomy of a .NET Server

Given that you have already seen the resulting C# code, here is the generated
VB .NET code:

'This is the wicked cool Hello class
Imports System

Imports System.Windows.Forms
Namespace SimpleCodeDOMHelloClass

Public Class HelloClass
Inherits Object

'The state data...
Private mMsg As String

Public Sub New(ByVal msg As String)
MyBase.New
mMsg = msg

End Sub

Public Sub New()
MyBase.New
End Sub

'The Message property
Public Property Message As String
Get
Return Me.mMsg
End Get
Set
mMsg = value
End Set
End Property

"Show 'em what we got!
Public Sub Display()
MessageBox. Show(mMsg)
End Sub
End Class
End Namespace

287

Chapter 5

As you can see, System.CodeDOM is a critical .NET namespace for the tool
builders of the world. Given that numerous interop-centric tools make use of
System.CodeDOM under the hood, I hope you found the previous section
enlightening.

e CODE The SimpleCodeDOM project is included under the Chapter 5
RIS
\ Y subdirectory.
L
Summary

The .NET platform is a 100% new architecture that has no relationship to COM
whatsoever. However, like COM, .NET supports the ideals of binary reuse,
language independence, and interface-based programming. As you have seen,
.NET assemblies contain platform-agnostic IL code, type metadata, and an
assembly manifest. Collectively, these entities make .NET assemblies completely
self-describing. Given this, assemblies are not registered within the system
registry, but are located by the runtime by probing the application directory or
the GAC. Recall that the binding process can be modified using application
configuration files.

Within a given assembly, there will be some number of .NET types (classes,
interfaces, enumerations, structures, and delegates). Of course, most of the time,
you will simply fire up Visual Studio .NET and author your source code using the
IDE. However, the System.CodeDOM namespace contains a number of items that
allow you to represent .NET types and their implementations in memory and
commit this object graph to a physical file using a specific managed language.
Clearly, this is a very important aspect of building custom tools that can create
source code for use by other applications (such as wsdl.exe).

In the next (and final) chapter before you begin to formally examine specific
COM/.NET interoperability issues, you will get to understand the process of
reading .NET type information at runtime using the System.Reflection name-
space. As you will see, NET makes the process of reading type information much
simpler than the classic COM ITypeLib(2) and ITypelnfo(2) interfaces.

288

CHAPTER 6

NET Types

In Chapter 5, you examined the core traits of .NET assemblies. During this
discussion, I did not make much mention of the specific type system of the

.NET platform. Therefore, the first task of this chapter is to document the set of
CLS-compliant data types, their relationships, and how these core types map into
C# and VB .NET-specific keywords. After that I formalize each of the possible user-
defined types supported by the .NET Framework (classes, structures, interfaces,
and enumerations).

The bulk of this chapter, however, examines how to build applications that are
capable of reading the set of types contained within a given assembly using the
System.Reflection namespace. Along the way, you are exposed to a number of
related topics such as .NET attributes and late binding. Once you complete this
chapter, you will have a solid handle on the .NET type system, as well as that of
classic COM. In effect, you will be in a perfect position to truly understand the
inner details of COM/.NET interoperability.

The Role of System.Object

No examination of the .NET type system would be complete without discussing
the role of System.Object. This class type is the ultimate root of each and every
class entity in the .NET universe. System.Object is defined within mscorlib.dll as
follows:

// The chief base class.
public class Object
{
public Object();
// Instance methods.
public virtual bool Equals(object obj);
public virtual int GetHashCode();
public Type GetType();
public virtual string ToString();
// Static (that’s Shared in VB .NET) methods.
public static bool ReferenceEquals(object objA, object objB);
public static bool Equals(object objA, object objB);

289

Chapter 6

290

As you can see, Equals(), GetHashCode(), and ToString() have each been
declared virtual and can thus be overridden by a derived type. Also note that two
members of System.Object (ReferenceEquals() and an alternative version of the
Equals() method) have been declared static and can thus be called at the class
level without first needing to create an object reference. Table 6-1 documents the
functionality of each member.

Table 6-1. The Methods of System.Object

Method of System.Object Meaning in Life

Equals() This instance-level method is used to test if two object
references point to the same object in memory. This method
may be overridden to test for value-based semantics.

Equals() The static version of Equals() compares two objects using
value-based or reference-based semantics (depending on
how the object being tested has been configured).

GetHashCode() This method is used to return a numerical value that can
identify an object held within a HashTable data structure.

GetType() As far as this chapter is concerned, this is the most
important member of System.Object. Using GetType()
callers are able to obtain a Type object that fully describes
the characteristics of a given object.

ReferenceEquals() This static method compares two objects using reference-
based semantics.

ToString() By default, this method returns the fully qualified name of a
given type (for example, Namespace.Type). This method is
typically overridden to return a string that contains
name/value pairs representing the state of the current
object reference.

Overriding ToString()

To illustrate how a derived class can override the virtual members of
System.Object, here is a simple Car type that has overridden ToString() to return
its current state data as a set of formatted name/value pairs. Notice that I am
making use of the StringBuilder type (defined in the System.Text namespace) for
reasons of efficiency. Simply making use of a System.String and the overloaded +
operator also fits the bill.

.NET Types

// Overriding ToString().
public class SimpleCar // : object implied.

{

private string mPetName;
private string mColor;
private int mCurrSpeed;

public SimpleCar(string petname, string color, int sp)

{
mPetName = petname;
mColor = color;
mCurrSpeed = sp;

}

public SimpleCar(){}

public override string ToString()

{
StringBuilder sb = new StringBuilder();
sb.AppendFormat("[Pet Name: {0}, ", mPetName);
sb.AppendFormat("Color: {0}, ", mColor);
sb.AppendFormat("Current Speed: {0}]", mCurrSpeed);
return sb.ToString();

If you take your class type out for a spin, you might build a Main() loop as

follows:

class CarTester

{

[STAThread]
static void Main(string[] args)

{

SimpleCar car = new SimpleCar("Mel", "Yellow", 40);
Console.Writeline(car); // ToString() called automatically.

}

The output (of course) prints "[Pet Name: Mel, Color: Yellow, Current Speed: 40]"
to the console window. If you did not override ToString(), you would simply see the
fully qualified name of the SimpleCar type.

291

Chapter 6

292

The Two Faces of Equality

System.Object defines several ways to allow you to test if two objects have the
same internal state values (that is, value-based semantics) as well as if two object
references are pointing to the same entity on the managed heap (that is, refer-
ence-based semantics). To illustrate the distinction, consider the following update
to the Main() method:

class CarTester

{
[STAThread]
static void Main(string[] args)
{
SimpleCar car = new SimpleCar("Mel", "Yellow", 40);
Console.Writeline(car);
// Test object refs.
SimpleCar carRef = car;
Console.Writeline("Are Car and carRef pointing to same car? : {0}",
object.ReferencekEquals(car, carRef));
// Compare new refs.
SimpleCar car2 = new SimpleCar("Hank", "Pink", 90);
Console.WritelLine("Are car and car2 pointing to same car? : {o0}",
object.ReferenceEquals(car, car2));
}
}

Here, you are first testing to see if the car and carRef variables are pointing to
the same object allocated on the managed heap (which they are). Next, you call
the static ReferenceEquals()on two distinct objects. In this case, you are told the
object variables are not the same (which is correct). Figure 6-1 shows the output
thus far.

[Pet Mame: Mel, Color: ¥ellow, Current Speed: 481
ire Car and carRef pointing to same car? : True

Aire car and car?2 pointing to same car? : False
Press any key to continue

Figure 6-1. Testing object references

Now, let’s assume you updated Main() once again as follows:

static void Main(string[] args)

{

SimpleCar car2 = new SimpleCar("Hank", "Pink", 90);

// Compare state?

SimpleCar car3 = new SimpleCar("Hank", "Pink", 90);

Console.WritelLine("Do car2 and car3 contain same state ? : {0}",
object.Equals(car2, car3));

Console.Writeline("Do car2 and car3 contain same state ? : {0}",
car2.Equals(car3));

Here, you begin by using the static System.Object.Equals() method as well as
the default inherited implementation of Equals() currently used by the SimpleCar
type. Notice that although car2 and car3 have been created with identical
constructor arguments, the test for identical state data fails!

The reason is simple. Both the static and instance-level System.Object.Equals()
methods, by default, only test object references and not the state data of an object.
When you wish to retrofit your custom class types to perform value-based seman-
tics, you need to explicitly override the Equals() method for your class. In addition,
understand that classes that override Equals() should also override GetHashCode()
to ensure that the object in question behaves property if placed in a hash
container. Thus, you could update the SimpleCar class as follows:

// Overriding Equals() and GetHashCode().
public class SimpleCar : object

{

public override bool Equals(object obj)
{
// Test values (not references).
if((((SimpleCar)obj).mColor == this.mColor) &&
(((SimpleCar)obj).mCurrSpeed == this.mCurrSpeed) &%
(((SimpleCar)obj).mPetName == this.mPetName))
return true;
else
return false;
}
// The System.String class implements a nice hash algorithm,
// so we just leverage it using the pet name member variable.
public override int GetHashCode()
{ return mPetName.GetHashCode(); }

.NET Types

293

Chapter 6

294

If you now test the state values of car2 and car3 using the static or instance-
level Equals() method, you find that they do indeed contain the same state data
and will thus pump out the following to the console:

Do car2 and car3 contain same state? : True
The remaining member of System.Object, GetType(), is examined in gory

detail a bit later in this chapter. Until then, let’s get to know the set of intrinsic data
members supported by the .NET runtime.

T ovee CODE The CarObject project is located under the Chapter 6
XN ject proj p
\ YR subdirectory.

=
=

i

Examining the .NET Data Type System

As you recall from the previous chapter, the Common Type System (CTS) is a set of
rules that define the full set of programming constructs and data types that may
be present in a given .NET-aware programming language. Figure 6-2 documents
the intrinsic types supported by the CTS. Notice how all reference types ultimately
derive from the mighty System.Object.

As you can see, the System.ValueType type is the base class for any and all
intrinsic data types supported by a given programming language (for example, int,
string, long, and so forth). The role of System.ValueType is to ensure that the
derived type automatically obeys the rules of value-based semantics. Thus, when
you compare two C# int types (which is an alias for the System.Int32 type) you
are returned the result of the comparison of their underlying values, not their
location in memory. In fact, ValueTypes are not placed on the managed heap at all!
ValueTypes are always allocated on the stack (and thus are destroyed when they
fall out of the defining scope). For example:

// Remember, the C# 'int' is just an alias for System.Int32,
// and therefore we can call inherited members directly!

int x = 99;

inty = 9;

Console.WriteLine("Equal? : {0}", x.Equals(y)); // False!

In contrast, types that do not derive from ValueType are allocated on the
managed heap and typically make use of the default implementation of
System.Object.Equals() (meaning equality tests are made using reference-based
semantics).

Object < < Boolean
’ < UInt16
< Byte
Type < UInt32
< Char
N— String UInt64
Decimal
N Array Void
Value Type Double
N— Exception Any type DateTime
it grtvee L T g
Delegate is a structure |[¢ Guid
not a class.
T < Int32
MultiCastDelegate < TimeSpan
< Int64
< Single
SByte
Enum

Figure 6-2. The hierarchy of core types

Do note, however, that even though System.String is not a ValueType (and is
thus allocated on the heap) the designers of this class type have overridden
Object.Equals() to use value-based semantics (just like you did for the SimpleCar
type). Thus:

// System.String.Equals() works with values, not references.
string s1 = "Hello";

string s2 = "Hello";

Console.WriteLine("Equal? : {0}", si.Equals(s2)); // True!
string s3 = "Oh the humanity..";

Console.WritelLine("Equal? : {0}", si.Equals(s3)); // False!

.NET Types

295

Chapter 6

System Data Type Language Mappings

Regardless of which managed language you choose to work with (C#, VB .NET, and
so forth) you are given a set of language-specific keywords that alias the correct
ValueType-derived entity of the base class libraries. More often than not, you

296

simply make use of these keywords directly. However, understand that the

following two variable declarations are identical in the eyes of .NET:

// Two C# strings.
string myString;

System.String myOtherString;

In VB .NET you would get to the same result using the following syntax:

' Two VB .NET strings.
Dim myString as String

Dim myOtherString as System.String

Table 6-2 illustrates how a given base class data type maps into specific
keywords of the C#, MC++, and VB .NET programming languages. (Notice that
some of the intrinsic data types of the CTS are not supported under VB .NET since
they are not CLS-compliant.)

Table 6-2. .NET Data Type Language Mappings

.NET Base Class

Visual Basic. NET

C# Representation

C++ with Managed

Representation Extensions
Representation
System.Byte Byte byte char
System.SByte Not supported Sbyte signed char
System.Int16 Short short short
System.Int32 Integer int int or long
System.Int64 Long long __int64
System.UInt16 Not supported ushort unsigned short
System.UInt32 Not supported uint unsigned int or
unsigned long
System.UInt64 Not supported ulong unsigned __int64

Table 6-2. .NET Data Type Language Mappings (continued)

.NET Base Class Visual Basic. NET C# Representation C++ with Managed
Representation Extensions
Representation
System.Single Single float float
System.Double Double double double
System.Object Object object Object*
System.Char Char char __wechar_t
System.String String string String*
System.Decimal Decimal decimal Decimal
System.Boolean Boolean bool bool

Obviously, these intrinsic data types are used to function as method parame-
ters, member variables, and local variables in some method scope. Understand
that given the fact that these language-specific keywords alias a specific type in
the .NET base class library, and given the fact that all types ultimately derive from
System.Obiject, you are able to write code such as the following:

// 12 is a C# int, which is really System.Int32, which derives from
// System.ValueType, which derives from System.Object.
Console.Writeline(12.ToString());
Console.WriteLine(12.GetHashCode());
Console.Writeline(12.Equals(12));

The Set of Custom .NET Types

In addition to the set of internal data types, you will certainly need to build custom
data types for use in a given application. In the world of .NET, you have five
possible type constructs that can be used. Table 6-3 documents each possibility.

.NET Types

297

Chapter 6

298

Table 6-3. .NET Types

.NET Type
Class

Structure

Interface

Enumeration

Meaning in Life

When you build custom classes (or hierarchies of classes)
you are building heap-allocated types that are managed by
the .NET garbage collector. Class types benefit from each
pillar of OOP, can work as base classes to other classes, and
can define any number of members.

In essence, structures can be regarded as “lightweight class
types” that are used to group logically related data items.
Unlike classes, structures cannot be subclasses. They always
derive directly from System.ValueType.

As already mentioned, structures are allocated on the stack
(rather than the heap) and are therefore a bit more efficient
than a corresponding class definition.

Interfaces are a named set of abstract methods that may (or
may not) be supported by a given class or structure. Given
that interfaces are strongly typed data types, you can obtain
an interface reference from a type and access a subset of its
overall functionality, as well as use interface variables as
function parameters and return values.

Enums are a set of name/value pairs that always derive from
System.Enum. By default, the storage used for a given
enumeration is System.Int32, but you are able to specify a
different storage type if you are concerned with saving every
byte of memory.

In addition to these four categories of .NET types, delegates are often consid-
ered a fifth possibility. As you may know, delegates are indeed classes that derive
from the System.MulticastDelegate base class. More often than not, however,

when you are building a custom delegate, you make use of a language-specific

keyword (such as the C# delegate keyword). Whichever way you go, delegates are
used to represent a type-safe (and object-oriented) function pointer, which
provides the foundation for the .NET event model. I hold off on discussing dele-
gate types until you formally examine COM/.NET event interoperability. Until
then, let’s check out the core four.

.NET Class Types

.NET Types

Every .NET-aware language supports the notion of a class type, which is the

cornerstone of object-oriented programming. A class is composed of any number
of properties, methods, and events that typically manipulate some set of state
data. As you would expect, the CTS allows a given class to support abstract
members that provide a polymorphic interface for any derived classes. CTS-

compliant classes may only derive from a single base class (multiple inheritance is
not allowed for a .NET class type). To help keep your wits about you, Table 6-4
documents a number of characteristics of interest to class types.

Table 6-4. .NET Class Characteristics

Class Characteristic
Is the class “sealed”or not?

Does the class implement any interfaces?

Is the class abstract or concrete?

What is the “visibility” of this class?

Meaning in Life
Sealed classes are types that cannot
function as a base class to other classes.

An interface is a collection of abstract
members that provides contract between
the object and object user. The CTS allows
a class to implement any number of
interfaces.

Abstract classes cannot be directly
created, but they are intended to define
common behaviors for derived types.
Concrete classes are directly creatable.

Each class must be configured with a
visibility attribute. Basically, this trait
defines if the class can be used by external
assemblies or used only from within the
containing assembly (for example, a
private helper class).

299

Chapter 6

300

Like other OO-based programming languages, managed languages support
the use of “nested” classes. This programming construct allows an outer (or
nesting class) to define and manipulate an inner (or nested) type. This technique
is yet another way to force tight encapsulation of related types and is especially
useful when you want to create an object factory using the nested type. For
example:

// This type makes cars.
public class CarFactory

{

// Return a Car type to the caller.
public Car GetNewCar()

{ return new Car();}

// Nested car type: CarFactory.Car.
public class Car{ /* some members */}

.NET Structure Types

The concept of a structure is also formalized by the CTS. If you have a C back-
ground, you should be pleased to know that these user-defined types (UDTs) have
survived in the world of .NET (although they behave a bit differently under the
hood). In general, a structure is a lightweight class type, with a number of notable
exceptions. For example, structures may define any number of parameterized
constructors (the no-argument constructor is reserved). In this way, you are able
to establish the value of each field during the time of construction. For example:

// Create a C# structure.
struct POINT

{

// Structures can contain fields.
public int mX, mY;

public POINT(int x, int y)

{mX = x; my =y; }

All CTS-compliant structures automatically derive from a common base class:
System.ValueType. As you have seen, this base class configures a structure to func-
tion as a value-based (stack) data type rather than a reference-based (heap) entity.
Be aware that the CTS permits structures to implement any number of .NET inter-
faces. Structures, however, may not derive from other types and are therefore
always “sealed.”

.NET Interface Types

Unlike classic COM, .NET interfaces do not derive from a common base interface
such as I[Unknown. In fact, topmost interfaces have no parent class (not even
System.Object!). Interfaces are nothing more than a collection of abstract
methods, properties, and event definitions. On their own, interfaces are of little
use. However, when a class or structure implements a given interface in its unique
way, you are able to request access to the supplied functionality using an interface
reference. When you build custom interfaces using a .NET-aware programming
language, the CTS permits a given interface to derive from multiple base inter-
faces (something not possible in classic COM). In this way, you are able to build
elaborate interface hierarchies. For example:

// A James Bond car is a submergible sports car.

public interface ISportsCar{}

public interface IUnderwaterVehicle{}

public interface IJamesBondCar : ISportsCar, IUnderwaterVehicle{}

.NET Enumeration Types

Finally, there are enumerations. These types are a handy programming construct
that allows you to group name/value pairs under a specific name. For example,
assume you are creating a video game application that allows the end user to
select one of three player types (Wizard, Fighter, or Thief). Rather than keeping
track of raw numerical values to represent each possibility, you could build a
custom enumeration:

// A C# enumeration.
enum PlayerType
{ Wizard = 100, Fighter = 200, Thief = 300 };

The CTS demands that enumerated types derive from a common base class,
System.Enum, which defines a number of members that allow you to interact with
the name/value pairs (such as testing if a given name exists within a given enum).
Also be aware that (by default) .NET enumerations make use of a System.Int32 for
the underlying storage. If you so choose, you may change this underlying storage
using the following syntax:

// Change storage type.
enum PlayerType : long
{ Wizard = 100, Fighter = 200, Thief = 300 };

.NET Types

301

Chapter 6

302

Building a Complex Code Library

Now that you have had a chance to examine the essence of the .NET type system,
let’s build a complex C# code library that you can use during the remaining exam-
ples of this chapter. The assembly that you will construct (ComplexTypeLibrary.dll)
will define the following types (in two distinct but interrelated namespaces) as
shown by the following ILDasm.exe screen shot (Figure 6-3).

¥ C:\Apress Books\InteropBook\Labs\Chapter 5\Co... |:||E||g|

File Wiew Help

S - press BookstnteropE ookiLabshChapter BACamplexT vpelibrantbinDeb
----- b MAMIFEST
- W ComplexT ypelibrany

g ComplexTypeLibrary. TheTypes

EE IFacelne

EJE IFacelnelmplClazs

ﬁaE IFaceTwo

#-EE TheEnum

E't TheMestingClass

----- b .class public auto ansi beforefieidint
mE TheMestedClass

il ctor: void()

Baj TheStuct

Ea---t SimpleClazs

< I | 3
.azzembly ComplexT ypelibrary Lo
{ |

Figure 6-3. The ComplexTypeLibrary assembly

Because this chapter is more concerned with types than implementations of
types, the code is short and sweet. Here is the complete listing (note the nested
namespaces, nested classes, and interface definitions):

// Our 'complex' .NET code library.
namespace ComplexTypelibrary
{

// A class.

public class SimpleClass{}

namespace TheTypes // Nested namespace.

{

// An enum.

public enum TheEnum
{FieldA, FieldB}

// Interfaces.

public interface IFaceOne

{
string ReadOnlyProp{get;}
string WriteOnlyProp{set;}
TheEnum ReadWriteProp{get; set;}
}

public interface IFaceTwo

{int SimpleMethod();}

// A struct implementing an interface.
public struct TheStruct : IFaceTwo
{public int SimpleMethod(){return 0;}}
// The nesting class

public class TheNestingClass

{
// A nested class, with one property.
public class TheNestedClass
{
private string someStrVal = "I'm nested!";
public string GetInternalString()
{return someStrval;}
}
}

// A class implementing an interface.
public class IFaceOneImplClass : IFaceOne
{

public IFaceOneImplClass()

{e = TheEnum.FieldB;}

private TheEnum e;

public string ReadOnlyProp

{get{return "Hey!";}}

public string WriteOnlyProp

{set {string x = value;}}

public TheEnum ReadWriteProp

{get{return e;} set{e = value;}}

.NET Types

303

Chapter 6

304

The ComplexTypeLibrary.dll is very generic (by design). Nevertheless, this
gives us an interesting test bed to examine during the next topic under scrutiny:
.NET reflection services.

Understanding Reflection

As you already know, ILDasm.exe is the tool of choice to examine the types within
a given .NET assembly at design time (that is, after compilation). However, how
exactly is ILDasm.exe able to read the assembly metadata? To be sure, ILDasm.exe
is not making use of COM-centric type interfaces such as ITypeLib(2) or
[Typelnfo(2).

The core problem with reading COM type information at runtime is the fact
that you are forced to make use of a very non-OO-based architecture. As you recall
from Chapter 4, the process of runtime type discovery under COM requires us to
interact with the COM library and a small set of interfaces (and about 8 billion
related structures).

Under .NET, however, developers are able to leverage the System.Type class
and the related System.Reflection namespace. Like any other .NET namespace,
System.Reflection makes use of the same well-designed, OOP-based protocol that
is the .NET architecture. To begin, let’s check out the role of the Type class itself.

Working with System.Type

The System.Type class represents the runtime representation of the metadata,
which describes a given .NET type (class, interface, structure, enumeration, dele-
gate). As you saw in Chapter 5, the .NET metadata format is quite verbose. The
good news is that the type information contained within a Type reference is
manipulated using a small set of members that shield you from the raw metadata
information. Table 6-5 lists some (but not all) of the members of System.Type,
grouped by related functionality.

.NET Types

Table 6-5. The Members of System.Type

System.Type Member
IsAbstract

IsArray

IsClass
IsCOMObject
IsEnum
IsInterface
IsPrimitive

IsNestedPublic IsNestedPrivate

IsSealed
IsValueType

GetConstructors()
GetEvents()
GetFields()
Getlnterfaces()
GetMethods()
GetMembers()
GetNestedTypes()
GetProperties()

FindMembers()

GetType()

InvokeMember ()

Meaning in Life

These properties (among others) allow you to
discover a number of basic traits about the Type
you are referring to (for example, if it is an abstract
method, an array, a nested class, and so forth).

These methods (among others) allow you to obtain
an array representing the items (interface, method,
property, and so on) you are interested in.

Each method returns a related array (for example,
GetFields() returns a FieldInfo array, GetMethods()
returns a MethodInfo array, and so forth).

Be aware that each of these methods has a
singular form (for example, GetMethod(),
GetProperty()) that allows you to retrieve a
specific item by name, rather than an array of all
related items.

Returns an array of MemberInfo types, based on
search criteria.

This method returns a Type instance given
a string name.

This method allows late binding to a given item.

Do be aware that many of the more elaborate methods of Type (that is,
GetProperties() and so forth) require that you explicitly make use of the types
contained within the System.Reflection namespace. However, before you examine

this namespace, let’s check out how to read basic metadata information using

some core members of the Type class.

305

Chapter 6

306

Obtaining a Type Reference Using
System.0Object.GetType()

There are many ways to obtain a reference of System.Type. As you already are
aware, System.Object defines a method named GetType() that returns (of course)
the underlying Type describing the item. For example:

// Get a Type reference using Object.GetType().

Type t = 12.CGetType();

Console.WritelLine("->Containing assembly: {0}", t.Assembly);
Console.WritelLine("->Base class: {0}", t.BaseType);
Console.WriteLine("->Full Name: {0}", t.FullName);
Console.Writeline("->Is this an array? : {0}", t.IsArray);
Console.WritelLine("->Is this a COM object? :{0}", t.IsCOMObject);

Understand that when you wish to obtain metadata information for a given
type using the inherited System.Object.GetType() method, you are required to
have an active object reference. What if you do not wish (or need) to create an
object reference but still require valid metadata?

Obtaining a Type Reference
Using the C# typeof Operator

Another (perfectly valid) approach to obtaining a Type reference is to make use of
the C# typeof operator. The nice thing about using typeof is the fact that you are
not required to create an object of the entity you wish to examine. The only
requirements are that you have

* Set areference to the assembly containing the type you wish to examine

e Made use of the using or Imports statement (or whatever syntax is required
by your managed language of choice) to scope the type (or make use of the
fully qualified name)

Assume you have set a reference to the core ADO.NET assembly,
System.Data.dll. Once you have done so, you can obtain type information for the
DataSet class as follows:

// Now use typeof operator.
Console.WriteLine("Using typeof operator!");
Type t3 = typeof(DataSet);

.NET Types

Console.WriteLine("->Containing assembly: {0}", t3.Assembly);
Console.WriteLine("->Base class: {0}", t3.BaseType);
Console.WriteLine("->Full Name: {0}", t3.FullName);
Console.WriteLine("->Is this an array? : {0}", t3.IsArray);
Console.WriteLine("->Is this a COM object? :{0}", t3.IsCOMObject);

Again, notice that although you are reading the same bits of metadata for the
DataSet type, using the typeof operator, you are not required to create an instance
of this class type.

Obtaining a Type Reference Using the Type Class

The final, and most flexible, way of obtaining a Type reference is to make use of
the static (or in terms of VB .NET, Shared) method Type.GetType(). The nice thing
about this avenue of type acquisition is that you are able to specify the name of
the assembly that contains the type you wish to examine. Like the C# typeof oper-
ator, you are still required to set a reference to the assembly containing the type
you wish to examine and do not need to make an active object. Unlike the typeof
operator, you are not required to make use of the “using”/“Imports” (or whatever)
keyword in the file using Type.GetType() because the string sent into this method
includes the name of the containing assembly. Assume you have set a reference to
the ComplexTypeLibrary assembly you created earlier in this chapter. You could
obtain type information for the SimpleClass type as follows:

// Now get a type in a different assembly using
// the static Type.GetType() method.
Console.WritelLine("Using static Type.GetType()!");
Type t2 =

Type.GetType("ComplexTypelLibrary.SimpleClass, ComplexTypelLibrary");
Console.WriteLine("->Containing assembly: {0}", t2.Assembly);
Console.Writeline("->Base class: {0}", t2.BaseType);
Console.WriteLine("->Full Name: {0}", t2.FullName);
Console.WritelLine("->Is this an array? : {0}", t2.IsArray);
Console.WriteLine("->Is this a COM object? :{0}", t2.IsCOMObject);

As you can see, the basic form of the string sent into Type.GetType() takes the
following format:

// String format: "<namespace>.<typeName>, assemblyIdentity"

Type t2 =
Type.GetType("ComplexTypelLibrary.SimpleClass, ComplexTypelLibrary");

307

Chapter 6

Basically, a dot is used to separate namespaces and types, while a comma is
used to mark the segment of the string that holds the name of the referenced
assembly (minus the file extension). Type.GetType() also honors using additional
string tokens, as seen in Table 6-6, which documents the core set of delimiters.

Table 6-6. Core Tokens Parsed by Type.GetType()

Type.GetType() Argument Token Meaning in Life

Comma (,) Precedes the Assembly name
Plus sign (+) Precedes a nested class

Period () Denotes namespace identifiers

Now then, assume you have a simple console application that makes use of
each of the three techniques illustrated in this section (where all the logic is
contained in the application’s Main() method). Figure 6-4 shows the output.

= =1E"

sing System.0bject.GetType()?

*Containing assembly: mscorlib, Uersion=1.8.33800_.8,. Cul
pken=b77a5c561734e087

»Base class: System.UalueType

»Full Hame: System.Int32

*Is this an array? : False

>*Is this a COM obhject? : False

sing static Type.GetTupel>?

*Containing assembly: ComplexTupeLibrary, Uersion=1.8.7
1., PublicKeyToken=null

»Base class: System.0Object

»Full Hame: ComplexTypeLibrary.SimpleClass

*Is this an array? : False

*Is this a COM obhject? : False

sing typeof operator?

*»Containing assembly: System.Data, Version=1.8.336860.8.
eyToken=h77a5c561734eA897

»Base class: System.ComponentModel.MarshalBylalueCompon
»Full Hame: System.Data.DataSet

*Is this an array? : False

*Is this a COM obhject? : False

ress any key to continue

Figure 6-4. Fun with System.Type

308

1 leeeee CODE The FunWithType project is located under the Chapter 6
YR subdirectory.

The System.Reflection Namespace

Although the Type class allows you to obtain basic type information for a given
item, most more elaborate methods of System.Type require additional types of the
System.Reflection namespace. Using these members, you are able to drill into a
reference type and obtain additional details such as the list of supported construc-
tors, properties, methods, and events. Table 6-7 contains a (very) partial list of the
members of the System.Reflection namespace.

Table 6-7. Select Members of the System.Reflection Namespace

Member of the Meaning in Life
System.Reflection Namespace
Assembly This class (in addition to numerous related types)

contains a number of methods that allow you to load,
investigate, and manipulate an assembly.

AssemblyName This class allows you to discover numerous details
behind an assembly’s identity (version information,
culture information, and so forth).

EventInfo Holds information for a given event.

FieldInfo Holds information for a given field.

MemberInfo This is the abstract base class that defines common
behaviors for the EventInfo, FieldInfo, MethodInfo, and
PropertyInfo types.

MethodInfo Contains information for a given method.

Module Allows you to access a given module within a multifile
assembly.

ParameterInfo Holds information for a given parameter.

Propertylnfo Holds information for a given property.

.NET Types

309

Chapter 6

310

Dynamically Loading an Assembly

The real workhorse of System.Reflection is the Assembly class. Using this type, you
are able to dynamically load an assembly, invoke class members at runtime (late
binding), as well as discover numerous properties about the assembly itself.
Assume you have set a reference to the ComplexTypeLibrary assembly created
previously in this chapter. The static Assembly.Load() method can be called by
passing in the friendly string name:

// Investigate the ComplexTypelibrary assembly.

using System;

using System.Reflection;

using System.IO; // Defines FileNotFoundException type.

public class MyReflector

{
public static int Main(string[] args)

{
// Use Assembly class to load the ComplexTypeLibrary.

Assembly a = null;
try

{
a = Assembly.Load("ComplexTypelLibrary");

}
catch(FileNotFoundException e)

{Console.WriteLine(e.Message);}
return 0;

}

Notice that the static Assembly.Load() method has been passed in the friendly
name of the assembly you are interested in loading into memory. As you may
suspect, this method has been overloaded a number of times to provide a number
of ways in which you can bind to an assembly. One variation to be aware of is that
the textual information sent into Assembly.Load() may contain additional string
segments beyond the friendly name. Specifically, you may choose to specify a
version number, public key token value, or locale (to load a shared assembly). You
see this approach later in this chapter when you examine late binding under the
.NET Framework.

Of equal interest is the static LoadFrom() method of the Assembly type. Using
this method, you are able to load an assembly using an arbitrary path:

// Load an assembly given a specific path.
Assembly otherAsm = Assembly.LoadFrom(@"C:\MyAsms\foo.d11");

Enumerating Types in a Referenced Assembly

Once you have a reference to a loaded assembly, you may discover the characteris-
tics of each .NET type it contains using Assembly.GetTypes(). This method returns
an array of Type objects, from which you can call any of the members of the Type
class. For example:

// List all members within the assembly.
// Assume 'a' is a currently loaded assembly.
Console.Writeline("Listing all types in {0}", a.FullName);
Type[] types = a.CetTypes();
foreach(Type t in types)

Console.WritelLine("Type: {0}", t);

Enumerating Class Members

Now assume you are interested in discovering the full set of members supported
by one of the .NET types located within a given assembly. To do so, you can make
use of the GetMembers() method defined by the Type class. As you recall, the
Type class also defined a number of related methods (GetInterfaces(),
GetProperties(), GetMethods(), and so forth) that allow you to specify a kind of
member. GetMembers() itself returns an array of MemberInfo types. Again, by
way of example:

// List all members of a given type.
Type t = a.GetType("ComplexTypelibrary.SimpleClass");
MemberInfo[] mi = t.GetMembers();
foreach(MemberInfo m in mi)
Console.WritelLine("Member Type {0}: {1} ",
m.MembexrType.ToString(), m);

Enumerating Method Parameters

Not only can you use reflection to gather information for the members of a type,
you can also obtain information about the parameters of a given member. To do
so requires the use of MethodInfo.GetParameters(). This method returns a

ParameterInfo array. Each item in this array contains numerous properties for a

.NET Types

311

Chapter 6

312

given parameter. Assume that you have added a Foo() method to the SimpleClass
type and wish to read the metadata that describes its parameter set:

// Get information of the Foo() method..

Type t = a.GetType("ComplexTypelibrary.SimpleClass");
MethodInfo mi = t.GetMethod("Foo");

// Show number of params.

Console.Writeline("Here are the params for {0}", mi.Name);
ParameterInfo[] myParams = mi.GetParameters();

Console.WriteLine("Method has " + myParams.Length + " params");
// Show some info for param.

foreach(ParameterInfo pi in myParams)

{

Console.WritelLine("Param name: {0}", pi.Name);
Console.Writeline("Position in method: {0}", pi.Position);
Console.WritelLine("Param type: {0}", pi.ParameterType);

Building a Custom .NET Type Viewer

In the previous few pages, you have seen bits and pieces of reflection-centric code.
To pull the related topics together into a cohesive unit, you now spend some time
building your own custom .NET type viewer application. As you will see, you will
basically build your own version of ILDams.exe. Specifically, this Windows Forms
application allows the end user to do the following:

¢ Select a given assembly to examine using a standard File Open dialog.

* View select characteristics of the loaded assembly.

* View alist of all types contained within the loaded assembly.

¢ View member details for a given type.

¢ View the set of parameters for a given member of a given type.

If you want to follow along, create a new Windows Forms application named
DotNetTypeReader. As you would expect, you have a topmost File menu that
supports Open and Exit submenus (File | Exit simply calls the static
Application.Exit() method). Once you open a valid .NET *.dll or *.exe, the type
names are extracted and placed into one of four list boxes. For example, here is the

dump of the ComplexTypeLibrary.dll assembly created earlier in this chapter
(Figure 6-5).

.NET Types

™ The C# .NET Type Reader

Filz More Details

Classes

ComplexT ppeLibram. SimpleClass
ComplexT ypeLibram. TheT ypes. TheM estingClaszs

ComplexT ypeLibrar. TheT vpes. TheMeshngClazs+T heMestedClass
ComplexT ppeLibram. TheT ypes. IFace0nelmplClazs

Structures

ComplexT ppeLibram. TheT ypes. TheStruct

Enumerations

ComplexT ypeLibrary. TheT ypes. TheE num

Interfaces

ComplexT ypeLibram. TheTypes. [Facelne
ComplexT ppeLibram. TheTypes IFaceT wo

Figure 6-5. Viewing type names in a given assembly

In addition to the various GUI widgets, the Form maintains an Assembly data
member that will be filled within the scope of the Click event handler for the Open
menu. Once the assembly has been loaded using the OpenFileDialog class, you
call a helper function named LoadLists(). Here is the code thus far:

public class MainForm : System.Windows.Forms.Form
{

// Reference to the loaded assembly.

private Assembly theAsm = null;

private void mnuFileOpen Click(object sender, System.EventArgs e)

{
// Show the FileOpen dialog and get file name.

string fileToload = "";

313

Chapter 6

// Configure look and feel of open dlg.
OpenFileDialog myOpenFileDialog = new OpenFileDialog();
myOpenFileDialog.InitialDirectory = ".";
myOpenFileDialog.Filter = "All files (*.*)|*.*" ;
myOpenFileDialog.FilterIndex = 1 ;
myOpenFileDialog.RestoreDirectory = true ;
// Do we have a file?
if(myOpenFileDialog.ShowDialog() == DialogResult.OK)
{

fileTolLoad = myOpenFileDialog.FileName;

theAsm = null;

// Load the assembly.

theAsm = Assembly.LoadFrom(fileTolLoad);

LoadLists(theAsm);

The LoadLists() helper function iterates through each Type in the assembly
and fills the correct list box based on the underlying type of the type (pardon the
redundancy!).

private void LoadlLists(Assembly theAsm)
{
// Clear out current listings.
1stClasses.Items.Clear();
IstInterfaces.Items.Clear();
1stEnums.Items.Clear();
1stStructs.Items.Clear();
// Get all types in the assembly.
Type[] theTypes = theAsm.GetTypes();

// Fill each list box.
foreach(Type t in theTypes)
{
if(t.IsClass)
1stClasses.Items.Add(t.FullName);
if(t.IsInterface)
IstInterfaces.Items.Add(t.FullName);
if(t.IsEnum)
1stEnums.Items.Add(t.FullName);
if(t.IsValueType 8& !t.IsEnum) // enums are also value types!
1stStructs.Items.Add(t.FullName);

314

.NET Types

Showing Selected Type Details

At this point, you should be able to load a given assembly and view its contained
types. The next aspect of your application is to intercept DoubleClick events for
each list box. If the user double-clicks a given entry, you extract metadata for the
selected item and display various details. The code behind each DoubleClick
event handler is about identical. Simply obtain the current selection from the
correct ListBox and call another helper method named ShowTypeStats(). For
example:

// Do the same thing for the struct, enum, and interface list boxes,
// just be sure you refer to the correct ListBox variable.
private void lstClasses DoubleClick(object sender, System.EventArgs e)
{

// Get the current selection.

string currItem = lstClasses.Text;

Type t = theAsm.GetType(currItem);

ShowTypeStats(t);

ShowTypeStat() takes an incoming Type and dumps out the following:
private void ShowTypeStats(Type t)
{
// Build the stats.
StringBuilder sb = new StringBuilder();
sb.AppendFormat("Abstract? : {0}\n", t.IsAbstract);
sb.AppendFormat("Sealed? : {0o}\n", t.IsSealed);
sb.AppendFormat("Base class? : {0}\n", t.BaseType);
sb.AppendFormat("Nested Private? : {0}\n", t.IsNestedPrivate);
sb.AppendFormat("Nested Public? : {0}\n", t.IsNestedPublic);
sb.AppendFormat("Public Class? : {0}\n", t.IsPublic);
MessageBox.Show(sb.ToString(),
"Type Details for: " + t.FullName);

If you select your custom enumeration (TheEnum) contained within the
ComplexTypeLibrary.dll, you find what appears in Figure 6-6.

315

Chapter 6

Type Details for: ComplexTypelibrary. TheTypes. TheEnum |X|

Ahstract? : False

Sealed? | True

Base class? : System,Enum
Mested Private? : False
Mested Public? : False
Public Class? : True

Figure 6-6. Viewing selected type information

Building the More Details Menu

The other topmost menu of the main Form provides additional options to view
information about the assembly itself as well as the members of a given type (for
example, the methods of an interface, the fields of an enumeration, and whatnot).
Table 6-8 documents the name and purpose of each submenu.

Table 6-8. Listing the Submenus of the Topmost More Details Menu

More Details Submenu Meaning in Life
Get Assembly Details Launches a message box containing details of
the currently loaded assembly.

Get Members of Selected Class Launches a custom dialog box that lists each
member for the currently selected class.

Get Members of Selected Structure Launches a custom dialog box that lists each
member for the currently selected structure.

Get Members of Selected Enum Launches a custom dialog box that lists each
member for the currently selected
enumeration.

Get Members of Selected Interface Launches a custom dialog box that lists each

member for the currently selected interface.

Once you have constructed the menu system with the design-time menu
editor, your next goal is to build an appropriate Click event handler for each
submenu.

316

.NET Types

Viewing Assembly Details

The implementation of More Details | Get Assembly Details simply displays core
bits of information using the Form’s Assembly member variable:

private void mnuGetAsmDetails Click(object sender, System.EventArgs e)
{
if(theAsm != null)
{
StringBuilder sb = new StringBuilder();
sb.AppendFormat("FullName? : {0}\n", theAsm.FullName);
sb.AppendFormat("Loaded from GAC? : {0}\n", theAsm.GlobalAssemblyCache);
sb.AppendFormat("Location? : {0}\n", theAsm.Location);
MessageBox.Show(sb.ToString(), "Assembly Details");

For example, the assembly details for the ComplexTypeLibrary.dll assembly
would look something like Figure 6-7.

Assembly Details

Fullrame? @ ComplexTwpelibrary, Wersion=1.0,707,39065, Culture=neutral, PublickevwToken=null
Loaded from GAC? : False
Location? : c:\apress books\interopbookilabsichapter Sicomplextypelibraryibindebugicomplextypelibrary, dil

Figure 6-7. Viewing assembly details

Viewing Class, Enum, Interface, and Structure Details

The remaining Click event handlers each make use of a custom Windows Forms
dialog box (which I have called MemberInfoDialog). The dialog box contains a
ListBox type (to hold the method names), one Button that will function as the OK
button, and a final Button that allows the user to view the set of parameters for a
selected method (which you contend with in the next step). Once you have
constructed the GUI (Figure 6-8), be sure to set the DialogResult property of your
OK Button type to DialogResult.OK to ensure you can detect when the user has
dismissed the Form.

317

Chapter 6

318

% MemberlInfoDialog.cs [Design]

= MemberlnfoDialog

Show Method Parameters

Figure 6-8. The initial GUI of your custom dialog

Given that this dialog box is required to display member information for the
item that has been selected on the parent Form, you need to add a few methods to
the MemberInfoDialog class. First, create a method named AddMember() to be
called by the parent Form to populate the ListBox. Next, add a method named
SetType() to set the value of a class-level Type reference. As you can guess, you use
this object to examine the set of parameters for a given item (which you do in just
a bit). Here are the relevant code updates:

// Extend your Form as so..
public class MemberInfoDialog : System.Windows.Forms.Form

{
private Type theType = null;

public void AddMember(string m)
{1stMembers.Items.Add(m);}
public void SetType(Type t)
{theType = t;}

Now that you have a dialog box to hold the given member information, you
can get back to the business of implementing the remaining menu Click events on
the main Form. Much like the implementation of the ListBox DoubleClick event
handlers, each submenu Click handler has a very similar code block: Simply
identify the currently selected item in a given ListBox, ask the Assembly for its type
information, and call a helper function named ShowMemberStats(). For example,
here is the code behind mnuGetClassMethods_Click():

.NET Types

// The other submenu Click handlers are implemented
// in the same way (just change which ListBox to poll).
private void mnuGetClassMethods Click(object sender, System.EventArgs e)
{
if(theAsm != null 8% lstClasses.Text != "")
{
// Get the current selection.
string currItem = lstClasses.Text;
Type t = theAsm.CetType(currItem);
ShowMemberStats(t);

ShowMemberStats() displays and populates your custom dialog Form and
sets the dialog’s internal Type member variable using the SetType() helper
method:

private void ShowMemberStats(Type t)

{
// Create the dialog & set Type.
MemberInfoDialog d = new MemberInfoDialog();
d.SetType(t);
// Get the members for the selected item.
StringBuilder sb = new StringBuilder();
MemberInfo[] allTheMembers = t.GetMembers();
// Fill the dialog’s ListBox with member info.
foreach(MemberInfo mi in allTheMembers)
{

d.AddMember (mi.Name);

}
d.ShowDialog();

319

Chapter 6

320

Now, to test your new functionality, again assume you have loaded the
ComplexTypeLibrary.dll assembly, selected the SimpleClass item from the class
ListBox, and activated the Get Class Members menu item. The results are seen in
Figure 6-9 (note that I set this dialog’s ListBox.Sorted property to True).

A=) MemberinfoDialog

.cior

Equals
GetHashCode
GetType
To3trng

Show Method Parameters [Dione |

Figure 6-9. Showing class member information

Likewise, if you select the custom enumeration (TheEnum) from the main
Form’s enumeration ListBox and select Get Enum Members, you find something
like what you see in Figure 6-10.

[MemberinfoDialog

Field& A
FieldB i
FieldC
FieldD
GetHashCode
GetType ol

Show Method Parameters [Done |

Figure 6-10. Viewing fields of a given enumeration

.NET Types

Viewing Member Parameters

The final step of your custom type viewer is to implement the code behind the
dialog’s Show Method Parameters Button. As you might expect, when the user
selects a given item in the member ListBox (and clicks the Button), he or she sees a
list of each parameter for the selected item. For simplicity’s sake, the parameter
information is displayed in a Windows Forms message box. Here is the implemen-
tation of the Click event handler:

// Show the params (if any)!
private void btnShowParams Click(object sender, System.EventArgs e)
{
if(theType != null)
{
try
{
string memberToExamine = lstMembers.Text;
StringBuilder sb = new StringBuilder();
ParameterInfo[] paramInfo =
theType.GetMethod (memberToExamine).GetParameters();
foreach(ParameterInfo pi in paramInfo)
{
sb.AppendFormat("Name: {0}, Type: {1}, Position: {2}\n",
pi.Name, pi.ParameterType.ToString(),
pi.Position);

MessageBox.Show(sb.ToString(), "Params for: " + lstMembers.Text);

}

catch(Exception ex)

{

MessageBox.Show(ex.Message, "Error building params!");

Given that some types do not have parameterized members (such as the fields
of a .NET enumeration), I have wrapped the parameter-building logic within a
generic try/catch statement. If you want to enhance this application, you may
want to disable the parameter-centric Button if the type is an enumeration. Never-
theless, here is the parameter information for the inherited Equals() method of the
ComplexTypeLibrary.SimpleClass type (Figure 6-11).

321

Chapter 6

322

Params for: Equals

Mame: obj, Type: System.Object Position: 0

Figure 6-11. Parameter information

Your custom ILDasm-like application is now complete! To highlight the
use of your application, Figure 6-12 shows the set of types contained within
the System.Data.dll assembly (which, as you are aware, is the home of
ADO.NET types).

™ The C# .NET Type Reader

File More Details

Classes

Suzkem. [ata.D atal owliew

Syztem Data.Datas et
Sugtem.Data. DataSpel escriptiondttibute
Syztem.Data.DataT ableCaollection

(3]

| £

Structures

Syztem.Data. [atak ror+ColurmnError

Syztem Data.Range

Sugtem. D ata. Common.Unzafel ativeld ethods+tagD BRIMDIM G
Syztem.Data.Common.UnsafeM ativebd ethods+tagD BCOLUMMNACCESS

>

| £

Enumerations

Syztem.Data.AcceptR ejectRule
Syztem Data.AgaregateT ype
Sugtem.Data. CommandBehawvior
Syztem.Data.CommandType

>

| £

Interfaces

Syztem.Data. | Columnbd apping
Syztem.Data. | Columnid appingCallection
Sugtem.Data | D ataParameter
Syztem.Data. D ataP arameterCollection

>

| £

Figure 6-12. Viewing the types of ADO.NET using your custom type viewer

.NET Types

1 leeeee CODE The DotNetTypeReader application is located under the
Y Chapter 6 subdirectory.

—
~

i

A Brief Word Regarding System.Reflection.Emit

Before moving to the next topic of the chapter, it is worth pointing out

that the System.Reflection namespace defines a nested namespace called
System.Reflection. Emit. Using these types, you can construct assemblies and

the contained IL instructions at runtime, on the fly. As you have already seen in
Chapter 5, the System.CodeDOM namespace defines a number of types that allow
you to dynamically generate language-specific source code files using a language-
independent object graph. The distinction between System.Reflection.Emit and
CodeDOM is that System.Reflection.Emit allows you to bypass obtaining an
ICodeCompiler interface to transform a given set of files into an assembly. Rather,
the types found in the System.Reflection.Emit namespace allow you to directly
build the entire assembly and IL code in one fell swoop. If you require additional
information, may I (modestly) suggest my first two Apress texts: C# and the .NET
Platform and VB .NET and the .NET Platform: An Advanced Guide.

Understanding .NET Attributes

At this point in the chapter, you have examined the details behind the .NET type
system and spent time coming to understand the process of runtime type
discovery using the System.Reflection namespace. Next, you need to examine
exactly how the .NET platform honors the use of attribute-based programming.

As you recall, COM IDL attributes are basically keywords placed within square
brackets (for example, [in, out]). As you recall from Chapter 4, the [custom] IDL
attribute can be used to create a custom name/value pair that allows you to
extend your type library with custom metadata. The major problem with custom
IDL COM attributes is the fact that they are simple keywords that only exist to
bind a GUID to a particular value.

Under .NET, attributes are objects. Specifically, .NET attributes are class types
that extend the System.Attribute base class type. Table 6-9 documents the core
members of the Attribute class.

323

Chapter 6

324

Table 6-9. Core Members of System.Attribute

Member of System.Attribute Meaning in Life

Typeld This property is used to return a unique identifier for
this Attribute (the default implementation returns the
Type that describes this attribute). Using this unique
tag, you are able to refer to this item at runtime.

GetCustomAttribute() These static methods retrieve a custom attribute (or set
GetCustomAttributes() of attributes) of a specified type.
IsDefaultAttribute() When overridden in a derived class, returns an

indication of whether the value of this instance is the
default value for the derived class.

IsDefined This static property determines whether any custom
attributes of a specified type are applied to a specified
type or the assembly itself.

In addition to building your own custom attributes, you should also under-
stand that just about every .NET namespace defines a number of preexisting
attributes. As you begin to see in Chapter 7 (as well as for the remainder of this
book) COM/.NET interoperability makes heavy use of these existing attributes.

In fact, a majority of the members of the System.Runtime.InteropServices name-
space are System.Attribute-derived class types!

When you apply attributes to a given coding item, you are able to add custom
bits of metadata to your .NET assemblies. Understand that attributes in and of
themselves are useless. To be sure, attributes mean nothing unless some piece
of software is able to account for their presence. This piece of software could be
a custom application, a particular design-time tool, or a managed compiler.

For example, the System.ObsoleteAttribute attribute may be applied to a given
piece of code to identify items that are considered out of fashion. As you recall,
the ComplexTypeLibrary.dll assembly defined a rather uninteresting class
(SimpleClass). If you update the class definition as follows:

[ObsoleteAttribute("This class is useless. Use anything else")]
public class SimpleClass{}

you inform a managed compiler to generate a compile time warning whenever the
type is used (Figure 6-13).

.NET Types

Build ;I
LY
och=solete: 'This class is useless. Use anything el=se’ T
ochsolete: 'This class is useless. Use anything else’
W
L] 1T =]

Task List B output @ Breakpoints | I

Figure 6-13. The Obsolete attribute in action

Creating and Applying Custom Attributes

To illustrate the process of building custom .NET attributes, let’s add the following
class definition to your existing ComplexTypeLibrary.dll assembly, which mimics
the custom IDL attribute created in Chapter 4:

// The custom attribute.
public class ToDoAttribute : System.Attribute
{

private string toDoComment;

public ToDoAttribute(string comment)

{ toDoComment = comment;}

public string Comment
{get {return toDoComment;}}

Like any other class type, ToDoAttribute maintains a set of data members and
may support any number of constructors, properties, or methods. Here, your
custom attribute maintains a string that represents an annotation that may be
applied to a given code block. For example, you could update the SimpleClass to
make use of your custom attribute rather than the predefined ObsoleteAttribute:

325

Chapter 6

326

// Applying our attribute.
[ToDoAttribute("Make this class do something!")]
public class SimpleClass{}

As you have seen, the C# syntax used to apply a .NET attribute looks quite a
bit like that of classic IDL (VB .NET makes use of angled brackets for the same
purpose). The key difference between IDL attributes and .NET attributes is the fact
that you are able to specify constructor parameters at the time of application.

Also be aware that some .NET languages allow you to omit the “-Attribute”suffix.
Thus, you could write the following (slightly shortened) attribute syntax:

// Some .NET languages allow you to
// make use of the following

// shorthand notation.

[ToDo("This enum stinks!")]

public enum TheEnum

{FieldA, FieldB}

Viewing the Applied Metadata
If you open the updated ComplexTypeLibrary.dll assembly using ILDasm.exe

and examine the TheEnum type, you are able to view your custom metadata
(Figure 6-14).

¥ TheEnum::.class public auto ansi seal... |:||E||X|

7% 6D 28 73 74 69 .-.This enum sti

i

|]ji|

Figure 6-14. Viewing your custom metadata

.NET Types

Restricting Attribute Usage

Attributes can take attributes themselves. One of the more interesting

attributes you can apply to your custom System.Attribute-derived types is the
AttributesUsage type. Using this attribute, you are able to control exactly where
your custom attribute is applied. By default, custom .NET attributes can be
applied to any item (types, methods, parameters, or what have you). Obviously,
some attributes only make sense in a given context. Consider the COM IDL [retval]
attribute. Imagine how bizarre IDL definitions would become if [retval] was used
in the context of a library statement, [in]-bound parameters, or coclass definition!
To prevent this chaos, the AttributeUsage attribute may be assigned any values
from the AttributeTarget enumeration:

// This enumeration is used to control
// how a custom attribute can be applied.
public enum AttributeTargets
{

All,

Assembly,

Class,

Constructor,

Delegate,

Enum,

Event,

Field,

Interface,

Method,

Module,

Parameter,

Property,

ReturnValue,

Struct

For the sake of argument, if you wish to ensure that the ToDoAttribute can
only be applied to classes, interfaces, structures, or enumerations, you could
update the definition as follows:

// The restricted attribute.
[AttributeUsage(AttributeTargets.Class |
AttributeTargets.Interface |
AttributeTargets.Enum |

327

Chapter 6

328

AttributeTargets.Struct)]
public class ToDoAttribute : System.Attribute
{

private string toDoComment;
public ToDoAttribute(string comment)
{ toDoComment = comment;}

public string Comment
{get {return toDoComment;}}

If you now attempt to apply the ToDoAttribute attribute to a method as follows:

// Ugh! Not allowed.
public interface IFaceTwo

{
[ToDo("Document this method...")]

int SimpleMethod();

you are issued a compile-time error.

Assembly- (and Module-) Level Attributes

It is also possible to apply attributes on all types within a given assembly using the
[assembly: | prefix. Recall the CLS-compliant attribute described in Chapter 5:

// Enforce CLS compliance!
[assembly:System.CLSCompliantAttribute(true)]

Visual Studio .NET projects define a file called AssemblyInfo.*. This file is a
handy place to place all global-level attributes that are to be applied at the
assembly level. Table 6-10 is run-through of some assembly-level attributes you
should be aware of.

.NET Types

Table 6-10. Select Assembly-Level Attributes

Assembly-Level Attribute

AssemblyCompanyAttribute

AssemblyConfigurationAttribute

AssemblyCopyrightAttribute

AssemblyDescriptionAttribute

AssemblyInformationalVersionAttribute

AssemblyProductAttribute

AssemblyTrademarkAttribute

AssemblyCultureAttribute

AssemblyKeyFileAttribute

AssemblyKeyNameAttribute

AssemblyOperatingSystemAttribute

AssemblyProcessorAttribute

AssemblyVersionAttribute

Meaning in Life
Holds basic company information.

Build information, such as “retail” or
“debug.”

Holds any copyright information for the
product or assembly.

A friendly description of the product or
modules that make up the assembly.

Additional or supporting version
information, such as a commercial
product version number.

Product information.
Trademark information.

Information on what cultures or
languages the assembly supports.

Specifies the name of the file containing
the key pair used to sign the assembly
(that is, establish a shared name).

Specifies the name of the key container.
Instead of placing a key pair in a file, you
can store it in a key container in the CSP.
If you choose this option, this attribute
contains the name of the key container.

Information on which operating system
the assembly was built to support.

Information on which processors the
assembly was built to support.

Specifies the assembly’s version
information, in the format
major.minor.build.rev.

329

Chapter 6

330

Reading Attributes at Runtime

To wrap up your examination of .NET attribute programming, let’s examine

how to read attributes at runtime. There are a number of ways to obtain

attribute metadata from a loaded assembly. First, the Assembly class defines the
GetCustomAttribute() and GetCustomAttributes() methods. The System.Type class
defines members of the same name. To illustrate, assume you wish to obtain the
ToDo comment for the TheEnum type. The following Main() method does

the trick:

using System;

using System.Reflection;

using ComplexTypelibrary;

using ComplexTypelibrary.TheTypes;

static void Main(string[] args)
{
// Get the Type of TheEnum.
Type t = typeof(TheEnum);

// Get all attributes on this type.
object[] customAtts = t.GetCustomAttributes(false);

// List TODO comment.

foreach(ToDoAttribute a in customAtts)
Console.WritelLine("ToDo: {0}", a.Comment);

The output can be seen in Figure 6-15.

C:\Apress Books\InteropBookiLabs!

ToDo: This enum stinks?
Press any key to continue

Figure 6-15. Reading TheEnum'’s ToDo comment

1 leeeee CODE The AttributeReader application is included under the Chapter 6
Y subdirectory.

aal

Late Binding Under the .NET Platform

To wrap up the chapter, let’s examine how the .NET platform contends with the
notion of late binding. Recall that late binding is a technique in which you are able
to resolve the existence of (and name of) a given type and its members at runtime
(rather than compile time). Once the presence of a type has been determined, you
are then able to dynamically invoke methods, access properties, and manipulate
the fields of a given entity.

To be sure, when you build your custom .NET types, you never need to
implement IDispatch to facilitate late binding. The truth of the matter is that you
will not need to do anything at all to allow clients to dynamically invoke your
members. When you build late-bound clients, however, you make use of the
System.Reflection namespace.

Like any late-binding scenario, the client code base does not refer to the
assembly containing the types it wishes to activate. In terms of managed code, this
means you will not set a reference to the assembly (and therefore you will not have
an [.assembly extern] tag in the client manifest) and you will nof need make use of
the C# using (Imports under VB .NET) keyword.

Do understand, however, that the .NET runtime makes use of the same search
heuristics used with early binding (see Chapter 5). Thus, if the assembly you want
to interact with is a private assembly, you need to manually copy the assembly
into the current application directory (or author a *.config file). On the other hand,
if you attempt to bind late to a shared assembly stored in the GAC, you need to
refer to the assembly using the corresponding strong name. You will see each
approach, but first you need to check out the Activator class.

The Activator Class
The System.Activator class is the key to late binding. Beyond the methods inher-

ited from Object, Activator only defines a small set of members, all of which are
static (Table 6-11).

.NET Types

331

Chapter 6

332

Table 6-11. Members of the Activator Class

Static Method of the Meaning in Life
Activator Class

CreateComlInstanceFrom() Creates an instance of the COM object whose name
is specified using the named assembly file and the
constructor that best matches the specified
parameters.

Createlnstance() Overloaded. Creates an instance of the specified
type using the constructor that best matches the
specified parameters.

CreatelnstanceFrom() Overloaded. Creates an instance of the type whose
name is specified, using the named assembly file
and the constructor that best matches the specified
parameters.

GetObject() Overloaded. Creates a proxy for a currently running
remote object, server-activated well-known object,
or XML Web service.

Activator.Createlnstance() is perhaps the core method, which creates an
instance of a type at runtime. This method has been overloaded numerous times,
to provide a good deal of flexibility. One variation of the Createlnstance() member
takes a valid Type object (representing the entity you wish to create) and returns a
System.Object reference, which represents a handle to the newly created type.

Late Binding to a Private Assembly

By way of example, assume that you have manually copied the
ComplexTypeLibrary.dll assembly into the application directory of a new
console application named LateBinder.exe. To create an instance of the nested
TheNestedClass type (found in the ComplexTypeLibrary. TheTypes namespace),
you would write the following:

// Bind late to a private assembly.

Assembly asm = Assembly.load("ComplexTypelLibrary");

// Get type in the assembly.

string typelWant =
"ComplexTypelibrary.TheTypes.TheNestingClass+TheNestedClass";

Type t = asm.CetType(typeIhant);

// Create TheNestedClass on the fly.
object obj = Activator.Createlnstance(t);

.NET Types

Once you have a reference to the type you wish to manipulate, you are
then able to make use of the members of System.Reflection to interact with
the type’s fields, methods, properties, and so forth. For example, to invoke the
GetInternalString() method of the TheNestedClass type, you would make use
of MethodInfo.Invoke():

// Get info for GetInternalString.

MethodInfo mi = t.GetMethod("GetInternalString");
// Invoke method ('null' for no parameters).

// The return value of Invoke() holds the methods
// physical return value.

object retval = mi.Invoke(obj, null);
Console.Writeline(((string)retval).ToString());

If you run the application, you will be pleased to find what you see in
Figure 6-16.

:\Apress BooksiinteropBookl a

I'm nested?
Press any key to continue

Figure 6-16. Invoking a member using late binding

As you might guess, MethodInfo.Invoke() has also been overloaded a number
of times to allow you to qualify the member you wish to invoke. For example,
many of the overloaded signatures allow you to define a set of flags that control
the bind, using the BindingFlags enumeration (I'll assume you will check out
online Help for full commentary). Do note that this enum takes the place of
the COM IDispatch binding flags such as DISPATCH_METHOD,
DISPATCH_PROPERTYGET, and DISPATCH_PROPERTYPUT.

// Binding Flags.
public enum System.Reflection.BindingFlags
{

Createlnstance,

DeclaredOnly,

Default,

ExactBinding,

FlattenHierarchy,

333

Chapter 6

334

GetField,
GetProperty,
IgnoreCase,
IgnoreReturn,
Instance,
InvokeMethod,
NonPublic,
OptionalParamBinding,
Public,
PutDispProperty,
PutRefDispProperty,
SetField,
SetProperty,
Static,
SuppressChangeType

Invoking Parameterized Methods

The Invoke() method also allows you to specify the set of parameters that should
be sent (where “null” signifies a method with no parameters). Now, for the sake of
argument, assume that TheNestedClass also defines an additional method
(ShowMessage()) that takes two parameters:

// The updated nested type.
public class TheNestedClass

public void ShowMessage(string m, short numbOfTimes)

{

string message =

for(short i = 0; i < numbOfTimes; i++)

{

message += m;

message += 5

}

MessageBox.Show(message);

}

To invoke this member using late binding, you would need to build an array of
System.Object types to send in place of the null parameter of
MethodInfo.Invoke():

// Invoke method with parameters.

short numbOfTimes = 5;

// '0i' Is a UK punk rocker vocative chant..
object[] theParams = {"0i!", numbOfTimes};
mi = t.GetMethod("ShowMessage");
mi.Invoke(obj, theParams);

This would yield the output shown in Figure 6-17.

it il Qi it Ot

Figure 6-17. Invoking parameterized members

Binding Late to Shared Assemblies

The first example illustrated how to bind to a private assembly, which requires a
local copy of the ComplexTypeLibrary.dll assembly. As you would expect, you are
also able to bind to an assembly placed into the GAC. To do so requires specifying
the strong name of the assembly, or if you prefer, a partial strong name of the
assembly. Consider the following code:

// Construct a partial strong name

// (assume you are using the default culture).

string strongName = "System.Windows.Forms,";

strongName += "PublicKeyToken=b77a5c561934e089, Version=1.0.3300.0";
// Load from GAC.

Assembly asm2 = Assembly.LoadWithPartialName(strongName);

// Get OpenFileDialog type in the assembly.

Type t2 = asm2.GetType("System.Windows.Forms.OpenFileDialog");
object obj2 = Activator.CreateInstance(t2);

// Get info for ShowDialog().

MethodInfo mi2 = t2.GetMethod("ShowDialog", new Type[0]);
// Launch the dialog!

mi2.Invoke(obj2, null);

.NET Types

335

Chapter 6

336

As you would guess, when this application is launched, the OpenFileDialog is
displayed on the screen (again, totally on the fly at runtime). Notice that you have
made use of an overloaded version of the MethodInfo.GetMethod() member. The
optional second parameter is an array of Type objects that represents the parame-
ters of the given method. Understand that the array of Types does not literally
contain values to send into the method, but rather the signature of the method to
invoke! Given that ShowDialog() has been overloaded twice:

// Shows the form as a modal dialog box with no owner window.
public DialogResult ShowDialog();

// Shows the form as a modal dialog with the specified owner.
public DialogResult ShowDialog(IWin32Window owner);

you are specifying that you are interested in obtaining a parameter-less variation
using an empty array of Type types.

1 leeeee CODE The LateBinder project is included under the Chapter 6
YR subdirectory.

Contrasting COM and .NET Late-Binding Syntax

So then as you can see, the .NET platform still supports the ability to bind to a type
at runtime. Depending on your comfort level with COM late binding, you may
have noticed a very similar pattern between the two architectures. For example,
under COM you are required to package a DISPPARAMS structure that holds the
arguments to pass to the member specified by IDispatch::Invoke(). Under .NET,
this idea is expressed as an array of System.Object types.

To further illustrate the syntactic similarities between each approach, assume
you wish to invoke a method named Add() that returns the summation of two
integers. Under the COM model, a late-bound C++ client would obtain the
summation using IDispatch as follows:

// Once again, a C++ late bound client.
void main()
{

CoInitialize(NULL);

IDispatch* pDisp = NULL;

CLSID clsid,;

DISPID dispid;

// Go look up the CLSID from the ProgID.
CLSIDFromProgID(OLESTR("ATLAddServer.Calc"),8clsid);
LPOLESTR str = OLESTR("Add");
// Create object and get IDispatch.
CoCreateInstance(clsid, NULL, CLSCTX SERVER, IID IDispatch,
(void**)8pDisp);
// Get DISPID from object.
pDisp->GetIDsOfNames(IID_NULL, &str,1,
LOCALE_SYSTEM_DEFAULT, &dispid);
// Build dispatch parameters.
VARIANT args[2];
VariantInit(8args[o0]);
args[0].vt = VT _I2;
args[0].intval = 10;
VariantInit(&args[1]);
args[1].vt = VT_I2;
args[1].intval = 51;
DISPPARAMS myParams = { args, 0, 2, O};
VARIANT result;
VariantInit(8result);
// Call Add() using Invoke().
pDisp->Invoke(dispid, IID NULL, LOCALE SYSTEM DEFAULT,
DISPATCH METHOD, &myParams, &result, NULL, NULL);
cout << "10 + 51 is " << result.intVal << endl;
// COM clean up.
pDisp->Release();
CoUninitialize();

If you had a C# application that defined a class supporting a similar Add()

method, you would find the following client-side code:

static void Main(string[] args)

{

Assembly asm = Assembly.load("CSharpAddServer");
// Get type in the assembly.
Type t = asm.GetType("CSharpAddServer.Calc");

// Create the Calc class on the fly.
object obj = Activator.CreateInstance(t);

// Get info for Add.

MethodInfo mi = t.GetMethod("Add");

// Invoke method.

object[] theParams = {10, 51};

object retval = mi.Invoke(obj, theParams);
Console.WriteLine("10 + 51 is {0}", ((int)retval).ToString());

.NET Types

337

Chapter 6

338

As you can see from the code comments, the basic operation of late binding
has remained intact. In either architecture, you are required to specify a string
name of the member you wish to invoke and an array of items that represent
the parameter set. Under COM, you make use of VARIANTS, IDispatch, and the
DISPPARAMS structure. Under .NET, you are provided the more OO-aware
System.Object and System.Type data types as well as the System.Reflection
namespace.

Well, that wraps up the investigation of the .NET and COM type systems. If
you have been reading this book from the beginning (and I hope this is the case)
you should now feel quite familiar with how each architecture defines, represents,
and contends with the almighty notion of “type.” The remainder of this text dives
headlong into the details of building bridges between these completely unrelated
architectures.

Summary

The .NET type system is an extremely unified model when contrasted to that of
classic COM. First and foremost, the base class System.Object ensures that all
types maintain a shared polymorphic interface. As you have seen, you are able to
override a number of these methods in your custom types to build intelligent
user-defined types.

As far as the data type system of .NET is concerned, this chapter also exam-
ined how language-specific keywords map to a particular member of the System
namespace. In addition to the core intrinsic data types, the CTS also documents
how to construct the various members of the .NET type system—classes,
interfaces, enumerations, and structures—to ensure symmetrical access of
these types from any managed language.

The System.Reflection namespace is a key aspect to understanding the .NET
type system. Using the members of this namespace (in conjunction with the
System.Type class), you are able to obtain a complete runtime description of the
characteristics of a given assembly, type, member, or parameter.

Closely related to the topic of reflection is the use of attribute-based program-
ming. Unlike COM IDL, custom metadata is expressed under the .NET platform by
creating class types that derive from System.Attribute. Finally, you wrapped up by
making use of .NET reflection services to achieve client-side late binding. Next up,
it's time to examine the basic details of .NET-to-COM interoperability.

CHAPTER 7

.NET-to-COM
Interoperability-
The Basics

The previous five chapters have exposed you to the core characteristics of the
COM and .NET type systems. The remainder of this book addresses how these
types can be expressed and manipulated across architectural boundaries. In this
chapter, you are exposed to the key .NET-to-COM interoperability issues you are
likely to encounter on a day-to-day basis (with some more exotic topics thrown in
for good measure). For example, you investigate a number of ways to build inter-
operability assemblies (including “primary” interop assemblies), examine core
IDL to .NET data type mappings, and understand how key COM data structures
(interfaces, coclasses, enumerations) are expressed in terms of .NET. Along the
way, you take a more detailed look at the types contained in the
System.Runtime.InteropServices namespace (first introduced in Chapter 1). As
you might expect, the materials presented here work as the backbone for more
advanced topics found in the remainder of the text.

A High-Level Overview of .NET-to-COM
Interoperability

As you have seen in Chapters 5 and 6, languages targeting the .NET runtime satisfy
each pillar of object-oriented technology. For example, when you build an
assembly using a given managed language, you are able to create classes that
support any number of constructors, overloaded methods, and overridden
members, and implement any optional interfaces. As well, the .NET platform
makes use of a runtime garbage collector, which is responsible for freeing an
object from the managed heap when it is no longer rooted in a given application.
In stark contrast, as you have seen in Chapters 2 through 4, COM types do not
adhere to each and every pillar of OOP in the classic sense of the topic. For
example, COM types are not created using class constructors, but rather using the

339

Chapter 7

340

IClassFactory interface. In addition, COM classes are not allowed to define over-
loaded methods and cannot function as a base class to other COM types (as COM
has no support for classical inheritance). As far as lifetime management of a
coclass is concerned, COM does not make use of a garbage-collected heap, but
employs a strict reference counting scheme provided courtesy of [lUnknown.

Given the fact that COM and .NET types have so little in common, you may
have deep-rooted fears regarding interoperability issues. Ideally, a .NET client
should be able to use a COM type with no concern for the mechanics of COM. For
example, a managed client should be able to create the COM type using
constructor semantics, derive new types from the COM wrapper class (given that
.NET supports classic inheritance), and should not be required to obtain or release
interface references (given that .NET does not demand the use of interface refer-
ences). In a nutshell, as far as a .NET client is concerned, manipulating a COM
type should look identical to the act of manipulating a native .NET type. For
example:

// COM classes should appear as .NET types.
MyComClass ¢ = new MyComClass();
c.SomeMethod("Hello", 12);

Obviously, this cannot be achieved unless you have an intermediary that
stands between the .NET client and the existing COM type. In short, what we need
is a proxy that is in charge of transparently handling .NET-to-COM communica-
tions. To be sure, whenever a .NET application makes use of a legacy COM type, a
proxy is created by the .NET runtime. Formally, this proxy is termed a Runtime
Callable Wrapper (RCW).

In a similar vein, a COM client should be able to make use of a .NET type
without concern for the mechanics of .NET. For example, COM clients should be
able to activate a .NET class using CoCreatelnstance(); directly call the members
of ITUnknown, IDispatch, and IClassFactory; and should assume the type is main-
taining an internal reference count. When unmanaged code communicates with
managed .NET types, a different sort of proxy called a COM Callable Wrapper
(CCW) is used to translate COM requests into terms of .NET. Chapters 10 through
12 examine the process of COM-to-.NET interoperability. For the time being, let’s
concentrate on the role of the RCW.

Understanding the Role of the RCW

The RCW is a .NET object that is in charge of marshaling calls between a managed
unit of code and a given COM type. While a managed client is making calls to a
given COM type, the RCW intercepts each invocation, translates each incoming

.NET-to-COM Interoperability—The Basics

argument into terms of IDL data types, and invokes the coclass method. Likewise,
if the coclass returns any information to the caller (via [out] or [out, retval] IDL
parameters) the RCW is responsible for translating the IDL type(s) into the appro-
priate .NET type(s). As you would hope, there is a fixed set of translation rules used
to map between IDL and .NET atoms (demonstrated throughout the remainder of
this text).

In addition to marshaling data types to and fro, the RCW also attempts to fool
the .NET client into believing that it is communicating directly with a native .NET
type. To do so, the RCW hides a number of low-level COM interfaces from view
(IClassFactory, IUnknown, IDispatch, and so forth). Thus, rather than forcing the
NET client to make manual calls to CoCreatelnstance(), the client is free to use
the activation keyword of its code base (e.g., new, New, and so on). And rather
than forcing the managed client to manually call QueryInterface(), AddRef(), or
Release(), the client is able to perform simple casting operations to obtain a
particular interface and is never required to release interface references.

It is important to understand that a single RCW exists for each coclass the client
interacts with, regardless of how many interfaces have been obtained from the type.
In this way, an RCW is able to correctly manage the identity and reference count of
the COM class. For example, assume a C# Windows Forms application has created
three coclasses residing in various COM servers. If this is the case, the runtime

creates three RCW proxy types to facilitate the communication (Figure 7-1).
(D
Coclass
ATL
Coclass
Figure 7-1. A single RCW exists for each coclass.

Raw C++
Coclass

C# Windows Forms VB 6.0

Application

—

29 19

Notice how each RCW maintains an internal reference count for the corre-
sponding object. A given RCW maintains a cache of interface pointers on the COM

341

Chapter 7

342

object it wraps and releases these references when the RCW is no longer used

by the caller (and therefore garbage collected). In this way, the managed client

is able to simply “new” the COM wrapper and is blissfully unaware of COM
interface-based reference counting. Also, given that the RCW will not release the
referenced interfaces until it is garbage collected, you can rest assured that a given
coclass is alive as long as the .NET client is making use of the related RCW.

Understand, of course, that the RCW is responsible for more than simply
mapping .NET types into COM atoms. As you see later in this text, the RCW is also
responsible for mapping COM error objects (that is, [ErrorInfo, ICreateErrorinfo)
into managed exceptions. In this way, if a coclass throws a COM error, the .NET
client is able to handle the problem using standard try, catch, and finally
keywords. The RCW is also responsible for mapping COM event handling primi-
tives (that is, IConnectionPointContainer, IConnectionPoint) into terms of
managed delegates.

One question that may pop up at this point is “Where does an RCW come from
in the first place?” As you will see, RCWs are .NET class types that are dynamically
created by the runtime. The exact look and feel of an RCW will be based on the
information contained within a related interop assembly. These assemblies contain
metadata that is used specifically to bridge the gap between managed and unman-
aged code. The good news is that you are not required to manually create interop
assemblies by hand (though you could). Rather, you more typically make use of the
tlbimp.exe tool that ships with the .NET SDK or the Visual Studio .NET IDE.

Building an Interop Assembly-
The Simplest Possible Example

Before I dig into the gory details of the RCW, let’s see a simple example. The goal is
to build a C# application that makes use of the VB 6.0 COM server you created in
Chapter 3. For the sake of illustration, assume you have a new Windows Forms
application named CSharpVBComServerClient. The main Form has a single
button that is used to activate and manipulate the VB 6.0 COM type (Figure 7-2).

[c# VB 6.0 COM Server Client (= |[B][X]

Use VB 6.0 COM Car

Figure 7-2. The C# client application

.NET-to-COM Interoperability—The Basics

To generate an interop assembly using VS .NET could not be any simpler. To do
so, launch the Add Reference dialog box and select the COM tab. If your COM server
has been registered correctly, you will find it listed alphabetically (Figure 7-3).

Add Reference

NET COM | Projects |

Browse... |
Component Name | Typelib Ver... | Path |il
VB & Property Page Wizard 1.0 C:\Program Files\Microsoft Vi... Select |
VB & Template Manager 1.0 C:\Program Files\Microsoft vi...
VB & Wizard Manager 1.0 C:\Program Files\Microsoft Vi...
VB 98 Add-In Toolbar 1.0 C:\Program Files\Microsaft Vi...
VB DataView Window 1.0 C:\Program Files\Microsoft Vi...
Vb&CarServer J C:\Apress Books\InteropBoo. ..
VBALangProj 1.0 C:\Program Files\Common Fil...
VBArrayOfStructsServer 1.0 C:\Apress Books\InteropBoo. ..
WC 34.0 C:\Program Files\Microsoft vi... |
VCEComInterfaces 1.0 Type L... 1.0 C:\Program Files\Microsoft Vi...
YCM Cabinet 1.0 C:\Program Files\Microsoft Vi...
Yrm nackane 1.0 Tvne |ihrary 1.0 :\Pronram Files\Mirrnsaft Vil Iﬂl

Selected Components:

Component Name | Type | Source | Remove |

(a4 Cancel Help

Figure 7-3. Referencing a COM server using Visual Studio .NET

Once you select the Vb6CarServer COM binary and click the OK button, check
out the application directory of the C# client (Figure 7-4). You will find a new
private assembly has been generated automatically. Also note that the name of
this assembly has been prefixed with “Interop.” to clearly mark the role of this
binary. This is only a convention, however. An interop assembly can be named in
any way you so choose.

If you examine the binary using the VS .NET Object Browser, you find that the
interop assembly contains a single namespace that contains managed equivalents
of each COM type documented in the COM type library (Figure 7-5).

343

Chapter 7

344

& C:\Apress Books\InteropBook\Labs\Chapter 6\CSharpVBC... |._||E||X
File Edit WView Favorites Tools Help #

cBack - O @ ’OSEarch EE:‘ Folders v

Address |[C3) C:\Apress Books\InteropBook\Labs\Chapter 6\CSharpyBComServe V| Go

D CSharpVBComServerClient.exe

CSharpVBComServerClient.pdb
Program Debug Database
— | 14KE

File and Folder Tasks ¥_,

Other Places

Details

Interop.VbeCarserver.dll
Application Extension

Date Modified: Today,
December 23, 2001, 10:558
AM

bl

Figure 7-4. VS .NET generates private interop assemblies.

*< Object Browser

Browse: Selected Components * Customize... %l ¥
Objects Empty
fé;ﬂ CSharpVBComServerClient ~

[Fl-+@ interop.vbécarserver
=P 8] Vb CarServer
[0 _CoCar
[0 CoCar
0,; CoCarClass
-0 _IVETurbo
[#-+=0 IVETurbo
OI; IVETurboClass
[#-+E mscorlib
[+-+E system.data
[+ system
E
E

H-+E system.drawing
t-+E system.windows.forms w

namespace VbaCarServer
Member of CSharpVBComServerClient

Figure 7-5. Peeking into the generated interop assembly

.NET-to-COM Interoperability—The Basics
You examine the details of the conversion process soon enough, so for now,
let’s simply add the following code to the C# Windows Forms application to acti-
vate and exercise the VB 6.0 COM class:

// Need to reference namespace!

using Vb6CarServer;
namespace CSharpVBComServerClient

{
public class MainForm : System.Windows.Forms.Form
{
// Button Click event handler.
private void btnUseVb6ComCar Click(object sender,
System.EventArgs e)
{
// Use the COM class.
CoCarClass vbComCar = new CoCarClass();
vbComCar.TurboBlast();
vbComCar.Speed = 20;
MessageBox. Show(vbComCar. Speed.ToString(),
"Speed is:");
}
}
}

As you can see, the C# client is completely hidden from the mechanics of
COM. If you were to run the application, you would find that the COM type is
activated (via the new keyword) and manipulated accordingly. Under the hood,
of course, the RCW makes a call to the COM API function CoCreatelnstance().
Although VS .NET makes the process of using existing COM types quite intuitive,
you may have noticed a few items of interest. For example, notice that the name
of the .NET wrapper (CoCarClass) is not identical to the COM type (CoCar). Also
notice that the managed client is able to access the members of each interface
(_CoCar and IVBTurbo) from what appears to be an instance of the coclass. You
come to understand the details in the remainder of this chapter, so don’t sweat the
details for now.

345

Chapter 7

346

A Visual Basic .NET Client

As you would expect, you can make use of any managed language to interact with
legacy COM types. For example, if you make use of a VB .NET Windows Forms
application (rather than C#), you find an almost identical code base:

' Reference the generated namespace.
Imports Vbé6CarServer

Public Class MainForm
Inherits System.Windows.Forms.Form

' VB .NET Button Click event handler.
Private Sub btnUseVb6ComType Click(ByVal sender As _
System.Object, ByVal e As System.EventArgs) _

Handles btnUseVb6ComType.Click
' Make the VB 6.0 coclass.
Dim vbComCar As New CoCarClass()
vbComCar.TurboBlast ()
vbComCar.Speed = 20
MessageBox.Show(vbComCar. Speed.ToString(), "Speed is:")

End Sub

End Class

So far, so good! Using Visual Studio .NET, you are able to work with the
existing COM servers with minimum fuss and bother. In fact, using the basic infor-
mation presented here, you can build managed solutions that leverage legacy
COM types. As is always the case, however, the devil is in the details.

1 oo CODE The CSharpVBComServerClient and VBDotNetVBComServerClient
\ YR applications are included under the Chapter 7 subdirectory.

=
=

L

Converting Between COM IDL Data Types
and Managed Data Types

Now that you have seen the basics of using an existing COM type from managed
code, it’s time to dig deeper into the role of the RCW. As previously stated, a
primary role of the RCW is to translate between IDL COM types and managed
equivalents. I have already alluded to some of these translation rules (for example,
BSTR to System.String). Table 7-1 documents the complete picture.

.NET-to-COM Interoperability—The Basics

Table 7-1. COM-to-.NET Data Type Mappings

COM IDL Data Type Managed .NET Data Type
bool, bool * System.Int32
char, char * System.SByte
small , small *

short, short * System.Int16
long, long * System.Int32

int, int *

hyper, hyper * System.Int64
unsigned char, unsigned char *,

byte, byte * System.Byte
wchar_t, wchar_t * System.UInt16
unsigned short, unsigned short *

unsigned long, unsigned long * System.UInt32
unsigned int, unsigned int *

unsigned hyper System.UInt64
unsigned hyper *

float, float * System.Single
double, double * System.Double
VARIANT_BOOL System.Boolean
VARIANT_BOOL *

void *, void ** System.IntPtr
HRESULT, HRESULT * System.Int16 or System.IntPtr
SCODE, SCODE * System.Int32
BSTR, BSTR * System.String
LPSTR or [string, ...] char * System.String
LPSTR *

LPWSTR or [string, ...] wchar_t* System.String
LPWSTR *

VARIANT, VARIANT * System.Object
DECIMAL, DECIMAL * System.Decimal
CURRENCY, CURRENCY *

DATE, DATE * System.DateTime
GUID, GUID * System.Guid
IUnknown *, IlUnknown ** System.Object
IDispatch *, IDispatch ** System.Object
SAFEARRAY (type) typel[] (i.e., a managed array deriving from
SAFEARRAY (type) * System.Array)

347

Chapter 7

348

As you may be able to tell, Table 7-1 is not exclusively confined to
[oleautomation]-compatible IDL data types. For example, although the hyper,
char*, and wchar_t* IDL data types can be expressed by a managed .NET base
type, these items are not VARIANT compliant. Given this factoid, I do not discuss
these mappings during the remainder of this chapter.

As far as the [oleautomation]-compatible types are concerned, note that
IUnknown-and IDispatch-derived interfaces are mapped into the .NET
System.Object data type. Although any COM interface can be represented by
System.Object, do understand that the COM/.NET conversion process will
generate managed equivalents for named COM interfaces. Thus, if your COM type
library defines an interface named ICar, the conversion process generates a
managed equivalent of the same name.

Also notice that COM BSTRs are mapped into the friendly System.String type,
while COM SAFEARRAYs are mapped (by default) into System.Array. Later in this
text, I examine a number of array-centric details, but for the time being it is safe to
assume that arrays of COM IDL types map into a managed System.Array. Beyond
these notable exceptions, most of the COM-to-.NET data type conversions should
provoke no raised eyebrows.

Working with Managed GUIDs (System.Guid)

As you have also noticed from Table 7-1, the .NET base class libraries also supply a
managed GUID equivalent. System.Guid provides a small number of members
that allow you to manipulate the underlying GUID structure. In addition to over-
loading the equality and nonequality operators, System.Guid also provides the
static (shared) NewGuid() method. For example, ponder the following C# code (as
you may suspect, NewGuid() simply makes a call to CoCreateGuid() on your
behalf).

// Get a GUID via System.Guid.NewGuid()
Guid myGuid = Guid.NewGuid();
Console.WritelLine(myGuid.ToString());

It is also useful to know that the Guid.ToString() method has been overloaded
to support an incoming string parameter. This argument allows you to specify any
of the following format characters:

// N format: ba5767980b834b7db8701b2€037758¢
Console.WritelLine("N format {0}", myGuid.ToString("N"));
// D format: ba576798-0b83-4b7d-b870-1b2e0377f58¢
Console.WritelLine("D format {0}", myGuid.ToString("D"));
// B format: {ba576798-0b83-4b7d-b870-1b2e0377f58¢}
Console.WritelLine("B format {0}", myGuid.ToString("B"));
// P format: (ba576798-0b83-4b7d-b870-1b2e0377f58¢c)
Console.WritelLine("P format {0}", myGuid.ToString("P"));

.NET-to-COM Interoperability—The Basics

Here, you find that the “N” format produces a raw 32-digit number, “D” makes
use of a hyphen delimiter, and “B” and “P” make use of brackets and parentheses,
respectively. As you will see later in this text, when an interop assembly is gener-
ated by a given tool, the GUIDs documented within a COM type library will be
preserved and embedded into the interop assembly’s metadata. Given this, you
typically will not need to directly create a GUID from a managed client; however,
we will see its usefulness where necessary.

Blittable and Non-Blittable Data Types

Technically speaking, the .NET data types listed previously in Table 7-1 can be
broken down into two broad categories: blittable and non-blittable. The so-called
blittable types listed in Table 7-2 are entities that are represented identically
(under the hood) in both managed and unmanaged environments, and therefore
do not require any special translations when marshaled between .NET and COM
boundaries.

Table 7-2. The Blittable Types

Unmanaged Blittable Data Type Managed Blittable Meaning in Life
Data Type

unsigned char, unsigned char *, System.Byte Represents an 8-bit

byte, byte * unsigned integer

char, char *s System.SByte Represents an 8-bit

small , small * signed integer, and

is not CLS compliant

short, short * System.Int16 Represents a 16-bit signed
integer

wchar_t, wchar_t * System.UInt16 Represents a 16-bit

unsigned short, unsigned short * signed integer, and

is not CLS compliant

long, long *int, int * System.Int32 Represents a 32-bit
signed integer

unsigned long, unsigned long * System.UInt32 Represents a 32-bit

unsigned int, unsigned int * unsigned integer, and is

not CLS compliant

hyper, hyper * System.Int64 Represents a 64-bit
signed integer, and
is not CLS compliant

void *, void ** System.IntPtr A platform-specific type
that is used to represent
a pointer or a handle

349

Chapter 7

350

Given this information, it should be clear that if you have the following IDL
interface description:

// COM IDL data type.
interface IAmSimple : IUnknown

{
HRESULT Add([in] long x);

15
the resulting blittable type is System.Int32:

// .NET blittable data type.
void Add(int x);

In addition to stand-alone blittable types, arrays of blittable items and struc-
tures that contain blittable fields are themselves considered blittable. Thus, if you
create a fixed array of IDL longs, you will find a managed array of System.Int32

types.

The Non-Blittable Data Types

On the other end of the data type spectrum, there are non-blittable data types. As
the name suggests, non-blittable types are not represented identically between the
COM and .NET architectures. Check out the core non-blittable types listed in
Table 7-3.

Table 7-3. The Non-Blittable Data Types

Managed Meaning in Life

Non-Blittable

Data Type

System.Array Represents a managed version of a C-style array or a SAFEARRAY

System.Boolean Converts to a 1, 2, or 4-byte value with true as 1 or -1

System.Char Represents a Unicode or ANSI character

System.Object Represents a VARIANT or an interface

System.String Represents a managed version of a null-terminated string or BSTR
System.ValueType Converts to a structure with a fixed memory layout (details to come)

System.Multicast Converts COM connection points into managed delegates (details
Delegate to come)

.NET-to-COM Interoperability—The Basics

Non-blittable types do indeed require translations by the RCW to seamlessly
map information between architectural boundaries. For example, passing BSTRs,
COM interface pointers, and COM SAFEARRAYs between architecture boundaries
forces the RCW to make calls to the COM library to properly handle these complex
types. Again, the good news is that the RCW proxy type generally hides this internal
goo from view. Thus, if you have the following COM IDL interface definition:

// COM IDL data type.
interface IAmMoreComplex : IUnknown

{
HRESULT Speak([in] BSTR msg);

1
the non-blittable BSTR is translated into System.String automatically by the RCW:

// .NET non-blittable data type mapping.
void Speak(string msg);

Perhaps somewhat obviously, if you have a data type that contains non-
blittable members (such as a structure containing BSTR fields) or an array of
non-blittable types, the data structure in question is also non-blittable and
requires translation by the RCW.

Interfaces Consumed by the RCW

In addition to mapping primitive data types, the RCW is also responsible for
consuming a number of low-level COM interfaces from the .NET client, to make
the COM type behave well within a managed environment. Specifically speaking,
an RCW may consume any of the COM interfaces listed in Table 7-4 (depending
on which interfaces the COM type supports).

Table 7-4. COM Interfaces Hidden from a Managed Client

Consumed COM Interface Meaning in Life

IDispatch The RCW implements IDispatch to allow the .NET
client to activate the type using late binding, as well as
to allow the COM type to be examined using .NET
reflection services (System.Reflection).

IErrorInfo Asyou see in detail later in this text, COM types are able
to send COM error objects to a calling COM client. The
IErrorInfo interface allows the client to obtain a textual
description of the error, its source, a Help file, Help
context, and the GUID of the interface that defined the
error (always GUID_NULL for .NET classes). The RCW
intercepts this information and exposes it to the .NET
client via structured exception handling.

351

Chapter 7

352

Table 7-4. COM Interfaces Hidden from a Managed Client (continued)

Consumed COM Interface
IProvideClassInfo

IUnknown

IConnectionPoint and
IConnectionPointContainer

IDispatchEx

IEnumVARIANT

Meaning in Life

If the COM object being wrapped implements
IProvideClassInfo (which is always the case when
building VB 6.0 COM servers), the RCW extracts the
type information from this interface to provide stronger

type identity.

The RCW hides the functionality provided by IUnknown
(object identity, type coercion, and lifetime
management). Given this, a .NET client never directly
calls AddRef(), Release(), or Querylnterface().

If the COM type sends COM-based events, the RCW
implements these interfaces to map COM connection
point events into .NET delegate-based events.

The IDispatchEx interface is an extension of the
IDispatch interface that, unlike IDispatch, enables
enumeration, addition, deletion, and case-sensitive
calling of members. If the class implements
IDispatchEx, the RCW implements IExpando.

Enables COM types that support enumerations to be
treated as .NET style collections (specifically, be
traversed using foreach syntax).

By way of a simple example, assume you have created a scriptable coclass that
implements a single [dual] interface, fires events to the connected client, and
exposes a set of subobjects using a COM collection (Figure 7-6). Note that the
managed client is not exposed to these low-level interfaces.

. IFoo
C# Windows Forms [:
Application (RCH
Complex

IUnknown

TEnumVARIANT

(:)___

IDispatch COM Type

IConnectionPointContainer

Figure 7-6. The RCW hides low-level COM interfaces from view.

.NET-to-COM Interoperability—The Basics

Of course, these key COM interfaces are used indirectly by the managed client
where necessary. For example, if a C# client were to intercept a COM event, the
RCW will interact with IConnectionPointContainer and IConnectionPoint behind
the scenes. Likewise, if a managed client wishes to activate a COM type using late
binding, IDispatch is manipulated automatically.

Options to Obtain an Interop Assembly

Clearly, the RCW is a critical part of the .NET-to-COM interoperability puzzle. As
you have already seen, VS .NET makes the process of generating interop assem-
blies quite painless. You do, however, have other options. For example, while it is
possible to build a custom interop assembly using your managed language of
choice and the types defined within the System.Runtime.InteropServices name-
space, you seldom (if ever) need to do so. In Chapter 9, you examine the process of
creating your own custom IDL-to-.NET interop assembly conversion utility. Until
that point, you make use of the following more practical alternatives:

¢ Use the command line tool tlbimp.exe.
¢ Use the Add Reference | COM tab provided by VS .NET.

To be sure, the functionality provided by VS .NET fits the bill most of the time
(as seen in the first example of this chapter). However, there are times when you
need to drop down to the command line and interact with tlbimp.exe explicitly. As
with most command line tools, the benefit of doing so is that you have much more
control over how the interop assembly will be generated. For example, using
various command line flags, you can specify a custom name of the generated
namespace, configure a strongly named interop assembly, and so forth. Given this,
let’s get to know how to manipulate the raw command line utility.

Using the tlbimp.exe Command Line Utility

The Type Library Importer utility (tlbimp.exe) is a command line tool that reads
COM type information (typically contained in *.tlb, *.dll or *.exe files) and gener-
ates a corresponding .NET interop assembly. In its simplest form, all you are
required to specify is the name of the COM server you wish to convert. However,
Table 7-5 documents the core flags used to build an interop assembly that does
not support a strong name (you will examine this aspect of tlbimp.exe a bit later in
the text).

353

Chapter 7

354

Table 7-5. Core Options of tlbimp.exe

Core tlbimp.exe Flag Meaning in Life

/asmversion: Specifies the version number of the assembly to produce. By
default, the assembly’s version is based on the [library]
attribute of the COM type library.

/namespace: Specifies the namespace in which to produce the assembly. If
not specified, the namespace is based on the name of the
output file.

/sysarray: Specifies that COM SAFEARRAYs should map into a managed
System.Array.

/out: Specifies the name of the output file, assembly, and namespace

in which to write the metadata definitions.

If you do not specify the /out flag, tlbimp.exe writes the metadata to a file with
the same name as the actual type library defined within the input file and assigns
it a .dll file extension. If this action were to result in a name clash, tlbimp.exe
generates an error.

Building an Interoperability Assembly with Tlbimp.exe

To illustrate the use of tlbimp.exe, let’s build an interop assembly for the
AtlCarServer.dll COM server you created in Chapter 3. Open a command window
and navigate to the location of your ATL COM server. In keeping with the recom-
mended naming convention, the name of the resulting interop assembly consists
of an “Interop.” prefix. Assuming the location of your COM server is located on the
root C drive, you can issue the following command:

C:\tlbimp AtlCarServer.dll /out:Interop.AtlCarServer.dll

If you now check the C drive, you will see your new interop assembly is
present and accounted for (Figure 7-7).

File Edit View Favorites Tools Help

eBack - O @ ’OSEErch E‘ Falders -

& C:\Apress Books\InteropBook\Labs\Chapter 2\AtiCarServer\Debug

.NET-to-COM Interoperability—The Basics

Address |23 C:\Apress Books\InteropBook'\Labs'\Chapter 2\AtiCarServer\Debug

TN

AtlCarserv... AHCarServ...

File and Folder Tasks ¥,

Other Places

AtCarserve.

[y [

i | =)

Details) W E-E‘
~ | AtiCarServ... AtiCarServ... AtlCarServe...

interop.AtiCarserver.dll
Application Extension . .
Date Modified: Today, @
December 28, 2001, 12:29
PM regsvr32.trg StdAfi.obj vea.idb

Size: 4.00 KB i

.. AtCarServe... AtCarServ...

@ ¥
¥l B

ComCar.obj [lEgsR:Niesg

]

veed.pdb

Server.dl

Figure 7-7. The generated interop assembly

When you open this new .NET assembly using [LDasm.exe, you will be
pleased to find .NET types that represent the unmanaged COM atoms (Figure 7-8).

£ C:\Apress Books\InteropBook\Labs\Ch... |:||E||X|

File View Help

b MANIFEST
EI' interop AtCarServer
- ComCar
EE ComCarClass
EE IComCar
&l [Turbo
#-EE RADIOTYPE

CAApress BooksnteropBook\Labs \Chapter 2 4ICarServer.D

Ll Il] >
.assembly interop AtCarServer S
i ||

Figure 7-8. The managed COM wrapper types

355

Chapter 7

Examining the Generated .NET Types

To better understand the types that have been placed into the generated interop
assembly, think back to the original IDL definitions of the AtlCarServer.dll. First,
you defined two custom IUnknown derived interfaces:

// Each COM interface derives directly from IUnknown.
interface IComCar : IUnknown
{
HRESULT SpeedUp([in] long delta);
HRESULT TurnOnRadio([in] RADIOTYPE make);
b
interface ITurbo: IUnknown
{
HRESULT TurboBlast();

};

Recall that the IComCar::TurnOnRadio() method used a custom IDL enumer-
ation, RADIOTYPE:

// The COM IDL enumeration.
typedef enum RADIOTYPE

{
EIGHT TRACK, (D,

AM_RADIO, FM RADIO
} RADIOTYPE;

Finally, you have the ComCar coclass, which specifies the IComCar interface
as the [default]:

// ComCar supports two interfaces,
// where IComCar is the default.
coclass ComCar

{
[default] interface IComCar;

interface ITurbo;

};
Given that you have defined four COM types, you may wonder why tlbimp.exe

generated metadata for five NET entities. To begin to understand the translation
process, examine Table 7-6.

356

.NET-to-COM Interoperability—The Basics

Table 7-6. Types Generated for the AtlCarServer.dll COM Server

Generated Managed Type Meaning in Life

ComCar Tlbimp.exe generates a type that has the same name as the
[default] interface, minus the “I-” prefix (ex: IFoo becomes
Foo). This type is creatable, but you will only be able to access
the members explicitly defined by this interface.

IComCar Tlbimp.exe always generates managed equivalents for each
ITurbo interface found within the COM type library. As you would
expect, managed interfaces are not creatable.

ComCarClass Each coclass listed in the IDL library statement is represented
by a managed .NET class type and always takes a “-Class”
suffix (e.g., MyComClass becomes MyComClassClass). These
.NET types are directly creatable and support the members of
each and every implemented COM interface.

RADIOTYPE COM IDL data types are mapped to .NET types that extend
System.Enum.

Manipulating COM Types Using
Generated “-Class” Types

Let’s see these types in action. Assume you have a new C# Console application
(CSharpAtlComServerClient) that has already set a reference to the generated
interop assembly using the Add Reference dialog box (use the Browse button of
the .NET tab to navigate to the Interop.AtlCarServer.dll).

To illustrate the simplest way to manipulate the ATL ComCar, begin by
creating an instance of the generated ComCarClass type as follows:

using System;
using interop.AtlCarServer;

namespace CSharpAtlComServerClient

{
class CSharpATLClient
{
[STAThread]
static void Main(string[] args)
{

357

Chapter 7

358

// Use the ATL Car using the ComCarClass
// type. Recall! '-Class' types allow you
// to call any member of each supported

// interface.

ComCarClass ¢ = new ComCarClass();
c.TurnOnRadio(RADIOTYPE.EICHT TRACK);
c.SpeedUp(10);

c.TurboBlast();

When you create a new instance of generated “-Class” types, the object
instance (c, in this case) supports each member of each supported interface. This
is a good thing, of course, given that .NET does not demand that types implement
interfaces whatsoever, and therefore the C# client should not be forced to ask for
an interface before interacting with the type. Using ComCarClass, you can make
use of the functionality defined by IComCar and ITurbo from what seems to be a
simple .NET object reference.

Manipulating COM Types Using Discrete Interfaces

Recall that tIbimp.exe generates managed equivalents for each IDL interface.
Thus, if you wish, you are able to interact with the ATL ComCar using discrete
interface references. Understand, of course, that you will not make use of
QuerylInterface() to obtain an interface reference, but will do so using C#-specific
techniques (explicit casting, or using the is or as keywords). VB .NET clients would
make use of the CType() casting function. For example:

// Now make use of explicit interfaces (C#).
IComCar itfComCar = new ComCarClass();
itfComCar.TurnOnRadio(RADIOTYPE.FM RADIO);
try
{
// QueryInterface() triggered via explicit cast.
ITurbo itfTurbo = (ITurbo)itfComCar;
itfTurbo.TurboBlast();
}
catch(InvalidCastException e)
{Console.WritelLine(e.Message); }
' Now make use of explicit interfaces (VB .NET).
Dim itfComCar As IComCar = New ComCarClass()
itfComCar.TurnOnRadio(RADIOTYPE.FM_RADIO)

.NET-to-COM Interoperability—The Basics

Try
Dim itfTurbo As ITurbo = CType(itfComCar, ITurbo)
itfTurbo.TurboBlast()

Catch ex As InvalidCastException
Console.WriteLine(ex.Message)

End Try

Leveraging Managed Interfaces

When you make use of managed interfaces to interact with COM types, things
tend to look a bit more like classic COM. This is the case because you are now only
able to make use of members supported on a particular interface. Even though
working directly with the “-Class” generated types entails less effort on your part,
the generated managed interfaces still come in quite handy. For example, assume
that the AtlCarServer.dll COM binary supported another coclass that also
supported ITurbo:

// Another ITurbo compatible coclass.
coclass JetPlane

{
[default] interface IJet;
interface ITurbo;

If you wish to build a managed method that can manipulate ComCars as well
as JetPlanes, you could construct the following:

class CSharpATLClient

{
[STAThread]
static void Main(string[] args)
{
// Create some jets and comcars.
ComCarClass c3 = new ComCarClass();
JetPlaneClass j = new JetPlaneClass();
XCelerate(c3);
XCelerate(j);
}
// Turbo boost each COM type.
public static void XCelerate(ITurbo itfTurbo)
{
itfTurbo.TurboBlast();
}
}

359

Chapter 7

360

Given that the generated .NET interfaces behave like any other .NET interface
type, you are also allowed to make use of these interfaces from within managed
code (this topic is examined in greater detail in Chapter 12). For example, you
could build a custom C# class that implements ITurbo as follows:

// A C# class deriving from the COM ITurbo interface.
class UFO : ITurbo

{
public void TurboBlast()

{ Console.WritelLine("UFOs are always at warp speed...");}

And make use of it using the XCelerate() method:

class CSharpATLClient

{
[STAThread]
static void Main(string[] args)
{
// Create some jets, UFOs and ComCars.
ComCarClass c3 = new ComCarClass();
JetPlaneClass j = new JetPlaneClass();
UFO u = new UFO();
XCelerate(c3);
XCelerate(j);
XCelerate(u);
}
// Turbo each COM type.
public static void XCelerate(ITurbo itfTurbo)
{
itfTurbo.TurboBlast();
}
}

As you would expect, you can use generated interfaces to perform other inter-
face-based programming tricks. Assume you want to build an array of ITurbo
interfaces, where each member points to some type (COM-based or otherwise)
that supports the ITurbo interface. Once you have done so, you could loop over
the array and trigger each TurboBoost() implementation:

// Managed interface types may point to
// managed or unmanaged entities!
// (as long as they support the correct interface).

.NET-to-COM Interoperability—The Basics

ITurbo[] fastVehicles = {new ComCarClass(), // COM type.
new UFO(), // .NET type.
new JetPlaneClass()}; // COM type.

foreach(ITurbo i in fastVehicles)

i.TurboBlast();

Manipulating COM Types Using the
[Default] Interface Type

In addition to creating a “-Class” suffixed type that provides access to the
members of each implemented COM interface, tlbimp.exe also generates a type
that provides access to the members defined by the [default] interface of the
coclass. The name of this type is always the same name as the [default] interface
itself, minus the capital “I” prefix. For example, given that your ATL ComCar
marked IComCar as the [default], you are able to make use of your COM type

as follows:

// Now using 'default interface' type.
ComCar c2 = new ComCar();
c2.TurnOnRadio(RADIOTYPE.AM RADIO);

Understand, of course, that when you manipulate a COM type using the
[default] class type, you are only able to call members defined by the interface
itself. If you attempt to access members of other interfaces, you are greeted by a
compile time error:

// Ack! TurboBoost() not defined by IComCar!
c2.TurboBoost(); // Compiler error!

To get at the members of other auxiliary interfaces, you need to make use of
language-specific interface casting:

ITurbo itfTurbo2 = (ITurbo)c2;
itfTurbo2.TurboBlast();

You may be wondering exactly why tlbimp.exe generates these rather limited
types in the first place. My hunch is that it is because Visual Basic 6.0 COM
programmers typically created COM classes that supported a single [default]
interface. Given that VB 6.0 is far and away the most popular COM language
mapping out there, this gives VB .NET programmers the benefit of creating
wrapper types that have the same name as the underlying COM type. In short, the
default interface types are another bit of syntactic sugar.

361

Chapter 7

1 leeeee CODE The CSharpAtlComServerClient application is included under
\ R the Chapter 7 subdirectory.

So there you have it! At this point, you have seen how to create and manipu-
late COM types using the wrappers contained in a given interop assembly. What
you have not yet done is examine the specific rules that are used to map COM
types into terms of managed equivalents. To do so requires a deeper under-
standing of the members found within the System.Runtime.InteropServices
namespace.

Select Members of the
System.Runtime.InteropServices Namespace

Before I dig too much more deeply into the world of COM/.NET interop, you need
to be aware of the key members of the System.Runtime.InteropServices name-
space that help facilitate the translation process. These types are used in two
specific circumstances. First, when you generate a given interop assembly, the
assembly metadata contains numerous references to the types found in this
namespace, which are used to document bits of information regarding the original
COM IDL definitions. Second, be aware that when you create .NET types that need
to be exposed to COM (examined later in this text), you are making direct use of
these same types to control how a .NET atom is exposed to COM.

As you would guess, the members of System.Runtime.InteropServices can be
grouped by semantic similarity. In general, members of this namespace are used
to describe the following information:

e How to configure type libraries and interop assemblies

¢ How to expose and marshal types between architectures

¢ How to describe classes, interfaces, methods, events, and parameters

¢ How to express error information between architectures

* How to represent arrays and structures across architectures

Rather than dump out a single huge table of each and every member, let’s take
some time to check out the members that can be logically grouped together. To

begin, Table 7-7 lists the members that are specifically geared to the description of
COM type libraries and .NET interop assemblies.

362

.NET-to-COM Interoperability—The Basics

Table 7-7. Type Library/Interop Assembly—Centric Members of
System.Runtime.InteropServices

Type Library/Interop Meaning in Life
Assembly-Centric Member
TypeLibConverter Provides a set of services that allows you to

programmatically convert a managed assembly to
a COM type library and vice versa.

TypeLibFuncAttribute Contains the FUNCFLAGS that were originally
imported for this method from the COM type
library. Used in conjunction with the
TypeLibFuncFlags enumeration.

TypeLibTypeAttribute Contains the TYPEFLAGS that were originally
imported for this type from the COM type library.
Used in conjunction with the TypeLibTypeFlags
enumeration.

TypeLibVarAttribute Contains the VARFLAGS that were originally
imported for this field from the COM type library.
Used in conjunction with the TypeLibVarFlags
enumeration.

ImportedFromTypeLibAttribute Indicates that the types defined within an assembly
were originally defined in a COM type library.

PrimaryInteropAssemblyAttribute Indicates that the attributed assembly is a primary
interop assembly.

Closely related to the process of documenting COM type libraries and interop
assemblies is the process of documenting how these entities are registered and
how their internal types are exposed to the target architecture (Table 7-8).

Table 7-8. Registration/Visibility-Centric Members of
System.Runtime.InteropServices

Registration/Visibility-Centric Member Meaning in Life

ComRegisterFunctionAttribute Specifies the method to call when you
register an assembly for use from COM.
This allows the execution of user-written
code during the registration process.

363

Chapter 7

364

Table 7-8. Registration/Visibility-Centric Members of
System.Runtime.InteropServices (continued)

Registration/Visibility-Centric Member
ComUnregisterFunctionAttribute

RegistrationServices

ComImportAttribute

ComVisibleAttribute

Meaning in Life

Specifies the method to call when you
unregister an assembly for use from COM.
This allows for the execution of user-
written code during the unregistration
process.

Provides a set of services for registering
and unregistering managed assemblies for
use from COM.

Indicates that the attributed type was
previously defined in COM.

Controls COM visibility of an individual
type, member, or all types in an assembly.

As you would guess, classes, interfaces, methods, and parameters are also
represented by various attributes of the System.Runtime.InteopServices name-
space. Tables 7-9, 7-10, and 7-11 document the items of interest.

Table 7-9. Class-Centric Members of System.Runtime.InteropServices

Class-Centric Member Meaning in Life

ExtensibleClassFactory Enables customization of managed objects that extend from
unmanaged objects during creation

ProgldAttribute Allows the user to specify the Progld of a .NET class when

exposed to COM

Table 7-10. Interface-Centric Members of System.Runtime.InteropServices

Interface-Centric Member Meaning in Life

ClassInterfaceAttribute Indicates the type of class interface that will be
generated for a class, if at all. Used in conjunction with
the ClassInterfaceType enumeration.

DispldAttribute Specifies the COM DISPID of a method, field, or

property.

.NET-to-COM Interoperability—The Basics

Table 7-10. Interface-Centric Members of System.Runtime.InteropServices

(continued)

Interface-Centric Member
IDispatchImplAttribute

InterfaceTypeAttribute

AutomationProxyAttribute

Meaning in Life

Indicates which IDispatch implementation the
common language runtime uses when exposing dual
interfaces and dispinterfaces to COM. Used in
conjunction with the IDispatchImplType enumeration.

Indicates whether a managed interface is exposed to
COM as a dual, IDispatch-, or IlUnknown-based
interface. This attribute is used in conjunction with the
ComlinterfaceType enumeration.

Specifies whether the type should be marshaled using
the Automation Marshaler (oleaut32.dll) or a custom
proxy and stub DLL.

Table 7-11. Method and Parameter-Centric Members of
System.Runtime.InteropServices

Method- and
Parameter-Centric Member

InAttribute

OptionalAttribute

OutAttribute

ComAliasNameAttribute

LCIDConversionAttribute

PreserveSigAttribute

DllImportAttribute

Meaning in Life

Indicates that data should be marshaled from the caller
to the callee.

Indicates that a parameter is optional.

Indicates that data should be marshaled from callee
back to caller.

Indicates the COM alias for a parameter or field type.

Indicates that a method’s unmanaged signature expects
an LCID parameter.

Indicates that the HRESULT or retval signature
transformation that takes place during COM interop
calls should be suppressed.

Indicates that the attributed method is implemented
as an export from an unmanaged DLL. Used in
conjunction with the CallingConvention and CharSet
enumerations.

365

Chapter 7

366

There are two types used to document GUID-centric attributes, as shown in
Table 7-12.

Table 7-12. GUID-Centric Members of System.Runtime.InteropServices

GUID-Centric Member Meaning in Life

CoClassAttribute Identifies the class ID of a coclass imported from a type
library

GuidAttribute Supplies an explicit GUID when an automatically generated
GUID is undesirable

Finally, it is worth pointing out that System.Runtime.InteropServices defines a
class type that can be used to obtain information about the .NET runtime itself
(Table 7-13).

Table 7-13. .NET Runtime—Centric Members of System.Runtime.InteropServices

General .NET Utility-Centric Member Meaning in Life

RuntimeEnvironment Provides a collection of static (shared in Visual
Basic) methods that return information about
the common language runtime environment.
The FromGlobalAccessCache() method can
also be used to determine if a given assembly
in located in the GAC.

An Interesting Aside:
System.Runtime.InteropServices.RuntimeEnvironment

The RuntimeEnvironment type is helpful when you want to discover basic traits
regarding how the target machine has configured the .NET runtime. For example,
consider the following class:

class RuntimeSpy

{
[STAThread]

static void Main(string[] args)
{
// Check out the runtime...
Console.WriteLine("Runtime Directory is:\n-->{o}\n",
RuntimeEnvironment.GetRuntimeDirectory());

.NET-to-COM Interoperability—The Basics

Console.Writeline("System Version is:\n-->{0}\n",
RuntimeEnvironment.GetSystemVersion());

Console.WriteLine(@"Location of system
config file is:\n-->{0}\n",
RuntimeEnvironment.SystemConfigurationFile);

The output can be seen in Figure 7-9.

C:\Apress Books\InteropE

RBuntime Directory is:
—CNUINDOWES\Microsof t .NET“\Frameworksvl . B.3512%

System Uersion is:

—»ul.@.3512

Location of system config file is:
—>C:~UINDOWS Microsof t .MET“\Framework vl B_3512%conf ig~machine .conf ig

Press any key to continue_

Figure 7-9. The .NET Runtime spy

/"\.. . CODE The RuntimeSpy application is located under the Chapter 7

\ a H subdirectory.
0

COM Library Statement to .NET Assembly Statement
Conversion Rules

Now that you have a better idea of the key types that lurk within an interop
assembly, you can dig into the specifics. Begin by running tlbimp.exe and specify
the *.tlb file of the RawComServer.dll you created in Chapter 2. Given that you did
not embed the *.tlb file directly into the *.dll, you get an error if you attempt to
specify the *.dll itself. The following command does the trick:

C:\ tlbimp RawComCar.tlb /out:interop.RawComCarlLib.dll

367

Chapter 7

368

As you may recall, COM type libraries maintain a special section termed the
library statement. At minimum, COM type libraries must be adorned with a [uuid]
attribute (which identified the LIBID). In addition, a well-behaved type library
statement should support a [version] attribute and may support the [Icid]
attribute to mark the locale of the type library itself. For example, ponder the
following library statement for the RawComCar.dll COM server:

// The Raw Car Library.
[uuid(D679F136-19C9-4868-B229-F338AE163656), version(1.0)]
library RawComCarLib

{
}

When an interop assembly is generated, the information found in the COM
type library statement is used to build the [.assembly] description statement of the
assembly manifest. For example:

.assembly interop.RawComCarLib

{
.. GuidAttribute..
.. ImportedFromTypeLibAttribute..
.ver 1:0:0:0
}

As you can see, the friendly name of the assembly is constructed based on
the value specified by the /out: flag sent into tlbimp.exe. However, if you do not
specify an /out: value, the assembly, namespace, and file names are all based
on the COM library name. In a similar light, the version of the assembly is
constructed based on the [version] identifier of COM type library. Thus, if you
update the library version as follows:

[uuid(D679F136-19C9-4868-B229-F338AE163656), version(3.5)]
library RawComCarLib

{
}

the generated interop assembly would now be marked as version 3.5.0.0:

.assembly interop.RawComCarLib

{

.ver 3:5:0:0

}

.NET-to-COM Interoperability—The Basics

In addition to building the assembly’s friendly name and version
identifier, the generated [.assembly] statement also documents the fact that
this assembly was generated from an existing COM type library using the
ImportedFromTypeLibAttribute type as well as the GUID value of the LIBID
itself using the GuidAttribute type.

Recall that the ImportedFromTypeLibAttribute type is used to indicate that
the types contained within the assembly were generated using COM type informa-
tion. Therefore, any assembly that contains this marker in its assembly manifest
can be correctly identified as an interop assembly. Here is the complete
[.assembly] statement for the generated interop assembly manifest (slightly
reformatted for ease of reading):

.assembly Interop.RawComCarlib

{

.custom instance void
[mscorlib]System.Runtime.InteropServices.
ImportedFromTypelibAttribute
ti.ctor(string) =
(01 00 0C 52 61 77 43 6F 6D 43 61 72 4C 69 62 00 00)
// ...RawComCarLib.

.custom instance void [mscorlib]System.Runtime.InteropServices.GuidAttribute
ti.ctor(string) = (01 00 24 64 36 37 39 66 31 33 36 2D 31 39 63 39
2D 34 38 36 38 2D 62 32 32 39 2D 66 33 33 38 61
65 31 36 33 36 35 36 00 00)
// d679f136-19c9-4868-b229-1338a2e163656
.hash algorithm 0x00008004
.ver 1:0:0:0

Notice that the value passed into the constructor of the
ImportedFromTypeLibAttribute is the name of the original COM type library
(RawComCarLib), while the value passed into the GuidAttribute is the original
LIBID (D679F136-19C9-4868-B229-F338AE163656).

Programmatically Controlling
the Namespace Definition

The default behavior of tiIbimp.exe is to create a namespace that is based on the
name of the COM library statement. Although this is most likely exactly what you
require, you are able to instruct tlbimp.exe to generate an alternative name using
the /namespace or /out flags. However, the Visual Studio .NET IDE builds the
generated namespace verbatim. When you wish to generate an alternative
namespace for an interop assembly, you must make use of tlbimp.exe directly.

369

Chapter 7

370

Alternatively, if you wish to ensure that a generated namespace will always
take a particular form (regardless of the tool used to build the interop assembly),
you can retrofit the COM type library to support a [custom] IDL attribute with the
name 0F21F359-AB84-41e8-9A78-36D110E6D2F9 (see Chapter 4 for a discussion
of building custom IDL attributes). The value of this custom IDL attribute is a
literal string that is used to generate the name of the generated assembly. To illus-
trate, assume that you reengineered (and recompiled) the RawComCar library
statement as follows:

[uuid(D679F136-19C9-4868-B229-F338AE163656), version(1.0),
custom(0OF21F359-AB84-41e8-9A78-36D110E6D2F9,
"Intertech.RawComCarLib")]

library RawComCarlLib

{

Once the interop assembly is regenerated, you would find the namespace
definition shown in Figure 7-10.

*~ Object Browser

Browse: Selected Components ~ Customize... El -

Objects Empty

#-E# InteropAsmAtirReader

El-=@ interop.intertech rawcomcarlib

- {} Intertech

B} Intertech.RawComCarLib
w-O ComCar

; ag ComCarClass

o=l TCar

--+=0 [Radio

2= [ScriptableCar

--e=) ScriptableCar

a: ScriptableCarClass

[H--+E mscorlib

[+ system.data L

[#-+Z3 system

| G cuscbam sl

>

|

Assembly interop.intertech.rawcomcarlib
c:\apress books\interopbook\abs\chapter &Yinterapasmattrreader\bin\debug
interop.intertech.rawcomcarlib .dil

Figure 7-10. Creating custom namespace names

Understand, of course, that the chances are slim to none that you will import
alegacy COM server that supports this custom IDL attribute, simply because most
COM servers were created well before the release of .NET and had no foreknowl-
edge of this predefined GUID. If you wish to change the name of the generated

.NET-to-COM Interoperability—The Basics

namespace using this technique, you need to update the underlying IDL of the
original COM server. The only reason you may want to do so is to establish a
nested namespace definition (which requires the use of the dot notation). As you
may be aware, IDL [library] statements do not support the use of the dot notation
when creating the friendly name of a COM type library.

So much for this examination of converting COM type library statements into
.NET assembly definitions. Next up, let’s check out how the core COM types are
mapped into managed equivalents.

COM Types to .NET Types Conversion Rules

As you are well aware, a COM library statement contains numerous type defini-
tions. Simply put, COM interfaces become managed interfaces, coclasses become
.NET class types (which do indeed derive from System.Object), and COM enums
become System.Enum derived types. Of course, there is much more to the story
than meets the eye. To begin, let’s check out the conversion of COM interface types.

COM Interface Conversion

When a COM interface is translated into a managed equivalent, the conversion
process purposely strips away all members of [lUnknown and, if necessary,
IDispatch, from the managed type. For example, the RawComCar.dll COM server
defined three custom interfaces, two of which (ICar and IRadio) derived directly
from IUnknown, while the other (IScriptableCar) was configured as a [dual]
interface and therefore derived from IDispatch. Here is the original IDL:

// The ICar interface
[uuid(710D2F54-9289-4f66-9F64-201D56FB66C7), object]
interface ICar : IUnknown
{

HRESULT SpeedUp([in] long delta);

HRESULT CurrentSpeed([out, retval] long* currSp);
b

// The IRadio interface
[uuid(3B6C6126—92A8—47ef—86DA—A128FFD9BC42), objec‘t]
interface IRadio : IUnknown

{
HRESULT CrankTunes();

};

371

Chapter 7

372

// The IScriptableCar interface
[uuid(DBAA0495-2F6A-458a-A74A-129F2C45B642), dual, object]
interface IScriptableCar : IDispatch

{
[id(2), propput] HRESULT Speed([in] long currSp);
[id(1), propget] HRESULT Speed([out, retval] long* currSp);
[id(2)] HRESULT CrankTunes();

};

Much like the LIBID assigned to the COM type library, IID values are encoded
into .NET metadata using the GuidAttribute type. In addition, [lUnknown-derived
interfaces (meaning, interfaces that have not been configured as [dual] or raw
dispinterfaces) are also adorned with the InterfaceTypeAttribute. The underlying
value assigned to the InterfaceTypeAttribute is one of the following members of
the ComlInterfaceType enumeration, as seen in Table 7-14.

Table 7-14. Values of the ComInterfaceType Enumeration

ComInterfaceType Member Name Description

InterfacelsDual Indicates the interface was configured as a dual
interface

InterfacelsIDispatch Indicates the interface was configured as a
dispinterface

InterfacelsIlUnknown Indicates the interface was defined as an

TUnknown-derived interface (as opposed to a
dispinterface or a dual interface)

For example, if you examine the IL behind the IRadio interface, you find the
following IL (again, slightly reformatted for readability):

.class interface public abstract auto ansi import IRadio

{
.custom instance void[mscorlib]
System.Runtime.InteropServices.GuidAttribute::
.ctor(string) =

(01 00 24 33 42 36 43 36 31 32 36 2D 39 32 41 38

2D 34 37 45 46 2D 38 36 44 41 2D 41 31 32 42 46

46 44 39 42 43 34 32 00 00)
// ..$3B6C6126-92A8-47EF-86DA-A12BF FD9BC42
.custom instance void[mscorlib]
System.Runtime.InteropServices.InterfaceTypeAttribute::
.ctor(int16) =

(01 00 01 00 00 00)

} // end of class IRadio

.NET-to-COM Interoperability—The Basics

The ICar interface has similar attributes. However, when tlbimp.exe
encounters a [dual] interface, the underlying IL does not record an
InterfaceTypeAttribute, but rather the TypeLibTypeAttribute type to document
the TYPEFLAGS that were originally imported for this type from the COM type
library. Recall from Chapter 4 that the TYPEFLAGS enumeration contains fields
that identify if the entity is hidden, creatable, an application object, and so forth.
For example, here is the IL definition of IScriptableCar:

.class interface public abstract auto ansi import IScriptableCar

{

.custom instance void [mscorlib]
System.Runtime.InteropServices.TypelLibTypeAttribute::
.ctor(int16) =

(01 00 40 10 00 00)
.custom instance void [mscorlib]
System.Runtime.InteropServices.GuidAttribute::
.ctor(string) =

(10100 24 44 42 41 41 30 34 39 35 2D 32 46 36 41

2D 34 35 38 41 2D 41 37 34 41 2D 31 32 39 46 32

43 34 35 42 36 34 32 00 00)

// ..$DBAA0495-2F6A-458A-A74A-129F2 C45B642

} // end of class IScriptableCar

Importing COM Interface Hierarchies

A very standard technique in COM is to build new interface definitions based

on existing interfaces (this is also a common design pattern within the .NET
universe). When programmers make use of this approach, they are in effect
“versioning” an interface. Despite the usefulness of this technique, Visual Basic 6.0
does not allow you to follow this pattern, given that VB 6.0 does not support any
form of inheritance. Therefore, assume that you have a new ATL COM server
(ATLVersionedInterfaceServer) that defines the following interface hierarchy:

interface IFoo : IUnknown

{

[helpstring("method A")] HRESULT A();
b
interface IFoo2 : IFoo
{

[helpstring("method B")] HRESULT B();
b
interface IFoo3 : IFoo2
{

[helpstring("method C")] HRESULT C();
b

373

Chapter 7

374

Each of these interfaces is implemented by a single coclass named
(of course) Foo:

// The Foo coclass supports each versioned interface.
coclass Foo

{
[default] interface IFoo;
interface IFo002;
interface IFoo03;

};

When tlbimp.exe reads the underlying COM type information, it applies a
very simple rule: When building a managed interface, derived interfaces support
the members of their base interfaces. For example, the managed version of
[Foo3 supports methods C(), B(), and A(). Likewise, the managed version of [Foo2
supports methods B() and A(). If you create an interop assembly for this ATL server
and load it into ILDasm.exe, you find what appears in Figure 7-11.

C:\Apress Books\InteropBookiLabs\Chapt... |:| |§| |X|
Eile View Help

bs"Chapter B\ATLVersionedInter|

MANIFEST
interop . AtlVersionedInterface Server
IE Foo
- FooClass
&I IFoo
- P class interface public abstract auto ansi import
- .custom instance void [mecorib]System. Runtime:. Interog
- .custom instance void [mscorib]System. Runtime:. Interog
.. custom instance void [mecorib]System Runtime: Interor]
-l A woid()
& Foo2

- B class interface public abstract aute ansi import
- implements interop_AtlVersionedinterface Server. |Foo
- .custom instance void [mecorib]System. Runtime:. Interog
- .custom instance void [mscorib]System. Runtime:. Interog
- F custom instance void [mscorib]System Runtime . Interor]
-l A woid()

-l B : void()
& Fool
- P class interface public abstract aute ansi impert
- I implements interop AtlVersionedinterface Server. [Foo2
.. custom instance void [mecorib]System Runtime: Interor]
- F custom instance void [mscorib]System Runtime . Interor]
- B custom instance void [mscorib]System. Rurtime. Interor]
- W A void()
- B :void(
- C:wvoid(
2l I | S
.{assernbly interop At Versionedinterface Server]

wer 1:.0:0:0

Figure 7-11. Imported COM interface hierarchies

.NET-to-COM Interoperability—The Basics

s CODE The ATLVersionedInterfaceServer application is included under
- the Chapter 7 subdirectory.
7

COM Interface Members to .NET Method
Conversion Rules

A COM interface may contain any number of methods or the syntactic sugar you
know as COM properties (recall that a COM property always maps to a pair of
hidden functions). When an unmanaged member (that is, methods and proper-
ties) is mapped into a .NET equivalent, things are mostly what you would expect.

Consider the transformation of COM interface methods. Recall that COM
interface methods return a standard HRESULT to signal the success or failure of
the method invocation. When converting a COM method, the underlying
HRESULT is hidden by the RCW. As you may be aware, there are many (many)
predefined COM HRESULTs that are used to document the reason for a failure.
Later in this text, when you examine COM/.NET error handling, you see how to
handle failed HRESULT values within a managed client. For the time being,
assume the world is a happy place, and all COM methods return S_OK.

COM properties, however, deserve special mention. Assume that you have
created the following property (using VB 6.0):

A simple COM property
' supported by the VB 6.0 PropClass coclass.
Private mName As String

Public Property Get Name() As String
Name = mName
End Property

Public Property Let Name(ByVal rhs As String)
mName = rhs
End Property

Under the hood, the VB 6.0 compiler generates the following IDL:

interface PropClass : IDispatch

{
[1d(0x68030000), propget]
HRESULT Name([out, retval] BSTR*);
[1d(0x68030000), propput]
HRESULT Name([in] BSTR*);
};

375

Chapter 7

376

Once you create an interop assembly, you are able to see (using ILDasm.exe)
that [propput] methods are mapped to a hidden method named set_X(), whereas
[propget] methods are mapped to a hidden get_X() method. In addition, the prop-

erty itself is preserved by name. Check out Figure 7-12.

F C:\Apress Books\InteropBook\junk\C... |:||E||X|
File View Help

g--§ ChApress Books'Interop Booljunk\Console Application 2bin
B MANIFEST
EI' Project1
&l PropClass
& PropClassClass
EI[E _PropClass
----- P class intefface public abstract auto ansi import
----- B custom instance void [mscorib]System. Rurtime |
----- B custom instance void [mscurlib]S}rstem.Huntime.l:l

get_Mame : string()
----- B s=t_Name : void(string)
----- A MName : string)

£ 1l] >
.assembly Interop.Project 1 |
1 |

Figure 7-12. Mapping COM properties
The underlying IL for the get_X() and set_X() methods is quite interesting:

.method public hidebysig newslot specialname virtual abstract
instance string marshal(bstr)
get_Name() runtime managed internalcall

{

} // end of method PropClass::get Name

.method public hidebysig newslot specialname virtual abstract
instance void set_Name([in] string marshal(bstr) A 1)
runtime managed internalcall

{

} // end of method PropClass::set Name

.NET-to-COM Interoperability—The Basics

Note that each get_X() and set_X() member is marked using the [internalcall]
directive that marks a call to a method implemented within the common language
runtime itself. Translated into English, this simply means that [internalcall]
methods are not typically called directly by a managed client. This begs the ques-
tion of how these members are triggered. The answer can be found within the IL
describing the managed Name property:

.property string Name()
{

.get instance string Projecti. PropClass::get Name()
.set instance void Projecti. PropClass::set Name(string)
} // end of property PropClass::Name

As you can see, the Name property maintains the name of the [internalcall]
member to “hit” based on the calling syntax. The [.get instance] directive is used to
document the correct accessor method while [.set instance] marks the correspon-
ding mutator. Given this, ponder the following C# client code:

// Ci# COM property manipulation.

PropClassClass c = new PropClassClass();

// Triggers Project1._PropClass::set_Name(string).

c.Name = "Fred"

// Triggers .get instance string Projecti._PropClass::get_Name().
Console.WriteLine(c.Name);

So, as you can see, mapping methods and properties to managed equivalents
isn't so bad. To spice things up a bit, let’s check out parameterized members.

COM Method Parameters to .NET Method Parameters
Conversion Rules

As you may recall from the first section of this text, COM parameters take attrib-
utes to document the direction of travel between coclass and client. When you
create IDL definitions by hand, you have direct control over when parameters
receive which attributes. However, when using Visual Basic 6.0, these IDL attrib-
utes are assigned behind the scenes when you use the ByVal and ByRef keywords.
While the managed definition of COM IDL parameters is not documented
within the interop assembly’s metadata, these IDL attributes do configure the
calling conventions used by the managed client. C# clients make use of the ref and

377

Chapter 7

378

out keywords, while VB .NET clients use the familiar ByRef and ByVal keywords.
For example, if you have the following IDL method definition:

// Some interface method.
HRESULT SomeMethod([in] int theln,

[out] int* theOut,

[in, out] int* theInOut,

[out, retval] int* theReturnValue);

Which has been implemented in an ATL coclass as follows:
STDMETHODIMP CFoo: :SomeMethod(int theln,

int *theOut,

int *theInOut,

int *theReturnvalue)

{
// Fill [out] and change [in, out].
*theOut = 100;
*theInOut = 666;
*theReturnValue = 777;
return S_OK;
}

A Ci# client would call the member using the out and ref keywords:

FooClass theObj = new FooClass();

int x; // No need to assign output parameters before use.

int y = 10;

int answer = theObj.SomeMethod(10, out x, ref y);
Console.WriteLine("X = {0}, Y = {1}, Answer = {2}", x, y, answer);

The results are seen in Figure 7-13.

@ =188, ¥ = 666, Answer Kods
Press any key to continue

Figure 7-13. Interacting with COM parameters

It is also important to recall that the System.Runtime.InteropServices name-
space defines a set of managed attributes that can be used to control how .NET
parameters should be exposed to COM (the subject of a later chapter). Table 7-15
illustrates the relationship between these key players:

Table 7-15. Parameter Conversions

.NET-to-COM Interoperability—The Basics

CcoM IDL VB 6.0/VB
Parameter .NET Keyword
Attribute

[in] ByVal

[out] n/a

[in, out] ByRef

[out, retval] Standard VB
6.0 Function
return value

C# Calling
Convention

No language-specific
keyword

C# out keyword

C# ref keyword

IDL [out, retval]
parameters are
mapped as a physical
return value from the
function call.

System.Runtime.InteropServices
Attribute

InAttribute

OutAttribute

No managed attribute; simply
supply the InAttribute and
OutAttribute types on the same
parameter.

No managed attribute; simply
define a function return value.

VB 6.0 Parameter Conversions—An Annoying Aside

Visual Basic 6.0 is perhaps the only modern language in use that defaults parame-
ters as being passed by reference rather than by value (in contrast, VB .NET defaults
to by value parameter passing). For the sake of argument, if you define the
previous Name property as follows:

' Note the Iack of ByVal in the

' Property Let..
Private mName As String

Public Property Get Name() As String

Name = mName
End Property

Public Property Let Name(rhs As String)

mName = rhs
End Property

the underlying IDL would represent this COM interface as the following (note the
presence of the [in, out] IDL attributes):

interface PropClass : IDispatch

{

[1d(0x68030000), propget]
HRESULT Name([out, retval] BSTR*);

379

Chapter 7

[1d(0x68030000), propput]
HRESULT Name([in, out] BSTR*);
b

While this does not seem too problematic, recall that managed clients must
call a COM method by adhering to the same directional attributes. For example,
although you might assume you could manipulate the Name property in C# as
follows:

// This is the way the property should work..
PropClass p = new PropClass();

p.Name = "Hello";

Console.WritelLine("Name is: {0}", p.Name);

you will be issued some rather frustrating compiler errors such as these:

"C:\Apress Books\InteropBook\junk\ConsoleApplication2\

Class1.cs(25): Property, indexer,

or event 'Name' is not supported by the language;

try directly calling accessor methods

'Projectl. PropClass.get Name()' or 'Projectl. PropClass.set Name(ref string)'

The reason has to do with the fact that the VB 6.0 property definition has
implicitly made use of the ByRef keyword during the construction of the [propput]
method. This forces the C# client to directly call the hidden get Name() and
set_Name() methods:

/7 Yuck..

PropClass p = new PropClass();

string name = "Hello";

p.set_Name(ref name);

Console.WriteLine("Name is: {0}", p.get_Name());

If you make use of the ByVal keyword as follows:

' One more time, using ByVal.

Public Property Let Name(ByVal rhs As String)
mName = rhs

End Property

you are able to call the property as expected. As an interesting corollary, under-
stand that when a property has been correctly configured to make use of the ByVal
keyword, the hidden get_X() and set_X() methods are unavailable. If you attempt
to reference them within the client’s code base, you are issued the following
compiler error:

C:\Apress Books\InteropBook\junk\ConsoleApplication2\Classi.cs(28):
'Project1. PropClass.Name.set': cannot explicitly call operator or accessor

380

.NET-to-COM Interoperability—The Basics

The annoying aspect of this behavior is the fact that you are likely to find
many COM servers (written in VB 6.0) that make use of the default ByRef param-
eter attribute (most likely by accident). Unless you are willing to crack open the
code base and apply the ByVal attribute, you may need to trigger the underlying
get_X() and set_X() members to interact with the VB 6.0 COM property.

Handling Optional and Default Parameters

COM IDL supports the definition of parameters which are attributed by the
[optional] and [defaultvalue] keywords. The semantics of these keywords are just
as you would hope. Optional arguments may be omitted by the caller, and
optional arguments marked with the [defaultvalue] keyword will make use of a
hard-coded value if the item in question is omitted by the caller.

For the most part, optional/default parameters are only realized in the VB 6.0
COM language mapping and are not guaranteed to be honored by other COM-
aware programming languages. Given that the current COM server under exami-
nation does not have members which support these IDL constructs, assume
that you have a brand new VB 6.0 COM server which defines a single coclass
(CoOptParams) that populates its [default] interface as so:

Public Function AddTwoOrThreeNumbers(ByVal x As Integer, _
ByVal y As Integer, _
Optional ByVal z As Integer) As Integer
Dim ans As Integer
ans = x +y
' Did they send the optional param?
If Not IsMissing(x) Then
ans = ans + z
End If
AddTwoOrThreeNumbers = ans
End Function

Public Function AddwithDefaults(Optional ByVal x As Integer = 2, _
Optional ByVal y As Integer = 2) As Integer

No need to check if args
' are missing, as we always
" have 2+2.

AddWithDefaults = x +y

End Function

381

Chapter 7

The resulting IDL is as so:

interface CoOptParams : IDispatch {
[1d(0x60030000)]
HRESULT AddTwoOrThreeNumbers (
[in] short x,
[in] short vy,
[in, optional] short z,
[out, retval] short*);
[1d(0x60030001)]
HRESULT AddWithDefaults(
[in, optional, defaultvalue(2)] short x,
[in, optional, defaultvalue(2)] short vy,
[out, retval] short*);

};

Now, just as the [optional] and [defaultvalue] keywords are not guaranteed to
be honored in every COM-aware programming language, these IDL keywords are
not guaranteed to usable in every .NET-aware programming language. While it is
true that the Common Type System (CTS) does describe how these programming
constructs can be represented in terms of IL and .NET metadata, optional and
default parameters are not CLS compliant! As you might expect, VB .NET does
allow for the use of optional and default arguments, however C# does not. Given
this fact, if you generate an interop assembly for a COM server which makes use of
these IDL keywords, the manner in which you need to programming against
theses COM atoms will depend on your choice of managed language.

Assume you have created an interop assembly for the VbOptParamsServer.
The generated metadata for the AddTwoOrThreeNumbers() method would look
like so (note the [opt] metadata keyword):

.method public hidebysig newslot virtual abstract
instance int16 AddTwoOrThreeNumbers([in] int16 x,
[in] int16 y, [in][opt] int16 z)
runtime managed internalcall
{
.custom instance void[mscorlib]System.Runtime.InteropServices.
DispIdAttribute::.ctor(int32) = (01 00 00 00 03 60 00 00)
/] e ..
} // end of method CoOptParams::AddTwoOrThreeNumbers

As for the AddWithDefaults() method, notice that the default values of each
parameter are hard-coded interop assembly (via the .param tag).

.method public hidebysig newslot virtual abstract
instance int16 AddwithDefaults([in][opt] int16 x,
[in][opt] int16 y) runtime managed internalcall

382

.NET-to-COM Interoperability—The Basics

{

.custom instance void [mscorlib]System.Runtime.InteropServices.
DispIdAttribute::.ctor(int32) = (01 00 01 00 03 60 00 00)
/A ..
.param [1] = int16(0x0002)
.param [2] = int16(0x0002)
} // end of method CoOptParams::AddWithDefaults

Now, if you were to make use of the CoOptParams COM type using VB .NET,
things would look much like a classic VB 6.0 client. Thus, we could write the
following:

Imports VbOptParamsServer

Module Modulel
Sub Main()
Dim ¢ As New CoOptParamsClass()
Dim i As Integer

work with optional params.
i = c.AddTwoOrThreeNumbers (20, 20)
Console.WriteLine("20 + 20 is {o0}", i)

i = c.AddTwoOrThreeNumbers(10, 20, 40)
Console.WriteLine("10 + 20 + 40 is {0}", i)

' Work with default params.
i = c.AddWithDefaults()
Console.WriteLine("2 + 2 is {o}", i)

i = c.AddWithDefaults(3)
Console.WriteLine("3 + 2 is {o}", i)

i = c.AddWithDefaults(4, 2)
Console.WriteLine("4 + 2 is {o}", i)
End Sub
End Module

As you can see, VB .NET clients are happy to honor the [defaultvalue] and
[optional] IDL keywords. However, if you had a C# client which exercised the exact
same coclass, you would rnot be able to work with any of the previous logic other
than the following:

static void Main(string[] args)

{
CoOptParamsClass ¢ = new CoOptParamsClass();

int i;

383

Chapter 7

384

// Must specify all args in Ci.
i = c.AddTwoOrThreeNumbers (10, 20, 40);
Console.WriteLine("10 + 20 + 40 is {0}", i);

// Can’t use defaults in C#.
i = c.AddWithDefaults(4, 2);
Console.WriteLine("4 + 2 is {o0}", i);

As you can plainly see, C# demands that all optional parameters are
accounted for, therefore, all default values are lost. This can be a bit of a bother for
the C# developer, especially if the COM server being programmed against makes
substantial use of either of these IDL keywords.

The System.Type.Missing Read-Only Field

The last thing to be aware of when programming against the [optional] and
[defaultvalue] IDL keywords has to do with the VARIANT type (discussed in greater
detail in Chapter 8). Technically speaking, if a C# client attempts to call a COM
method which takes an optional VARIANT, they are required to supply an empty
System.Object (given that VARIANTs map into System.Object types). Assume we
have the following VB 6.0 method definition:

' Remember! Ci# will always ignore default values,
' VARIANT or not.
Public Sub UseThisOptionalThing(ByVal msg As String, _
Optional ByVal x As Variant = "Again")
MsgBox msg, , "The message"

' Show the thing.
If Not IsMissing(x) Then
MsgBox x, , "Optional Variant is:"
End If
End Sub

When a C# client wishes to call a method taking optional VARIANTS, it is still
responsible for passing an argument (even though it has been marked as
[optional]). However if it were to send in an new instance of System.Object as the
second parameter like so:

// Optional VARIANT? Nope..
object objMissing = new object();

// Displays "Hello" and then "System.Object"
c.UseThisOptionalThing("Hello", objMissing);

.NET-to-COM Interoperability—The Basics

you would find that the allocated System.Object is indeed passed to the method as
a valid argument. Given this, you will trigger two message boxes, the second of
which displays "System.Object". When you want to indicate that you wish to pass
in ‘nothing’ as the optional VARIANT parameter, make use of the Type.Missing
field like so:

// Optional VARIANTs? Yes!
object objMissing = Type.Missing;

// Only displays "Hello"
c.UseThisOptionalThing("Hello", objMissing);

With this syntax, the call will only trigger one message box that displays
"Hello". Again, do note that in both cases the [defaultvalue] IDL keyword is
ignored.

As you might expect, VB .NET clients can forgo the Type.Missing syntax and
simply omit the optional VARIANT parameter just as if it were an optional simple
data type (strings, integers, and what not).

g leeeee CODE The VbOptParamsServer, VbNetOptParamsClient and
\ YR CSharpOptParamClient programs are located under the Chapter 7

=
=

J subdirectory.

COM Coclass Conversion

As you have seen, tlbimp.exe generates two creatable types for each IDL coclass
definition: the “-Class” suffixed type and the default interface class type. Obvi-
ously, each type must somehow document the interface(s) that it implements. Not
surprisingly, the underlying IL. makes use of the [implements] directive. For
example, here is the (abbreviated) IL definition for the ComCarClass type:

.class public auto ansi import ComCarClass
extends [mscorlib]System.Object
implements Intertech.RawComCarlLib.ICar,

Intertech.RawComCarLib.ComCar,
Intertech.RawComCarlLib.IRadio

// ClassInterfaceAttribute..
// GuidAttribute..
// TypelLibTypeAttribute..

} // end of class ComCarClass

385

Chapter 7

386

Notice that the obvious interfaces, ICar and IRadio, are present and accounted
for. However, also notice that the default interface class type interface ComCar is
also listed as an implemented interface (explained shortly).

Within the body of the managed class definition are three .NET attributes:
ClassInterfaceAttribute, GuidAttirbute, and TypeLibTypeAttribute. The
GuidAttribute value maps to the GUID of the IDL [coclass] definition. As seen
earlier in this chapter, the ClassInterfaceAttribute and TypeLibTypeAttribute
types contain the ComInterfaceType value (of the [default] interface) and the
TYPEFLAGS for the coclass.

As for the IL definition for the ComCar entity, you find the following:

.class interface public abstract auto ansi import ComCar
implements Intertech.RawComCarLib.ICar

// GuidAttribute..
// CoClassAttribute..
} // end of class ComCar

Notice that the default interface class types maintain the GUID of the coclass
that marks them as a [default] interface via the CoClassAttribute. If you check out
the complete listing, you find that the CoClassAttribute also marks the friendly
name of the associated coclass:

.class interface public abstract auto ansi import ComCar
implements Intertech.RawComCarLib.ICar
{

.custom instance void
[mscorlib]System.Runtime.InteropServices.CoClassAttribute::
.ctor(class[mscorlib]System.Type) =

(01 00 22 49 6E 74 65 72 74 65 63 68 2E 52 61 77
43 6F 6D 43 61 72 4C 69 62 2E 43 6F 6D 43 61 72
43 6C 61 73 73 00 00)
// .."Intertech.RawComCarLib.ComCarClass..

As you might expect, the value of the GuidAttribute is identical to that of the
related COM interface definition (IComCar in this case). Given these insights, it
should be clear how the following managed code is permissible:

// Really creates the ComCarType
// and returns a reference to the
// [default] interface.
ComCar ¢ = new ComCar();

.NET-to-COM Interoperability—The Basics

Mapping [noncreatable] and [appobject] Coclasses

As you recall from Chapter 4, a COM coclass may be defined as [noncreatable],
which prevents the COM type from being created directly by the calling client
(a common technique used when building object models). For example:

[uuid(752545ED-CAF7-42FB-92A8-F8BF32A61E2F),
helpstring("NoCreate Class"), noncreatable]
coclass NoCreate

{
[default] interface INoCreate;

};

When tlbimp.exe encounters such a COM type, the generated wrapper
supports a private default constructor. This should make sense, given that the type
was never intentionally created. Therefore, the following is illegal:

// Can’t create [noncreatable] types!
NoCreate wontWork = new NoCreate(); // Error!

Also seen in Chapter 4, coclasses may be marked using the [appobject] IDL
attribute. When an unmanaged COM wants to make use of an application, it is
able to call members of its default interface without needing to directly create an
instance of the class type. However, when tlbimp.exe encounters [appobject]-
configured COM classes, this attribute is effectively ignored. Managed clients are
required to make instances of [appobject] types before calling type members.

One possible workaround to this problem is to create a managed wrapper
that exposes the members of the [appobject] coclass through the use of static
members. Furthermore, to ensure that the contained coclass is created automati-
cally, you are able to “new” the type using a static constructor. To illustrate, recall
that you defined the GlobalObject type in Chapter 4 as follows:

interface IGlobalObject : IUnknown

{
[helpstring("method SomeMethod")] HRESULT SomeMethod();
b
[
uuid(138B91B9-C70A-49C3-9768-C5202B50E708),
helpstring("GlobalObject Class"), appobject

]
coclass GlobalObject

{
[default] interface IGlobalObject;

};

387

Chapter 7

388

If you have a C# application that has set a reference to the defining COM
server, you would be able to build the following class, which simulates the IDL
[appobject] attribute:

public class ManagedGlobalObjectClass

{
private static GlobalObjectClass theCOMAppObject;
static ManagedGlobalObjectClass()
{ theCOMAppObject = new GlobalObjectClass();}
public static void SomeMethod()
{ theCOMAppObject.SomeMethod();}

}

With this shim class, the C# application can make use of the underlying
[appobiject] as follows:

// Make use of the [appobject] wrapper.
ManagedGlobalObjectClass.SomeMethod();

So, is this a hack? You bet! However, given that tlbimp.exe ignores [appobject]
attributed coclasses, if you wish to preserve the semantics of this IDL attribute in
terms of managed code, this is about as close as you can get.

Cataloging COM DISPIDs

Cataloging COM DISPIDs might seem to be a slightly out-of-context topic at this
point in the text, but hold tight. As you know, when a COM interface wants to be
discovered and exercised at runtime, it must be configured as a [dual] or raw
dispinterface. In addition, each interface member is marked with a token (termed
a DISPID) that uniquely identifies a given member within the coclass implemen-
tation. The RawComCar.dll COM server defines the following [dual] interface:

[uuid(DBAA0495-2F6A-458a-A74A-129F2C45B642), dual, object]
interface IScriptableCar : IDispatch

{
[id(1), propput] HRESULT Speed([in] long currSp);
[id(1), propget] HRESULT Speed([out, retval] long* currSp);
[id(2)] HRESULT CrankTunes();

};

Regardless of the fact that COM DISPIDs are recorded on a per interface level,
managed equivalents embed a member’s DISPID within the definition of the
generated “-Class” type. The managed IL definition of the ScripableCarClass type
documents the underlying DISPID of each member of the scriptable COM inter-
face. Consider the IL behind the CrankTunes() member:

.NET-to-COM Interoperability—The Basics

.method public hidebysig newslot virtual
instance void CrankTunes() runtime managed internalcall

{

.custom instance void[mscorlib]

System.Runtime.InteropServices.DispIdAttribute::

.ctor(int32) =(01 00 02 00 00 00 00 00)

.override Intertech.RawComCarLib.IScriptableCar::CrankTunes
} // end of method ScriptableCarClass::CrankTunes

As you see later in this chapter, when you make use of .NET late-binding to
activate a managed COM wrapper, the embedded DISPID value is obtained under
the hood to invoke the correct member of the dispinterface.

Additional Coclass to .NET Class Infrastructure

In addition to listing the set of interfaces supported by a given COM type, the
tlbimp.exe utility also (a) creates a default constructor for each coclass and (b)
derives each coclass from System.Object. Looking at the underlining IL, you find
the following [.extends] directive for each “-Class” type:

.class public auto ansi import ComCarClass
extends [mscorlib]System.Object
implements Intertech.RawComCarlLib.ICar,

Intertech.RawComCarLib.ComCar,
Intertech.RawComCarlLib.IRadio

{

} // end of class ComCarClass

As all COM wrappers derive from System.Object, you are able to call any of the
virtual members. For example:

// Trigger inherited System.Object members.
ComCarClass theCar = new ComCarClass();
ComCarClass otherCar = new ComCarClass();
Console.WritelLine("ToString: {0}", theCar.ToString());
Console.WriteLine("Hash: {0}", theCar.GetHashCode().ToString());
Console.WriteLine("theCar = otherCar? : {0} ", theCar.Equals(otherCar).ToString());
Type t = theCar.GetType();
Console.Writeline(t.Assembly.FullName);

Although I assume the semantics of the virtual Object members are no

surprise to you at this point, Table 7-16 documents how these members are real-
ized with regard to RCWs.

389

Chapter 7

Table 7-16. Inherited System.Object Members

Inherited Member Meaning in COM

of System.Object

ToString() When applied to a COM type, ToString() returns the fully
qualified name.

GetHashCode() As expected, this member returns a hash code for the COM type.

Equals() Compares two .NET COM wrappers using value-based
semantics.

GetType() Returns a System.Type object that fully describes the underlying
COM type.

You examine details of the Type information you can obtain from a RCW
wrapper type later in this text. At this point, however, you should feel comfortable
understanding how COM coclasses are translated into corresponding .NET types.

Extending COM Types

Classic COM types were unable to be extended using classic is-a inheritance.
However, when you have created an interop assembly based on a given COM
server, the managed client is able to build new .NET class types that are based on
existing COM coclasses. Given the seamless mappings provided by the RCW, it
should be clear that when you derive a new .NET class from an existing “-Class”
type, you are able to override any supported interface member as well as trigger the
base class implementation. To illustrate, assume the following C# class definition:

// Derive a new .NET type from the
// managed ComCarClass.
class DotNetCar : ComCarClass

{
// Override the COM interface method!
public override void CrankTunes()
{
Console.WriteLine("It's .NET from here baby!");
// Call base class impl.
base.CrankTunes();
}
}

390

.NET-to-COM Interoperability—The Basics

Here, you have a new .NET class type that derives from the managed
ComCarClass type. As you have seen, ComCarClass implements the ICar and
IRadio (and the generated ComCar) interfaces. Thus, DotNetCar is free to override
the CurrentSpeed(), SpeedUp(), and CrankTunes() methods as necessary (in addi-
tion to the virtual members of System.Object). Furthermore, if the derived method
wishes to trigger the base class implementation, simply use the correct language-
specific keyword (base in C#, MyBase in VB .NET, the scope resolution operator in
managed C++, and so on).

When you combine the ability to derive .NET types from COM wrappers as
well as implement (and extend!) unmanaged interfaces on .NET types, you are
able to achieve an extremely high level of interoperability. By way of simple math,
consider the fact that classic COM was realistically supported by four core
languages (VB 6.0, C++, Delphi, and J++) and the current state of .NET supports
over 30 managed languages under development: Java classes deriving from C++
classes, APL.NET classes implementing interfaces defined in Delphi, PL1.NET
classes extending VB 6.0 classes, and so on.

COM Enum Conversion

COM enums are simple entities. They exist to map programming constants to
numerical values. The RawComCar.dll type does not define any custom IDL
enumerations, so turn your attention to the AtIComcCar.dll server created in
Chapter 3. Recall the following IDL definition:

typedef enum RADIOTYPE

{
EIGHT TRACK, (D,

AM_RADIO, FM_RADIO
} RADIOTYPE;

When COM IDL enums are mapped into managed equivalents, the managed
type derives from System.Enum. Given this fact, you are able to investigate the
underlying type information of a COM enum using any of the static members of
System.Enum. For example:

// Exercise the enum!

RADIOTYPE rt = RADIOTYPE.AM RADIO;

string[] names = Enum.GetNames(rt.GetType());
foreach(string s in names)

{

Console.WritelLine("Name: {0}", s);

}

391

Chapter 7

392

Cool! At this point, you have dug into the details of converting COM type
libraries, coclasses, interfaces, members, parameters, and enumerations into
managed equivalents. This information will serve as a firm foundation for more
advanced issues that you see in the remainder of this text. Next, let's examine the
options you have to deploy an interop assembly.

Deploying Interop Assemblies

When you build interop assemblies using VS .NET, you typically receive a private
assembly. As you recall from Chapter 5, private assemblies typically do not have a
strong name and are certainly not placed into the GAC. When managed clients are
using a private interop assembly to communicate with a classic COM server, they
are free to make use of an application configuration file to instruct the .NET
runtime where to probe during the discovery process. For example, if you create a
subdirectory named InteropAsms under the application directory of a given client,
you could build the following *.config file:

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<probing privatePath="InteropAsms"/>
</assemblyBinding>
</runtime>
</configuration>

But what if you wish to place a given interop assembly into the GAC to allow
any number of managed clients to have access to the wrapped COM types? Given
what you already know about shared assemblies (see Chapter 5), you are correct to
assume that you will need to generate a *.snk file using the sn.exe utility. When you
wish to bind this file into the interop assembly, you must make use of the
tlbimp.exe utility and specify the /keyfile: flag. At this point, the interop assembly
may be placed into the GAC.

As a simple illustration, assume you have created a brand-new VB 6.0 COM
server (LameVbComServer) that contains a single coclass named Hello. Here is the
[default] public interface:

Public Sub SayHello()
MsgBox "Hi there"
End Sub

Next, assume that you have generated a new *.snk file (named theKey.snk)
using sn.exe. To build a strongly named interop assembly, you would issue the
following command:

C:\ >tlbimp LameVbComServer.dll /out: SharedLameServer.dll /keyfile: thekey.snk

.NET-to-COM Interoperability—The Basics

If you check out the manifest of the SharedLameServer.dll, you will find that
the binary has been configured with a [.publickey] and can thus be installed into
the GAC (Figure 7-14).

m C:\WINDOWS\assembly

File Edit Wew Favorites Tools Help #

: - 2
@ Back. O @ ,O Search % Folders | Eih x
Address |@ C:\WINDOWS\assembly v| £

Global Assembly Mame + Type Version Culture | Public Key " #|
s@f1sharedassembly 2.0.0.0 6064607z
s sharedassembly 1.0.0.0 6064607z

¢ SharedLameServer 1.0.0.0 4Tae 2128
ﬁSoapSudande 1.0.3300.0 bO3fsf7f1n
:ﬂspctrl 1.0.2206.0 126032315
s@l1stdole 7.0.3300.0 bO3f5F7FLL
ﬁSystem Mative Images 1.0.3300.0 b??EEcSSlE.v|
£ I | &

Figure 7-14. A shared interop assembly

At this point, you are able to build any number of managed clients that make
use of this shared assembly.

Creating a Primary Interop Assembly

As you have seen, tlbimp.exe allows you to build an interop assembly from any
registered COM server. This is typically a good thing. However, assume for a
moment that you are in the business of building COM class libraries for purchase
by external vendors. Ideally, these vendors trust your work, your company, and
(most important) your code. Now assume that you wish to create an “official”
interop assembly for each of your legacy COM libraries for use by your client base.
While you could simply run tlbimp.exe and ship the .NET binary, you may wish to
place your mark on the assembly using the /primary flag.

The /primary flag is used to produce what is known as a primary interop
assembly for a specified COM type library. When you apply this flag, metadata is
added to the interop assembly indicating that the publisher of the COM type
library is identical to the publisher of the interop assembly. In this way, you are
able to differentiate the official publisher’s assembly from any other assemblies
that are created from the type library using tlbimp.exe.

393

Chapter 7

394

Creating a primary interop assembly can be useful for a number of reasons.
Perhaps the most practical reason for building an interop assembly is to reduce
the possible cluttering of numerous interop assemblies generated from the same
COM server. For example, it is possible that numerous developers, departments,
and system administrators may each create a distinct interop assembly for a single
COM server using tlbimp.exe. However, if you as the component vendor were to
ship a primary interop assembly, this strongly named assembly could simply be
placed in the GAC of a particular production machine at the client site.

Also, you may wish to alter the metadata contained within the interop
assembly to make your types blend in more transparently within a managed envi-
ronment (this topic will be examined in Chapter 12). Given these scenarios, it
should be obvious that you should only use the /primary flag if you are indeed the
publisher of the type library of the COM library that is being converted.

When you are interested in creating a primary interop assembly, you are
required to sign the primary interop assembly with a strong name. Thus, if you
want to rework the previous SharedLameServer.dll as a primary interop assembly,
you could specify the following command:

tlbimp LameVbComServer.dll
/out: PrimarySharedlLameServer.dll
/keyfile: thekey.snk /Primary

If you now check the manifest of the PrimarySharedLameServer.dll, you find
that the PrimaryInteropAssemblyAttribute type is now documented in the mani-
fest in addition to the ImportedFromTypeLibAttribute and GuidAttribute types:

.assembly PrimarySharedlLameServer
{

.ImportedFromTypelLibAttribute

.. GuidAttribute

.custom instance void
[mscorlib]System.Runtime.InteropServices.
PrimaryInteropAssemblyAttribute::.ctor
(int32, int32) = (01 00 01 00 00 00 00 00 00 00 00 00)

.publickey = (00 24 00 00 04 80 00 00 94 00 00 00 06 02 00 00
/7%
00 24 00 00 52 53 41 31 00 04 00 00 01 00 01 00 //

$..RSAL........

91 8F AE D3 2F 1B E6 D5 A8 24 27 46 99 71 67 2C //
R N [
0C 23 Co BD 3D 32 C2 B6 09 35 32 20 A1 DE 86 38 // .#..=2...52
...8

26 56 BB DF B2 71 CA CE oC 88 56 CD F8 DB 5F C8 //
&v...q....V... .

.NET-to-COM Interoperability—The Basics

4E 2E 7A 64 0B A6 OF 10 FA 91 83 48 5C 08 F2 98 //

BB C1 9B 62 AE ED 54 22 BA 47 30 B1 CC 4F 2A 1A //
...b..T".GCo..0*.

A3 73 A1 DA E3 F3 41 C5 72 5B (B 63 AF 2A 03 88 //
.S..WALT[LR

02 02 21 77 7E 8C F8 99 08 61 BF B5 82 98 5A 99 //
SwheosaanZ.

DE 46 84 2B EA 2E 44 43 02 OB E9 60 AD 33 Bo C8) //
JFo+..DCLLL T3

.hash algorithm 0x00008004

.ver 1:0:0:0

}

Once this .NET interop assembly has been tagged with the
PrimaryInteropAssembly attribute, the client is able to set references to this
binary as usual (using the .NET tab of the Add Reference dialog box). However, as
an optional step, primary interop assemblies can be further configured on a given
machine to ease the development process. As you will see beginning in Chapter
10, the .NET SDK ships with a tool named regasm.exe. Typically, this tool is used to
configure a .NET assembly to be accessible from a classic COM client. In addition
to this functionality, this same tool can be used to “register” a primary interop
assembly. To see the end result, assume you have entered the following command:

Regasm PrimarySharedLameServer.dll

Once you register a primary interop assembly, the system registry is updated
with a value under HKCR\TypeLib\{<your LIBID>}, which records a value that
documents the fully qualified name of your assembly (Figure 7-15).

&' Registry Editor
Eile Edit Wiew Favorites Help
w1 {ps589123FC70-14l| | Name Data

-3 {p679F136-19C5-4 (Default) {value not set)

D {P6832DE1-£837-1 i ERI G PrimarySharedLameServer, Yersion=1.0.0.0, Culij
-] {De0BE40D-AB4A-

#- (1 {D7020455-1848-1
& {D7836000-1045-1
®-(] {D7BSBC08-360E-1
=0 {psacD7FE-21F5-<—

a 1.0
RPN e . |
& | 3 £ T | B |
|y computereY_cLASSES ROOTITypeLib\{DB2CD7FE-21F 5-4209-5748-79ASES 3BBEBE 1.0 -=5|

Figure 7-15. Registered primary interop assemblies are cataloged under
HKCR\TypelLib.

395

Chapter 7

Because the primary interop assembly is cataloged in the system registry,
when tools such as Visual Studio .NET are told to add a reference to a given .NET
interop assembly, they will automatically consult the registry to see if there is a
valid primary interop assembly to use. If this is the case, VS .NET will not generate
anew interop assembly. Assuming the primary interop assembly has been
installed into the GAC, clients can rest assured that they are interacting with the
“official” interop binary.

Reflecting on Interop Assembly Attributes

As you have seen over the course of this chapter, when an interop assembly is
generated using tlbimp.exe, the assembly’s metadata is colored by numerous
members of the System.Runtime.InteropServices namespace. Given that these
attributes are nothing more than standard .NET types, you can make use of reflec-
tion services to scrape out their values at runtime.

For example, assume you wish to load an interop assembly from the
GAC and determine if it has been configured as a primary interop assembly.
In addition, what if you wish to extract the values of the GuidAttribute and
ImportedFromTypeLibAttribute type? The following code does the trick:

static void Main(string[] args)

{
// Load the assembly from the GAC and see if it is
// a primary interop assembly.
string strongName = "PrimarySharedlLameServer,";
strongName += @"PublicKeyToken=47ae2f12896460f7,
Version=1.0.0.0";

// Load from GAC.
Assembly asm = Assembly.loadWithPartialName(strongName);
object[] atts = asm.GetCustomAttributes(true);

// Dump out manifest metadata.
foreach(object o in atts)

{
if(o is ImportedFromTypeLibAttribute)
{
Console.Writeline("Library Name: {0}",
((ImportedFromTypelLibAttribute)o).Value);
}
if(o is GuidAttribute)
{
Console.WritelLine("LIBID: {o}",
((GuidAttribute)o).Value);
}
if(o is PrimaryInteropAssemblyAttribute)
{

396

.NET-to-COM Interoperability—The Basics

Console.Writeline

("This is a primary interop assembly!");

Console.WritelLine("COM Major {0}\nCOM Minor {1}",
((PrimaryInteropAssemblyAttribute)o).MajorVersion,
((PrimaryInteropAssemblyAttribute)o).MinorVersion);

Of course, you can also make use of .NET reflection services to read out attrib-
utes for a managed interface, class, method, or parameter. For example, if you
wish to read metadata that describes the TYPEFLAGS value (see Chapter 4) and
CLSID for the HelloClass type, the process would appear as follows:

// Get attributes for HelloClass type.

Type t = asm.GetType("PrimarySharedLameServer.HelloClass");
object[] moreAtts = t.GetCustomAttributes(true);
foreach(object o in moreAtts)

{
// Get TYPEFLAGS for HelloClass.
if(o is TypelibTypeAttribute)
{
Console.WriteLine("TYPEFLAGS: " +
((TypeLibTypeAttribute)o).Value);
}
if(o is GuidAttribute)
{
Console.WritelLine("CLSID: " +
((GuidAttribute)o).Value);
}
}

And just for good measure, read out the attributes that describe the SayHello()
method (the DISPID in this case):

// Get attributes for SayHello method.

object[] evenMoreAtts = mi.GetCustomAttributes(true);
Console.WriteLine("\n***¥* SayHello metadata ****¥\n");
foreach(object o in evenMoreAtts)

{
if(o is DispIdAttribute)
{
Console.WriteLine("DISPID of SayHello: {o}",
((DispIdAttribute)o).Value);
}
}

The final output can be seen in Figure 7-16.

397

Chapter 7

398

e C:\Apress Books\InteropBook\Labs\Chapte

s Manifest metadata soesoes
sy Mame: LameUbComServer
d82cd7fh 21f5—-4209-9748-72a5e63bBBbe
This is a primary interop assemhlyt?
COM Minor 1
ICOM Minor 8

s HelloClass metadata o

Library Name: FCanCPeate
Class Interface:

Non
CLSID: 7271734D— BSFE 4C69-708B-DE4389838EB?
exsmx SayHello metadata ssees

DISPID of SayHello: 1618887344
Press any key to continue

Figure 7-16. Reflecting on interop assembly metadata

Obtaining Type Information for a COM Wrapper Type

Needless to say, all managed COM wrappers can return type information using the
inherited System.Object.GetType() method. To illustrate, ponder the following
code:

// Get type information for HelloClass.

Console.WriteLine("***** HelloClass type info ****¥\n");

Type helloTypeInfo = Type.GetType("PrimarySharedLameServer.HelloClass");
Console.WriteLine("Base type {0}", t.BaseType);

Console.WriteLine("GUID {0}", t.GUID);

Console.WritelLine("COM Object? {0}", t.IsCOMObject);
Console.WriteLine("Defining Namespace {0}", t.Namespace);

Of course, you can invoke any member of the Type class (see Chapter 6 for
further details). Figure 7-17 shows the output of the previous code block.

HelloClass type info e

pe System._ ComObject
UID 7271734d hofe—4ch?- QBBh de4389838eh?
OM Object? True

Figure 7-17. Reading type information for a COM wrapper

.NET-to-COM Interoperability—The Basics

The Role of System. ComObject

Take a closer look at Figure 7-17. As you can see, the base class of the
HelloClass wrapper is a hidden, inaccessible, and undocumented type named
System.__ComODbiject. This class is the direct base class of any COM interop
wrapper type. The formal definition is as follows:

public class __ComObject : MarshalByRefObject
{
public virtual System.Runtime.Remoting.ObjRef
CreateObjRef(Type requestedType);
public virtual bool Equals(object obj);
public virtual int GetHashCode();
public virtual object GetLifetimeService();
public Type GetType();
public virtual object InitializelifetimeService();
public virtual string ToString();

The key role of __ComObject is to ensure that all COM types are marshaled
across process boundaries using by reference passing semantics (thus the deriva-
tion from MarshalByRefObject). In addition to this aspect, _ ComObject overrides
the virtual members of System.Object to behave appropriately for a COM wrapper
type. Again, for the most part you can forget about the fact that COM wrapper
types derive from __ComObject and simply assume the logical parent type is
System.Object.

1 Leeee CODE The LameVbComServer and InteropAsmAttrReader applications
\ - are located under the Chapter 7 subdirectory.
aal

Interacting with Well-Known COM Servers

As mentioned at the opening of this chapter, the process of accessing custom
COM servers from managed code is identical to the process of interacting with
well-known COM types. Thus, to wrap up this chapter, let’s check out the process
of making use of an existing (and quite well-known) COM object library: Microsoft
Active Data Objects (classic ADO). ADO is a COM object model that allows
programmers to connect to a wide variety of database management systems using
a small handful of coclasses. Although this is not the place to drill through the full
details of ADO, I can most certainly address the process of using this COM server
from managed code. If you wish to follow along, create a new C# Windows Forms
application and set a reference (via the COM tab of the Add References dialog box)
to classic ADO (Figure 7-18).

399

Chapter 7

Add Reference

NET COM | Projects |

Browse... |

Companent Name | TypeLib Ver... | Path 8|
Microsoft ActiveX Data Objects 2.1 Library 2.1 C:\Program Fil Select |

Microsoft ActiveX Data Objects 2.5 Library 2.5 C:\Program Fil
Data Objects 2.6 Library 2.6 C:\Program Fil
ita Objects 2.7 Library

Microsoft ActiveX Data Objects Recordset 2.7Lib... 2.7 C:\Program Fil
Microsoft ActiveX Plugin 1.0 CAWINDOWS
Microsoft Add-In Designer 1.0 C:\Program Fil
Microsoft ADO Data Control 6.0 (SP3) (OLEDE) 6.0 CAWINDOWS
Microsoft ADO Ext. 2.7 for DDL and Security 2.7 C:\Program Fil
Microsoft Agent Control 2.0 2.0 C:AWINDOWS)
Mlimemmm b Ammed Cmeme an N FalTRIR AL e
< i} | 3

Selected Components:

Component Mame | Type | Source | Remove |

Microsoft ActiveX Data Objects ... COM C:\Program Files\Common Files\...

Ok | Cancel | Help |

Figure 7-18. Accessing ADO from a managed application

Assume you have placed a Windows Forms DataGrid type on the main Form
using the design-time editor. The goal is to open a connection to your local
machine and read out the records from the Authors table of the Pubs database.

As you may already know, the ADO Connection type is used to represent a given
session with a given DBMS, while the ADO Recordset is used to contain the results
of a given SQL query. To read back all of the values in the Authors table, you could
begin with the following logic (contained within the Form’s Load event handler):

private void mainForm Load(object sender, System.EventArgs e)
{
// First make use of an ADO Connection type.
ConnectionClass cn = new ConnectionClass();
cn.Open(
"Provider=SQLOLEDB.1;data source=.;initial catalog=pubs;",
"sa", ", -1);

// Now make use of an ADO Recordset.

RecordsetClass rs = new RecordsetClass();

rs.0pen("Authors", cn, CursorTypeEnum.adOpenKeyset,
LockTypeEnum.adLockOptimistic, -1);

Assuming the previous code has executed without error, you now have a
Recordset filled with all of the entries of the Authors table. At this point, you can
make use of the Recordset’s Fields collection to iterate over each entry. Ideally, you

400

.NET-to-COM Interoperability—The Basics

would like to bind directly this Recordset to Windows Forms DataGrid type using
the DataSouce property:

// Sorry, nice try through!
theDataGrid.DataSouce = 1s;

As you can tell from the code comment, this is not permitted. Even though a
.NET DataGrid type does not know how to bind directly to an ADO Recordset, it is
equipped to bind to an ADO.NET System.Data.DataTable type. The trick, there-
fore, is to build a DataTable type that is constructed using the records contained in
the ADO Recordset. The following logic will do the trick:

private void mainForm Load(object sender, System.EventArgs e)

{
// Same ADO logic as before..

// Using the recordset, construct a DataTable
// which will be bound to the DataGrid widget.
DataTable theTable = new DataTable();

// Fill in column names.
for(int i = 0; i < rs.Fields.Count; i++)
theTable.Columns.Add(new DataColumn(
rs.Fields[i].Name, typeof(string)));

// Fill in rows.
while(!rs.EOF)

{

DataRow currRow;

currRow = theTable.NewRow();

for(int i = 0; i < rs.Fields.Count; i++)
currRow[i] = rs.Fields[i].Value.ToString();

theTable.Rows.Add(currRow);

1s.MoveNext();

// Now bind to the DataGrid.
theDataGrid.DataSource = theTable;

// Close up ADO.
rs.Close();
cn.Close();

Once you have filled the DataTable type with the data contained within the
classic ADO Recordset, you are able to see the data grid shown in Figure 7-19 upon
running the application.

401

Chapter 7

402

[® Classic ADO C# Client

This DataGrid was brought to you from MS ADO

au_id |au_|name |au_fr|arne |phnne | -
238-895-7766 Carson Cheryl 415 548-7723 !
722-51-B454 DeFrance Michel 219 547-8982 |
712-45-1867 del Castille Innes 615 996-8275 &
427-17-2318 Dull Ann 415 B36-7128 .
213-46-8515 Green Marjorie 415 986-7020 .
B2T-72-3246 Greene Morningstar 615 297-2723 |
472-27-2343 Gringlesby Burt 707 538-6445 |

| B46-52-7186 Hunter | Sheryl 4158367128 . ¥
4 4

Figure 7-19. Interacting with msadol5.dll using managed code

1 Leeeee CODE The CSharpUsingClassicADO application is located under the
Y Chapter 7 subdirectory.

—
~

.

Summary

This chapter presented the core .NET-to-COM interoperability issues you are
likely to encounter on a day-to-day basis. The RCW is a .NET proxy class that is
responsible for mapping .NET data types into COM IDL, returning values from a
COM method invocation, and concealing a number of low-level COM interfaces
from view. In a nutshell, the RCW exists to fool a managed client into thinking it is
communicating with a standard .NET type rather than a legacy COM type.

As you have seen, the tlbimp.exe utility is the key to creating an interop
assembly based on COM type information. While using tlbimp.exe in the raw is
critical in some circumstances (building a primary interop assembly, configuring
a shared assembly, and so forth), VS .NET automates the process using the
Add Reference dialog box. Regardless of the tool you use to build an interop
assembly, the resulting binary will contain numerous attributes defined in the
System.Runtime.InteropServices namespace to document the information found
in the original COM type library.

Now that you have a solid basis, Chapter 8 drills into further details of the
.NET-to-COM communication process.

CHAPTER 8

.NET-to-COM
Interoperability-
Intermediate Topics

In the previous chapter you examined the core aspects of COM-to-.NET type
conversions (data types, parameters, interfaces, coclasses, and whatnot). This
chapter builds upon your current foundation by examining how a number of
more exotic COM patterns are realized in terms of managed code. In addition to
addressing the topics of handling COM VARIANTS, structures, and SAFEARRAYs,
you also learn how to interact with custom COM collections, HRESULTs, and COM
error objects. I wrap up this chapter by examining how COM connection points
are mapped into the .NET delegate architecture and address the issue of debug-
ging COM servers within Visual Studio .NET. If you like, consider this chapter a
potpourri of useful .NET-to-COM interoperability tidbits.

Handling the COM VARIANT

The COM VARIANT data type is one of the most useful (and most hated)
constructs of classic COM. The VARIANT structure is useful in that it is able to
assume the identity of any [oleautomation]-compliant IDL type, which may be
reassigned after the initial declaration. VARIANTS are hated for much the same
reason, given that these dynamic transformations take time. Nevertheless, you are
bound to run into a coclass that makes use of this type, and you would do well to
understand how it maps into terms of .NET.

As you recall from Chapter 2, the VARIANT structure maintains a field (vt) that
identifies the underlying [oleautomation] data type as well as a union repre-
senting the values of each possibility (bstrVal, 1Val, and so forth). In VB 6.0 these
details are hidden from view using the intrinsic Variant data type:

vt field and corresponding value field set automatically.
Dim v as Variant
= "I am a BSTR"
True
43.444
Set v = New SomeCoClass

403

Chapter 8

404

In raw C++, you are forced to establish this information manually:

// Make a VARIANT a la C++.

VARIANT v;

VariantInit(8v);

v.vt = VT_BSTR;

v.bstrVal = SysAllocString(L"I am also a BSTR");

Under .NET, a COM VARIANT can be generically represented as a
System.Object data type. However, if you make use of a strongly typed data type
(System.String, System.Byte, and so on), the RCW will set the vt and value fields
automatically (much like the behavior of VB 6.0). Table 8-1 documents the rela-
tionship between intrinsic .NET types and the underlying VARIANT VT_XXX flag.

Table 8-1 .NET Data Types Used to Set the vt Field of COM VARIANTS

Type Assigned to System.Object Variable

Raw COM VARIANT VT_XXX Flag
(Assigned to the vt Field)

Null object reference. VI_EMPTY
System.DBNull VT_NULL
ErrorWrapper VT_ERROR
System.Reflection.Missing VT_ERROR
DispatchWrapper VT_DISPATCH
UnknownWrapper VT_UNKNOWN
CurrencyWrapper VT_CY
System.Boolean VT_BOOL
System.SByte VT_I1
System.Byte VT_UIl
System.Int16 VT_I2
System.UInt16 VT_UI2
System.Int32 VT 14
System.UInt32 VT_UI4
System.Int64 VT_I8
System.UInt64 VT _UI8
System.Single VT_R4
System.Double VT_R8
System.Decimal VT_DECIMAL
System.DateTime VT_DATE
System.String VT_BSTR
System.IntPtr VT_INT
System.UIntPtr VT_UINT
System.Array VT_ARRAY

.NET-to-COM Interoperability—Intermediate Topics

Do understand that when you create and manipulate a System.Object data
type exclusively using managed code, the object variable type does not contain
VARIANT-centric information. The correct VARIANT flag is set only by the
RCW when marshaling System.Object variables between managed and
unmanaged code.

Building a VARIANT-Centric COM Server

To illustrate the interplay between the .NET System.Object type and the COM
VARIANT, assume you have created a VB 6.0 COM DLL named VbVariantServer.
This COM server contains a single coclass (VariantObj) that defines the following
initial method (note that the VB line-feed constant, vbLf, maps into the C# “\n”
string token):

' This function takes a VARIANT and returns
' a string describing the underlying structure.
Public Function CheckThisVariant(ByVal v As Variant) As String
Dim s As String
s = "Type name: " + TypeName(v) + vbLf + _
"Value: " + CStr(VarType(v))
CheckThisVariant = s

End Function

The role of CheckThisVariant() is to return a string that documents the name
of an incoming VARIANT data type. As you might guess, the VB 6.0 TypeName()
function checks the underlying VT_XXX flag on your behalf and maps the numer-
ical value to a textual equivalent (for example, VT_BSTR becomes “String”). Also
note that CheckThisVariant() embeds the numerical value of the VT_XXX flag as
part of the return value using the VB 6.0 VarType() method.

Another common use of the VARIANT is to simulate overloaded methods in
COM. As you know, managed languages such as C# and VB .NET (as well as most
modern day OO languages) allow class types to define numerous versions of a
single method, as long as the number or type of parameters is unique for each
version. Classic COM, however, does not support overloaded members on inter-
face types. To circumvent this limitation, it is possible to create a single function
that takes some set of VARIANT data types. Given that a VARIANT can contain any
[oleautomation]-compatible data type, you have effectively provided a way for the
caller to pass in varying data types! This being said, let’s add another member to
the default interface of VariantObj:

405

Chapter 8

' Add two VARIANTs (if they are the same type and
' are not interfaces, structs, arrays, or data access objects).
Public Function AddTheseVariants(ByVal vi As Variant, _

ByVal v2 As Variant) As Variant

Dim answer As Variant

If (VarType(v1l) = VarType(v2) _
And (VarType(vi) <> vbObject _
And VarType(vl) <> vbUserDefinedType _
And VarType(v1l) <> vbDataObject _
And IsArray(vil) = False) Then
answer = v1 + v2
Else
answer = "Bad data!"
End If

AddTheseVariants = answer
End Function

AddTheseVariants() does just what it says. Given two identical variant types
(thus the initial VarType() logic), as long as the underlying VARIANT type is not an
interface reference, COM structure, or SAFEARRAY, you return the summation of
the types. Although you certainly could retrofit this function to handle adding
these sorts of COM types (provided it made sense to do so), here you will focus on
returning the sum of more generic data points (numerical and string data).

Once you compile this VB COM server, you can use oleview.exe to examine the
generated COM type information. The IDL definition is as you would expect:

interface VariantObj : IDispatch
{
[1d(0x60030000)]
HRESULT CheckThisVariant([in] VARIANT v,
[out, retval] BSTR*);
[1d(0x60030001)]
HRESULT AddTheseVariants([in] VARIANT vi,
[in] VARIANT v2, [out, retval] VARIANT*);

};

1 leeee CODE The VbVariantServer project is included under the Chapter 8
\ s - subdirectory.

i

406

.NET-to-COM Interoperability—Intermediate Topics

Exercising COM VARIANTs from Managed Code

Say you have created a new C# console application and have set a reference to the
VbVariantServer.dll COM server. If you open the integrated object browser and
view the definitions of the managed members, you will indeed see that each COM
VARIANT has been mapped into a System.Object (Figure 8-1).

*= Object Browser

Browse: Selected Components - Customize... | 2l - v~

Objects Members of '_VariantOby'
-2 AddTheseVariants(object,object)
=@ CheckThisVariant{object)

-+ interop .vbvariantserver
. @-{} vbVariantServer
----- 2=+l VariantObj
o-o VariantObj
a[; VariantObjClass =

public interface _VariantObj
Member of VbVariantServer

Figure 8-1. COM VARIANTs map to System.ODbject

First, let’s exercise the CheckThisVariant() method. Given that everything
“is-a” object under the .NET architecture, you are free to pass in intrinsic C# data
types, the equivalent base type alias, or a direct System.Object. For example:

using System;
using VbVariantServer;

namespace CSharpVariantClient

{
class VariantClient
{
[STAThread]
static void Main(string[] args)
{

// Fun with VARIANTs.
VariantObjClass varObj = new VariantObjClass();

// Make use of implicit data types.
Console.WriteLine("{o}\n",
var0Obj.CheckThisVariant("Hello")); // VT _BSTR
Console.WriteLine("{o}\n",
varObj.CheckThisVariant(20)); // VT 14
Console.WriteLine("{o}\n",

407

Chapter 8

408

var0Obj.CheckThisVariant(999999)); // VT_I4
Console.WritelLine("{0}\n",

var0Obj.CheckThisVariant(true)); // VT_BOOL
Console.WritelLine("{o}\n",

varObj.CheckThisVariant(9.876)); // VT_R8

int[] theStuff = {12,22,33};

// VT_ARRAY | VT I4

Console.WritelLine("{o}\n",
var0Obj.CheckThisVariant(theStuff));

// Make use of base class types.

System.Int32 myInt32 = 500;

Console.WritelLine("{0}\n",
var0Obj.CheckThisVariant(myInt32)); // VT_I4

// Of course, you can use explicit

// System.Object types as well.

object theObj = "Some string data"; // NT_BSTR

Console.WritelLine("{o}\n",
var0Obj.CheckThisVariant(theObj));

The bulk of this code makes use of implicit data types (meaning 20 rather
than an explicit int data type). Given that raw numerical values always map to
System.Int32 and floating-point numbers always map to System.Double, you are
free to cast the raw data as required. For example, to force the underlying VT_XXX
flag to be set to VT_I2 you could write:

// Cast if necessary...
Console.WriteLine("{0}\n",
varObj.CheckThisVariant((byte)5)); // VT_I2

The process of calling AddTheseVariants() is more or less identical. Note in the
following code block that I am attempting to pass in two managed arrays (which
are mapped into a COM SAFEARRAY) to AddTheseVariants(). Recall that the
implementation of this method explicitly tests for the VIT_ARRAY bit flag, and if
found, returns a textual error message.

.NET-to-COM Interoperability—Intermediate Topics

// Add some variants.
Console.WriteLine("Summation: {o0}",
varObj.AddTheseVariants("Hello", "There"));
Console.WriteLine("Summation: {o0}",
varObj.AddTheseVariants(4, 4));
Console.WriteLine("Summation: {o0}",
varObj.AddTheseVariants(54.33, 98.3));

// Remember your truth tables!

// True + False = False (-1).

Console.WriteLine("Summation: {o0}",
varObj.AddTheseVariants(false, true));

// This will not be processed by the coclass!

// (theStuff is an array of ints declared previously..)

Console.WriteLine("Summation: {o0}",
varObj.AddTheseVariants(theStuff, theStuff));

The VARIANT Wrappers

The System.Runtime.InteropServices namespace defines four types used to
handle VARIANTS that are not explicitly represented by managed code
(VT_ERROR, VT_DISPATCH, VT_UNKNOWN, and VT_CY). ErrorWrapper,
DispatchWrapper, UnknownWrapper, and CurrencyWrapper allow you to control
how a managed type should be marshaled via System.Object. You will learn how to
pass IlUnknown- and IDispatch-derived types in Chapter 9. However, by way of
example, assume you wish to pass an unmanaged type as a COM CURRENCY
type. Given that the .NET libraries do not support this type, you are free to use
CurrencyWrapper as follows (recall that under .NET, the Currency type has been
replaced with System.Decimal):

// Pass a value as a VARIANT of type VT_CURRENCY.

Console.WriteLine("{0}\n",
varObj.CheckThisVariant(new CurrencyWrapper(new Decimal(75.25))));

409

Chapter 8

The output of your C# console application can be seen in Figure 8-2.

Type name: String
Dalue: B

Type name: Long
Ualue: 3

Type name: Long
Jalue: 3

Type name: Boolean
Ualue: 11

Type name: Double
Ualue: 5

Type name: Long{)>
Ualue: 8195

Type name: Long
Value: 3

: String
Type name: Byte
Ualue: 17

Type name: Currency
Value: 6

HelloThere
]

152.63
-1
Bad data?®
Press any key to continue_

Figure 8-2. Interacting with VariantObj

1 oo CODE The CSharpVariantClient project is included under the Chapter 8
YA directory.
ol

Handling COM SafeArrays

COM interfaces can most certainly contain parameters that represent an array of
types. As you have already seen in Chapter 4, the ideal manner to represent arrays

410

.NET-to-COM Interoperability—Intermediate Topics

in COM is using the SAFEARRAY structure (as opposed to C-style arrays). Recall
that a COM SAFEARRAY is a self-describing type that includes not only the under-
lying data, but also other important bits of information such as the upper and
lower bounds of each dimension.

As you also have seen in Chapter 4, working with a COM SAFEARRAY using
C++ is a bit on the verbose side. Therefore, let’s say you have created a new ActiveX
DLL workspace (VbSafeArrayServer) using Visual Basic 6.0 that contains a single
coclass named SafeArrayObj. The default interface (_SafeArrayObj) defines the
following array-centric members:

' This method receives an array of Strings.
Public Sub SendMeAnArrayOfStrings(strs() As String)

Dim upperBound As Integer

upperBound = UBound(strs)

Dim strStats As String

' +1 to account for zero.

strStats = "You gave me " & (upperBound + 1) _
& " Strings" & vbLf

Dim i As Integer
For i = 0 To upperBound
strStats = strStats + "-> " & strs(i) & vbLf
Next
MsgBox strStats, , "Client supplied strings”
End Sub
' This method returns an array of 10 Integers.
Public Function GiveMeAnArrayOfInts() As Integer()
Dim intArray(9) As Integer
Dim i As Integer
For i =0To 9
intArray(i) = i * 100
Next
GiveMeAnArrayOfInts = intArray
End Function

As you can see, these first two methods simply receive and return arrays of
varying types (Strings and Integers). To make things a bit more interesting, let’s
also assume that this same project defines an additional coclass named TestOb-
ject. Here is the formal definition of the TestObject class:

411

Chapter 8

412

The simple TestObject.cls definition.
Private strData As String

Public Property Let StringData(ByVal s As String)
strData = s

End Property

Public Property Get StringData() As String
StringData = strData

End Property

Now, let’s add two new methods to the _SafeArrayObj interface that make use
of this type:

' This method returns an array of VARIANTS,

' one of which is a _TestObject interface.

Public Function GiveMeAnArrayOfVariants() As Variant()
Dim variantArray(4) As Variant
variantArray(0) = "String data"
variantArray(1) = True
variantArray(2) = 23.4
Set variantArray(3) = New TestObject
variantArray(3).StringData = "Hey buddy! You found me!"
variantArray(4) =
GiveMeAnArrayOfVariants = variantArray

End Function

This method returns an array of _TestObject interfaces.
Public Function GiveMeAnArrayOfCoClasses() As TestObject()
Dim objArray(4) As TestObject

Set objArray(0) = New TestObject

Set objArray(1) = New TestObject

Set objArray(2) = New TestObject

Set objArray(3) = New TestObject

Set objArray(4) = New TestObject

' Set state of each object.
objArray(0).StringData = "Hello"
objArray(1).StringData = "there"
objArray(2).StringData = "from"
objArray(3).StringData = "VB"
objArray(4).StringData = "6.0!"
GiveMeAnArrayOfCoClasses = objArray
End Function

.NET-to-COM Interoperability—Intermediate Topics

Once you compile this COM server, you will be able to view the following IDL
definition (using oleview.exe, of course):

// IDL definition of the _SafeArrayObj interface.

interface _SafeArrayObj : IDispatch

{
[1d(0x60030000)] HRESULT
SendMeAnArrayOfStrings([in, out]SAFEARRAY(BSTR)* strs);
[1d(0x60030001)] HRESULT
GiveMeAnArrayOfInts([out, retval]SAFEARRAY(short)*);
[1d(0x60030002)] HRESULT
GiveMeAnArrayOfVariants([out, retval]SAFEARRAY(VARIANT)*);
[1d(0x60030003)] HRESULT
GiveMeAnArrayOfCoClasses([out, retval]SAFEARRAY(TestObject*)*);

};

You can see here that VB 6.0 always represents arrays of types as a COM
SAFEARRAY, which you recall is defined in IDL using the SAFEARRAY (<type>)
syntax.

1 [IREE CODE The VbSafeArray project is located under the COM Servers\
\ VP VBArrayServer subdirectory.

.

Exercising COM SAFEARRAYs from Managed Code

If you create a new C# console application (CSharpSafeArrayClient) and set a
reference to VbSafeArrayServer.dll, you will find that each of the SAFEARRAY types
(parameters and return values) have been mapped to a System.Array reference
(Figure 8-3).

It is important to note that the .NET System.Array class defines a number of
instance-level and class-level members that make the process of sorting,
reversing, and altering array data painfully simple (in stark contrast to the dozens
of C++ SAFEARRAY API functions). Table 8-2 lists some of the more interesting
members of System.Array.

413

Chapter 8

*= Object Browser |_- |||:|||X|
Browse: Selected Components + Customize... | 8l - 0% - | & %% 4
Ohjects Members of '_SafefrrayObi'
=} vBsafeArrayServer [#l|| ;= GiveMeAnArrayOfCoClasses()
-0 _SafedrrayObj % GiveMeAnArrayOfints()
=0 SafedrrayObj L Y GiveMeAnArrayOfvariants()
&g SafedrrayObjClass e =@ SendMeAnArrayOfstrings(ref System.Array)
F-=0 _TestObject L
=0 TestObject
Og TestObjectClass |

public abstract virtual System.Array GiveMeAnArrayOfVariants [)
Member of VBSafeArrayServer. SafefArrayDbj

Figure 8-3. COM SAFEARRAYs map to System.Array

Table 8-2. A (Very) Partial List of the Members of System.Array

Select Member Meaning in Life
of System.Array
Array.Clear() This static member cleans out the contents of the array.

Array.Createlnstance() This static member creates a new instance of System.Array.
Array.Reverse() This static member reverses the items in the array.

Array.Sort() This static member sorts items alphabetically or
numerically (based on data type). If the array contains
object-implementing IComparable, the type is sorted
according the defined semantics.

GetLength() These members return the length of the array.

Length

GetLowerBound() As you would expect, these members return the bounds of
GetUpperBound() the array.

GetValue() These members get or set a value in the array.

SetValue()

When you wish to pass an array into an unmanaged COM object, you may use
one of two approaches. First, you may create a new instance of System.Array using

414

.NET-to-COM Interoperability—Intermediate Topics

the static CreateInstance() method and populate the type using the instance level
SetValue() method:

static void Main(string[] args)

{
// Interact with the SAFEARRAY functions.
SafeArrayObjClass saObj = new SafeArrayObjClass();

// Send in strings (take one).

Array strData = Array.CreateInstance(typeof(string), 4);
strData.SetValue("Hello", 0);

strData.SetValue("there", 1);

strData.SetValue("from", 2);

strData.SetValue("C#!", 3);
saObj.SendMeAnArrayOfStrings(ref strData);

Although this is a valid approach, you are more likely to make use of the array
syntax of your language of choice. Do note, however, that COM methods requiring
a SAFEARRAY expect to be passed in a strongly typed System.Array, not the
language-specific shorthand. This being said, ponder the following functionally
equivalent code:

// Send in strings (take two).

Console.WriteLine("Calling SafeArrayObjClass.SendMeAnArrayOfStrings()");
string[] theStringData = {"Hello", "there", "from", "Ci#!"};

Array temp = theStringData;

sa0bj.SendMeAnArrayOfStrings(ref temp);

Here, you begin by creating a managed string array using the familiar C# []
syntax. The critical step is to assign this array to a System.Array object variable
before passing it into the interop assembly for transformation. If you attempt to
write either of the following:

// Bad! Compile time errors.

string[] moreStrs = {"too", "bad", "this", "bombs..."};
sa0bj.SendMeAnArrayOfStrings(ref moreStrs);
sa0bj.SendMeAnArrayOfStrings(ref (System.Array)moreStrs);

you will be presented with a handful of compile time errors. However, when you

send in a System.Array type, you are presented with the appropriate message box
(Figure 8-4).

415

Chapter 8

Client supplied strings |X|

You gave me 4 5irings
-= Hello

-= there

-= from

-= C#

Figure 8-4. SendMeAnArryOfStrings() output

Receiving SAFEARRAYs

Recall that the unmanaged SafeArrayObj coclass defined a set of methods

that return an array to the caller. On the simple end of the spectrum, you have
GiveMeAnArrayOfInts(). Once you obtain the System.Array from the interop
assembly, you are free to call any members of the managed System.Array type to
manipulate the contents. For example, the following code results in the output
shown in Figure 8-5.

// Get the ints from the coclass.

Array thelnts = saObj.GiveMeAnArrayOfInts();

for(int i = 0; i < thelnts.lLength; i++)
Console.WriteLine("Int data {o} is {1}", i,
theInts.GetValue(i));

// Reverse elements.

Console.WritelLine("Reversed Int array!\n");

Array.Reverse(thelnts);

for(int i = 0; i < thelnts.lLength; i++)
Console.WriteLine("Int data {0} is {1}", i,
theInts.GetValue(i));

// Sort elements.

Console.Writeline("Sorted Int array!");

Array.Sort(thelnts);

for(int i = 0; i < thelnts.length; i++)
Console.WriteLine("Int data {0} is {1}", i,
theInts.GetValue(i));

416

.NET-to-COM Interoperability—Intermediate Topics

Data from COM type:
Int data iz @
Int data iz 164
Int data iz 200
Int data iz 388
Int data iz 48R
Int data iz 506@8
data iz 66A
data iz 0@
data iz 86A
data iz 788

w0 G0 =] T LM s Ll DD =

Reverzed
data
data
data
data
data
data
data
data
data
data

nt array?

iz 7680
iz 800
iz 708
iz GEA
iz L@@
iz 4080
iz 300
iz 2008
iz 160@
iz @

iz

iz 160@
iz 20@
iz 300
iz 46806
iz L@@
iz GEA
iz 70@
iz 800
iz 9680

Int data
Int data
Int data
Int data
Int data
Int data
Int data
Int data
Int data
Int data

I
a
i
2
3
4
5
3
?
8
2
Corted Int arrayt
a
i
2
3
4
5
6
?
8
2

Figure 8-5. Manipulating the System.Array

Calling GiveMeAnArrayOfCoClasses() is also quite simple. Recall that this
function returns a set of _TestObject interfaces. Because the interfaces are

contained within a System.Array type, accessing the StringData property requires

an explicit cast as shown here:

// Get array of _TestObject interfaces!

Array theTestobjects = saObj.GiveMeAnArrayOfCoClasses();

for(int i = 0; i < theTestobjects.Length; i++)

Console.WritelLine("Test object {0}'s string data: {1}", i,
((TestObjectClass)theTestobjects.CetValue(i)).StringData);

And finally you have GiveMeAnArrayOfVariants(). This method is the most
interesting of the lot, given that the managed client is responsible for filtering
through the System.Array in order to determine exactly what is contained in the

417

Chapter 8

array of objects. If you find that the current element is a _TestObject interface, you
will trigger the StringData property to extract out the textual data. As you may
recall from Chapter 5, RTTI support under the .NET Framework is realized using
System.Type. Ponder the following (Figure 8-6 shows the final output):

// Get the VARIANTs.
Array theVariants = saObj.GiveMeAnArrayOfVariants();
for(int i = 0; i < theVariants.length; i++)

{
Console.WriteLine("VARIANT number {0}'s data: {1}", i,
thevariants.GetValue(i));
// Do we have a _TestObject interface?
if(theVariants.GetValue(i).GetType() ==
typeof(VBSafeArrayServer.TestObjectClass))
Console.WriteLine(" -> Data of object is {0}",
((TestObjectClass)theVariants.CGetValue(i)).StringData);
}

C:\Apress Books\InteropBook\Labs

Calling SafeArrayObjClass.GiveMeAnArray0fCoClasses ()

Test obhject B’s string data: Hello

Test obhject 1’'s string data: there

Test ohject 2'=z string data: from
object 3's string data: UB
object 4's string data: 6.0?

Calling SafeArrayObjClass.GiveMeAnArrayOfVariants()

number B's data: String data

number 1°'s data: True

number 2’z data: 23.4

number 3's data: UBSafefArrayServer.TestObjectClass
—» Data of obhject is Hey buddy?! You found me?

UARIANT number 4's data: B

Figure 8-6. Manipulating SAFEARRAYs of COM interfaces and COM VARIANTs

CODE The CSharpSafeArray project is included under the Chapter 8
directory.

- cee,
S

Cn

418

.NET-to-COM Interoperability—Intermediate Topics

Handling C-Style Arrays

In a perfect world, all COM objects would make exclusive use of the SAFEARRAY,
given that it is the one array type that can be understood by all COM language
mappings. However, C and C++ COM programmers may occasionally make use of
traditional C-style arrays as an alternative. In a nutshell, COM IDL allow you to
define three core C-style arrays:

e Fixed-length arrays
* Varying arrays
* Conformant arrays

To illustrate each possibility, you need to make use of ATL (as VB 6.0 arrays are
always expressed as COM SAFEARRAYs). Assume you have a Simple Object that
supports the following interface:

interface ICoCStyleArrayObject : IUnknown
{
// Fixed arrays define a constant capacity.
HRESULT MethodWithFixedArray([in] int myArrayOfInts[10]);

// Varying arrays allow the developer

// to pass in a chuck of an array.

HRESULT MethodWithVaryingArray
([in, length is(len)] int myArrayOfInts[1000],
[in] long len);

// Conformant arrays can have varying
// capacities, which are identified
// using the [size_is()] IDL keyword.
HRESULT MethodWithConformantArray
([in, size_is(cnt)] int* myInts, [in] long cnt);

b

If you were to run this COM server through tlbimp.exe, you would find that
each of the IDL C-style-centric keywords (size_is(), length_is(), and so on) are
completely ignored. Thus, as far as the .NET is concerned, COM methods that
make use of varying or conformant arrays are exposed as methods that employ

419

Chapter 8

420

vanilla-flavored fixed arrays. Furthermore, in the case of conformant arrays, the
parameter attributed with the [size_is()] IDL attribute is represented as a
System.IntPtr.

Given these facts, consider the .NET metadata that describes the
MethodWithFixedArray() method:

.method public hidebysig newslot virtual abstract
instance void MethodWithFixedArray([in] int32[]
marshal([10]) myArrayOfInts)
runtime managed internalcall

{
} // end of method ICoCStyleArrayObject::MethodWithFixedArray

As you can see, the method is adorned with the MarshalAsAttribute,
which preserves the maximum upper limit of the IDL definition.
The .NET metadata descriptions of the MethodWithVaryingArray()
and MethodWithConformantArray() methods are as follows:

.method public hidebysig newslot virtual abstract
instance void MethodWithVaryingArray([in] native
int myArrayOfInts,

[in] int32 len) runtime managed internalcall

{
} // end of method ICoCStyleArrayObject::MethodWithVaryingArray

.method public hidebysig newslot virtual abstract
instance void MethodWithConformantArray([in] int32& myInts,
[in] int32 cnt) runtime managed internalcall

{
} // end of method ICoCStyleArrayObject::MethodwithConformantArray

Handling COM Param Arrays

The final array-centric topic I will address is the transformation of COM “param-
eter arrays.” As you may know, COM IDL provides the [vararg] attribute, which is
used to mark a parameter that can be represented by varying number of argu-
ments. No, that was not a typo. The IDL [vararg] keyword allows you to pass in a
varying number of arguments that are logically grouped as a single entity. To illus-
trate, assume that you have created the following VB 6.0 method definition
(supported by some class type):

.NET-to-COM Interoperability—Intermediate Topics

' This method can take any number of items,
' of various types.
Public Sub Foo(ParamArray items() As Variant)

Do stuff with the array.
End Sub

The generated IDL is defined as follows:

interface ParamArrayClass : IDispatch {
[1d(0x60030000), vararg]
HRESULT Foo([in, out] SAFEARRAY(VARIANT)* items);
};

If you were to build an interop assembly for this VB 6.0 COM server, you would
find that the .NET metadata description of Foo() preserves the [vararg] IDL
attribute using the ParamArrayAttribute type:

.method public hidebysig newslot virtual abstract
instance void Foo([in][out] object[]&
marshal(safearray variant) items) runtime managed internalcall

.custom instance void

[mscorlib]System.Runtime.InteropServices.DispIdAttribute::

.ctor(int32) = (01 00 00 00 03 60 00 00)

.param [1]

.custom instance void

[mscorlib]System.ParamArrayAttribute::.ctor() = (01 00 00 00)
} // end of method ParamArrayClass::Foo

When this interop assembly is used from C#, the Foo() method is realized
using the intrinsic params keyword. VB .NET clients would make use of the
familiar ParamArray keyword (just as with Visual Basic 6.0). Understand that the
use of the System.ParamArrayAttribute type is not CLS compliant. Therefore, if a
given COM server is used in a .NET language that does not honor its usage, the
method is not invokible.

Handling COM Structures

Back in Chapter 3, you created a COM interface method (using ATL) that operated
on a COM structure (see the WidgetServer project). The DrawALine() method was
defined to take two MYPOINT structures by reference (a requirement for passing
structures).

421

Chapter 8

422

typedef struct

{
long xPos;
long yPos;
JMYPOINT;

interface IDraw : IUnknown

{
[helpstring("method DrawALine")]
HRESULT DrawALine([in, out] MYPOINT* p1,
[in, out] MYPOINT* p2);
b

When tlbimp.exe encounters an unmanaged COM structure, it maps the type
into a managed value type (of the same name). Recall that .NET value types derive
from the System.ValueType base class, which can be verified in C# as follows:

// Declare a COM MYPOINT structure.
MYPOINT pt1;

pt1.xPos = 100;

pti.yPos = 100;

// Validate base class (System.ValueType).
MessageBox.Show(pt1.GetType().BaseType.ToString());

Given what you already know about parameter transformations (see Chapter 7),
you are correct in assuming that a managed client will need to pass the managed
MYPOINT structure using the C# ref keyword. For example, if you set a reference
to the WidgetServer.dll, you will find the mapping shown in Figure 8-7.

*= Object Browser

Browse: Selected Components - Customize... £] + »% ~ | S o 4
Objects Members of TDraw'
=0 Drawer :J ------ & YDrawALine(ref WIDGETSERVERLib.MYPOINT ref WIDGETSERVERLib .MYPOINT)

él; Bases and Inte
ﬁg DrawerClass

=0 GlobalObject

a[; GlobalObjectClass —
=0 IDraw

=0 [GlobalObject

=0 IParams]
EL] L] x|
public abstract virtual void DrawALine { WIDGETSERVERLib.MYPOINT o1,

WIDGETSERVERLib.MYPOINT 22)
Member of WIDGETSERVERLib.IDraw

Figure 8-7. Mapping COM structures of System.ValueTypes

.NET-to-COM Interoperability—Intermediate Topics

Calling DrawALine() is straightforward:

private void btnDrawLine Click(object sender, System.EventArgs e)
{

MYPOINT pt1;

MYPOINT pt2;

pti.xPos = 100;

pti.yPos = 100;

pt2.xPos = 400;

pt2.yPos = 400;

DrawerClass draw = new DrawerClass();
draw.DrawALine(ref pt1, ref pt2);

Building a VB 6.0 Structure Server

To further illustrate the process of managed clients manipulating COM structures,
imagine you have created a new VB 6.0 project named VBStructsServer. The
[default] interface of the VBStructObject coclass defines the following members:

Option Explicit
' A simple COM structure.
Public Type WidgetStruct
ID As Integer
stringName As String
End Type
' This method returns an array of COM structures to the
caller.
Public Function UseThisArrayOfStructs() As WidgetStruct()
Dim structs(2) As WidgetStruct
structs(0).ID = 1
structs(0).stringName = "Fred"
structs(1).ID = 2
structs(1).stringName = "Mary"
structs(2).1D = 3
structs(2).stringName = "Billy"
UseThisArrayOfStructs = structs
End Function

This method changes the values of an incoming structure.
Public Sub ChangeThisStruct(w As WidgetStruct)

w.ID = 99
w.stringName = "FooFoo"
End Sub

423

Chapter 8

424

Obviously, UseThisArrayOfStructs() revisits the notion of COM SAFEARRAYs.
If you examine the underlying IDL for this member, you will find the following
COM type information:

struct tagWidgetStruct
{
[helpstring("ID")] short ID;
[helpstring("stringName")] BSTR stringName;
} WidgetStruct;

interface VBStructObject : IDispatch
{

[1d(0x60030000)]

HRESULT

UseThisArrayOfStructs([out, retval]

SAFEARRAY (WidgetStruct)*);

[id(0x60030001)]

HRESULT ChangeThisStruct([in, out] WidgetStruct* w);
I

1 leeeee CODE The VbStructServer is located under the COM Servers\
\ Y VBStructsServer directory.

Sl

Exercising COM Structures from Managed Code

For a change of pace, let’s build a Windows Forms application to manipulate the
_VBStructObject interface (and if you wish, the ATL WidgetServer.dll). The Ul
(Figure 8-8) will allow the user to obtain the array of structures that are displayed
inside the Form’s ListBox type. In addition, the Change a Struct button will be used
to display a WidgetServer structure before and after calling ChangeThisStruct().

*> Form1.cs [Design]
o BE—

[E=ES)

0 Draw 3 Line |

o D
% Array of COM Structs Client

Get the Array of Structs |

The COM Structures

lst Structs

Figure 8-8. The Windows Forms GUI

.NET-to-COM Interoperability—Intermediate Topics

As you would expect, the majority of the code is found behind the
Button Click event handler. Here is the relevant code:

private void btnGetArrayOfStructs Click(object sender, System.EventArgs e)
{

// Get the SAFEARRAY from the COM object.

VBStructObjectClass ¢ = new VBStructObjectClass();

Array s = c.UseThisArrayOfStructs();

// Loop over each member in the array
// and scrape out the structure data.
foreach(WidgetStruct ws in s)
{
string str = String.Format("Number: {0} Name: {1}",
ws.ID.ToString(),
ws.stringName);

// Plop into Form's listbox.
1stStructs.Items.Add(str);

private void btnChangeStruct Click(object sender,
System.EventArgs e)
{
// Make and show a WidgetStruct.
WidgetStruct w;
w.ID = 9;
w.stringName = "Fred";
string str = String.Format("Number: {0} Name: {1}",
w.ID.ToString(), w.stringName);
MessageBox.Show(str, "WidgetStruct as created");

// Now pass it in.
VBStructObjectClass ¢ = new VBStructObjectClass();
c.ChangeThisStruct(ref w);

// Check out the new values.

str = String.Format("Number: {0} Name: {1}",
w.ID.ToString(), w.stringName);

MessageBox.Show(str, "After call");

425

Chapter 8

426

1 leeeee CODE The CSharpComsStructClient application is located under the
- Chapter 8 directory.
7

Handling COM Collections

A very common pattern in COM is that of a custom collection. COM collection
objects are simply coclasses that contain references to other (somehow related)
coclasses. To illustrate the collection pattern, you will create the collection shown

in Figure 8-9.

~

CarCollection CarCollection
_CoCar ,J\ _CoCar ,J\
CoCar CoCar
_CoCar J _CoCar J
CoCar CoCar

- I —

Figure 8-9. A COM collection

If you wish to follow along, fire up VB 6.0 and create a new ActiveX DLL named
VbCollectionServer and change the name of your initial class to CoCar. The CoCar
coclass defines a small set of private data members (which should be looking very
familiar by this point) that are accessible using standard COM properties (one of
which will be designed as read only). Also, CoCar defines a custom creation
method (as VB 6.0 does not support parameterized constructors). Here is the
complete code:

' The CoCar
Option Explicit
' Private data.

Private mColor As String
Private mMake As String
Private mPetName As String
Private mCarID As Integer

Custom creation method.

.NET-to-COM Interoperability—Intermediate Topics

Public Sub Create(ByVal Color As String, ByVal Make As String, _

Byval PetName As String, ByVal id As Integer)
mColor = Color
mPetName = PetName

mMake = Make
mCarID = id
End Sub

CoCar supports the following COM properties.
Public Property Let Color(ByVal s As String)
mColor = s
End Property
Public Property Get Color() As String
Color = mColor
End Property

Public Property Let Make(ByVal s As String)
mMake = s

End Property

Public Property Get Make() As String
Make = mMake

End Property

Public Property Let PetName(ByVal s As String)
mPetName = s

End Property

Public Property Get PetName() As String
PetName = mPetName

End Property

' Read only (set using Create()).

Public Property Get CarID() As Integer
CarID = mCarID

End Property

427

Chapter 8

428

A common approach used when building COM collections is to explicitly
prevent inner classes from being directly created by the caller. The idea behind
this tactic is to force the user to obtain interface references of the inner types from
the container (and only the container). As you learned in Chapter 4, the IDL
[noncreatable] keyword can be used for this very purpose. The problem is that
with VB 6.0 you are unable to directly edit the underlying COM type information.
You can, however, instruct VB 6.0 to add the [noncreatable] keyword by setting a
coclass’ Instancing property to PublicNotCreatable (Figure 8-10).

Properties - CoCar

CoCar ClassModule ;l
Alphabetic | Categorized

I[Name}
IDataBindingBehaviu:ur
DataSourceBehavior

CoCar

0 - vbMone

0 - vbMNone

2 - PublichotCreatable LI
MTSTransactionMode |0 - MotAnMTSObject

[Persistable 0 - MotPersistable

Instancing
Sets & value that specifies whether you can create
instances of a public dass outside a project.

Figure 8-10. Preventing a VB COM Type from being directly created

If you examine the generated IDL (after compiling the server), you will find
the following definition of CoCar (as an interesting side note, oleview.exe will not
let you expand the VbCollectionServer.CoCar node, given that this type is now not
creatable!):

[uuid(44D74978-D086-4BBO-AE79-5F9COAIDD259),
version(1.0), noncreatable]
coclass CoCar {
[default] interface CoCar;

};

Now that you have created the inner CoCar, you need to build the containing
coclass. Insert a new VB 6.0 class type named CarCollection. To allow the outside
world to interact with the internal set, programmers populate the [default] inter-
face of the containing object with a well-known set of members (Table 8-3).

.NET-to-COM Interoperability—Intermediate Topics

Table 8-3. Typical Members of a COM Collection

COM Collection Member Meaning in Life
Add() The collection’s Add method allows the user to insert a new
coclass into the COM collection.

Remove() Obviously, this member allows the outside world to remove an
item from the collection.

Item() This member is much like a C# indexer method in that it
allows access to a particular item in the collection.

Count This member returns the number of items in the collection.

_NewEnum() This hidden member is typically not directly called by the
COM client, but rather internally by VB 6.0 when using the For
Each iteration syntax. Under the hood, this method returns the
standard IEnumVARIANT interface.

Of course, you are not required to name your container’s members identically
to the items listed in Table 8-3. Thus, if you would rather name your insertion
method AddThisNewCarToTheCollection(), you are free to do so. The semantics of
these members, however, should be identical.

If you were building a custom COM collection using ATL, you might make use
of an STL vector to hold the inner interface references. Under the VB 6.0 model,
you have a less syntactically strenuous option: the intrinsic Collection class. The
VB 6.0 Collection type is a predefined type that supports the Add(), Remove(),
Count, Item(), and _NewEnum() members.

However, the raw Collection type allows you to insert any possible item into
the collection! When you wish to restrict exactly what can be inserted (or removed)
from the coclass, you will want to build a strongly typed collection that leverages
the functionality of the Collection type. The first step, therefore, is to add a private
Collection member variable to the CarCollection type and fill it with some initial
data points:

' The CarCollection.
Option Explicit
Private mCarColl As Collection

Private Sub Class_Initialize()
Set mCarColl = New Collection
' Add some initial cars to the collection.
AddCar "Red", "Viper", "Fred", 1

AddCar "Yellow", "SlugBug", "Pippy", 2

429

Chapter 8

430

AddCar "Black", "BMW", "Buddha", 3

AddCar "Gold", "Colt", "Goldy", 4

AddCar "Pink", "Caravan", "Illness", 5
End Sub

Your insertion method, AddCar(), allows the user to send in the individual
data points that constitute a new CoCar. Following convention, once AddCar() has
inserted the new object, you return its reference to the caller:

Public Function AddCar(ByVal Color As String,

ByVal Make As String, _
ByVal PetName As String, ByVal id As Integer) As CoCar
' Make a new car and add it to the collection.

Dim c As CoCar

Set ¢ = New CoCar

c.Create Color, Make, PetName, id

mCarColl.Add c

Set AddCar = c

End Function

The indexer method, GetCar(), is a stylized version of Item() that is imple-
mented as follows:

Public Function GetCar(ByVal index As Integer) As CoCar
' Get a car from collection.
Set GetCar = mCarColl.Item(index)

End Function

The variation of Count() is a no-brainer. Simply ask the private Collection for
its current number of items:

Public Function NumberOfCars() As Integer
' Return number of cars.
NumberOfCars = mCarColl.Count()

End Function
The removal method is also very straightforward:

Public Sub RemoveCar(ByVal index As Integer)
' Remove a car.
mCarColl.Remove (index)

End Sub

.NET-to-COM Interoperability—Intermediate Topics

The implementation of RemoveCar() could be much more extravagant. You
could, for example, allow the user to pass in the ID of the car he or she is inter-
ested in obtaining, and search for the correct member in the Collection. If you
were to design the CarCollection in this manner, you would do better to make use
of the VB 6.0 Dictionary type rather than the Collection entity. For the purposes of
this example, the current implementation will do just fine.

Last but not least, you have the hidden _NewEnum() method. As noted, the
COM client does not directly call this method. However, under the hood, Visual
Basic will invoke this member whenever the client makes use of the For . . . Each
syntax. Good enough, but what exactly does _NewEnum() do? In a nutshell, this
method returns an IUnknown interface to the client (VB in this case) that will use
it to query the type for its IEnumVARIANT interface. This standard interface
(defined in oaidl.idl) allows a client to interact with the contained items using four
members:

// IEnumVARIANT interface.
interface IEnumVARIANT : IUnknown

{
// This method returns a set of VARIANTs.
HRESULT Next([in] ULONG celt,
[out, size is(celt),
length_is(*pCeltFetched)] VARIANT* rgVar,
[out] ULONG * pCeltFetched);
// This method skips over some number of items.
HRESULT Skip([in] ULONG celt);
// Set the internal pointer back to the beginning.
HRESULT Reset();
// Allows a client to obtain a carbon copy of the
// current enumerator.
HRESULT Clone([out] IEnumVARIANT ** ppEnum);
}

C++ programmers who build COM classes in the raw (or using ATL) may be
aware of the mythical IEnumXXXX interface. This enumeration interface offers a
design pattern by which a collection object allows access to a set of internal items.
These internal items may be anything at all: a set of integers, VARIANTS, BSTRs, or
even the interfaces of custom coclasses.

However, rather than allowing each and every developer to define the
members that provide access to the contained types, the COM specification offers

431

Chapter 8

the fictional [EnumXXXX interface. This interface is not literally defined in a given
type library. Rather, IEnumXXXX is a recommended pattern to follow when
building the container object. Simply replace “XXXX” with the type of inner

item you are allowing access to (for example, [IEnumVARIANT, IEnumFrogs,
I[EnumURLs, and so forth). Because a VB 6.0 Collection type can hold anything at
all, it stands to reason that its enumerator interface is [IEnumVARIANT. With this
brief backgrounder out of the way, here is the implementation of the _NewEnum()
member (recall that the [] notation allows you to call hidden members):

' Required to support For Each iteration.

Public Function NewEnum() As IUnknown
Set NewEnum = mCarColl.[NewEnum]

End Function

Now, when you make use of the For . . . Each syntax, VB does not invoke
_NewEnum() by name, but rather by indirectly invoking the member via it’s
DISPID. Note for example that the CarCollection’s _NewEnum() member is named
simply NewEnum() (without the underscore). In fact, you could have called this
method GiveMelEnumVARIANT(). To associate your method (whatever its name)
with the correct DISPID, you will need to use the Procedure Attributes dialog box
(located under the Tools menu of the VB 6.0 IDE). What is the magic number you
ask? It’s -4 (note the Procedure ID edit box seen in Figure 8-11). While you're at it,
mark this member as hidden (via the check box).

Procedure Attributes

LR e wEnum

Description:
Cancel |
| 2'
b.o) Apply |

Froject Help File: Help Context ID:

I 0 Advanced = |

Lse this Page in
Procedure ID: Fropetty Browser: Property Category:

|—4 j I(None} ;I I(None}

Attributes

L«

¥ Hide this member] User Interface Defaulk
I~ Don't showin Property Browser

—Data Binding
I~ Property is data baund
I~ | This property binds be Datafield
I~ | Shaw in DataBindings collection at design bme
I~ | Property wil call CanPropertyChange hefore changing
I~ | Update immediate

Figure 8-11. Setting the correct DISPID

432

.NET-to-COM Interoperability—Intermediate Topics

If you are interested, the value -4 maps to a predefined const named
DISPID_NEWENUM (found in oaild.idl).

// DISPID reserved for the standard "NewEnum" method.
const DISPID DISPID NEWENUM = -4;

Once you compile your VB server, you will see that the correct hexadecimal
value of -4 has been added to your NewEnum() method:

interface CarCollection : IDispatch
{
[1d(0x60030000)]
HRESULT AddCar([in] BSTR Color,
[in] BSTR Make, [in] BSTR PetName,
[in] short id, [out, retval] CoCar**);
[1d(0x60030001)]
HRESULT GetCar([in] short index,
[out, retval] CoCar**);
[1d(0x60030002)]
HRESULT NumberOfCars([out, retval] short*);
[1d(0x60030003)]
HRESULT RemoveCar([in] short index);

/1 oxfffffffc = DISPID_NEWENUM (-4)
[id(oxfffffffc), hidden]
HRESULT NewEnum([out, retval] IUnknown**);

};

With this, your VB 6.0 COM collection is complete! Now let’s see how to
manipulate it using managed code.

1 leeee CODE The VbCollectionServer is located under the Chapter 8
\ s - subdirectory.

i

Exercising the COM Collection from Managed Code

Now you'll take your COM collection out for a spin via a new C# console applica-
tion (CSharpComCollectionClient). First off, the application object defines a static

433

Chapter 8

434

method named PrintCarCollection() that will iterate over each item in the collec-
tion and dump out the contents:

namespace CSharpComCollectionClient

{
class COMCollectionUser
{
static void PrintCarCollection(CarCollection coll)
{
// DISPID_NEWENUM triggered here!
foreach(CoCarClass car in coll)
{
Console.WritelLine(@"ID: {0} Make: {1}
Color: {2} PetName: {3}",
car.CarID, car.Make, car.Color, car.PetName);
}
}
[STAThread]
static void Main(string[] args)
{
}
}
}

As you can see from the code comment, just like the VB 6.0 For Each syntax,
the C# foreach keyword demands that the type being traversed support an
enumeration mechanism. Recall that your CarCollection coclass defined a hidden
method with the DISPID of —-4. When the tlbimp.exe utility finds this value, it will
automatically build in support for the System.Collections.IEnumerable interface:

// A COM class that defines a member with DISPID -4
// will support this interface.
public interface System.Collections.IEnumerable

{

System.Collections.IEnumerator GetEnumerator();

This interface simply returns another interface to the caller (Enumerator),
which allows the type’s internal sub objects to be iterated over.
System.Collection.IEnumerator is defined as follows:

// A managed variation of the COM IEnumXXXX interface.
public interface System.Collections.IEnumerator

{
object Current { get; }
bool MoveNext();
void Reset();

}

.NET-to-COM Interoperability—Intermediate Topics

If you check out the managed type using the IDE’s integrated Object Browser
(Figure 8-12), you'll see the CarCollectionClass does indeed support IEnumerable
(which again provides access to [IEnumerator).

*= Object Browser |._| |E| |X|

Browse: Selected Components - Customize... | El. -

Cbjects Members of 'TEnumerable’

[H--==0 CarCollection -2l GetEnumerator ()
Ea; CarCollectionClass
E&I; Bases and Interfaces
°-0 _CarCollection
#]-+0 CarCollection

e} IEnumerable
- % Object

=0 CoCar 1]

public interface IEnumerable
Member of System.Collections

5

[11

Summary:
Exposes the enumerator, which supports a simple iteration over a collection.

Figure 8-12. Supporting DISPID_NEWENUM results in the implementation of the
IEnumerable interface.

If you did not assign DISPID_NEWENUM to a given member of the COM
collection, the generated class type would not support [IEnumerable. Rather, you
are presented with the following compile time error:

foreach statement cannot operate on variables of type
'VbCollectionServer.CarCollection' because
'VbCollectionServer.CarCollection' does not contain a definition
for 'GetEnumerator', or it is inaccessible

Now, to illustrate interaction with the CarCollectionClass type, ponder the
following updated Main() method that calls AddCar(), RemoveCar(), and GetCar():

static void Main(string[] args)
{
// Make the COM collection.
CarCollectionClass carColl = new CarCollectionClass();
Console.WriteLine("Number of cars in initial collection: {0}",
carColl.NumberOfCars());

// Iterate over initial collection.
PrintCarCollection(carColl);

435

Chapter 8

// Add a car.

CoCar newCar = carColl.AddCar("White", "Jetta", "Chucky", 55);
Console.WritelLine("\nCollection after adding a car.");
PrintCarCollection(carColl);

// Now remove the first 3 cars.

Console.WriteLine("\nCollection after removing first 3 cars:");
carColl.RemoveCar(1);

carColl.RemoveCar(2);

carColl.RemoveCar(3);

PrintCarCollection(carColl);

// Get first CoCar in collection.
CoCar carOne = carColl.GetCar(1);
Console.WriteLine("\nFirst Car has ID: {0}", carOne.CarID);

If you have a background in C++ COM development, note that if you obtain
the IEnumerator interface from an imported COM collection, you are in effect
interacting with the coclass’ IEnumVARIANT. For example:

// Now using raw enumerator.

IEnumerator itfEnum = carColl.GetEnumerator();

itfEnum.Reset();

itfEnum.MoveNext();

CoCarClass c = (CoCarClass)itfEnum.Current;

Console.WriteLine("ID: {0} Make: {1} Color: {2} PetName: {3}",
c.CarID, c.Make, c.Color, c.PetName);

Figure 8-13 illustrates the complete output.

Number of cars in init ion: §

ID: 1 Make: Uiper Color: Red PetMame: Fred

ID: 2 Make: SlugBug Color: Yellow PetMame: Pippy
ID: 3 Make: BMUW Color: Black PetName: Buddha

ID: 4 Make: Colt Color: Gold PetName: Goldy

ID: 5 Make: Caravan Color: Pink PetMame: Illness

Collection after adding a car.

ID: 1 Make: Uiper Color: Red PetMame: Fred

ID: 2 Make: SlugBug GColor: Yellow PetMame: Pippy
ID: 3 Make: BMW Color: Black PetName: Buddha

ID: 4 Make: Colt Color: Gold PetName: Goldy

ID: 5 Make: Caravan Color: Pink PetMName: Illness
ID: 55 Make: Jetta Color: White PetName: Chucky

Collection after removing first 3 cawps:

ID: 2 Make: S5lugBug Color: Yellow PetMame: Pippy
ID: 4 Make: Colt Color: 1d PetHame: Goldy

ID: 55 Make: Jetta Color: White PetMame: Chucky

First Car has ID: 2

How using IEnumerator
ID: 2 Make: SlugBugy Color: Yellow PetMame: Pippy
Press any key to continue_

Figure 8-13. Interacting with the COM enumerator
436

.NET-to-COM Interoperability—Intermediate Topics

1 leeeee CODE The CSharpComCollectionClient is located under the Chapter 8
\ Y subdirectory.

A Brief Review of COM Connection Points (COM Events)

Now that you have examined the COM collection pattern (and the role of COM
enumeration interfaces), let me turn your attention to the consumption of

COM events from a managed environment. However, before you build a sample COM
event server, let’s take some time to briefly review the core concepts of the connec-
tion point architecture. In classic COM, the ability for one object to send events to
another object requires four key ingredients:

e A connection point container

¢ A connectable object (or possibly a set of them) maintained by the
container

¢ An outbound interface (aka source interface) defined in the server’s type
library

¢ The client’s implementation of the source interface (aka client-side sink).

Understanding IConnectionPointContainer

The first piece of the puzzle is the connection point container. To be honest, this is
just a fancy name for a collection coclass that implements the standard COM
interface named (surprise, surprise) IConnectionPointContainer. The role of
IConnectionPointContainer is to allow the client to investigate the set of
connectable objects it is maintaining. A connectable object is a COM class that
understands how to send a predefined set of events (more details in a moment).
The official definition of this standard COM interface can be found inside ocild.idl:

// Implemented by the connection point container.
interface IConnectionPointContainer : IUnknown
{
// Allows client to enumerate over the inner objects.
HRESULT EnumConnectionPoints(
[out] IEnumConnectionPoints ** ppEnum);
// Allows the client to ask for a connection point by name.
HRESULT FindConnectionPoint([in] REFIID riid,
[out] IConnectionPoint ** ppCP);

437

Chapter 8

The first way a client may obtain an internal connection point is to call
EnumConnectionPoints(), which returns a standard COM enumeration interface
named IEnumConnectionPoints. Using IEnumConnectionPoints, the client
can iterate over each of the contained subobjects in the same manner as
[EnumVARIANT. The second (and more common) approach is to ask for a
specific connectable object by name using FindConnectionPoint(), which
allows a client to ask for a specific connection point by name.

Understanding IConnectionPoint

Regardless of which technique the client uses to view the container’s inner objects,
the end result is a reference to the connectable object’s IConnectionPoint inter-
face. In fact, by definition, a connectable object is a coclass that implements the
members of IConnectionPoint. This interface defines a set of methods that allows
the external client to connect and disconnect from the connectable object (among
other chores). IConnectionPoint is also defined within ocidl.idl as follows:

// Internal connectable objects must implement IConnectionPoint.
interface IConnectionPoint : IUnknown
{
// Get the GUID of the outbound interface
// this object makes calls upon.
HRESULT GetConnectionInterface([out] IID * pIID);
// Get pointer back to the container.
HRESULT GetConnectionPointContainer(
[out] IConnectionPointContainer ** ppCPC);
// Allows external client to hook into this connectable object.
HRESULT Advise([in] IUnknown * pUnkSink,
[out] DWORD * pdwCookie);
// Allows external client to detach
// from this connectable object.
HRESULT Unadvise([in] DWORD dwCookie);
// Allows client to determine all other
// connections to this connectable
// object.
HRESULT EnumConnections([out] IEnumConnections ** ppEnum);

Of all the methods of IConnectionPoint, Advise() and Unadvise() are by far the
most interesting. Using these methods, an external client is able to inform the
connection point object that it is interested in receiving incoming events by

438

.NET-to-COM Interoperability—Intermediate Topics

passing in a reference to the client-side sink (represented as an IlUnknown*) via
the Advise() method. The connectable object holds onto each client-side sink
reference and makes calls on each sink when a given event occurs. As you might
assume, each connectable object maintains an array of [Unknown* interfaces that
represent a given connected client. Unadvise(), on the other hand, allows the
client to terminate the connection by passing back the connection cookie received
as an output parameter from the Advise() method.

Understanding the Outbound Interface

Next you have the entity known as the outbound interface. A given connectable
object is only able to make calls against a particular set of methods. Formally
speaking, this set of methods is known as an outbound interface, which is defined
in IDL using the [source] keyword. [source] interfaces are defined in the server’s
type information but implemented by the client in a given sink object. Also under-
stand that outbound interfaces are defined as dispinterfaces (by convention) to
ensure that late-bound clients (such as a Web browser) can intercept the incoming
events. Here is a simple IDL definition of an outbound interface:

library MYEVENTSERVERLib

{
importlib("stdole32.tlb");
importlib("stdole2.t1lb");
// Event interfaces are defined in the server’s IDL,
// but implemented by the client. The underscore is a
// convention that marks the interface as hidden.
[uuid(17B8B6D5-887C-46B4-9B4D-554954863CD8)]
dispinterface _ICoEventObjectEvents
{
properties:
methods:
[id(1), helpstring("method TheEvent")] HRESULT TheEvent();
b
[uuid(F94E0935-7DE1-46CC-9E3C-BFDE8998AS0B)]
coclass CoEventObject
{
[default] interface ICoEventObject;
[default, source] dispinterface ICoEventObjectEvents;
b
b

439

Chapter 8

440

Although it is possible that a COM server may define multiple source inter-
faces (and therefore multiple connection points), 99.9 percent of all connection
point containers define a single connectable object and a single [default, source]
interface that defines all the events for a given container.

All Together Now...

To be sure, the connection point architecture is a bit on the complex side. To help
solidify the role of each entity, let’s see a concrete example. Figure 8-14 illustrates
yet another CoCar, this time containing two connectable objects. EngineCP is a
COM type that only knows how to communicate with a sink that implements
_EngineEvents. RadioCP is another connectable object that only knows how to
communicate with a sink implementing the members of _RadioEvents. Recall that
the IDL definition of outbound [source] interface is located within the server’s
type library but implemented by a given client-side sink.

\

CoCar
IConnectionPointContainer
IConnectionPoint J
Client ICoCar EngineCP

Engine
Sink

O—
EngineEvents //\—/9

IConnectionPoint

RadioCP

.

Server’s Type Information

[default source] RadioEvents

[source] Engine Events :3

Figure 8-14. The complexity that is COM connection points

.NET-to-COM Interoperability—Intermediate Topics

Building a Connectable COM Type

To be sure, if you were to build a connectable coclass using raw C++ and IDL, you
would have quite a chore ahead of you. To keep things focused on interoperability
issues (rather than on the gory details of constructing connectable objects),

you will once again make use of Visual Basic 6.0. The VBComEventsServer.dll
defines a single coclass named CoCar. This COM type is able to send out two
events to a connected client (based on the value of its current rate of speed).

The beautiful thing about defining and sending events using VB 6.0 is that the
IConnectionPointContainer and IConnectionPoint interfaces are implemented
behind the scenes automatically. All you are required to do is this:

* Define the events using the Event keyword.
e Fire the event (under the correct conditions) using the RaiseEvent keyword.
Here, then, is this iteration of the CoCar type (CoCar.cls):

Option Explicit
' Class constant.
Const MAXSPEED = 200

' Simple state data.
Private mCurrSpeed As Integer
' The CoCar can send two events.
Public Event AboutToBlow()
Public Event Exploded()
' The sole member of the [default] interface.
Public Function SpeedUp() As Integer
mCurrSpeed = mCurrSpeed + 10
If (MAXSPEED - mCurrSpeed) = 10 Then
RaiseEvent AboutToBlow
End If
If mCurrSpeed >= MAXSPEED Then
RaiseEvent Exploded
End If
' Return current speed
SpeedUp = mCurrSpeed
End Function

441

Chapter 8

442

Once you compile this server, examine the set of supported interfaces using
oleview.exe. As you can see, VB has indeed supplied the necessary infrastructure
(Figure 8-15).

- OLE/COM Object Viewer
File Object View Help

=3 & BB #
)&, VBComEventsServer.CoCar [| interface |ConnectionPointContainer
""" ? _DClass ‘E {B196B224-BAB4-101A-BESC-00AAD0341D07}

----- ? CoCar 3
----- ? IConnectionPoint T |

IConnectionPointContainer

9 Di Interface = |
""" 9 IDispatch) - {B196B284-BAB4-10 1A-BESC-00AAOD341D0"

..... ¢ IExte_r;aIcljonneic:;aon NumMethods = 5

""" o [ProvideClassIn i... ProxyStubClsid32 = {B196B286-BAB4-10
----- ISupportErrorinfo L CLSID =

----- ? TUnknown :

R VRDAtAView dncDataliew | [E i |]
£ I] &)

Ready A

>

(|

|

T o o o A P

Figure 8-15. VB 6.0 coclasses automatically support COM event atoms.

If you examine the generated COM type information, you will find that a
single [default, source] interface has been defined and populated with each event
you declared using the VB 6.0 Event keyword (note that by convention, [source]
interfaces are typically defined as dispinterfaces to allow late-bound clients to
receive the outgoing events):

[uuid(C2112F74-9C98-435E-8304-7735421F3C23),
version(1.0), hidden, nonextensible]
dispinterface _ CoCar {
properties:
methods:
[1d(0x00000001)]
void AboutToBlow();
[1d(0x00000002)]
void Exploded();
};

1 leeeee CODE The VBComEventServer project is included under the Chapter 8
\ YR subdirectory.

.NET-to-COM Interoperability—Intermediate Topics

A Brief Review of .NET Delegates

As you might expect, COM connection points are mapped into terms of the .NET
delegate architecture. By way of a quick review, recall that a delegate is a type that
represents a pointer to some function, much like a traditional C-style callback (see
Chapter 1). The key difference, however, is that a .NET delegate is a class that
derives from System.MulticastDelegate.

This base class defines a number of members that maintain core information
about the method(s) it is responsible for invoking. Using the inherited Combine()
and Remove() methods, the delegate type adds or removes function pointers to
the internal linked list it is maintaining.

Because a delegate is indeed a class type, it can be directly created and manip-
ulated, like any class type you may pass in, as a constructor argument you pass in
the name of the method that will be invoked. For example, ponder the following
code (note the similarity to the PInvoke callback example described in Chapter 1):

namespace SimpleCSharpDelegate

{
// This delegate knows how to call
// methods that take no arguments and returns nothing.
public delegate void DoneAddingDelegate();

class Adder

{
public int Add(int x, int y)
{ return x +y; }

// The delegate target.

// (Note this method matches the calling conventions of the
// DoneAddingDelegate delegate).

public void AddingComplete()

{

Console.WriteLine("The adder is done...");

[STAThread]
static void Main(string[] args)
{

// Create an adder.

Adder a = new Adder();

// Assign a method to the delegate.
DoneAddingDelegate del =
new DoneAddingDelegate(a.AddingComplete);

443

Chapter 8

444

Console.Writeline("Delegate target: {o}",
del.Target.ToString());

Console.WriteLine("Delegate method name: {0}",
del.Method.Name);

// Trigger the method maintained by the delegate.

Console.WriteLine("Sum of 10 and 10 is: {o}",
a.Add(10, 10));

del.DynamicInvoke(null);

Here, the DoneAddingDelegate delegate has been defined to invoke methods
that take no arguments and return nothing. Notice that when you create the dele-
gate (within the Main() method), you are passing in the name of a function to call
(which, of course, matches the calling conventions of the DoneAddingDelegate
delegate).

After you print some basic stats about the delegate (via the inherited Target
and Method properties), you invoke the member using DynamicInvoke(). The
output can be seen in Figure 8-16.

e C:\Apress Books\InteropBooki\LabshC

Delegate target: SimpleCSharpDelegate.Adder
Delegate method name: AddingComplete

Sum of 18 and 18 i=s: 28

The adder iz done adding vyour numbhers...
Press any key to continue_

Figure 8-16. The DoneAddingDelegate type in action

If you view the generated assembly using ILDasm.exe, you will find
that the delegate keyword does indeed expand to a class deriving from
System.MulticastDelegate (Figure 8-17).

-~ leeee CODE The SimpleCSharpDelegate application is included under the
\ Y Chapter 8 directory.
ol

.NET-to-COM Interoperability—Intermediate Topics

F C:\Apress Books\InteropBook\Labsh\... |:||E||X|
File view Help

B C:Apress Books InteropBook\ Labs Chapter 7.S5impleCSha
----- P MANIFEST
&-- W SmpleCShamDelegate

class public auto ansi sealed

extends [mscorib]System Multicast Delegate
.ctor : void(object native int)

Beginlnvoke : class [mscordib]System. |AsyncRed
Endlnvoke : voidiclass [mscorib]System. [Asynch
Imvolee : void()

< iii | ¥
.assembly SimpleCShampDelegate |
i bl

Figure 8-17. Delegates derive from System.MulticastDelegate.

A Brief Review of .NET Events

Although .NET delegates can be used as independent agents, it is more
common to leverage delegates to create custom events. A C# event is defined
using the following syntax (assume you have already defined a delegate named
NameOfDelegate):

// C# Event declaration.
public event NameOfDelegate NameOfEvent;

As you can see, an event is simply a named class member that knows how to
communicate with a set of methods matching the corresponding delegate. Once a
class type has defined some number of events, you are able to assign delegate
targets using the convenient += syntax; likewise, if you wish to remove a member
from the list maintained by the delegate, you may make use of the —= syntax. And
finally, when you want the class to fire the event (thereby calling each method
contained within the delegate), simply call the event by name. To showcase the
.NET event architecture, here is a new C# console application that retrofits the
previous SimpleCSharpDelegate application to make use of a custom event.

445

Chapter 8

namespace SimpleCSharpEvent
{
// The delegate.
public delegate void DoneAddingEventHandler();
class Adder

{
// The event.
public event DoneAddingEventHandler DoneAdding;
// Method which fires the event.
public int Add(int x, int y)
{
// Fire event.
DoneAdding();
return x + y;
}
// The event sink.
public void AddingComplete()
{
Console.WriteLine("The adder is done...");
}
[STAThread]
static void Main(string[] args)
{
// Create an adder.
Adder a = new Adder();
// Assign a method to the event.
a.DoneAdding +=
new DoneAddingEventHandler(a.AddingComplete);
// Trigger the event.
Console.WritelLine("Sum of 10 and 10 is: {0}",
a.Add(10, 10));
}
}

Although the output is identical to the previous delegate, the underlying
metadata is quite unique (Figure 8-18).

446

.NET-to-COM Interoperability—Intermediate Topics

¥ C:\Apress Books\InteropBook\Labs\Chapte... |Z| |§| |X|
File View Help

B+ C\Apress BookshInteropBook\Labs Chapter TSimpleC SharpEvent]
i MANIFEST

B W SimpleCShampDelegate

& Adder

----- P class private auto ansi beforefieldinit

----- DoneAdding : private class SimpleC

----- B ctor : void()

----- W Add - int32(rt32,irt32)

----- B AddingComplete : void()

----- Main : voidistring[T)

----- B add_DoneAdding : voidiclass SimpleCShampDelegate.Dg
----- B remove_DoneAdding : void(class SimpleCShamDelegats
----- W Donefdding : SimpleCShamp Delegate. DoneAdding Event
&-fE DoneAddingEvertHandler

----- P class public auto ansi sealed

----- b extends [mscordib]System. Mutticast Delegate

----- W ctor : voidiobject native int)

----- B Beginlnvoke : class [mscorib]System. |AsyncResultclass
----- B Endinvoke : voidiclass [mscorib]System |Async Result)
----- B Invoke : void()

< 1] >
assembly SimpleC Sham Event L]

Figure 8-18. The underbelly of .NET events

Notice that the Adder class type now defines two additional members,
add_DoneAdding() and remove_DoneAdding(). These members are called behind
the scenes when you make use of the += and —= operators. The crux of their useful-
ness is to hide the raw delegate manipulation from view. For example, if you check
out the IL for add_DoneAdding(), you will find that System.Delegate::Combine() is
called on your behalf:

method public hidebysig specialname instance void
add_DoneAdding(class
SimpleCSharpDelegate.DoneAddingEventHandler 'value')
cil managed synchronized

{

IL_0008: call class [mscorlib]System.Delegate
[mscorlib]System.Delegate: :Combine(class
[mscorlib]System.Delegate,
class [mscorlib]System.Delegate)

}

447

Chapter 8
Likewise, remove_DoneAdding() will call System.Delegate.Remove():
.method public hidebysig specialname instance void

remove_DoneAdding(class SimpleCSharpDelegate.
DoneAddingEventHandler 'value') cil managed synchronized

{

IL_0008: call class [mscorlib]System.Delegate
[mscorlib]System.Delegate: :Remove(class
[mscorlib]System.Delegate,
class [mscorlib]System.Delegate)

}

The last point of interest is to check out the IL of the DoneAdding event itself
(identified by the green triangle that indicates a class type within ILDasm.exe).
The [.addon] and [.removeon] directives are used to hook into the hidden delegate
members:

event SimpleCSharpDelegate.DoneAddingEventHandler DoneAdding
{
.addon instance void SimpleCSharpDelegate.Adder::add DoneAdding
(class SimpleCSharpDelegate.DoneAddingEventHandler)
.removeon instance void
SimpleCSharpDelegate.Adder: :remove DoneAdding
(class SimpleCSharpDelegate.DoneAddingEventHandler)

g leeeee CODE The SimpleCSharpEvent project is included under the Chapter 8
\ YR directory.

Examining the Interop Assembly

Now that you have seen how to work with .NET delegates and events in and of
themselves, you should have no problem intercepting COM events. When you
generate an interop assembly for a COM server making use of the connection
point architecture, tlbimp.exe will generate a number of additional types beyond
the XXXClass, [default] interface class type, and managed interface. Check out
Figure 8-19.

448

.NET-to-COM Interoperability—Intermediate Topics

¥ C:\Apress Books\InteropBook\Labs\Chapter 7ACSharpCom... |Z||E||X|
File View Help

B CMApress Books'nteropBook'Labs \Chapter 7\CShapComEventClient*binDebug®Inte
ANIFEST

ComEventsServer
&I CoCar

o JF CoCarClass
EE _CoCar

gl _ CoCar

EEE _ CoCar_About ToBlowEvertHandler
BE _ ColCar_Event

o __CoCar_EventProvider

Bat _ CoCar_ExplodedEventHandler
ml _ CoCar_SinkHelper

< I | >
assembly Interop VBComEvents Server e
i v

Figure 8-19. Event-centric generated types

Table 8-4 documents the meaning of each member of the
interop.vbcomeventserver.dll assembly (note that the XXX_EventProvider and
XXX_SinkHelper types are private to the interop assembly and not directly usable
from a managed client).

Table 8-4. Generated Event-Centric Types

Generated Type Meaning in Life

CoCarClass, CoCar, _CoCar As you would expect, the interop assembly
contains managed class and interface types (as
described in Chapter 6).

_ CoCar Tlbimp.exe generates a managed inbound

interface for each [source] interface. Typically
this interface can be ignored; however, you can
make use of it to manually build a managed
event sink.

__CoCar_Event Tlbimp.exe also generates a managed
outbound interface for each [source] interface.
Again, this member can typically be ignored.

__CoCar_AboutToBlowEventHandler Tlbimp.exe generates a managed delegate for
__CoCar_ExplodedEventHandler each method defined in the COM [source]
interface.

449

Chapter 8

Table 8-4. Generated Event-Centric Types (continued)

Generated Type Meaning in Life

__CoCar_EventProvider This internal class type is used by the RCW to
map COM connection points to .NET
delegates.

__CoCar_SinkHelper This internal class implements the members of

the outbound interface and functions as a
default client side sink object.

Although quite a few types are generated by the tlbimp.exe utility, understand
that the only items you are likely to make direct use of are the managed delegates.
Furthermore, two of the types (__XXXX_EventProvider and __ XXXX_SinkHelper)
are declared as internal types, and are therefore not accessible from outside of the
interop assembly. In a nutshell, the RCW uses these two types internally to map
COM connection points to the correct .NET delegate. For example, if you were to
peek inside the underlying IL for these types, you would find that the
__CoCar_EventProvider type maintains a System.Collections.ArrayList type to
hold onto the client-side sinks. Again, given that you are unable to directly use
these types, I'll focus exclusively on the remaining members.

Examining the Generated Delegates

The most critical members generated by tlbimp.exe are the managed delegates.
Recall that the VB 6.0 [default, source] interface defines two event members:

dispinterface _ CoCar {
properties:
methods:
[1d(0x00000001)] void AboutToBlow();
[1d(0x00000002)] void Exploded();

};
This results in the following .NET delegates:

public sealed delegate __ CoCar_AboutToBlowEventHandler
: System.MulticastDelegate

{.}

public sealed delegate _ CoCar_ExplodedEventHandler
: System.MulticastDelegate

.}

The name given to each .NET delegate is based on a very specific pattern:

<NameOfTheSourceInterface> <NameOfTheEvent>EventHandler

450

.NET-to-COM Interoperability—Intermediate Topics

Thus, if you had a [source] interface named MyEvents that defined a single
method called TheEvent, the generated delegate would be named
MyEvents_TheEventEventHandler. As you will see in just a moment, these gener-
ated delegates are used just like any .NET delegate type.

Examining the Generated __ CoCar
and __ CoCar Event Interfaces

When tlbimp.exe encounters a [source] interface in the COM server’s type infor-
mation, it will automatically generate two managed interfaces. The first interface
defines each member as an inbound interface. In this example, the __CoCar
defines the AboutToBlow() and Exploded() members as shown in Figure 8-20.

¥ C:\Apress Books\InteropBook\Labs\Chapter 7\CSharpCom... |:||E||z|
File Wew Help

- b MANIFEST
EI' WVBComEventsServer
EE ColCar
- fF CoCarClass
& _CoCar
ER T3 CoCar
----- b class inteface public abstract auto ansi import
----- P custom instance void [mecodib]System. Rurtime. Interop Services Guid Attr
----- b .custom instance void [mecorib]System. Runtime Interop Services Inteface ™
----- P custom instance void [mscorib]System . Rurtime. Interop Services. TypeLib
----- B About ToBlow : void()
----- B Exqloded : void() "

< |] >
.assembly Interop VBComEventsServer Ll

3

Figure 8-20. The generated __CoCar interface

The generated __CoCar_Event interface defines the same members as an
outbound interface (that is, an interface defining the AboutToBlow() and
Exploded() events). As you can see from Figure 8-21, the _ CoCar_Event interface
also defines the related add_XXX() and remove_XXX() members.

451

Chapter 8

452

F C:\Apress Books\InteropBook\Labs\Chapter 7\CSharpCom... |:||§||X|
File Wiew Help

Ele __CoCar_Evert A
----- b class inteface public abstract auto ansi

----- P custom instance void [mscodib]System. Rurtime. Interop Services ComEve
----- P custom instance void [mscodib]System. Rurtime. Interop Services . ComVisil
----- B =dd_About ToBlow : void(class VBComEventsServer_ CoCar_About ToB
----- B add_Exloded : voidiclass VEComEventsServer._ CoCar_ExplodedEven
----- B remove_About ToBlow : void(class VBComEventsServer._ CoCar_About”
----- B remove_Exploded : voidiclass VBComEverts Server__CoCar_ExplodedE| |
----- W fbout ToBlow : VBComEventsServer._CoCar_About ToBlowEvert Hand:

----- W BExploded ; VBComEventsServer_CoCar_ExplodedEventHandler &
i I .] |
.assembly Interop VBComEventsServer |
i =

Figure 8-21. The generated __CoCar_Event

In reality, you can safely ignore both of these types when you are interacting
with COM connection points. However, if you wish to build a custom .NET class
type that supports the same events defined in a given COM [source] interface, you
would be able to do so. Also, if you wish to build a strongly typed sink, feel free.

For example, say you wish to build a client-side sink object. If you wish to
clearly identify this sink as a target for the _CoCar event source, you could imple-
ment the _ CoCar interface as follows:

// A C# event sink.
class CSharpEventSink : _ CoCar

{
public void AboutToBlow()
{ Console.WriteLine("->Dude! Slow down!");}
public void Exploded()
{Console.WriteLine("->You're toast...");}

}

You are not required to implement the generated managed [source] interface.
However, you are free to build a .NET sink using any valid .NET syntactic
constructs (a class defining static members, a class that does not implement the
managed [source] interface, and so forth).

.NET-to-COM Interoperability—Intermediate Topics

As far as the __CoCar_Event interface is concerned, this type simply supports
each event in terms of managed code. As you may know, .NET interfaces can
define any number of properties, methods, and events. Thus, if you wish to build a
.NET class type that supports the same events as the COM CoCar, you would
be able to inherit support for the AboutToBlow and Exploded events as
demonstrated here:

// This .NET class supports the same events
// as defined in the COM type information

// for the VB CoCar.

class ExampleDotNetEventType : _ CoCar Event

{
// Inherited events from the __CoCar_Event interface.
public event _ CoCar AboutToBlowEventHandler AboutToBlow;
public event _ CoCar ExplodedEventHandler Exploded;
public void FireTheEvents()
{
}

}

So the bottom line is that tlbimp.exe generates two .NET interface definitions
to allow you to build custom .NET types that either (a) support the methods of a
given [source] interface or (b) support the same events of a given [source] inter-
face. As noted, unless you wish to build custom types that mimic existing
COM event objects (or strongly typed sinks), you can safely ignore these
generated types.

Examining the Managed CoClass

Like any interop assembly, tIbimp.exe will define a managed class type for each
coclass. Check out the following type definition:

.class public auto ansi import CoCarClass
extends [mscorlib]System.Object
implements VBComEventsServer. CoCar,

VBComEventsServer.CoCar,
VBComEventsServer. CoCar_Event

453

Chapter 8

As you can see, CoCarClass implements the __CoCar_Event interface, and
therefore supports the AboutToBlow and Exploded events. To handle the firing of
these events, you will find the type also supports a unique add_XXX() and
remove_XXX() method for each event (Figure 8-22).

C:\Apress Books\InteropBook\Labs\Chapter 7\... |:||E| |X|
File View Help

Eli CoCarllass

----- } class public auto ansi import

----- } implements VBComEventsServer _CoCar

----- » implements VEComEventsServer CoCar

----- } implements VBComEventsServer._ CoCar_Ewvent

----- p custom instance void [mscorib]System . Runtime. Interop Se
----- } custom instance void [mscerib]System . Runtime. Interop Se
----- P custom instance void [mscorib]System. Rurtime. InteropSe|
----- b .custom instance void [mscorlib]System Funtime InteropSe
----- B ctor: void])

----- B SpeedUp :int156])

----- B zdd_About ToBlow : voidiclass VBComEventsServer_ Co

----- B =dd_Exploded : voidiclass VEComEventsServer._ CoCar —
----- B remove_AboutToBlow : voidiclass VBComEvents Server._

----- B remove_Exploded : voidiclass VBComEvertsServer_ Cof

3

About ToBlow : VBComEwvertsServer._ CoCar_About ToB
----- W Exploded ; VBComEventsServer_CoCar_BExplodedEvent 3
5] 1]] > |_
assembly Interop VBComEventsServer o
5|

Figure 8-22. The generated class type supports events of the [source] interface.

And as you would expect, each event definition will make use of the [.addon]
and [.removeon] directives to map the events to the correct delegate method (just
like in the previous SimpleCSharpEvent application). For example:

.event VBComEventsServer. CoCar_ AboutToBlowEventHandler AboutToBlow
{
.addon instance void
VBComEventsServer.CoCarClass: :add_AboutToBlow(class
VBComEventsServer. CoCar_AboutToBlowEventHandler)
.removeon instance void
VBComEventsServer.CoCarClass: :remove_AboutToBlow(class
VBComEventsServer. CoCar_ AboutToBlowEventHandler)

}

454

.NET-to-COM Interoperability—Intermediate Topics

Receiving the COM Events (C#)

Now that you have checked out the core generated types, you are in the position to
build a C# application that intercepts the incoming COM events. Assume you have
anew C# console application (CSharpComEventClient) and have set a reference to
VbComEventServer.dll. The process is identical to intercepting a native .NET event:

using System;
using VBComEventsServer;

namespace CSharpComEventClient

{
// Helper sink class.
class CSharpEventSink
{
public static void AboutToDie()
{ Console.WriteLine("->Dude! Slow down!");}
public static void Exploded()
{Console.WriteLine("->You're toast...");}
}
class CSharpEventClient
{
[STAThread]
static void Main(string[] args)
{
// First, create the CoCar.
CoCarClass car = new CoCarClass();
// Now hook the events to the correct sink method.
car.AboutToBlow += new
__CoCar_AboutToBlowEventHandler(
CSharpEventSink.AboutToDie);
car.Exploded += new
__CoCar_ExplodedEventHandler(
CSharpEventSink.Exploded);
// Finally, work the car and trigger the events.
for(int i = 0; 1 < 20; i++)
Console.WritelLine("Current speed: {0}",
car.SpeedUp());
}
}
}

455

Chapter 8

456

Notice that your sink object has not implemented the generated
__CoCar_Event interface (as this is optional). Figure 8-23 shows the output.

speed:
speed:
speed:
speed:
speed:
speed:
speed:
speed:
speed:
speed:
speed:
speed:
speed:
speed:
speed:
speed:
speed:
speed:
Slow downt?
speed: 178
—>Youw’'re toast...
Current speed: 200
Freszs any key to continue

Figure 8-23. Managed output

As you can see, the complexity of COM connection points is completely
hidden from view. Given that tlbimp.exe has already generated the correct dele-
gates based on the [source] interfaces found in the COM type library, all you are
required to do is provide a target for the delegate and associate it to the coclass’
events.

1 e oo CODE The CSharpComEventClient project is included under the
\ YR Chapter 8 directory.

—
~

Cn

Receiving the COM Events (VB .NET)

Although VB .NET developers are also able to make direct use of .NET delegates,
the language does simplify the process by supplying the WithEvents (which should
be very familiar to VB 6.0 developers) and Handles keywords. To illustrate, here is a
VB .NET client making use of VbComEventServer.dll.

.NET-to-COM Interoperability—Intermediate Topics

Imports VBComEventsServer
Module Modulel
' We want the events...
Public WithEvents car As New CoCarClass()

Sub Main()
' Speed things up.
Dim i As Integer
For i = 0 To 19
Console.WritelLine("Current speed: {0}", car.SpeedUp())
Next
End Sub
' Sinks.
Public Sub car AboutToBlow() Handles car.AboutToBlow
Console.WriteLine("Dude! Slow down!")
End Sub

Public Sub car Exploded() Handles car.Exploded
Console.WriteLine("You're toast...")
End Sub
End Module

Here, the VB .NET client application declares a CoCarClass type WithEvents.
This keyword takes care of creating the correct delegates on your behalf. The
Handles keyword is the VB .NET analogy of the “myType.Event +=" syntax.

leeeee CODE The VbNetComEventClient project is included under the Chapter
\ Y 8directory.

Handling COM Types with Multiple [source] Interfaces

When you create event-centric coclasses using VB 6.0, you are always confined to
working with a single [default, source] interface. Of course, this fact means that
your connection point container maintains a single connection point. The truth of
the matter is, even though the connection point architecture allows a container to
support numerous connection points, few developers make use of this feature.
The reason is simple: Most client applications (such Microsoft IE and VB 6.0) are
only able to receive events from the [default, source] interface. In fact, under
classic COM, the only language that is sophisticated enough to interact with addi-
tional connection points is C++.

457

Chapter 8

458

However, let’s assume that you have a legacy ATL type that does indeed define
multiple event sources. The IDL might look something like this:

library ATLMULTIPLESOUCEINTERFACESSERVERLib
{
importlib("stdole32.t1b");
importlib("stdole2.t1b");

[uuid(B972F07E-D620-4A76-BEA9-2C3B02D5214A)]
dispinterface DefaultEventSet
{
properties:
methods:
[id(1), helpstring("method FirstEvent")]
HRESULT FirstEvent();

};

[uuid(86B73A3E-83CF-49ee-A7DE-CCE2EBFCER62)]
dispinterface ExtraEventSet
{
properties:
methods:
[id(1), helpstring("method SecondEvent")]
HRESULT SecondEvent();

};

[uuid(A628B861-5CD4-4EEA-87B1-ABCB7942EF4D)]

coclass ComplexCPContainer

{
[default] interface IComplexCPContainer;
[default, source] dispinterface _DefaultEventSet;
[source] dispinterface _ExtraEventSet;

};

};

As you may recall from the previous chapter, when a COM class implements
multiple interfaces, the tlbimp.exe utility creates a .NET class type that is a union
of each interface member. In the same exact way, if you import a COM class type
that supports multiple [source] interfaces, tlbimp.exe will simply define the class
type to support the events of each [source] interface (and generate a the necessary
delegate). Figure 8-24 shows the truth of the matter via the IDE’s object browser.

.NET-to-COM Interoperability—Intermediate Topics

*< Object Browser

Browse: Selected Components + Customize... %l ¥ v e ‘:p W3

 Cbijects Members of ‘ComplexCPContainerClass
@ﬂ CSharpMultiEventSouceClient & ComplexCPContainerClass()
El-+@ interop atmultiplesouceinterfacesserverlib & TriggerBothEvents()

E| {} ATLMULTIPLESOUCEINTERFACESSERVERLID - # FirstEvent

[#-=0 ComplexCPContainer i SecondEvent

[].._@; ComplexCPContainerClass

[-=0 _DefaultEventset

[-=0 _DefaultEventSet_Event

----- _DefaultEventSet_FirstEventEventHandler
[#-=0 _ExtraEventset =
[#-+=0 _ExtraEventSet_Event

----- _ExtraEventSet_SecondEventEventHandler
----- =0 IComplexCPContainer

|

W

public class ComplexCPContainerClass : System.0Obiect
Member of ATLMULTIPLESOUCEINTERFACESSERVERLib

Figure 8-24. Multiple [source] interfaces are bound to a single class.

Handling COM Error Objects

And now on to the next topic of this chapter: bugs. In a perfect world, software
would perform without failure. Networks would always be online, memory would
exist without bounds, and data points would never exceed their limits. Of course,
this is fantasyland. To deal with the unknown, classic COM provides two very
specific mechanisms to report error information to the caller: HRESULTSs and error
objects.

First and foremost, every COM interface method is required to return an
HRESULT value that informs the client if the current method invocation
succeeded or failed. The COM APIs define numerous well-known HRESULTs that
describe the result in question. The most beloved of all HRESULTs is S_OK, which
provides the client with the proverbial thumbs up (that is, the method succeeded
without error). The most generic form of a failed HRESULT is E_FAIL. Between the
range of S_OK and E_FAIL are dozens (if not hundreds) of predefined HRESULTs
(many of which are defined in winerror.h) that you can make use of in your
custom applications. For example, consider the following ATL coclass method
implementation:

STDMETHODIMP CAtlComClass: :SomeMethod()

{
// Assume DoSomeWork() is a method returning a Boolean.
if(DoSomeWork())
return S_OK;
else
return E_FAIL;
}

459

Chapter 8

460

Although COM HRESULTs can help the calling code base understand the
basics of what (if anything) failed, it is often more helpful to return additional
details to the caller. When you wish to return more verbose error information from
a COM coclass, you will need to create, define, and send a COM error object. By
definition, a COM error object is a type that implements two standard interfaces:
[ErrorInfo and ICreateErrorInfo. Basically, these two interfaces are used to
describe the nature of the error as well as read this information programmatically
(in other words, they are accessor and mutator interfaces). Here are the official
IDL definitions for each (see oaidl.idl):

// Used by the coclass to document the error.
interface ICreateErrorInfo: IUnknown

{
HRESULT SetGUID([in] REFGUID rguid);
HRESULT SetSource([in] LPOLESTR szSource);
HRESULT SetDescription([in] LPOLESTR szDescription);
HRESULT SetHelpFile([in] LPOLESTR szHelpFile);
HRESULT SetHelpContext([in] DWORD dwHelpContext);

}

// Used by the client to obtain the details of the error.
interface IErrorInfo: IUnknown

{
HRESULT GetGUID([out] GUID * pGUID);
HRESULT GetSource([out] BSTR * pBstrSource);
HRESULT GetDescription([out] BSTR * pBstrDescription);
HRESULT GetHelpFile([out] BSTR * pBstrHelpFile);
HRESULT GetHelpContext([out] DWORD * pdwHelpContext);
}

As you can see, these interfaces allow you to document numerous details
beyond a single HRESULT. Table 8-5 outlines the supported functionality.

Table 8-5. Aspects of the COM Error Object

Aspect of COM Meaning in Life

Error Object

SetGuid() Provides a way to identify the GUID of the interface that caused
GetGuid() the error

SetSource() Provides a way to identify the source of the error (typically the
GetSource() ProgID of the server)

SetDescription() Allows you to create a custom textual message that documents the
GetDescription() error (for example, "Sorry, server is down,” "You don’t have access
rights to this method,” “Go away, 'm busy,” and so on)

SetHelpFile() Allows you to use a COM error object to point the caller to a
GetHelpFile() specific help file

SetHelpContext()

GetHelpContext()

.NET-to-COM Interoperability—Intermediate Topics

Manipulating COM Error Objects in COM

Different COM language mappings have different ways to create a COM
error object. If you were to use the raw COM APIs, you could simply call
CreateErrorInfo() and make use of the returned ICreateErrorInfo interface:

// Creating a COM error object

// via the COM API.

ICreateErrorInfo *pCreateErrorInfo;

HRESULT hr;

hr = CreateErrorInfo(8pCreatekErrorInfo);

pCreateErrorInfo ->SetDescription(L" Houston, we have a problem.");

Throwing the error back to the client is a job for the SetErrorInfo() COM
library function. Recall that the IErrorInfo interface is what the client needs to
extract the details of the error object, thus you must first obtain said interface:

// Now throw it back to the client.

IErrorInfo* pErrorInfo;

PCreateErrorInfo->QueryInterface(IID_IErrorInfo,
(void**)8pErrorInfo);

SetErrorInfo(NULL, pErrorInfo);

The ATL framework hides the details of directly working with ICreateErrorInfo
by supplying a set of overloaded Error() members defined by CComCoClass. As
you would expect, the parameters you send into a given Error() method will be
shuffled into the respective methods of ICreateErrorInfo. Furthermore, the Error()
methods will automatically throw the error before exiting. Thus, in ATL the
previous logic could be simplified as follows:

// Creating a COM error object via ATL.
Error("Houston, we have a problem.");

Visual Basic 6.0 takes a similar approach by supplying the intrinsic
Err object. This object implements the ICreateErrorInfo and IErrorInfo interfaces.
Therefore, this single object can be used to create a COM error as well as extract
the information.

Creating and sending COM error via VB 6.0
" (using an arbitrary error ID).
Public Sub BadDeal()
Err.Raise 6666, " Houston, we have a problem..."
End Sub

461

Chapter 8

462

The Role of ISupportErrorInfo

Before you learn how managed code processes COM error objects (as well
as raw HRESULTSs), you have one final error-centric interface to contend with:
ISupportErrorinfo.

// This interface is implemented by the coclass
// and allows the client to verify that the error
// they are looking at came from the interface
// that triggered the error.

interface ISupportErrorInfo: IUnknown

{
HRESULT InterfaceSupportskrrorInfo([in] REFIID riid);

}

The role of ISupportErrorInfo is to allow the client to verify that the current
error object it is investigating has indeed come from the correct interface. Imple-
menting this interface’s sole method is done automatically using ATL (and VB 6.0),
but it can be done using raw C++ as follows (note that you are the one in charge of
determining which interfaces of your coclass return rich error information):

STDMETHODIMP CTheBrokenObject::InterfaceSupportsErrorInfo(
REFIID riid)

{

static const IID* arr[] =
{8IID ITheBrokenObject};

for (int i=0; i < sizeof(arr) / sizeof(arr[0]); i++)
{

if (InlineIsEqualGUID(*arr[i],riid))

return S_OK;

1
return S_FALSE;

Building a Simple ATL Error Server

For the sake of discussion, assume you have created a new in-proc COM
server using ATL and inserted a single coclass (TheBrokenObject) that has
explicitly added support for the ISupportErrorInfo interface (Figure 8-25).
This option will add ISupportErrorInfo to your class’ inheritance chain
and update the COM_MAP, as well as provide a default implementation of
ISupportErrorInfo.InterfaceSupportsErrorInfo().

.NET-to-COM Interoperability—Intermediate Topics

ATL Object Wizard Properties

MNames Aftributes

Threading Model Interface—— Agaregation

" Single ¢ [yl * Yes

" Apartment = Custom " Nao

" Both " Dy

" Free
v Support |SuppartE rormfc [~ Free Threaded Marshaler
[~ Support Connection Points

QK I Cancel

Figure 8-25. Supporting ISupportErrorInfo using ATL

This ATL coclass defines two painfully simple methods, which as luck would
have it always fail. First you have ReturnFailed HRESULT (), which returns a stan-
dard COM HRESULT informing the caller that this entity is not a COM collection:

STDMETHODIMP CTheBrokenObject::ReturnFailedHRESULT()

{
/1

!/
!/
!/
!/
!/
!/

Return a failed HRESULT.

DISP_E NOTACOLLECTION is a standard HR which
informs the caller that a given item is

not a COM collection.

Of course, returning this HR is semantically
out of whack for this method, but it is

more interesting than a simple E_FAIL.

return DISP_E_NOTACOLLECTION;

Of course returning DISP_E_NOTACOLLECTION is a bit of a stretch for your
current ATL coclass; however, it is a bit more interesting than a vanilla-flavored
E_FAIL. DISP_E_NOTACOLLECTION is defined in winerror.h as follows (take note
of the textual description):

// MessageId: DISP_E_NOTACOLLECTION
// MessageText:

// Does not support a collection.
#define DISP_E _NOTACOLLECTION

463

Chapter 8

464

ReturnComErrorObject() will make use of the inherited Error() method to
return a custom description of the current failure (albeit not a very helpful
description):

STDMETHODIMP CTheBrokenObject::ReturnComErrorObject()

{
// The ATL Error() methods (defined in CComCoClass)
// hide the gory details of building a COM error object.
Error("This is a realllllly bad error");
return E _FAIL;
}

That’s all you need for the current example. Go ahead and compile the server.

1 leeee CODE The AtlComErrorServer project is included under the Chapter 8
\ s - subdirectory.

i

The .NET Error Handling Mechanism

Managed objects do not make use of HRESULTs or COM error objects. Rather, the
.NET platform makes use of a tried-and-true error handling technique known as
structured exception handling (SEH). Although a given managed language (C#, VB
.NET, MC++, and so forth) may have a unique syntax to represent SEH, all
managed languages make use of the following concepts:

A class type that represents a given exception. Under .NET, all exceptions
derive from a common parent class (System.Exception).

A “try” block that marks a set of code, which may trigger an exception.

A “catch” block (or possibly multiple catch blocks) that will handle a specific
exception.

An optional “finally” block that always executes, regardless of error.

.NET-to-COM Interoperability—Intermediate Topics

In terms of C#, typical SEH logic might look like the following:

try
{
// Code that may cause an exception.
}
catch (Exception ex)
{
// Handle this exception.
}
finally
