
COM and .NET
Interoperability

ANDREW TROELSEN

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page i

COM and .NET Interoperability
Copyright © 2002 by Andrew Troelsen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-011-2
Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewers: Habib Heydarian, Eric Gunnerson
Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore,

Karen Watterson, John Zukowski
Managing Editor: Grace Wong
Copy Editors: Anne Friedman, Ami Knox
Proofreaders: Nicole LeClerc, Sofia Marchant
Compositor: Diana Van Winkle, Van Winkle Design
Artist: Kurt Krames
Indexer: Valerie Robbins
Cover Designer: Tom Debolski
Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.
Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710.
Phone: 510-549-5930, Fax: 510-549-5939, Email: info@apress.com, Web site:
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section. You will need to answer questions pertaining to this book in order to successfully down-
load the code.

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page ii

This book is dedicated to Mary and Wally Troelsen (aka Mom and Dad).
Thanks for buying me my first computer (the classic Atari 400) so long ago and for staying
awake during my last visit when I explained (in dreadful detail) how System.Object is so

much better than IUnknown. I love you both.

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page iii

Contents at a Glance

Acknowledgments ...xxiii
Introduction ...xxv

Chapter 1 Understanding Platform Invocation Services.................1

Chapter 2 The Anatomy of a COM Server ...51

Chapter 3 A Primer on COM Programming Frameworks127

Chapter 4 COM Type Information...161

Chapter 5 The Anatomy of a .NET Server ...229

Chapter 6 .NET Types...289

Chapter 7 .NET-to-COM Interoperability—
The Basics...339

Chapter 8 .NET-to-COM Interoperability—
Intermediate Topics ...403

Chapter 9 .NET-to-COM Interoperability—
Advanced Topics..471

Chapter 10 COM-to-.NET Interoperability—
The Basics...539

Chapter 11 COM-to-.NET Interoperability—
Intermediate Topics ...593

Chapter 12 COM-to-.NET Interoperability—
Advanced Topics..633

Chapter 13 Building Serviced Components
(COM+ Interop)..669

Index ..669

v

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page v

Contents

Acknowledgments ...xxiii
Introduction ...xxv

Chapter 1 Understanding Platform
Invocation Services ..1

The Two Faces of Unmanaged Code..1
Understanding the C-Style DLL ..2

Exporting Custom Members ..3
Building a Custom C-Based DLL ..5

Functions Using Basic Data Types and Arrays..6
Functions Receiving Structures (and Structures Containing Structures).......7
Functions Using Class Types ..8

Viewing Your Imports and Exports Using dumpbin.exe9
Deploying Traditional DLLs...12
A Dynamic C++ DLL Client ...15

Dynamically Loading an External Library ..15
Invoking Members ..16

The Atoms of PInvoke..18
Data Type Conversions ...18
The Marshal Class ...20
The DllImportAttribute Type..25

A Trivial PInvoke Example...26
Specifying the ExactSpelling Field ...29
Specifying the Character Set ..29
Specifying Calling Conventions ...30
Specifying Function Entry Points ..31
SetLastError and Marshal.GetLastWin32Error() ..32

Interacting with MyCustomDLL.dll ...33
Marshaling Arrays ...34
Passing Structures ...35
Receiving Allocated Structures...37
Interacting with Exported Class Types ..39
Examining the Underlying IL ...41

Working with Unmanaged Callbacks ...42
A Simple Callback Example...43
A More Interesting Callback Function...44
Building a C# Callback Client ..46
Summary ..49

vii

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page vii

Chapter 2 The Anatomy of a COM Server51

Of Classes and Interfaces...51
Interfaces from a Non-COM Perspective ..52
Cleaning Up the Interface Definition ..54
Building the Class Types ...55
Interfaces Are Strongly Typed Variables ..58
Classes Can Support Multiple Interfaces ..59
Interfaces Provide a Versioning Scheme ...61

The Composition of a COM DLL ..63
The Role of Type Libraries...65

The Full MIDL Output ..66
The Role of the System Registry..66
Creating the COM DLL Project Workspace ..67
Understanding COM Interfaces ..68

The Role of the GUID ..68
The Role of IUnknown ..71
Defining the ICar Interface in IDL ...73
The Role of the HRESULT ...74
IDL Parameter Attributes..74
Defining the Coclass (ComCar) in IDL ..75
Defining the [default] Interface ...76
Defining and Supporting Multiple Interfaces...76
Compiling the IDL File with the MIDL Compiler ...77
Examining the MIDL-Generated Files...78

A Brief Word on COM-Centric Macros ...79
Implementing the ComCar ...80

Implementing IUnknown ...81
Implementing ICar and IRadio ..83

Understanding IClassFactory ..84
Building Your Class Factory ..85

Implementing IClassFactory::CreateInstance() ...86
Implementing IClassFactory::LockServer() ..87

Implementing DLL Component Housing ...88
Managing Server Lifetime: DllCanUnloadNow()..88
Contending with DllRegisterServer() and DllUnregisterServer()90

Exporting the Exports..90
Registering the COM Server...91

Programmatic Identifiers (ProgIDs) ..91
A Critical Key: HKEY_CLASSES_ROOT \ CLSID ...92
Another Critical Key: HKEY_CLASSES_ROOT\TypeLib94
Other COM Registration Possibilities ..94
Registering Your COM Servers..95

Contents

viii

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page viii

Developing a C++ COM Client ..97
Activating COM Objects ...97
Accessing a Coclass Using CoCreateInstance() ..100
Building a C++ Client Using the #import Directive102
A Visual Basic 6.0 COM Client ..103

Understanding COM Properties ..105
IDL Syntax for Interface Properties ...106
Properties: The Client’s Point of View ..107

Building Scriptable Objects (Using IDispatch)108
Understanding Dispinterfaces and DISPIDs ..109
Obtaining DISPIDs..111
Invoking the Member ...111

The VARIANT Data Type..112
Working with VARIANTs (in C++) ...114
Working with VARIANTs (in VB 6.0) ...115
The DISPPARAMS Structure...115

A C++ IDispatch Example ...116
A Visual Basic IDispatch Client..117
Understanding the Dual Interface ...118
Defining a Scriptable Object ..118

Implementing IScriptableCar ..119
Building the Class Factory...123
Updating DllGetClassObject...123
Updating the Server’s Registration File ..124
Building a VBScript Late-Bound Client...124
Summary ..126

Chapter 3 A Primer on COM
Programming Frameworks ..127

The Role of the Active Template Library ..127
Generating the Component Housing ..128
The ATL Project Files...129
Inserting COM Objects Using the ATL Object Wizard..................................133
Code Updates ..135
ATL’s Implementation of Your Coclass...136
ATL’s Registration Support..137
Adding Members to the [Default] Interface ..140
Adding a More Interesting Method..142
Supporting Additional COM Interfaces...143

Contents

ix

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page ix

The Role of Visual Basic 6.0 ..146
Building COM Servers Using Visual Basic 6.0 ...146
Defining Auxiliary Interfaces..148
Implementing Interfaces in VB 6.0 ..149
Setting Binary Compatibility..151
Viewing the Generated IDL Using Oleview.exe ..152
Making Use of Your COM Servers ..156

Summary ..159

Chapter 4 COM Type Information ...161

The Format of a COM IDL File ..162
Defining COM Types ..163
Primitive COM Data Types ...164

The Oleautomation (aka Variant) Data Types ...166
IDL Method Parameter Attributes..167
Defining COM Interface Types in IDL ...171

Defining Raw Dispinterfaces..171
Defining Dual Interfaces ..172
Building IUnknown-Derived Interfaces ..173
Common IDL Interface Modifiers ...173
Defining COM Classes in IDL...174
Defining IDL Enumerations ...176
Defining IDL Structures..176
COM String Representation ...177
COM (Safe)Array Representation...179
COM Interface Types As Method Parameters ...184

The ITypeInfo Interface ...185
A Brief Word on ITypeInfo2 ..188
Related ITypeInfo Data Types...188

Generating COM Type Information Programmatically189
A Brief Word on ICreateTypeLib2 and ICreateTypeInfo2190
The Target IDL ...190

Building the Type Library (ICreateTypeLib)......................................191
Creating the IHello Interface ..193

Breaking Down the CreateInterface() Helper Method195
Building the SayHello() Method ..198
Building the Hello Coclass...200
Testing the Application ...201

Contents

x

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page x

Programmatically Reading COM Type Information203
The Program Skeleton...204
Displaying COM Library Information ...205
Dumping COM Type Information ...207
Listing CoClass Statistics ..208
Listing IDispatch-Based Interface Statistics ...209
Listing IUnknown-Based Interface Statistics ..209
Listing COM Enumeration Statistics ...209
Reading the MyTypeLib.tlb file ..210

Defining Custom IDL Attributes ..212
Reading Custom Attributes ..214

Introducing the System.Runtime.InteropServices Namespace218
Building a C# COM Type Information Viewer..220

Loading the COM Type Library ..221
Loading the COM Type Library ..222
Displaying the COM Types ...224

Summary ..228

Chapter 5 The Anatomy of a .NET Server229

The Philosophy of .NET ...230
The Building Blocks of .NET ..231
Working with Managed Languages ..232
The Composition of a .NET Binary ...233
Building a C# Code Library...235

Building the Abstract Car Type...238
Building the Derived MiniVan Type...240
Implementing the Convertibles ...240
Establishing the Assembly Manifest ..242

Introducing ILDasm.exe ...243
Viewing the Assembly Manifest ...243
Viewing the Type Metadata ..245
Viewing (Partial) Metadata for the CarColor Enumeration246
Viewing (Partial) Metadata for the IConvertible Interface...........................247
Viewing (Partial) Metadata for a Derived Type ...247
Remaining Bits of Interesting Metadata..248
(Not) Viewing the Underlying IL Code ..249

Building a Managed Client...250
Configuring Private Assemblies ...251

Specifying Arbitrary Assembly Locations ..253

Contents

xi

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page xi

Understanding the Shared Assembly ...254
Generating a Strongly Named Assembly ...255
Prepping the Project Workspace ..257
Building the Air Vehicles ...258
Generating the Strong Name..260

Using the Shared Assembly...262
Versioning Shared Assemblies ..264

Versioning the Shared VB .NET AirVehicles Assembly265
Working with Publisher Policy Assemblies ..267

The Binding Process in a Nutshell ...269
And Now for Something Completely Different: System.CodeDOM...270

System.CodeDOM: Its Meaning in Life ...272
Introducing the System.CodeDOM Namespace ..272

The Types of System.CodeDOM...274
Building a CodeDOM Example ..276
Building the Main() Function...277
Building the File via CreateFile()..280
Building the HelloClass (and Containing Namespace)................................281

Compiling the Assembly ...284
Running the Assembly (Using Late Binding) ..285
Running Your Application ..285

Summary ..288

Chapter 6 .NET Types ...289

The Role of System.Object...289
Overriding ToString() ..290
The Two Faces of Equality ..292

Examining the .NET Data Type System ...294
System Data Type Language Mappings...296

The Set of Custom .NET Types ..297
.NET Class Types ...299
.NET Structure Types ..300
.NET Interface Types ...301
.NET Enumeration Types..301

Building a Complex Code Library..302
Understanding Reflection ...304
Working with System.Type ...304

Obtaining a Type Reference Using System.Object.GetType()......................306
Obtaining a Type Reference Using the C# typeof Operator306
Obtaining a Type Reference Using the Type Class ..307

The System.Reflection Namespace..309

Contents

xii

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page xii

Dynamically Loading an Assembly..310
Enumerating Types in a Referenced Assembly ...311
Enumerating Class Members ...311
Enumerating Method Parameters ...311

Building a Custom .NET Type Viewer ...312
Showing Selected Type Details ...315
Building the More Details Menu ..316

A Brief Word Regarding System.Reflection.Emit323
Understanding .NET Attributes ..323
Creating and Applying Custom Attributes ..325

Viewing the Applied Metadata ...326
Restricting Attribute Usage ..327
Assembly- (and Module-) Level Attributes ...328

Reading Attributes at Runtime ..330
Late Binding Under the .NET Platform ...331
The Activator Class..331
Late Binding to a Private Assembly ...332
Invoking Parameterized Methods..334

Binding Late to Shared Assemblies ...335
Contrasting COM and .NET Late-Binding Syntax ..336

Summary ..338

Chapter 7 .NET-to-COM Interoperability—
The Basics ...339

A High-Level Overview of .NET-to-COM Interoperability..............339
Understanding the Role of the RCW ..340

Building an Interop Assembly—The Simplest Possible Example...342
A Visual Basic .NET Client ..346

Converting Between COM IDL Data Types
and Managed Data Types ...346

Working with Managed GUIDs (System.Guid) ...348
Blittable and Non-Blittable Data Types ...349

Interfaces Consumed by the RCW ..351
Options to Obtain an Interop Assembly...353

Using the tlbimp.exe Command Line Utility ..353
Examining the Generated .NET Types ...356

Manipulating COM Types Using Generated “-Class” Types357
Manipulating COM Types Using Discrete Interfaces358
Manipulating COM Types Using the [Default] Interface Type361

Contents

xiii

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page xiii

Contents

xiv

Select Members of the
System.Runtime.InteropServices Namespace......................................362

An Interesting Aside:
System.Runtime.InteropServices.RuntimeEnvironment366

COM Library Statement to .NET
Assembly Statement Conversion Rules...367

Programmatically Controlling the Namespace Definition369
COM Types to .NET Types Conversion Rules ..371

COM Interface Conversion...371
COM Interface Members to .NET Method Conversion Rules375
COM Method Parameters to .NET Method
Parameters Conversion Rules ..377
Handling Optional and Default Parameters ...381
COM Coclass Conversion ...385
Mapping [noncreatable] and [appobject] Coclasses....................................387
Cataloging COM DISPIDs...388
Additional Coclass to .NET Class Infrastructure...389
COM Enum Conversion..391

Deploying Interop Assemblies ..392
Creating a Primary Interop Assembly ...393
Reflecting on Interop Assembly Attributes..396

Obtaining Type Information for a COM Wrapper Type................................398
The Role of System.__ComObject..399

Interacting with Well-Known COM Servers ..399
Summary ..402

Chapter 8 .NET-to-COM Interoperability—
Intermediate Topics ..403

Handling the COM VARIANT ...403
Building a VARIANT-Centric COM Server...405

Exercising COM VARIANTs from Managed Code ...407
The VARIANT Wrappers ..409

Handling COM SafeArrays ...410
Exercising COM SAFEARRAYs from Managed Code413
Receiving SAFEARRAYs...416

Handling C-Style Arrays ...419
Handling COM Param Arrays...420
Handling COM Structures ...421

Building a VB 6.0 Structure Server ...423
Exercising COM Structures from Managed Code ...424

Handling COM Collections ...426
Exercising the COM Collection from Managed Code433

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page xiv

Contents

xv

A Brief Review of COM Connection Points (COM Events)................437
Understanding IConnectionPointContainer ..437
Understanding IConnectionPoint ...438
Understanding the Outbound Interface ...439
All Together Now... ..440

Building a Connectable COM Type..441
A Brief Review of .NET Delegates ...443
A Brief Review of .NET Events ..445
Examining the Interop Assembly ..448

Examining the Generated Delegates ...450
Examining the Generated __CoCar and __CoCar_Event Interfaces451
Examining the Managed CoClass ..453
Receiving the COM Events (C#) ...455
Receiving the COM Events (VB .NET) ...456
Handling COM Types with Multiple [source] Interfaces..............................457

Handling COM Error Objects...459
Manipulating COM Error Objects in COM..461
The Role of ISupportErrorInfo ...462
Building a Simple ATL Error Server ...462

The .NET Error Handling Mechanism ...464
The COMException Type ..466
Handling COM Error Information from Managed Code466

Debugging COM Servers Using VS .NET ...468
Summary ..470

Chapter 9 .NET-to-COM Interoperability—
Advanced Topics ..471

Revisiting the Marshal Class ..471
Directly Interacting with IUnknown..473
Manually Destroying a COM Object ..474

COM Coclasses Implementing .NET Interfaces......................................475
Building a Comparable COM Class ...476
Building a Cloneable COM Type ..480
Building .NET Type Compatible Coclasses Using ATL 3.0481

Guidelines for Building .NET Type Compatible COM Classes484
Guideline #1: Don’t Indirectly Implement the Same Interface Twice485
Guideline #2: Don’t Implement .NET Class Interfaces.................................485
Guideline #3: Take Care When Implementing Interface Hierarchies..........487
Guideline #4: VB 6.0 Has a Key Limitation (Imagine That . . .).....................489

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page xv

Consuming ActiveX Controls from Managed Code490
Building an Example ActiveX Control ...490
Viewing the Generated IDL ..493

Options for Consuming ActiveX Controls from Managed Code495
Consuming an ActiveX Control Using the VS .NET IDE...............................495
Importing ActiveX Controls Using AxImp.exe ..501

Modifying the Code for the AxHost-Derived Type504
One Final Modification...506

Manually Modifying Interop Assemblies...508
Building an Example COM Server ...509

Understanding the Interop Editing Process..510
Generating the Initial Interop Assembly ...511
Obtaining the *.il File for interop.HelpfulATLServer.dll...............................512
Viewing the Original IL/Metadata Definitions ...514

Dissecting the Layout of Attribute Metadata517
Building a “Scratch” Assembly ..519

Creating a .NET [custom] Wrapper ..519
Updating the Interop Assembly ...522
Recompiling the IL ..524

Building the Managed Client ..526
Building a Custom Type Library Importer Utility...........................528

Understanding the TypeLibConverter Class ...528
Building the Main Shell ...530

Programmatically Loading the COM Type Information531
Dissecting the TypeLibConverter.ConvertTypeLibToAssembly()
Method ...533
Building the Helper Sink...535
Implementing MyTlbImpApp.GenerateAssemblyFromTypeLib()..............536

Summary ..538

Chapter 10 COM-to-.NET Interoperability—
The Basics ...539

The Role of the CCW ..539
The CCW: Mapping .NET Data Types into COM IDL Data Types................540
The CCW: Simulating Implemented COM Interfaces542
The CCW: Simulating COM Identity ..543

Core Requirements for COM-to-.NET Communications544
Generating COM Type Definitions ..545
Registering the .NET Assembly with COM ..545

Using the tlbexp.exe Utility ..546

Contents

xvi

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page xvi

General Guidelines for Building COM-Aware .NET Types................547
Establishing Type Visibility ...547
Establishing Type Member Visibility ...548
Controlling Type and Member Visibility Using the ComVisible Attribute..548
Translating Constructors and C#-Style Destructors.....................................549
Translating Abstract Base Classes ..551
Translating Overridable Members ...551
Inheriting Public Members ..553
Translating Static and Constant Members ..554

Critical .NET-to-COM Conversion Details ..554
Converting Method Signatures ..555
Converting .NET Properties ...556
Converting .NET Fields...557

Understanding the Class Interface ...557
Establishing a .NET Class Interface ...559
The Custom IDL Attribute:
{0F21F359-AB84-41E8-9A78-36D110E6D2F9}..561

Understanding the Object Interface ...562
Transforming System.Object.ToString()..563

The Case Against Class Interfaces ...563
Exposing Custom .NET Interfaces to COM ..564

Controlling IID and DISPID Generation ...566
Implementing Explicit Interfaces ...567
Controlling the Generated ProgID ...567
Controlling the COM Library Definition ..568
Handling Overloaded Methods ..569
Importing mscorlib.tlb ...570
Using the regasm.exe Utility ..572
Examining the Updated Entries ..574

The ProgID Entry...575
The HKCR\CLSID Entry..575
Enlisting .NET Types into a Specific COM Category577
Registering the Exposed Interfaces..579
Registering the COM Type Library ...582

Deploying the .NET Assembly ..582
Leveraging the Visual Studio .NET IDE...584
Building a Visual Basic 6.0 COM Client ..584

Interacting with Mscorlib.tlb..586
Building a C++ COM Client...589
Building a VBScript COM Client ..590
Summary ..591

Contents

xvii

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page xvii

Chapter 11 COM-to-.NET Interoperability—
Intermediate Topics ..593

Converting .NET Enums to COM Enums ...593
Altering the Underlying Field Storage ...595
Leveraging System.Enum?..597

Converting .NET Structures to COM Structures598
Exposing a .NET Structure As an IDL Union...603

Converting .NET Delegates to COM Connection Points604
Creating the Event Interface...605
Specifying the Event Interfaces (a la ComSourceInterfacesAttribute)........606
Establishing Multiple [source] Interfaces..607

Building a .NET Event Server Using VB .NET......................................608
Building a Visual Basic 6.0 Event Client ..609
Building a C++ Event Client ..610

Building the Client-Side Sink ...611
Exposing Custom .NET Collections ...614

A VB 6.0 .NET Collection Client..617
Exposing .NET Exceptions ...619

Throwing Custom .NET Exceptions...620
Exercising Your DotNetCollection Assembly from C++621
Converting .NET Interface with Multiple Base Interfaces624
Converting .NET Interface Hierarchies...627
Summary ..630

Chapter 12 COM-to-.NET Interoperability—
Advanced Topics ..633

Changing Type Marshaling Using MarshalAsAttribute633
.NET Types Implementing COM Interfaces ..638
Defining Custom COM Interfaces ..638

Building and Deploying the Interop Assembly...640
Building a Binary-Compatible C# Type ...641
Building a Binary-Compatible VB .NET Type..642
Registering the .NET Assemblies with COM ...644

Building a VB 6.0 COM Client ..644
Defining COM Interfaces Using Managed Code......................................646

Selected Notes on Manually Defining COM
Interfaces Using Managed Code ..649

Manually Defining COM Atoms: An Extended Example650
Defining the Dual Interface (and SHAPECOLOR Enum) Using C#.............651

Contents

xviii

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page xviii

Interacting with Interop Assembly Registration653
Inserting Custom Registration Information ...654

Programmatically Converting Assemblies
to COM Type Information...655

Hosting the .NET Runtime from an Unmanaged Environment660
Building a Custom Host ..663

Summary ..667

Chapter 13 Building Serviced Components
(COM+ Interop) ...669

The MTS, COM+, Component Services Name Game669
Recapping Component Services ..670
Reviewing the COM+ Runtime Environment ..672

Reviewing Object Context ..673
Reviewing Call Context ...674

The Role of the COM+ Catalog ..675
The Component Service Explorer ..678

Creating COM+ Applications ...679
A Classic COM+ Example ...682
Building a VB 6.0 COM+ Client ..683
Deploying COM+ Applications ..685
The System.EnterpriseServices Namespace ..687

The System.EnterpriseServices.ServicedComponent Type689
The Simplest Possible Example ..690

Installing the Code Library ...693
Using the regsvcs.exe Command Line Utility......................................694

Viewing the Generated Type COM Information ...695
Acknowledging the Registration Entries ...696
And Finally, the COM+ Application Itself ..697

Accessing the Configured .NET Component from VB 6.0698
Accessing the Configured .NET Component from C#...........................699
Enabling Component Statistics ..699
A Brief Word on Lazy (Automatic) Registration700
Working with the RegistrationHelper Type ..701
Configuring a Managed COM+
Application Using .NET Attributes ...703

Supporting Object Construction Strings ..704
Examining the ContextUtil Type ..706

Contents

xix

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page xix

Understanding JITA ..708
The “Happy” and “Done” Bits ..709
Enabling JITA/ASAP Deactivation ...710
Controlling the Done Bit...712
JITA and Implementing IObjectControl (So to Speak…)713

JITA, IObjectControl, and the .NET Garbage Collector................714
Configuring Poolable Objects ..715
A Recap of Transactional Programming...717

Root Objects, Secondary Objects, and COM+ Transactions718
Programming COM+ Transactions ..720

Setting the Happy Bit ..722
A Complete Serviced Component Example...724

Building the Custom Database ..725
Building the C# Code Library ...726
Building the LogSale Type ..727
Building the CarInventory Class Type ...728
Building the Windows Forms Front End ...732
Building an ASP.NET Web Service Client ...734

Final Thoughts Regarding System.EnterpriseServices736
Summary ..738

Index ..739

Contents

xx

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page xx

Acknowledgments

As always, I must give a very real and heartfelt thanks to all of the fine people at
Apress. First, thanks to Gary Cornell and Dan Appleman for building such a great
place for writers to do their work. A mammoth thanks to Grace Wong for gently
pushing me forward in order to get this book out on time and for putting up with
me in general. And thanks to Stephanie Rodriguez and Hollie Fischer for their
awesome work in spreading the word about Apress titles both at home and across
the globe.

A huge thanks also goes to Ami Knox, Nicole LeClerc, Sofia Marchant, and
Anne Friedman, all of whom did fantastic jobs smoothing over any grammatical
glitches on my part. Thanks to Habib Heydarian and Eric Gunnerson for providing
excellent technical assistance. Further thanks to Diana Van Winkle, Kurt Krames,
and Tom Debolski for making the book look respectable and professional inside
and out. Special thanks to Valerie Robbins for working on (yet another) tight dead-
line in order to index these chapters.

As for those individuals a bit closer to home, a heartfelt thanks to all my
coworkers at Intertech, Inc. (http://www.intertech-inc.com), for making my “real
job” a wonderful place to be. The previous praise does not apply to Tom Salonek,
whom I still don’t care much for at all (. . . well, maybe just a little). Further thanks
are in order for my family and friends for remaining patient when I became “just a
bit grumpy” during the last month of this project. Last but not least, I must thank
my wife Amanda for supporting me through yet another stint of sleepless nights
and for remaining positive and encouraging when I was anything but. Thanks all!

Contents

xxiii

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page xxiii

Introduction

The funny thing about writing a book on COM and .NET interoperability is that
one author could craft a five- to ten-page article describing the basic details that
you must understand to get up and running with interop-related endeavors. At
the same time, another author could write volumes of material on the exact same
subject. So, you may be asking, how could this massive discrepancy between
authors possibly exist?

Well, stop and think for a moment about the number of COM-aware
programming languages and COM application frameworks that exist. Raw
C++/IDL, ATL, MFC, VB 6.0, and Object Pascal (Delphi) each have their own
syntactic tokens that hide the underbelly of COM from view in various ways. Thus,
the first dilemma you face as an interop author is choosing which language to use
to build the COM sample applications.

Next, ponder the number of .NET-aware programming languages that are
either currently supported or under development. C#, VB .NET, COBOL .NET, APL
.NET, PASCAL .NET, and so on, each have their own unique ways of exposing
features of the CTS to the software engineer. Therefore, the next dilemma is
choosing which language to use to build the .NET applications.

Even when you solve the first two dilemmas and choose the languages to use
during the course of the book, the final dilemma has to do with the assumptions
made regarding the readers themselves. Do they have a solid understanding of
IDL and the COM type system? Do they have a solid understanding of the .NET
platform, managed languages, and metadata? If not, how much time should be
spend pounding out such details?

Given the insane combinations of language preferences and reader back-
grounds, I have chosen to take a solid stance in the middle ground. If I have done
my job correctly, you will walk away from this text with the skills you need to
tackle any interop-centric challenge you may encounter. Also, I am almost certain
you will learn various tantalizing tidbits regarding the COM and .NET type
systems.

My ultimate goal in writing this book is to provide you with a solid foundation
of COM and .NET interoperability. To achieve this goal, I have chosen to provide
material that defines the finer details of the COM and .NET architectures. For
example, over the course of the first six chapters, you will learn how to program-
matically generate and parse COM IDL, dynamically generate C# and VB .NET
source code on the fly (via System.CodeDOM), and build .NET applications that

xxv

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page xxv

can read COM type information. After all, when you need to build a software
solution that makes use of two entirely unique programming paradigms, you had
better have a solid understanding of each entity.

However, once this basic foundation has been laid, the bulk of this book
describes the process of making COM and .NET binaries coexist in harmony.
As an added bonus, I cover the process of building .NET code libraries
that can leverage the services provided by the COM+ runtime layer (via
System.EnterpriseServices).

Now that you have the big picture in your mind, here is a chapter-by-chapter
breakdown of the material:

Chapter 1: Understanding Platform Invocation Services
I open this examination of COM/.NET interoperability by focusing on the role of a
single .NET class type: DllImportAttribute. In this chapter, you learn how to access
custom C-based (non-COM) DLLs as well as the Win32 API from a managed envi-
ronment. Along the way, you investigate how to marshal C structures, interact
with traditional callback functions, and extract exported C++ class types from
within a managed environment. This chapter also examines the role of the
Marshal class, which is used in various places throughout the book.

Chapter 2: The Anatomy of a COM Server
The point of this chapter is to document the internal composition of a classic
COM server using raw C++ and COM IDL. Given that many COM frameworks
(such as VB 6.0) hide the exact underpinnings of COM, this chapter also examines
the use of the system registry, required DLL exports, the role of the class factory,
late binding using IDispatch, and so on. As you might guess, the COM server you
construct during this chapter is accessed by managed code later in the text.

Chapter 3: A Primer on COM Programming Frameworks
Given that you build a number of COM servers over the course of the book, this
(brief) chapter provides an overview of two very popular COM frameworks: the
Active Template Library (ATL) and Visual Basic 6.0. Knowledge mappings are
made between the raw C++ server created in Chapter 2 and the binaries produced
by the ATL/VB 6.0 COM frameworks. Along the way, you also explore the key COM
development tool, oleview.exe.

Chapter 4: COM Type Information
This chapter examines the gory details of the COM type system, including a
number of very useful (but not well-known) tasks such as constructing custom
IDL attributes, applying various IDL keywords such as [appobject], [noncreatable],
and so forth. More important, this chapter also illustrates how to read and write
COM type information programmatically using ICreateTypeLibrary, ICreateTypeInfo,

Introduction

xxvi

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page xxvi

and related COM interfaces. This chapter wraps up by examining how to build a
managed C# application that can read COM type information using interop
primitives.

Chapter 5: The Anatomy of a .NET Server
The goals of this chapter are to examine the core aspect of a .NET code library,
including various deployment-related issues (for example, XML configuration
files, publisher policy, and the like). This chapter also provides a solid overview of
a seemingly unrelated topic: dynamically generating and compiling code using
System.CodeDOM. Using this namespace, developers are able to dynamically
generate code in memory and save it to a file (*.cs or *.vb) on the fly. Once you
have investigated the role of System.CodeDOM, you will have a deeper under-
standing of how various interop-centric tools (such as aximp.exe) are able to emit
source code via command line flags.

Chapter 6: .NET Types
If you haven’t heard by now, understand that the .NET type system is 100 percent
different than that of classic COM. Here, you solidify your understanding of the
.NET type system, including the use of custom .NET attributes. This chapter also
examines the role of the System.Reflection namespace, which enables you to
dynamically load an assembly and read the contained metadata at runtime. This
chapter also illustrates late binding under .NET and the construction of custom
managed attributes. I wrap up by showing you how to build a Windows Forms
application that mimics the functionality provided by ILDasm.exe.

Chapter 7: .NET-to-COM Interoperability—The Basics
In this chapter, the focus is on learning how to build .NET applications that
consume classic COM servers using a Runtime Callable Wrapper (RCW). You
begin with the obvious (and most straightforward) approach of using the inte-
grated wizards of Visual Studio .NET. Next, you learn about the tlbimp.exe tool
(and the numerous command line options). Along the way, you are exposed to the
core conversion topics, including COM/.NET data type conversions, property and
method mappings, and other critical topics.

Chapter 8: .NET-to-COM Interoperability—Intermediate Topics
This chapter builds on the previous one by examining a number of intermediate
topics. For example, you learn how .NET clients can make use of COM VARIANTs
and SafeArrays, COM Error Objects, COM enums, COM connection points, and
COM collections. Topics such as exposing COM interface hierarchies are also
examined in detail.

Introduction

xxvii

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page xxvii

Chapter 9: .NET-to-COM Interoperability—Advanced Topics
Here you learn to import ActiveX controls and augment the work performed by
the aximp.exe command line utility to account for COM [helpstring] attributes
that are lost during the conversion process. Furthermore, this chapter examines
the process of manually editing the metadata contained in a given interop
assembly. For example, you learn how to support [custom] IDL attributes in terms
of .NET metadata and understand how to compile *.il files using ilasm.exe. This
chapter also describes how a COM type can implement .NET interfaces to achieve
“type compatibility” with other like-minded .NET types. You wrap up by learning
how to build a custom type library importer application using C#.

Chapter 10: COM-to-.NET Interoperability—The Basics
This chapter focuses on how COM clients (written in VB 6.0, C++, and VBScript)
can make use of .NET types using a COM Callable Wrapper (CCW). Here, I cover
class interfaces, the tlbexp.exe/regasm.exe command line tools, and various regis-
tration and deployment issues. This chapter also examines how a COM client can
interact with the types contained in the core .NET assembly, mscorlib.dll.

Chapter 11: COM-to-.NET Interoperability—Intermediate Topics
This chapter builds on the materials presented in Chapter 10 by examining how
.NET enumerations, interface hierarchies, delegates, and collections are
expressed in terms of classic COM. You also learn how to expose custom .NET
exceptions as COM error objects, as well as about the process of exposing
.NET interface hierarchies to classic COM.

Chapter 12: COM-to-.NET Interoperability—Advanced Topics
This advanced COM-to-.NET–centric chapter examines how a .NET programmer
is able to build “binary-compatible” .NET types that integrate with classic COM.
You see how a .NET type can implement COM interfaces, and you also get a
chance to explore the details of manually defining COM types using managed
code. This chapter also examines how to interact with the registration process of
an interop assembly. The final topics of this chapter address the process of
building a custom host for the .NET runtime (using classic COM) and the
construction of a custom .NET-to-COM conversion utility.

Chapter 13: Building Serviced Components (COM+ Interop)
Despite the confusion, .NET programmers are able to build code libraries that can
be installed under COM+. In this final chapter, I begin by examining the role of
the COM+ runtime and reviewing how it fits into n-tier applications. The bulk of
this chapter is spent understanding the System.EnterpriseServices namespace
and numerous types of interest. You learn how to program for JITA, object pools,

Introduction

xxviii

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page xxviii

construction strings, and transactional support using managed code. I wrap up by
constructing an n-tier application using managed code, serviced components,
Windows Forms, and ASP .NET.

Now that you have a better understanding about the scope of this book and
the mindset I have regarding the material that follows, understand that I have
written this book based on the following assumptions about you:

• You are not satisfied with clicking a button of a given wizard and thinking
“I guess it worked . . . somehow . . . I think.” Rather, I assume you would love
to know the inner details of what that wizard does on your behalf and then
click the button.

• You are aware of the role of COM, have created a number of COM servers,
and feel confident building COM solutions in the language mapping of your
choice. As well, I am assuming that you still find the process of learning the
finer details of COM a worthwhile endeavor. As you will see, most of the
COM servers built during the course of this book make use of VB 6.0, unless
a particular COM atom cannot be expressed using the vernacular of BASIC.
In these cases, I make use of the ATL framework.

• You are aware of the role of .NET, have (at the very least) explored the
syntax of your favorite managed language, and (at the very most) created
a number of .NET applications during the process. While many of my
managed examples make use of C#, I also make use of VB .NET when
necessary.

Finally, be aware that the source code for each example can be obtained from
the Apress Web site in the Downloads section at http://www.apress.com.

It is my sincere hope that as you read though the text you enjoy yourself and
expand your understanding of COM, the .NET platform, and the techniques used
to blend each architecture into a unified whole.

Andrew Troelsen
Minneapolis, Minnesota

Introduction

xxix

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page xxix

CHAPTER 1

Understanding Platform
Invocation Services

Platform Invocation Services (PInvoke) provides a way for managed code to call
unmanaged functions that are implemented in traditional Win32 (non-COM)
DLLs. PInvoke shields the .NET developer from the task of directly locating and
invoking the exact function export. PInvoke also facilitates the marshalling of
managed data (for example, intrinsic data types, arrays, structures) to and from
their unmanaged counterparts.

In this chapter, you learn how to interact with unmanaged C DLLs using a
small set of types found within the System.Runtime.InteropServices namespace.
As you will see, PInvoke is basically composed of two key members. The
DllImport attribute is a .NET class type that wraps low-level LoadLibrary() and
GetProcAddress() calls on your behalf. System.Runtime.InteropServices.Marshal
is the other key PInvoke-centric type, and it allows you to transform various
primitives (including COM types) from managed to unmanaged equivalents
and vice versa.

The Two Faces of Unmanaged Code

As I am sure you are aware, code built using a .NET-aware programming language
(C#, VB .NET, and so on) is termed managed code. Conversely, code that was
compiled without a .NET-aware compiler is termed unmanaged code. Unmanaged
code really comes in two flavors:

• Traditional C-style Win32 DLLs/EXEs

• COM-based DLLs/EXEs

Obviously, the majority of this book is concerned with interoperating with
COM-based binary images. However, the .NET platform does support the ability

1

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 1

for managed code to call methods exported from a traditional (non-COM) C-style
DLL. Formally, this facility is known as Platform Invocation, or simply PInvoke.

However, you will seldom be in a position where you absolutely need to
directly call a Win32 API function, given the very simple fact that the .NET class
libraries will typically provide the same functionality using a particular assembly.
If you can find a .NET type that satisfies your needs, make use of it! Not only will it
require less work on your part, but you can rest assured that as the .NET platform
is ported to other operating systems, your code base will not be contingent upon a
Windows-centric DLL.

Nevertheless, PInvoke is still a useful technology. First of all, many shops
make use of a number of proprietary C-based DLLs in their current systems. Thus,
if you have the best bubble sort algorithm known to humankind contained in a C-
style DLL, your shiny new .NET applications will still be able to make use of it
through PInvoke. Given that PInvoke can trigger the functionality contained in
any Win32-based DLL (custom or otherwise), I spend the majority of this chapter
examining how to invoke members exported from custom DLLs. However, you
also get to see an example of using PInvoke to call prefabricated Win32 APIs (as
you might guess, the process is identical).

Understanding the C-Style DLL

As you certainly know, Win32 EXEs define a WinMain() method that is called by
the OS when the application is launched. In contrast, COM-based DLLs export a
set of four functions that allow the COM runtime to extract class factories, register
and unregister the COM server, and poll the DLL for its “unloadability.” Unlike a
Windows EXE or COM-based DLL, custom C-style DLLs are not required to
support a set of well-known functions for consumption by the Windows OS.

However, although a custom DLL does not need to support a fixed member
infrastructure, most do indeed support a special method named DllMain(), which
will be called by the OS (if present) to allow you to initialize and terminate the
module itself. DllMain() does have a fixed signature, which looks like the
following:

// DllMain()’s prototype.

BOOL APIENTRY DllMain(HANDLE hModule,

DWORD ul_reason_for_call,

LPVOID lpReserved);

The most relevant parameter for this discussion is the DWORD parameter,
which contains a value (set by the OS) describing how the DLL is being accessed
by the outside world. As you would hope, you are provided with a prefabricated set

Chapter 1

2

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 2

of programming constants to represent each possibility. In a nutshell, two of these
constants are used to test if the DLL is being loaded or unloaded (for the first or
last time), and two are used to capture instances when a new thread attaches to or
detaches from the module. To account for each of these possibilities, you could
implement DllMain() as follows:

// The optional, but quite helpful, DllMain().

BOOL APIENTRY DllMain(HANDLE hModule,

DWORD ul_reason_for_call,

LPVOID lpReserved)

{

switch (ul_reason_for_call)

{

case DLL_PROCESS_ATTACH: break;

case DLL_THREAD_ATTACH: break;

case DLL_THREAD_DETACH: break;

case DLL_PROCESS_DETACH: break;

}

return TRUE;

}

Obviously, what you do within the scope of DllMain() is contingent on the
module you are constructing. Possible tasks include assigning values to module-
level data members, allocating (and deallocating) memory, and so forth. Of
course, a DLL that only defines DllMain() is not very useful. You need custom
content to make your DLL interesting to the outside world.

Exporting Custom Members

A traditional C-style DLL is not constructed using the building blocks of COM and
does not have the same internal structure as a .NET binary. Rather, unmanaged
DLLs contain some set of global functions, user-defined types (UDTs), and data
points that are identified by a friendly string name and ordinal value. Typically, a
*.def file is used to identify the available exports. For example, assume you have
written a C-based DLL that exports four global functions. The corresponding *.def
file might look something like the following:

; MyCBasedDll.def : Declares the module parameters.

LIBRARY "MyCBasedDll.dll"

EXPORTS

MethodA @1 PRIVATE

MethodB @2 PRIVATE

MethodC @3 PRIVATE

MethodD @4 PRIVATE

Understanding Platform Invocation Services

3

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 3

Note that the LIBRARY tag is used to mark the name of the *.dll that contains
the member exports. The EXPORTS tag documents the set of members that are
reachable from another binary client (DLL or EXE). Finally, note only the name of
each member (not the parameters or return values) is identified using a simple
numerical identifier (@1, @2, @3, and so on). As an interesting side note, under-
stand that COM-based DLLs also make use of a standard *.def file to export the
core functions accessed by the COM runtime (more details in Chapter 2):

; ATLServer.def : Declares the module parameters.

LIBRARY "ATLServer.DLL"

EXPORTS

DllCanUnloadNow @1 PRIVATE

DllGetClassObject @2 PRIVATE

DllRegisterServer @3 PRIVATE

DllUnregisterServer @4 PRIVATE

The Dllexport Declaration Specification

Although traditional *.def files have stood the test of time, the Visual C++ compiler
also supports a specific declaration specification (declspec) that can be used to
expose a member from a C-based DLL without the need to maintain and update a
stand-alone *.def file. Following convention, the dllexport declspec will be used to
build a simple macro that can be prefixed to a given function, data member, or
class that needs to be visible from outside the binary boundary. The macro defini-
tion could be written as follows:

// A custom macro which will mark a DLL export.

#define MYCSTYLEDLL_API __declspec(dllexport)

You would then expose MethodA() from a given DLL as shown here (note that
the prototype and member implementation both need to be qualified with the
MYCSTYLEDLL macro):

// Function prototype (in some header file).

extern "C" MYCSTYLEDLL_API int MethodA(void);

// Function implementation (in some *.cpp file).

extern "C" MYCSTYLEDLL_API int MethodA(void)

{return 1234;}

Chapter 1

4

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 4

This same shortcut can be used when you wish to export a single point of data
(such as some fixed global constants) or an entire class module (not a COM class
mind you, but a vanilla-flavored C++ class).

Building a Custom C-Based DLL

During the course of this chapter, you learn how to use the DllImport attribute to
allow your managed .NET code to call members contained in a traditional C-style
DLL (including Win32 DLLs). To be sure, DllImport is most commonly used to
trigger Win32 API functions; however, this same .NET attribute can be used to
interact with your custom proprietary modules. Given this, let’s build a simple
Win32 DLL named MyCustomDLL. If you wish to follow along, fire up Visual
Studio 6.0 (or VS .NET if you prefer) and select a Win32 DLL project workspace
(Figure 1-1).

Figure 1-1. Creating your C-style DLL

From the resulting wizard, simply select “A simple DLL” project. The first order
of business is to establish the custom declspec macros, which will be used under
two circumstances. First, if the code base defines the MYCSTYLEDLL_EXPORTS
symbol, the macro will expand to __declspec(dllexport). On the other hand, if an

Understanding Platform Invocation Services

5

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 5

external code base #includes the files that define the custom members (and thus
does not define the MYCSTYLEDLL_EXPORTS symbol), the macro will expand to
__declspec(dllimport). For simplicity, simply add the following macro logic in the
current MyCustomDLL.h file:

// The helper macro pair.

#ifdef MYCSTYLEDLL_EXPORTS

#define MYCSTYLEDLL_API __declspec(dllexport)

#else

#define MYCSTYLEDLL_API __declspec(dllimport)

#endif

Functions Using Basic Data Types and Arrays

A proprietary DLL could contain members of varying complexity. On the simple
side of life, you may have a function taking a single integer by value. On the
complex end of the spectrum, you may have a function that receives an array of
complex structures by reference (which of course may be reallocated by the
module). Although your custom DLL will not account for every possibility, it will
export a set of six functions that illustrate how to marshal native data types, struc-
tures, class types, and arrays. Once you understand the basics of triggering these
members from managed code, you will be able to apply this knowledge to other
DLL exports.

Your first two functions allow the caller to pass single integer parameters as
well as an array of integers. The prototypes are as follows:

// Prototypes for basic functions.

extern "C" MYCUSTOMDLL_API int AddNumbers(int x, int y);

extern "C" MYCUSTOMDLL_API int AddArray(int x[], int size);

The implementation of AddNumbers() is as you would expect (simply return
the summation of the incoming arguments). AddArray() allows the caller to pass
in an array of some size to receive the summation of all items. Here are the
implementations:

// 1) A very simple DLL export.

extern "C" MYCUSTOMDLL_API int AddNumbers(int x, int y)

{ return x + y; }

// 2) A method taking an array.

extern "C" MYCUSTOMDLL_API int AddArray(int x[], int size)

Chapter 1

6

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 6

{

int ans = 0;

for(int i = 0; i < size; i++)

{

ans = ans + x[i];

}

return ans;

}

Functions Receiving Structures
(and Structures Containing Structures)

The next two function exports allow the user to pass in a complex structure for
processing as well as return an array of structures to the caller. Before you see the
methods themselves, here are definitions of the CAR and CAR2 UDTs:

// A basic structure.

typedef struct _CAR

{

char* make;

char* color;

} CAR;

// A structure containing another structure.

typedef struct _CAR2

{

CAR theCar;

char* petName;

} CAR2;

As you can see, the basic CAR structure defines two fields that document the
color and make of a give automobile. CAR2 extends this basic information with a
new field (petName), which allows the user to assign a friendly name to the car in
question. The first structure-centric function, DisplayBetterCar(), takes a CAR2
type as an input parameter that is displayed using a Win32 MessageBox() call:

// Function prototype.

extern "C" MYCUSTOMDLL_API void DisplayBetterCar(CAR2* theCar);

// 3) A method taking a struct.

extern "C" MYCUSTOMDLL_API void DisplayBetterCar(CAR2* theCar)

Understanding Platform Invocation Services

7

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 7

{

// Read values of car and put in message box.

MessageBox(NULL, theCar->theCar.color, "Car Color", MB_OK);

MessageBox(NULL, theCar->theCar.make, "Car Make", MB_OK);

MessageBox(NULL, theCar->petName, "Car Pet Name", MB_OK);

}

The next DLL export, GiveMeThreeBasicCars(), returns a fixed array of CAR
types to the caller as an output parameter. Given that you will be dynamically allo-
cating structures on the fly, you make use of CoTaskMemAlloc(), which is defined
in objbase.h (so be sure to #include this file in your project). Here is the code:

// Function prototype.

extern "C" MYCUSTOMDLL_API void GiveMeThreeBasicCars(CAR** theCars);

// 4) A Method returning an array of structs.

extern "C" MYCUSTOMDLL_API void GiveMeThreeBasicCars(CAR** theCars)

{

int numbOfCars = 3;

theCars = (CAR)CoTaskMemAlloc(numbOfCars * sizeof(CAR));

char* carMakes[3] = {"BMW", "Ford", "Viper"};

char* carColors[3] = {"Green", "Pink", "Red"};

CAR* pCurCar = *theCars;

for(int i = 0; i < numbOfCars; i++, pCurCar++)

{

pCurCar->color = carColors[i];

pCurCar->make = carMakes[i];

}

}

Functions Using Class Types

The final two function exports defined by your custom DLL allow the outside
world to obtain and destroy a (non-COM) C++ class type named CMiniVan:

// A class to be exported.

class MYCUSTOMDLL_API CMiniVan

{

public:

CMiniVan(){m_numbKids = 52;}

int DisplayNumberOfKids()

{ return m_numbKids;}

private:

int m_numbKids;

};

Chapter 1

8

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 8

To interact with this class type, you provide the final two functions:

// Prototypes for class marshaling.

extern "C" MYCUSTOMDLL_API CMiniVan* CreateMiniVan();

extern "C" MYCUSTOMDLL_API void DeleteMiniVan(CMiniVan* obj);

// 5) Method to create a CMiniVan.

extern "C" MYCUSTOMDLL_API CMiniVan* CreateMiniVan()

{ return new CMiniVan(); }

// 6) Method to destroy a CMiniVan

extern "C" MYCUSTOMDLL_API void DeleteMiniVan(CMiniVan* obj)

{ delete obj; }

That’s it! Go ahead and compile the project. Over the course of this chapter,
you will trigger these members from managed and unmanaged code bases.

CODE The MyCustomDLL project is included under the Chapter 1
directory.

Viewing Your Imports and Exports Using dumpbin.exe

The dumpbin.exe utility is a command line tool that allows you to view a number
of details for a given unmanaged DLL (or EXE). Like most command line tools,
dumpbin.exe supports a set of command line flags you use to inform it exactly
what you are interested in viewing. Table 1-1 illustrates some of the more common
options.

Table 1-1. Common dumpbin.exe Flags

dumpbin.exe Flag Meaning in Life

/all This option displays all available information except code

disassembly.

/disasm This option displays disassembly of code sections, using

symbols if present in the file.

/exports This option displays all definitions exported from an

executable file or DLL.

Understanding Platform Invocation Services

9

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 9

Table 1-1. Common dumpbin.exe Flags (continued)

dumpbin.exe Flag Meaning in Life

/imports This option displays all definitions imported to an

executable file or DLL.

/summary This option displays minimal information about sections,

including total size. This option is the default if no other

option is specified.

First, let’s check out the set of imported modules used by MyCustomDLL.dll.
As you recall, your code base made use of the MessageBox() API (defined in
user32.dll), the CoTaskMemAlloc() API (ole32.dll), and the mandatory kernel32.dll.
Given this, if you were to open a command window, navigate to the location of
MyCustomDLL.dll, and apply the /imports command to dumpbin.exe as follows:

C:\ >dumpbin /imports mycustomdll.dll

you would find the listing shown in Figure 1-2.

Figure 1-2. Dumping the imports of MyCustomDLL.dll

Chapter 1

10

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 10

As you may be aware, .NET assemblies catalog the same sort of imported
information using the assembly manifest (via the [.assembly extern] tag). Of
greater interest to you at the current time is the list of exports:

C:\ >dumpbin /exports mycustomdll.dll

As you can see from Figure 1-3, the __declspec(dllexport) specification has
assigned unique ordinal numbers to each exported member.

Figure 1-3. The exports of MyCustomDLL.dll

Notice that the CMiniVan class is internally represented using a common C++
complier technique termed named mangling. Basically, name mangling is a way
to assign a unique internal name to a given class member. Typically, C++ devel-
opers do not need to be concerned with the internal mangled representation of a
given class member. However, do be aware that when you wish to trigger a class
method from managed code, you will need to obtain this internal name. For
example, later in this chapter when you invoke CMiniVan::DisplayNumberOfKids(),
you need to refer to this member as

?DisplayNumberOfKids@CMiniVan@@QAEHXZ

Understanding Platform Invocation Services

11

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 11

Deploying Traditional DLLs

Now that you have created a custom DLL, you are ready to begin building a
number of client applications (both managed and unmanaged) that can access
the exported member set. Before you get to that point, you need to address a
rather obvious question: How will the runtime locate the custom C-based module?

As you may know (and will see in detail in Chapter 2), COM-based DLLs can
be placed anywhere within the host computer’s directory structure, given that
COM servers are explicitly registered in the system registry. On the other hand,
.NET-based DLLs are not registered in the system registry at all, but are typically
deployed in the same directory as the launching client (that is, as a private
assembly). As an alternative, .NET DLLs can be shared by multiple client applica-
tions on a given machine by placing the assembly within a well-known location
called the Global Assembly Cache (GAC).

Traditional C-style DLLs are deployed much like a .NET DLL, given that they
are not registered within the system registry. The simplest approach to deploy your
custom DLLs is to place them directly in the directory of the calling client (typi-
cally called the application directory).

This brings about a rather interesting side note, however. As you know, the
Windows OS defines a number of system-level DLLs that supply a number of core
services such as GDI, file IO, and so forth. For sake of reference, Table 1-2 docu-
ments some of the critical system DLLs to be aware of.

Table 1-2. Core System-Level DLLs

Core Windows DLL Meaning in Life

advapi32.dll Advanced API services library supporting numerous APIs,

including many security and registry calls

comdlg32.dll Common dialog API library

gdi32.dll Graphics Device Interface API library

kernel32.dll Core Windows 32-bit base API support

mpr.dll No, not Minnesota Public Radio, but rather Multiple

Provider Router library

netapi32.dll 32-bit Network API library

shell32.dll 32-bit Shell API library

user32.dll Library for user interface routines

version.dll Version library

winmm.dll Windows multimedia library

Chapter 1

12

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 12

Obviously, when you are building a custom Win32 application, you are not
required to create private copies of these core DLLs in the client’s application
directory. How then are these DLLs located by the runtime? The Windows OS
maintains a well-known location for its system-level DLLs, specifically
%windir%\System32 (Figure 1-4).

Figure 1-4. The %windir%\System32 subdirectory is the location of core
Win32 DLLs.

This location is documented using a system path variable that can be found
by taking the following steps on a Windows XP machine (some steps may vary for
other OSs):

• Right-click the My Computer icon.

• Click the Environment Variables button on the Advanced Tab.

• View the Path value under the System Variables list box (Figure 1-5).

Understanding Platform Invocation Services

13

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 13

Figure 1-5. Viewing environment variables

Using this path value, the Windows OS understands where to look when it is
attempting to locate a distinct Win32 (non-COM/non-.NET) DLL. Given that the
“Path” variable defines numerous values (separated by semicolons), you are free to
place your custom DLLs in within any documented paths. For the remainder of
this chapter, I will assume that you have placed a copy of MyCustomDLL.dll in
your %windir%\System32 subdirectory (Figure 1-6).

Figure 1-6. Your custom DLL is now within the %windir%\System32 path.

Chapter 1

14

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 14

A Dynamic C++ DLL Client

Before you learn how to trigger function exports using managed languages, let’s
take a brief look at a traditional C-based client application. Now, if you wanted to
take the simple (that is, uninteresting) approach, you would build a C++ client that
directly links to the MyCustomDLL.dll binary. However, let’s take a more inter-
esting approach and load (and invoke) members of the *.dll on the fly at runtime.
As you will see, the managed DllImport attribute mimics the same pattern found
with the LoadLibrary()/GetProcAddress() APIs.

To begin, assume you have a new Win32 console application named
MyCustomDLLCppClient (a “simple project” will be fine). First, place a copy of
the MyCustomDll.h file directly in the project directory (you do this because the
file has the C definitions of your custom UDTs). When you need to load a C-based
DLL and invoke its members dynamically, you must make use of three key Win32
API calls, which are explained in Table 1-3.

Table 1-3. Library-Centric Win32 API Functions

Library-Centric Meaning in Life
API Function

FreeLibrary() This API decreases the *.dll’s internal use counter by one and

removes the binary from memory when the counter is at zero.

GetProcAddress() This API function is used to invoke a given export within the

loaded module.

LoadLibrary() This API function loads a specific *.dll module using the search

heuristics explained previously.

Dynamically Loading an External Library

Calling LoadLibrary() is quite painless, given that the only parameter is the string
name of the DLL you wish to load into the current process. The return value is of
type HINSTANCE, which represents a handle to the currently loaded binary (as
you will see, GetProcAddress() requires this value as a parameter). To begin,
update Main() as shown here:

#include "stdafx.h"

#include <windows.h>

#include <iostream>

#include "MyCustomDLL.h"

using namespace std;

int main(int argc, char* argv[])

Understanding Platform Invocation Services

15

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 15

{

// A handle to the loaded library.

HINSTANCE dllHandle = NULL;

// Load the DLL and keep the handle to it.

// Assume this DLL is in the same folder as the

// client EXE or under \System32.

dllHandle = LoadLibrary("MyCustomDll.dll");

// If the handle is valid, try to call members.

if (NULL != dllHandle)

{

…

// Free the library when finished.

FreeLibrary(dllHandle);

}

return 0;

}

Invoking Members

Given that the example has not directly linked the DLL to its compilation cycle,
you are not currently able to directly resolve the names of the exported functions.
What you need is a generic way to represent the address of a given function. Lucky
for you, GetProcAddress() will return a pointer to a specific function upon
successful completion. So, how do you represent a generic function pointer? The
standard approach is to build a C-style type definition that represents a pointer to
the method as well as its set of arguments and return value. For example, if you
craft such a pointer for the AddNumbers() method, you can build the following
typedef:

// A typedef to hold the address of the AddNumbers() method.

typedef int (*PFNADDNUMBERS) (int, int);

// Create a variable of this type.

PFNADDNUMBERS pfnAddMethod;

A similar typedef could be created for any of your exported members. Here is
another example for the DisplayBetterCar() method, which as you recall takes a
CAR2 structure type as its sole parameter:

// A typedef to hold the address of the DisplayBetterCar() method.

typedef int (*PFNDISPLAYBETTERCAR) (CAR2*);

PFNDISPLAYBETTERCAR pfnDisplayBetterCar;

Chapter 1

16

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 16

Once you have a generic pointer to a given function, you can now call
GetProcAddress() to obtain a valid pointer to said method. Here is an update to
the Main() loop that will call AddNumbers() and DisplayBetterCar() dynamically
at runtime (without statically linking to the MyCustomDLL.dll):

if (NULL != dllHandle)

{

// Get pointer to AddNumbers() using GetProcAddress.

pfnAddMethod = (PFNADDNUMBERS)

GetProcAddress(dllHandle, "AddNumbers");

// If the function address is valid, call AddNumbers().

if (NULL != pfnAddMethod)

{

int retVal = pfnAddMethod(100, 100);

cout << "100 + 100 is: " << retVal << endl;

}

// Make a better car.

CAR2 myCar;

myCar.petName = "JoJo";

myCar.theCar.make = "Viper";

myCar.theCar.color = "Red";

pfnDisplayBetterCar = (PFNDISPLAYBETTERCAR)

GetProcAddress(dllHandle, "DisplayBetterCar");

// If the function address is valid, call DisplayBetterCar().

if (NULL != pfnDisplayBetterCar)

{

pfnDisplayBetterCar(&myCar);

}

// Free the library.

FreeLibrary(dllHandle);

}

As you can see, GetProcAddress() requires you to specify the module to
examine (represented by the HINSTANCE returned from LoadLibrary()) and the
name of the member you wish to invoke. The result is a pointer to the correct
function, which can be invoked as if you had a direct function definition! When
you run this application, you should see the result of adding 100 and 100, followed
by a series of message boxes describing your new red Viper named JoJo.

Understanding Platform Invocation Services

17

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 17

CODE The MyCustomDLLCppClient application is found under the
Chapter 1 directory.

The Atoms of PInvoke

Now that you have created a custom DLL (and checked out the process of dynami-
cally invoking members using the Win32 API), you will spend the rest of this
chapter examining the process of calling C-based function exports from managed
code. In order to do so, you need to be comfortable with a small set of .NET types
and a basic set of data conversion rules.

The two .NET types in question (the Marshal class and DllImport attribute)
are both defined within the System.Runtime.InteropServices namespace, which as
you will see throughout this book is the key namespace that makes COM/.NET
interoperability possible. This namespace is defined within the core .NET
assembly, mscorlib.dll, which is part of every managed application. Therefore, all
you need to do to access these types is simply make reference to the namespace
itself using the syntax of your favorite managed language. For example:

// C#.

using System.Runtime.InteropServices;

' VB .NET.

Imports System.Runtime.InteropServices

Data Type Conversions

As C++ programmers are painfully aware, the Windows API has billions (or there-
about) of type definitions that represent primitive data types. Although these type-
defs can take a bit of getting used to at first, they do save you a few keystrokes. For
example, if you wish to define a constant string of Unicode characters, you could
write the following C-style declaration:

/* A constant Unicode string of characters in C */

const wchar_t* myUnicodeString;

or make use of the following Windows typedef:

/* Same string, fewer keystrokes…*/

LPCWSTR myOtherUnicodeString;

Chapter 1

18

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 18

These predefined type definitions are based on a naming convention called
Hungarian notation, which is used to make a data type a bit more self-describing.
For example, LPCWSTR can be read as a “pointer to a constant wide string.” When
you are making use of PInvoke, you don’t make use of these Win32-centric type
definitions directly, but rather a managed equivalent. Table 1-4 documents the
mapping between Win32 typedefs (and their C representation) and the correct
.NET data type.

Table 1-4. Data Type Representation

Unmanaged Type Unmanaged C Managed Type Representation Meaning in Life
in wtypes.h Language Type

BOOL long System.Int32 32 bits

BYTE unsigned char System.Byte 8 bits

CHAR char System.Char ANSI string

DOUBLE double System.Double 64 bits

DWORD unsigned long System.UInt32 32 bits

FLOAT float System.Single 32 bits

HANDLE void* System.IntPtr 32 bits

INT int System.Int32 32 bits

LONG long System.Int32 32 bits

LPCSTR const char* System.String or ANSI string

System.StringBuilder

LPCWSTR const wchar_t* System.String or Unicode string

System.StringBuilder

LPSTR char* System.String or ANSI string

System.StringBuilder

LPWSTR wchar_t* System.String or Unicode string

System.StringBuilder

SHORT short System.Int16 16 bits

UINT unsigned int System.UInt32 32 bits

ULONG unsigned long System.UInt32 32 bits

WORD unsigned short System.UInt16 16 bits

Understanding Platform Invocation Services

19

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 19

The Marshal Class

System.Runtime.InteropServices.Marshal is a key type that is used with all facets
of .NET interoperability. This sealed class defines a healthy dose of static (Shared
in terms of VB .NET) members that provides a bridge between managed and
unmanaged constructs. When you are working with PInvoke proper (meaning you
are not interested in communicating with COM-based DLLs), you really only need
to access a very small subset of its overall functionality. In fact, a majority of the
members provided by the Marshal type are most useful when dealing with
COM/.NET interop issues.

Nevertheless, in this section, I outline the full functionality of Marshal, by
grouping members by related functionality. You will see additional aspects of
Marshal during the remainder of this text, so don’t panic due to the sheer volume
of members. Table 1-5 documents a number of members that allow you to interact
with low-level COM primitives such as IUnknown, VARIANT transformations, and
moniker bindings (among other things).

Table 1-5. COM-Centric Members of the Marshal Type

General COM-Centric Meaning in Life
Member of the Marshal Type

AddRef() Increments the reference count on the specified

interface

BindToMoniker() Gets an interface pointer identified by the specified

moniker

GenerateGuidForType() Returns the GUID for the specified type, or generates

a GUID using the algorithm employed by the Type

Library Exporter (TlbExp.exe)

GenerateProgIdForType() Returns a ProgID for the specified type

GetActiveObject() Obtains a running instance of the specified object

from the Running Object Table (ROT)

GetComInterfaceForObject() Returns an IUnknown pointer representing the

specified interface for an object

GetIDispatchForObject() Returns an IDispatch interface from a managed

object

GetIUnknownForObject() Returns an IUnknown interface from a managed

object

Chapter 1

20

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 20

Table 1-5. COM-Centric Members of the Marshal Type (continued)

General COM-Centric Meaning in Life
Member of the Marshal Type

GetObjectForNativeVariant() Converts a COM VARIANT to an object

GetObjectsForNativeVariants() Converts an array of COM VARIANTs to an array of

objects

GetNativeVariantForObject() Converts an object to a COM VARIANT

IsComObject() Indicates whether a specified object represents an

unmanaged COM object

IsTypeVisibleFromCom() Indicates whether a type is visible to COM clients

QueryInterface() Requests a pointer to a specified interface from an

existing interface

Release() Decrements the reference count on the specified

interface

ReleaseComObject() Decrements the reference count of the supplied

Runtime Callable Wrapper (RCW)

Closely related to the members in Table 1-5 are the following set of COM type
library–specific members of the Marshal type (Table 1-6).

Table 1-6. Type Library–Centric Members of the Marshal Class

COM Type Library–Centric Meaning in Life
Member of the Marshal Type

GetITypeInfoForType() Returns an ITypeInfo interface from a

managed type

GetTypeForITypeInfo() Converts an ITypeInfo into a managed

System.Type object

GetTypeInfoName() Retrieves the name of the type represented by

an ITypeInfo

GetTypeLibGuid() Retrieves the GUID of a type library

GetTypeLibGuidForAssembly() Retrieves the GUID that is assigned to a type

library when it was exported from the

specified assembly

GetTypeLibLcid() Retrieves the LCID of a type library

GetTypeLibName() Retrieves the name of a type library

Understanding Platform Invocation Services

21

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 21

Of course, there are a number of members of the Marshal type that allow you
to convert between the managed System.String type and all 20,000 (or so) textual
variations found in the raw Win32 APIs (Table 1-7).

Table 1-7. String Conversion Members of the Marshal Type

String Conversion Member Meaning in Life
of the Marshal Type

FreeBSTR() Frees a BSTR using SysFreeString

PtrToStringAnsi() Copies all or part of an ANSI string to a managed

System.String object

PtrToStringAuto() Copies an unmanaged string to a managed

System.String object

PtrToStringBSTR() Copies a Unicode string stored in native heap to a

managed System.String object

PtrToStringUni() Copies an unmanaged Unicode string to a managed

System.String object

StringToBSTR() Allocates a BSTR and copies the string contents into it

StringToCoTaskMemAnsi() Copies the contents of a string to a block of memory

allocated from the unmanaged COM task allocator

StringToCoTaskMemAuto() Copies the contents of a string to a block of memory

allocated from the unmanaged COM task allocator

StringToCoTaskMemUni() Copies the contents of a string to a block of memory

allocated from the unmanaged COM task allocator

StringToHGlobalAnsi() Copies the contents of a managed System.String object

into native heap, converting into ANSI format as it

copies

StringToHGlobalAuto() Copies the contents of a managed System.String object

into native heap, converting into ANSI format if

required

StringToHGlobalUni() Copies the contents of a managed System.String object

into native heap

Chapter 1

22

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 22

Perhaps the most directly useful members of the Marshal type (especially
when working with PInvoke) are the following set of structure and/or memory
manipulation members of the Marshal type (Table 1-8).

Table 1-8. Memory/Structure-Centric Members of the Marshal Type

Memory/Structure-Centric Meaning in Life
Member of the Marshal Type

AllocCoTaskMem() Allocates a block of memory of specified size from the

COM task memory allocator using CoTaskMemAlloc

AllocHGlobal() Allocates a block of memory using GlobalAlloc

DestroyStructure() Frees all substructures pointed to by the specified

native memory block

FreeCoTaskMem() Frees a block of memory allocated by the unmanaged

COM task memory allocator with AllocCoTaskMem

FreeHGlobal() Frees memory previously allocated from the

unmanaged native heap of the process with

AllocHGlobal

PtrToStructure() Marshals data from an unmanaged block of memory to

a managed object

ReAllocCoTaskMem() Resizes a block of memory previously allocated with

AllocCoTaskMem

ReAllocHGlobal() Resizes a block of memory previously allocated with

AllocHGlobal

SizeOf() Returns the unmanaged size of a class used via Marshal

in bytes

StructureToPtr() Marshals data from a managed object to an

unmanaged block of memory

The error-centric members listed in Table 1-9 compose the next major aspect
of the Marshal type.

Understanding Platform Invocation Services

23

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 23

Table 1-9. Error-Centric Members of the Marshal Type

Error-Centric Member Meaning in Life
of the Marshal Type

GetExceptionCode() Retrieves a code that identifies the type of the exception

that occurred

GetExceptionPointers() Retrieves a machine-independent description of an

exception and information about the machine state

that existed for the thread when the exception occurred

GetHRForException() Converts the specified exception to an HRESULT

GetHRForLastWin32Error() Returns the HRESULT corresponding to the last error

incurred by Win32 code executed using Marshal

GetLastWin32Error() Returns the error code returned by the last unmanaged

function called using Platform Invoke that has the

SetLastError() flag set

ThrowExceptionForHR() Throws an exception with a specific HRESULT value

Finally, be aware that the Marshal type defines a number of members that
allow you to read and write data to and from unmanaged memory (Table 1-10).

Table 1-10. Bit Reading/Writing–Centric Members of the Marshal Type

Data Reading/Writing Meaning in Life
Members of the
Marshal Type

ReadByte() Reads or writes a single byte from an unmanaged pointer

WriteByte()

ReadInt16() Reads or writes a 16-bit integer from native heap

WriteInt16()

ReadInt32() Reads or writes a 32-bit integer from native heap

WriteInt32()

ReadInt64() Reads or writes a 64-bit integer from native heap

WriteInt64()

ReadIntPtr() Reads or writes a processor native-sized integer from

WriteIntPtr() native heap

Chapter 1

24

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 24

Again, you are not required to make use of all of these members when working
with COM/.NET interop or PInvoke. Many of the static members seen in the
previous tables are more low level than you will need for your day-to-day
programming tasks. However, you will see useful examples when necessary
throughout the remainder of this text.

The DllImportAttribute Type

The final piece of the PInvoke puzzle is the DllImportAttribute type. In many ways,
this single .NET type combines the functionality of the Win32 LoadLibrary() and
GetProcAddress() APIs into a well-encapsulated class. On a related note, also
understand that DllImport is a direct .NET equivalent to the VB 6.0–style declare
statement. In fact, under VB .NET, the legacy Declare statement, although still
supported, has been retrofitted to make use of the services of PInvoke. Given this,
I will avoid examining the use of VB .NET’s Declare keyword and stick to the
DllImport attribute.

Like most .NET attributes, DllAttribute defines a number of public fields
that allow you to control its behavior. Also, like most .NET attributes, these fields
are typically set as named constructor arguments. First, ponder the formal type
definition:

// The essence of PInvoke.

public sealed class DllImportAttribute : Attribute

{

// Fields (first two listings are not typos!)

// These fields are used to control exactly

// how the attribute should be applied to the

// unmanaged function export.

public CallingConvention CallingConvention;

public CharSet CharSet;

public string EntryPoint;

public bool ExactSpelling;

public bool PreserveSig;

public bool SetLastError;

// Constructor (string param used to set fields

// as name / value pairs).

public DllImportAttribute(string dllName);

// Properties.

public object TypeId { virtual get; }

public string Value { get; }

Understanding Platform Invocation Services

25

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 25

// Methods (basic .NET infrastructure stuff).

public virtual bool Equals(object obj);

public virtual int GetHashCode();

public Type GetType();

public virtual bool IsDefaultAttribute();

public virtual bool Match(object obj);

public virtual string ToString();

}

As you can see, DllImportAttribute defines two fields (CallingConvention and
CharSet), which may be assigned a value from enumerations of the same name:

// Specifies the calling convention required

// to call methods implemented in unmanaged code.

public enum CallingConvention

{

Cdecl,

FastCall, // Not supported under .NET version 1.0.*.

StdCall,

ThisCall,

Winapi

}

// Dictates which character set should be used to marshal strings.

public enum CharSet

{

Ansi,

Auto,

None,

Unicode

}

You will see exactly how these three types are used during the remainder of
this chapter. Before tackling the topic of accessing your custom DLL, let’s take
PInvoke out for a simple test drive and get to know the various fields of
DllImportAttribute at the same time.

A Trivial PInvoke Example

The most typical use of PInvoke is to allow .NET components to interact with the
Win32 API in the raw. As you already know, the .NET base class library exists for
the very purpose of hiding the low-level API from view. Thus, although you might

Chapter 1

26

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 26

not ever need to drop down to the raw Win32, PInvoke provides the ability
to do so. To illustrate the use of PInvoke, let’s build a C# console application
(SimpleAPIInvoke) that makes a call to the Win32 MessageBox() function.
First, the code:

namespace SimpleAPIInvoke

{

using System;

// Must reference to gain access to the PInvoke types.

using System.Runtime.InteropServices;

public class PInvokeClient

{

// The Win32 MessageBox() function lives in user32.dll.

[DllImport("user32.dll")]

public static extern int MessageBox(int hWnd, String pText,

String pCaption, int uType);

public static int Main(string[] args)

{

// Send in some managed data.

String pText = "Hello World!";

String pCaption = "PInvoke Test";

MessageBox(0, pText, pCaption, 0);

return 0;

}

}

}

The process of calling a C-style DLL begins by declaring the function you wish
to call using the static and extern C# keywords (this step is not optional). Notice
that when you declare the C function prototype, you must list the return type,
function name, and arguments in terms of managed data types. So you do not
send in char* or wchar_t* arrays, but the managed System.String type. Once you
have prototyped the method you intend to call, your next step is to adorn this
member with the DllImport attribute. At absolute minimum, you need to specify
the name of the raw DLL that contains the function you are attempting to call as
shown here:

[DllImport("user32.dll")]

public static extern int MessageBox(…);

Understanding Platform Invocation Services

27

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 27

As you can see, the DllImportAttribute type defines a set of public fields that
may be specified to further configure the process of binding to the function
export. Table 1-11 gives a rundown of these fields.

Table 1-11. Fields of the DllImportAttribute Type

DllImportAttribute Field Meaning in Life

CallingConvention Used to establish the calling convention

used in passing method arguments. The default is

CallingConvention.WinAPI, which corresponds to __stdcall.

CharSet Indicates how string arguments to the method should be

marshaled (CharSet.Ansi is the default).

EntryPoint Indicates the string name or ordinal number of the function

to be called.

ExactSpelling PInvoke attempts to match the name of the function you

specify with the “real” name as prototyped. If this field is set

to true, you are indicating that the name of the entry point

in the unmanaged .dll must exactly match the name you are

passing in.

PreserveSig When set to true (the default setting), an unmanaged

method signature will not be transformed into a managed

signature that returns an HRESULT and has an additional

[out, retval] argument for the return value.

SetLastError When set to true, indicates that the caller may call

Marshal.GetLastWin32Error() to determine if an error

occurred while executing the method; the default is false in

C# but true in VB .NET.

If you wish to set these values for your current DllImportAttribute object
instance, simply specify each as a name/value pair to the class constructor. If you
check out the definition of the DllImportAttribute constructor, you can see it takes
a single parameter of type System.String:

class DllImportAttribute

{

// Constructor takes a string that holds all field values.

public DllImportAttribute(string val);

…

}

Chapter 1

28

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 28

Given this bit of information, it should be clear that the order in which you
specify these values does not matter. The DllImport class will simply parse the
string internally and use the values to set its internal state data.

Specifying the ExactSpelling Field

The first field of interest is ExactSpelling, which is used to control whether the
name of the managed function is identical to that of the name of the unmanaged
function. For example, as you may know, there is no such function named
MessageBox in the Win32 API. Rather, you have an ANSI version (MessageBoxA)
and a Unicode version (MessageBoxW). Given the fact that you specified a
method named MessageBox, you can correctly assume that the default value of
ExactSpelling is false. However, if you were to set this value to true as follows:

[DllImport("user32.dll", ExactSpelling = true)]

public static extern int MessageBox(…); // Uh-oh!

you would now receive an EntryPointNotFoundException exception, because
there is no function named MessageBox in user32.dll! As you can see, the
ExactSpelling field basically allows you to be “lazy” and ignore the W or A suffixes.
However, PInvoke clearly needs to ultimately resolve the exact name of the func-
tion you wish to call. When you leave ExactSpelling at its default value (“false”), the
letter A is appended to the method name under ANSI environments and the letter
W under Unicode environments.

Specifying the Character Set

If you wish to explicitly specify the character set used to marshal data between
managed code and the raw DLL export, you may set the value of the CharSet field
using a member from the related CharSet enumeration (Table 1-12).

Table 1-12. CharSet Values

CharSet Member Name Meaning in Life

Ansi Specifies that strings should be marshaled as ANSI 1-byte chars

Auto Informs PInvoke to marshal a string correctly as required by

the target platform (Unicode on WinNT/Win2000 and ANSI

on Win 9x)

None Signifies that you didn’t specify how to marshal strings (default)

and you wish the runtime to figure things out automatically

Unicode Specifies that strings should be marshaled as Unicode 2-byte

chars

Understanding Platform Invocation Services

29

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 29

By way of example, if you wish to enforce that all strings be marshaled as
Unicode (and thus risk your code not working correctly on Win95, Win98, or
WinME platforms), you would write the following:

// Demand the exact name, and specify the Unicode character set.

[DllImport("user32.dll", ExactSpelling = true, CharSet=CharSet.Unicode)]

public static extern int MessageBoxW(…);

Generally speaking, it is safer to set the CharSet value to CharSet.Auto (or
simply accept the default). In this way, textual parameters will be marshaled
correctly regardless of the target platform, leaving your code base far more
portable.

Specifying Calling Conventions

The next field of interest is CallingConvention. As you know, Win32 API functions
can be adorned with a number of typedefs that specify how parameters should be
passed into the function (C declaration, fast call, standard call, and so forth). The
CallingConvention field may be set using any value from the CallingConvention
enumeration. As you might suspect, this enum specifies values such as Cdecl,
Winapi, StdCall, and so forth. The default of this field is StdCall, so you can typically
ignore explicitly setting this field (given that this is the most common Win32
calling convention). Nevertheless, Table 1-13 documents the possible values of the
CallingConvention enumeration. (Do note the CallingConvention.ThisCall value,
which will be used later in this chapter to trigger methods of exported C++
class types.)

Table 1-13. CallingConvention Values

CallingConvention Meaning in Life
Enumeration Value

Cdecl The caller cleans the stack. This enables calling functions with

varargs.

FastCall This calling convention is not currently supported (but is

reserved for future use).

StdCall The callee cleans the stack. This is the default convention for

calling unmanaged functions from managed code.

ThisCall The first parameter is the “this” pointer and is stored in register

ECX. Other parameters are pushed on the stack. This calling

convention is used to call methods on classes exported from an

unmanaged DLL.

Winapi Uses the default platform calling convention. For example,

Windows uses StdCall and Windows CE uses Cdecl.

Chapter 1

30

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 30

Specifying Function Entry Points

Next up is the EntryPoint field. By default, this field will be the same as the name
of the function you are prototyping. Therefore, in the following declaration,
EntryPoint is implicitly set to MessageBoxW.

// EntryPoint automatically set to 'MessageBoxW'.

[DllImport("user32.dll", ExactSpelling = true, CharSet=CharSet.Unicode)]

public static extern int MessageBoxW(…);

If you wish to establish an alias for the exported function, you may specify the
“real name” of the exported function using the EntryPoint field, effectively
renaming the function for use in your managed code. Obviously, this is a helpful
way to avoid possible name clashes. To illustrate, here is the final iteration of the
PInvoke example that maps the MessageBoxW() function to a friendly alias
(DisplayMessage):

public class PInvokeClient

{

// Map the MessageBoxW() function to 'DisplayMessage'.

[DllImport("user32.dll", ExactSpelling = true,

CharSet=CharSet.Unicode, EntryPoint = "MessageBoxW")]

public static extern int DisplayMessage(int hWnd, String pText,

String pCaption, int uType);

public static int Main(string[] args)

{

String pText = "Hello World!";

String pCaption = "PInvoke Test";

// This really calls MessageBoxW()…

DisplayMessage(0, pText, pCaption, 0);

return 0;

}

}

Also, be aware that if you wish to refer to an unmanaged method by ordinal
position (rather than the friendly string name), make use of a pound prefix
followed by the numerical value:

// The ordinal value of MessageBoxW() is 484 (ala dumpbin.exe).

[DllImport("user32.dll", ExactSpelling = true,

CharSet=CharSet.Unicode, EntryPoint = "#484")]

public static extern int DisplayMessage(int hWnd, String pText,

String pCaption, int uType);

Understanding Platform Invocation Services

31

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 31

SetLastError and Marshal.GetLastWin32Error()

The final field of DllImportAttribute is SetLastError, which is false by default under
C#. When you set this field to true, you are informing PInvoke that you wish to
receive any Win32 error that was returned from the exported function. For
example, as you most likely know, the first parameter to MessageBox{A|W}() is the
HWND, which identifies the parent window of the message box. Assume you
assigned a bogus value to this parameter:

// There is no window with the handle 99999!

DisplayMessage(99999, pText, pCaption, 0);

Given that the value 99999 is well within the bounds of a System.Int32, the
program compiles without fail. However, when you run the application, the
message fails to display. If you wish to obtain the error number thrown from
MessageBoxW(), simply make use of the Marshal type:

// Get the error!

DisplayMessage(999, pText, pCaption, 0);

Console.WriteLine("Last Win32 Error: {0}",

Marshal.GetLastWin32Error());

If you run the application, you now find the output shown in Figure 1-7.

Figure 1-7. Obtaining the last Win32 error

Well, what good is it to know that the numerical value of the error is 1400? The
truth of the matter is that each predefined Win32 error code is assigned a friendly
text string that describes the error in question. These descriptions are located in
the winerror.h header file; however, it is much simpler to discover the error
description at design time using the Error Lookup utility located under the Tools |
Error Lookup menu selection of the VS. NET IDE. If you paste in the value 1400,
you will find the helpful hint shown in Figure 1-8.

Chapter 1

32

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 32

Figure 1-8. The meaning of the mysterious 1400

Now, what if you wish to obtain this string message programmatically? The
FormatMessage() API function (defined in kernel32.dll) will return the correct
string value based on the numerical error. Given that FormatMessage() is
contained within a traditional C-based DLL, you would need to create a separate
DllImport statement mapping to FormatMessage(); however, I’ll leave that as a
task for the interested reader.

CODE The SimpleAPIPInvoke project is included under the Chapter 1
subdirectory.

Interacting with MyCustomDLL.dll

Now that you have seen how to customize the behavior of DllImport to access an
API function taking simple data types, let’s build a new C# console application
(PInvokeCustomDLL) that triggers each member of the custom DLL you created
earlier in this chapter. To do so, make use of a common PInvoke strategy, which is
to build a custom class type that wraps the collection of DllImport statements on
behalf of the caller using various static members. Given this, assume you have
defined the following class within the new namespace:

// The Custom DLL wrapper class.

public class MyCustomDLLWrapper

{

// …all the DllExports…

}

Understanding Platform Invocation Services

33

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 33

The first member you will interact with is AddNumbers(), which is a very clear
mapping between managed and unmanaged types:

public class MyCustomDLLWrapper

{

// extern "C" MYCUSTOMDLL_API int AddNumbers(int x, int y);

[DllImport("MyCustomDll.dll")]

public static extern int AddNumbers(int x, int y);

}

Calling this external function from the C# Main() method could not be any
simpler:

class CustomDLLInvoker

{

[STAThread]

static void Main(string[] args)

{

// Add some numbers.

Console.WriteLine("Invoking AddNumbers()...");

Console.WriteLine("10 + 10 is {0}",

MyCustomDLLWrapper.AddNumbers(10, 10));

}

To be sure, when you are invoking external functions that do not involve any
parameters above and beyond simple input data types (for example, no pointers),
the approach is quite straightforward. Simply map managed data types into
unmanaged types using the information presented earlier in Table 1-4.

Marshaling Arrays

Passing arrays of intrinsic data types is also quite simple. Recall that the
AddArray() member of the custom DLL requires the caller to pass in an array of
ints (and the size of the incoming array) to obtain the summation of each item.
Here is the DllImport:

public class MyCustomDLLWrapper

{

…

// extern "C" MYCUSTOMDLL_API int AddArray(int x[], int size);

[DllImport("MyCustomDll.dll")]

public static extern int AddArray(int[] x, int y);

}

Chapter 1

34

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 34

The managed C# code is again quite straightforward:

// Add array of numbers.

Console.WriteLine("\nInvoking AddArray()...");

int[] theVals = {10, 23, 83, 9, 12};

Console.WriteLine("Sum of array is {0}",

MyCustomDLLWrapper.AddArray(theVals, theVals.Length));

Passing Structures

When you need to call an exported DLL function that requires a structure, you
have a bit of additional work to do. As you may assume, the .NET class libraries do
not contain a managed definition for every Win32 structure (and obviously has no
way to know the layout of custom structures such as CAR or CAR2). To interact
with this sort of function export, you need to build a managed equivalent of the
raw Win32 structure using the syntax of your favorite programming language. One
odd point to be aware of is that you are able to define the managed version of the
raw structure via a custom structure or class definition.

In either case, when you are building a managed version of an unmanaged
structure, you need to adorn the type with the StructLayout attribute in order to
instruct PInvoke how to represent each member in the UDT. StructLayout can be
assigned any value of the LayoutKind enumeration:

// How should the class / struct definition be

// marshaled to the unmanaged layer?

public enum LayoutKind

{

Auto,

Explicit,

Sequential

}

In reality, you will almost always want to make use of LayoutKind.Sequential,
which informs PInvoke to preserve the order of the fields when mapping the type
between managed and unmanaged environments. LayoutKind.Auto is simply evil,
because it gives permission to the runtime to reorder the fields at its leisure for
reasons of efficiency. Never employ this option when marshaling structures using
PInvoke.

The final option, LayoutKind.Explicit, allows you to be in charge of calculating
the physical position of fields of the class or structure when marshaling the type
into an unmanaged binary. Types marked as StructLayout(LayoutKind.Explicit)

Understanding Platform Invocation Services

35

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 35

require you to make use of another attribute (FieldOffset) to mark the locations of
each field. You have no need to make use of this option for the CAR and CAR2
types, given that many of your fields can have varying lengths (the strings).
However, by way of a simple example, assume the following managed POINT
representation:

[StructLayout(LayoutKind.Explicit)]

public struct POINT

{

[FieldOffset(0)] int x;

[FieldOffset(4)] int y;

}

Representing CAR and CAR2 As Class Types

Assume you wish to build a managed representation of the CAR and CAR2 types
using the C# class keyword. CAR is simple enough (recall that unmanaged char*
maps into a managed System.String):

[StructLayout(LayoutKind.Sequential)]

public class CAR

{

public string make;

public string color;

}

However, what about the CAR2 type, which makes use of an embedded CAR
type? Because CAR is defined as a C# class type, you can simply allocate an
instance within the CAR2 class definition as follows:

// A structure containing another structure.

[StructLayout(LayoutKind.Sequential)]

public class CAR2

{

public CAR theCar = new CAR();

public string petName;

}

Chapter 1

36

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 36

This approach will also simplify the DllImport definition and client-side invo-
cation. First update the wrapper to invoke DisplayBetterCar():

public class MyCustomDLLWrapper

{

…

// extern "C" MYCUSTOMDLL_API void DisplayBetterCar(CAR2* theCar);

[DllImport("MyCustomDll.dll", CharSet=CharSet.Ansi)]

public static extern int DisplayBetterCar(CAR2 c);

}

The client-side code begins by creating a new CAR2 structure, filling in the
field data, and passing it along to the unmanaged export:

// Display a better car.

Console.WriteLine("\nInvoking DisplayBetterCar()...");

Console.WriteLine("...message boxes are displaying...");

CAR2 myCar = new CAR2();

myCar.petName = "Frank";

myCar.theCar.color = "Rust";

myCar.theCar.make = "Colt";

MyCustomDLLWrapper.DisplayBetterCar(myCar);

Receiving Allocated Structures

Now, if you wish to invoke GiveMeThreeBasicCars(), you would need to build the
DllImport statement using the C# out keyword, given that this method will allo-
cate three CAR types on your behalf.

public class MyCustomDLLWrapper

{

…

// extern "C" MYCUSTOMDLL_API

// void GiveMeThreeBasicCars(CAR** theCars);

[DllImport("MyCustomDll.dll", CharSet=CharSet.Ansi)]

public static extern void GiveMeThreeBasicCars(out IntPtr theCars);

}

Notice that you have not sent in an output parameter of type CAR[], but a
System.IntPtr that will point to the memory allocated by the unmanaged export.
When you wish to filter the memory for a given structure, you need to make use of

Understanding Platform Invocation Services

37

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 37

four key members of the Marshal type: PtrToStructure(), SizeOf(),
DestroyStructure(), and FreeCoTaskMem(). First, the calling code:

// Get three basic cars.

Console.WriteLine("\nInvoking GiveMeThreeBasicCars()...");

int size = 3;

// Pass in an IntPtr as an output parameter.

IntPtr outArray;

MyCustomDLLWrapper.GiveMeThreeBasicCars(out outArray);

// Allocate an array big enough to hold the

// memory returned to use.

CAR[] carArray = new CAR[size];

IntPtr current = outArray;

// Print out each structure.

for(int i = 0; i < size; i++)

{

// Get next CAR using Marshal.PtrToStructure()

carArray[i] = new CAR();

Marshal.PtrToStructure(current, carArray[i]);

Console.WriteLine("Structure {0}: {1} {2}", i,

carArray[i].make, carArray[i].color);

// Destroy memory held by current structure.

Marshal.DestroyStructure(current, typeof(CAR));

// Calculate location of next structure using Marshal.SizeOf().

current = (IntPtr)((int)current + Marshal.SizeOf(carArray[i]));

}

// Free memory for the allocated array.

Marshal.FreeCoTaskMem(outArray);

// Just to make sure that we fail

// immediately if we try to use this again.

outArray = IntPtr.Zero;

It really isn’t as bad as it looks. The process begins by calling the unmanaged
export to receive a block of memory contained within a System.IntPtr. Because the
managed CAR class type has been defined using LayoutKind.Sequential, you can
rest assured that the memory contained within the IntPtr type can be mapped

Chapter 1

38

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 38

exactly to an array of CAR types. Given this assumption, the bulk of the work
simply iterates over IntPtr three times to pull out the current CAR using
Marshal.PtrToStructure().

Once you free up the memory contained within the current CAR using
Marshal.DestroyStrucutre(), you figure out the position of the next CAR in the
IntPtr using the old C programmers’ sizeof hack (a la Marshal.SizeOf()). Finally,
once you have sucked out and displayed each CAR, you free the memory of the
allocated array using Marshal.FreeCoTaskMem().

Interacting with Exported Class Types

The final exports of MyCustomDLL.dll allow the outside world to interact with the
internal CMiniVan type. Recall that the unmanaged CreateMiniVan() and
DestroyMiniVan() functions made use of a strongly typed CMiniVan. In terms of
managed code, you will represent this type using System.IntPtr.

Also recall during my discussion of the dumpbin.exe utility that the members
of exported class types are referenced using a mangled name generated by the C++
compiler. When you wish to call an exported class member from managed code,
you need to generate a separate DllImport statement that makes explicit use of the
EntryPoint field. Given that DisplayNumberOfKids() method will be called on the
class level, you need to specify the CallingConvention as CallingConvention.
ThisCall (this, as in the “this” pointer). This being said, here are the final three
static methods of the MyCustomDLLWrapper type:

public class MyCustomDLLWrapper

{

…

// extern "C" MYCUSTOMDLL_API CMiniVan* CreateMiniVan();

[DllImport("MyCustomDll.dll")]

public static extern IntPtr CreateMiniVan();

// extern "C" MYCUSTOMDLL_API void DeleteMiniVan(CMiniVan* obj);

[DllImport("MyCustomDll.dll")]

public static extern void DeleteMiniVan(IntPtr obj);

// CMiniVan::DisplayNumberOfKids

[DllImport("MyCustomDll.dll", EntryPoint =

"?DisplayNumberOfKids@CMiniVan@@QAEHXZ",

CallingConvention=CallingConvention.ThisCall)]

public static extern int GetTheKids(IntPtr thisPointer);

}

Understanding Platform Invocation Services

39

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 39

The C++ CMiniVan can be manipulated from your C# console application as
follows:

// Manipulate a CMiniVan type.

Console.WriteLine("\nInvoking CMiniVan.DisplayNumberOfKids()...");

IntPtr instancePtr = MyCustomDLLWrapper.CreateMiniVan();

int kidCount = MyCustomDLLWrapper.GetTheKids(instancePtr);

Console.WriteLine("Number of kids in Mini Van is: {0} \n", kidCount);

MyCustomDLLWrapper.DeleteMiniVan(instancePtr);

If you run the application, you will see the output shown in Figure 1-9.

Figure 1-9. A C# client interacting with MyCustomDLL.dll

CODE The PInvokeCustomDLL project is included under the Chapter 1
directory.

Chapter 1

40

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 40

Examining the Underlying IL

There is one final point of interest regarding the current C# client application.
You may be wondering exactly how a given DllImport attribute is represented
under the hood in terms of the underlying IL. Assume you have loaded the
PInvokeCustomDLL.exe assembly into ILDasm.exe. If you examine the IL
(intermediate language) for any DllImport statement defined by the wrapper
class, you will find that the [pinvokeimpl] tag is used to inform mscoree.dll that
this method will invoke a member in an external unmanaged DLL. For example,
consider the IL for the AddNumbers() method:

.method public hidebysig static pinvokeimpl("MyCustomDll.dll" winapi)

int32 AddNumbers(int32 x, int32 y) cil managed preservesig

{

}

Because you did not specify an EntryPoint value, you have a one-to-one
mapping between the managed and unmanaged method names. However, if you
check out the IL for the managed GetTheKids() method, you will find that the
[pinvokeimpl] tag is qualified with an “as” statement that points to the correct
mangled name of the export:

.method public hidebysig static pinvokeimpl("MyCustomDll.dll" as

"\?DisplayNumberOfKids@CMiniVan@@QAEHXZ" thiscall)

int32 GetTheKids(native int thisPointer) cil managed preservesig

{

}

When the engine encounters the [pinvokeimpl] tag, the following tasks ensue:

• The runtime locates the DLL containing the function.

• The runtime loads the DLL into memory.

• The runtime locates the address of the function in memory and marshals
parameters as required.

• Control is transferred to the unmanaged function.

Once the unmanaged function receives control, the runtime waits for the
method call to return and hands back any function return values in terms of
managed code. Figure 1-10 illustrates the basic process.

Understanding Platform Invocation Services

41

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 41

Figure 1-10. Behold, the guts of PInvoke.

Working with Unmanaged Callbacks

To wrap up this chapter, let’s check out how PInvoke allows managed code to
interact with traditional Win32 callback functions. First question: What exactly is a
callback function? Simply put, a callback function is a function defined by a DLL,
but implemented by the caller, that can be called by the DLL. Typically, callback
functions are used when the unmanaged DLL needs to report back to the invoker.
This may be to simply signal that a given task is completed or indicate that the
unmanaged DLL needs additional information from the caller. Figure 1-11 docu-
ments the basic callback pattern.

Figure 1-11. The basic callback pattern

Chapter 1

42

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 42

This basic pattern of passing one part of a system a pointer to a function
located at another part of the system is a common theme in Windows develop-
ment. As you may know, the COM connection point architecture takes the same
basic approach using interface references. Likewise, Win32-style callbacks are the
forerunner of the modern day .NET delegation protocol.

A Simple Callback Example

To illustrate the process of interacting with Win32 callbacks from managed
code, assume you have created a new Win32 DLL project workspace named
MyCustomCallbackDLL. The first order of business is to define a prototype of the
method that will be implemented by the caller. Think this one through just a bit. If
the unmanaged DLL is going to be passed a pointer to a function implemented
elsewhere, it must be able to understand the calling conventions of said function
(such as the parameters and return type). To keep things simple, your first callback
prototype will take no parameters and return a boolean (to signal if the client has
successfully completed its share of the workload):

// Simple Callback prototype.

typedef bool (CALLBACK *SIMPLECALLBACKFUNCTION)();

The lack of arguments is syntactically signified by the empty parentheses. The
CALLBACK tag is defined within windef.h as follows:

#define CALLBACK __stdcall

To keep your wits about you, I’ll take the opportunity here to remind you that
this function will be implemented by the caller but prototyped by the unmanaged
DLL.

The next step is to define a function export that can take a pointer to this
function and trigger the client-side implementation at a later time. Again to keep
things simple, your export will verify the current invocation and immediately
trigger the callback using the supplied function pointer:

extern "C" MYCUSTOMCALLBACKDLL_API void

VerifyAndReportBack(SIMPLECALLBACKFUNCTION pf)

{

MessageBox(NULL, "You called me...about to call you!",

"Unmanaged DLL", MB_OK);

Understanding Platform Invocation Services

43

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 43

// Call the managed function using incoming pointer.

bool res = (*pf)();

// Get result from callback.

if(res)

MessageBox(NULL, "Callback says TRUE",

"Unmanaged DLL", MB_OK);

else

MessageBox(NULL, "Callback says FALSE",

"Unmanaged DLL", MB_OK);

}

Notice that when the VerifyAndReportBack() export wishes to call the client-
side callback, it simply makes use of the supplied function pointer:

// This line basically says "I am calling a

// function which matches the calling

// conventions established by the

// SIMPLECALLBACKFUNCTION callback

// definition."

bool res = (*pf)();

A More Interesting Callback Function

Let’s add one additional callback to your new DLL that allows the caller to pass in
not only a pointer to some function on their end, but also a single argument of
type THEPOINT. The client will allocate a THEPOINT structure that will be manip-
ulated by the export and passed to the client’s callback. Here are the complete
details:

// A basic structure.

typedef struct _THEPOINT

{

int x;

int y;

} THEPOINT;

// THEPOINT Callback prototype.

typedef bool (CALLBACK *POINTCALLBACKFUNCTION)(THEPOINT* i);

extern "C" MYCUSTOMCALLBACKDLL_API void

ChangePOINTAndReportBack(POINTCALLBACKFUNCTION pf,

THEPOINT* thePoint)

Chapter 1

44

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 44

{

MessageBox(NULL, "Received THEPOINT and am about to change it...",

"Unmanaged DLL", MB_OK);

// Take the incoming THEPOINT and change it.

thePoint->x = 10000;

thePoint->y = 20000;

// Call the managed function.

bool res = (*pf)(thePoint);

// Get result from callback.

if(res)

MessageBox(NULL, "Callback says TRUE",

"Unmanaged DLL", MB_OK);

else

MessageBox(NULL, "Callback says FALSE",

"Unmanaged DLL", MB_OK);

}

In this case, the client will pass in a function pointer that matches the calling
conventions defined by the POINTCALLBACKFUNCTION callback definition.
Thus, the following unmanaged code:

// Call the managed function.

bool res = (*pf)(thePoint);

says in effect: I will call a function on the client which takes a THEPOINT
parameter and returns a Boolean.

CODE The MyCustomCallbackDLL project is located under the
Chapter 1 subdirectory.

Understanding Platform Invocation Services

45

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 45

Building a C# Callback Client

Now that you have a custom DLL that defines two callback prototypes, you are in
the position to build a C# application to provide an implementation. When you
wish to interact with a traditional Win32 callback from managed code, you follow a
very fixed set of steps:

1. Define a .NET delegate that represents the unmanaged callback.

2. Build a DllImport statement for the unmanaged export, using the .NET
delegate as the function pointer parameter.

3. Assign a managed function to the delegate.

4. Trigger the unmanaged export.

Confused? Don’t be. To see each piece fit together, ponder the following C#
code, which interacts with the SIMPLECALLBACKFUNCTION prototype:

namespace CustomCallbackClient

{

class ManagedCallBackApp

{

// typedef bool (CALLBACK *SIMPLECALLBACKFUNCTION)();

// 1) Define a delegate representing the unmanaged callback

// prototype.

public delegate bool ReportBackHere();

// 2) Build the DllImport (note the parameter is our delegate).

[DllImport("MyCustomCallbackDLL.dll")]

public static extern void VerifyAndReportBack(ReportBackHere callback);

[STAThread]

public static void Main()

{

// 3) Assign a function for the delegate to call.

ReportBackHere simpleCallback =

new ReportBackHere(ManagedCallBackApp.Report);

// 4) Call the unmanaged export.

VerifyAndReportBack(simpleCallback);

}

Chapter 1

46

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 46

// This will be called by the unmanaged DLL.

public static bool Report()

{

Console.WriteLine("I was called by the DLL!");

return false;

}

}

}

Notice that the managed delegate maps identically to the unmanaged call-
back prototype, in that both return a Boolean and neither takes any arguments.

// The C++ callback prototype.

typedef bool (CALLBACK *SIMPLECALLBACKFUNCTION)();

// The C# managed delegate.

public delegate bool ReportBackHere();

When you build the DllImport statement, you make use of this delegate in
place of the unmanaged SIMPLECALLBACKFUNCTION. Again, ponder the rela-
tionship:

// The C++ export takes a pointer to a function that matches.

// SIMPLECALLBACKFUNCTION.

extern "C" MYCUSTOMCALLBACKDLL_API

void VerifyAndReportBack(SIMPLECALLBACKFUNCTION pf)

{…}

// The C# DllImport statement uses the delegate.

[DllImport("MyCustomCallbackDLL.dll")]

public static extern void VerifyAndReportBack(ReportBackHere callback);

The remainder of the logic simply defines and implements the method called
by the delegate. Now, what of the POINTCALLBACKFUNCTION prototype? The
only difference is to build a managed equivalent of the THEPOINT structure.
Other than that, simply repeat the process:

namespace CustomCallbackClient

{

[StructLayout(LayoutKind.Sequential)]

public class THEPOINT

{

Understanding Platform Invocation Services

47

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 47

public int x;

public int y;

}

class ManagedCallBackApp

{

public delegate bool SendTHEPOINTHere(THEPOINT pt);

[DllImport("MyCustomCallbackDLL.dll")]

public static extern viod ChangePOINTAndReportBack

(SendTHEPOINTHere callback, THEPOINT pt);

[STAThread]

public static void Main()

{

SendTHEPOINTHere theCallBack = new

SendTHEPOINTHere(ManagedCallBackApp.GiveMeThePoint);

THEPOINT pt = new THEPOINT();

pt.x = 10;

pt.y = 10;

Console.WriteLine("Point is:");

Console.WriteLine("X = {0}\nY = {1}", pt.x, pt.y);

ChangePOINTAndReportBack(theCallBack, pt);

}

public static bool GiveMeThePoint(THEPOINT pt)

{

Console.WriteLine("New Point is:");

Console.WriteLine("X = {0}\nY = {1}", pt.x, pt.y);

return true;

}

}

}

CODE The CustomCallbackClient project is included under the
Chapter 1 subdirectory.

Chapter 1

48

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 48

At this point, you have examined the process of building managed .NET appli-
cations that are able to communicate with traditional C-style DLLs. While not as
sexy as the act of COM/.NET communication, PInvoke is helpful when you need
to access legacy (non-COM) binary modules. Although this chapter focused on the
process of interacting with custom *.dll files, all of the information presented here
applies directly to the process of triggering a Win32 API function.

Summary

PInvoke is the aspect of the .NET Framework that is specifically geared toward the
task of invoking functions defined in non-COM DLLs. As you have seen, the back-
bone of PInvoke is the DllImport attribute, which allows you to map a managed
method to an unmanaged equivalent. This class type contains a number of fields
that allow you to specify calling conventions, string representations, and error
information.

In addition to the DllImportAttribute type, activities involving PInvoke typi-
cally make use of the Marshal class, which defines a number of static members
that allow you to transform raw memory (System.IntPtr) into strongly typed UDTs
(for example, Marshal.PtrToStructure() and friends). Finally, this chapter illus-
trated how .NET delegate types can represent traditional Win32 callback proto-
types. Once you have defined an appropriate delegate, this can be passed into the
unmanaged function export as if it were indeed an unmanaged function pointer.

Now that you have seen how to interact with traditional C-based DLLs, the next
chapter drills into the specifics of the internal composition of COM-based DLLs.

Understanding Platform Invocation Services

49

*0112_Ch01_CMP3.qxp 3/23/02 5:07 PM Page 49

CHAPTER 2

The Anatomy
of a COM Server

In terms of software longevity, Microsoft’s Component Object Model (COM) has
enjoyed a lengthy and successful life. Formally solidified circa 1993, COM
formalized a specific process for building reusable, binary software components.
When developers abide by the rules of COM, they are presented with a number of
desirable byproducts. One of the great byproducts of COM components is their
language-independent nature. This trait allows software developers to build COM
servers in one language (such as VB 6.0) and reuse them in any number of other
COM-aware languages (such as C++). However, depending on your programming
tool of choice, the internal composition of a COM server may be a bit of a mystery.

Given that the only way to truly comprehend COM/.NET interoperability is to
understand the nuances of both architectures, this chapter is intended to provide
a concise overview of the COM paradigm. During the process, you build a
complete COM binary (using raw C++ and IDL [Interface Definition Language])
that will be accessed by various .NET-aware languages later in this text. Along the
way, you will be reminded of the role of the system registry, the COM library, and
related entities such as the IUnknown, IClassFactory, and IDispatch interfaces.
However, before you dive into the guts of a COM DLL, let’s begin by formalizing
the role of interface-based programming.

Of Classes and Interfaces

One of the central architectural foundations in COM programming is the separa-
tion of implementation (class) from protocol (interface). Simply put, an interface
is a collection of semantically related methods that may be implemented by a
given COM class (often called a coclass). Once a coclass has been instantiated by a
particular client, the in-memory representation is termed a COM object.

The odd thing about programmatic interfaces (as opposed to GUI interfaces)
is the fact that the interfaces never define member variables, implementation
logic, or other coding items that would mark them as a useful entity. Rather, the

51

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 51

sole purpose of a programmatic interface is to specify the calling conventions a
client must abide by to communicate with the implementing coclass.

Once an interface has been defined (using the syntax of your favorite
programming language), any number of COM classes may choose to support the
specified interface. Given that an interface is a grouping of semantically related
methods, it is common (and helpful) to regard an interface as a specific behavior
that the class in question supports. A key point to understand is that it is
completely possible (and very common) for multiple COM classes to support the
identical interface in unique ways. As you may already be aware, this is yet another
form of programmatic polymorphism (more on this tidbit in just a moment). It is
also quite possible (and very common) for a single coclass to support multiple
interfaces.

Interfaces from a Non-COM Perspective

Although using interfaces is inescapable in COM development, it is possible to
make use of this programming discipline from non-COM environments. To illus-
trate the basic mechanics of interfaced-based programming, I’ll open this chapter
with a simple C++ example named Interfaces. If you wish to follow along, launch
Visual Studio 6.0 and create a new Win32 Console Application (Figure 2-1).

Figure 2-1. Creating a new Win32 Console Application project

Chapter 2

52

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 52

Once you click the OK button, select A simple application from the resulting
dialog box (Figure 2-2).

Figure 2-2. A “simple application” fits the bill.

This option generates a *.cpp file that defines an empty main() function. As you
are most likely aware, each and every C++ executable application requires a main()
function (or in the case of a Windows application, WinMain()) that marks the entry
point to the program. To begin coding your interface example, define the following
interface using generic C++ in the same file that defines the main() function:

// We contend with IUnknown, GUIDs, and IDL soon enough…

class ICar

{

public:

virtual void SpeedUp(long delta) = 0;

virtual void CurrentSpeed(long *currSp) = 0;

};

The Anatomy of a COM Server

53

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 53

int main(int argc, char* argv[])

{

return 0;

}

Here, you have defined an interface (ICar) that describes a basic behavior for
any automobile type you may be constructing. Notice that both methods
(SpeedUp() and CurrentSpeed()) have been defined as pure virtual functions
(marked by the “virtual” prefix and “=0” suffix adorning each signature). Again,
given that interfaces simply establish calling conventions for the object and object
user, it stands to reason that the C++ language expresses interfaces as a named set
of abstract methods.

Cleaning Up the Interface Definition

The C++ language does not supply a specific keyword to define an interface
(COM-based or not). Instead, C++ programmers typically make use of the class or
struct keywords. The big difference is the fact that the default visibility of class
members is private, whereas the default visibility of structure members is public.
Thus, if you so choose, you can define the ICar interface as a structure and omit
the public visibility keyword:

// Structure members are public by default.

struct ICar

{

virtual void SpeedUp(long delta) = 0;

virtual void CurrentSpeed(long *currSp) = 0;

};

If you really want to make your interface definitions stand out, you can also
make use of the “interface” symbol defined in objbase.h as follows:

// Must include objbase.h (or simply windows.h) to

// use the 'interface' symbol.

#define interface struct

Given that “interface” is just an alias to the struct keyword, you wind up with
the final iteration of the C++ ICar interface definition:

// The final ICar interface.

interface ICar

Chapter 2

54

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 54

{

virtual void SpeedUp(long delta) = 0;

virtual void CurrentSpeed(long *currSp) = 0;

};

Building the Class Types

Because interfaces define a set of pure virtual function, any class that wishes to
implement an interface is obligated to flesh out the details of each member. The
simplest way to implement an interface in C++ is to make use of classic inheri-
tance. Assume that you have two concrete classes (Car and HotRod) implementing
the ICar interface in their unique manners (again, feel free to implement these
class in the initial *.cpp file):

// The basic Car.

class Car : public ICar

{

private:

long m_currSpeed;

public:

Car() { m_currSpeed = 0; }

virtual ~Car(){}

// ICar implementation.

void SpeedUp(long delta)

{

cout << "I am a basic car" << endl;

m_currSpeed += delta;

}

void CurrentSpeed(long *currSp)

{ *currSp = m_currSpeed;}

};

// The wicked cool car.

class HotRod: public ICar

{

private:

long m_currSpeed;

public:

HotRod() { m_currSpeed = 0; }

virtual ~HotRod(){}

The Anatomy of a COM Server

55

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 55

// ICar implementation (massive turbo booster!)

void SpeedUp(long delta)

{

cout << "I am a hot rod!" << endl;

m_currSpeed += (delta * 20);

}

void CurrentSpeed(long *currSp)

{ *currSp = m_currSpeed;}

};

As you can see, when you ask a simple Car to speed up by some amount, the
internal speed is adjusted verbatim. However, if you ask a HotRod to speed up
using the same interface, you find the automobile advances at breakneck speed
(20 times delta!). Because each class supports the same interface, the user of each
object can treat them identically (that’s the point of polymorphism). To see your
cars in action, assume you have updated the application’s main() loop as follows
(the output can be seen in Figure 2-3):

// Don't forget to include iostream.h to access cout.

int main(int argc, char* argv[])

{

// Create an array of two ICar interfaces.

ICar* theCars[2];

theCars[0] = new Car();

theCars[1] = new HotRod();

// Speed up each car 5 times, using the ICar interface.

for (int j = 0; j < 5; j++)

{

for(int i = 0; i < 2; i++)

{

theCars[i]->SpeedUp(10);

long currSp = 0;

theCars[i]->CurrentSpeed(&currSp);

cout << " ->Speed: " << currSp << endl;

}

}

// Clean up memory.

delete[] *theCars;

return 0;

}

Chapter 2

56

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 56

Figure 2-3. Driving your cars using interface references

Here, the main() function creates an array of ICar pointers, each member of
which is set to a unique automotive type. Given that both Car and HotRod imple-
ment the behavior defined by ICar, you are able to interact with each type using a
simple ICar reference. However, because each class responds uniquely to the same
request (“Speed up by delta”) we have injected polymorphic behavior into the
application. Consider Figure 2-4, which illustrates this concept using the popular
COM lollipop notation.

The Anatomy of a COM Server

57

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 57

Figure 2-4. Polymorphic behavior a la interface-based programming

Interfaces Are Strongly Typed Variables

In addition to the fact that you can manipulate classes using interface references,
you are able to use interfaces as method parameters (and return types). For
example, if you had a global method named RevEngine() which takes an ICar* as
its sole argument as follows:

// Rev the engine of a given automobile.

void RevEngine(ICar* pCar)

{

long currSp = 0;

for(int i = 0; i < 5; i++)

{

pCar->SpeedUp(10);

pCar->CurrentSpeed(&currSp);

cout << "Speed: " << currSp << endl;

}

for(i = 5; i > 0; i--)

{

pCar->SpeedUp(-10);

pCar->CurrentSpeed(&currSp);

cout << "Speed: " << currSp << endl;

}

}

Chapter 2

58

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 58

you can safely pass in any type that supports the ICar interface, as shown here:

// Make some cars and rev the engines.

ICar* pAnotherCar = new Car();

ICar* pAnotherHotRod = new HotRod();

RevEngine(pAnotherCar);

RevEngine(pAnotherHotRod);

delete pAnotherCar;

delete pAnotherHotRod;

If you attempt to pass in an incompatible type (such as a CellPhone object):

// The CellPhone class does not implement ICar!

CellPhone cp;

RevEngine(cp); // Error!

you will (thankfully) be issued a compile time conversion error:

error C2664: 'RevEngine' : cannot convert parameter 1 from 'class CellPhone'

to 'struct ICar *'

Classes Can Support Multiple Interfaces

The next concept you must understand about interface-based programming is
that it is possible for a single class type (COM-based or otherwise) to implement
multiple interfaces. Assume you define another interface named IConvertible:

// Another possible behavior a class may support.

interface IConvertible

{

virtual void LetTheSunIn(bool isOpening) = 0;

};

Certainly not all cars are convertibles. However, you can equip some automo-
biles to support IConvertible (the hot rod, of course) while other cars (say, mini-
vans) do not. Pictorially, you can view the behaviors as shown in Figure 2-5.

The Anatomy of a COM Server

59

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 59

Figure 2-5. A single class may support multiple behaviors.

When C++ programmers build classes that support numerous interfaces, the
simplest approach is to use standard multiple inheritance. Thus, you could update
the HotRod definition as follows:

// The HotRod now supports two behaviors.

class HotRod: public ICar, IConvertible

{

… same as before…

// IConvertible impl.

void LetTheSunIn(bool isOpening)

{

if(isOpening)

cout << "Opening sun roof" << endl;

else

cout << "Closing sun roof" << endl;

}

};

Of course, for the object user to make use of this new behavior, there must be
a manner by which to query the type for a discrete interface (ICar or IConvertible).
Ideally, the object itself would be able to return interface references to the user on
request, rather than forcing the object user to perform awkward pointer casting
directly. As you may already know, this is one of the core duties of the standard
COM interface: IUnknown. You will see this interface in action later in this chapter,
so let’s hold off on discussing the details of client-side usage of classes supporting
multiple interfaces.

Chapter 2

60

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 60

Interfaces Provide a Versioning Scheme

The final aspect of interfaced-based programming that I cover here is the fact that
interfaces may be versioned. By way of a simple example, assume that you wish to
update the original behavior defined by the ICar interface to support the following
new member:

// ICar was initially defined March 24th 2001.

interface ICar

{

virtual void SpeedUp(long delta) = 0;

virtual void CurrentSpeed(long *currSp) = 0;

// Added this method April 1st 2001.

virtual void TurnOnRadio(bool state) = 0;

};

While this might seem like a rather harmless approach, check out the code
comments. Here you can see that the initial ICar interface was created 3/24/01.
The new member was added some time after the fact (4/1/01). Now, what if you
had a code base that defined two automobile types, each supporting different iter-
ations of the ICar interface? This would be a horrible thing.

A central rule of interface-based programming is that interfaces (once in
production) should never change. If you make a change, you have just broken
polymorphism! Consider the following (problematic) code:

// The MiniVan supports the ICar defined on 3/24/01.

ICar* pMV = new MiniVan();

pMV->TurnOnRadio(true); // Bomb!

// The HotRod supports the ICar defined on 4/1/01.

ICar* pHR = new HotRod();

pHR->TurnOnRadio(true); // OK.

As you can see, although both class types claim to support the ICar interface,
the truth of the matter is they each support a version of the same interface. If you
attempt to turn on the radio for your current MiniVan type, you bomb at runtime,
given that the TurnOnRadio() member is not defined as of 3/24/01, and therefore
is not supported by the MiniVan class.

The Anatomy of a COM Server

61

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 61

When you wish to version an existing interface, the standard approach is to
derive a new interface from an existing base interface. Keeping with convention,
each derived interface is suffixed with a numerical version identifier (following
n+1 increments). That said, ponder the following (safe) extension of the ICar
interface:

// ICar.

interface ICar

{

virtual void SpeedUp(long delta) = 0;

virtual void CurrentSpeed(long *currSp) = 0;

};

// ICar2 (derives from ICar).

interface ICar2 : public ICar

{

// Added this method April 1st 2001.

virtual void TurnOnRadio(bool state) = 0;

};

Notice that the new ICar2 interface derives from ICar, and therefore inherits
the abstract members defined by its base type. If the HotRod was now derived
from ICar2, the type has brought in support for the simpler ICar interface as well:

// HotRod now supports three interfaces (ICar, ICar2, and IConvertible).

class HotRod: public ICar2, IConvertible

{

…

// ICar impl.

// ICar2 impl.

// IConvertible impl.

};

Using this versioning scheme, the object user can determine if a type in ques-
tion supports the newer ICar2 behavior. If not, you can fall back on the initial ICar
functionality. Again, as you may already know, the IUnknown COM interface
equips a COM type to return “yes” or “no” to the question “Do you support this
interface?” You see the exact details of this functionality a bit later in the chapter.
That wraps up your initial look at interfaces from a simple C++ (non-COM)
perspective. With this introduction aside, you can now focus your attention on
COM proper.

Chapter 2

62

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 62

CODE The Interfaces application can be found under the Chapter 2
subdirectory.

The Composition of a COM DLL

So much for our brief overview of the key benefits of interface-based program-
ming. For the remainder of this chapter, you focus your attention on the process of
building a COM DLL server (and various clients) using C++ and IDL. Before you
pound out the code, Figure 2-6 illustrates the core atoms of the initial binary
image you will be constructing.

Figure 2-6. The composition of a COM DLL server

All COM DLLs have the same internal composition regardless of which COM-
aware language you build them in. First, a COM server contains some number of
coclasses (which as you recall is a type supporting at minimum the mandatory
IUnknown interface). Because IUnknown is so critical in COM programming,
this interface is represented as a lollipop mounted on the top of a given coclass.
To the left of the coclass is the set of auxiliary interfaces. Assume that the
RawComServer.dll contains a single coclass named ComCar. This COM type
supports two interfaces, ICar and IUnknown.

COM servers also support a special sort of COM type termed a class factory
(also termed a class object). COM class factories also support the mandatory
IUnknown, as well as another standard interface named IClassFactory. This inter-
face allows the COM client to create a given coclass in a language- and location-
neutral manner. As you may be aware, it is possible for a COM class factory to
support the IClassFactory2 interface (which derives from IClassFactory).

The Anatomy of a COM Server

63

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 63

The role of IClassFactory2 is to define additional methods to check for a valid
license file before activating the object.

In addition to the set of coclasses and class factories, COM DLLs must support
a small set of function exports. These function exports allow the COM runtime to
interact with the internal types, as well as perform registration and unregistration
of the COM binary itself. Table 2-1 provides a breakdown of each DLL export.

Table 2-1. COM DLL Function Exports

COM DLL Function Export Meaning in Life

DllRegisterServer() This method, which is technically optional, is used to install

the necessary entries into the system registry.

DllUnregisterServer() This method (also technically optional) removes any and all

entries inserted by DllRegisterServer().

DllCanUnloadNow() This method is called by the COM runtime to determine if

the DLL can be unloaded from memory at the current time.

DllGetClassObject() This method is used to retrieve a given IClassFactory

interface to the COM client based on the CLSID of the COM

class in question. Once this interface has been obtained, the

client is able to create the associated coclass.

The final points of interest are the global variables (realized in Figure 2-6 as
g_ObjectCount and g_lockCount). COM DLLs need to monitor the number of
active coclasses it contains (seen here as g_ObjectCount). As you will see, every
time a COM class (including class factories) is created, the server-wide object
counter is incremented by 1. When a given object is destroyed, this same counter
is decremented by 1.

The lock counter (g_lockCount), on the other hand, represents the number of
active locks on the DLL at any given time. Using a valid IClassFactory(2) interface
reference, a COM client can lock (and unlock) the server in memory. In this way, a
COM client can say in effect “although I don’t plan on creating coclasses right now,
stay in memory for the time being.”

These two global counters are ultimately consulted by the
DllCanUnloadNow() function export. If the number of active objects
and active locks are both zero, the DLL may be safely unloaded from memory.

Chapter 2

64

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 64

The Role of Type Libraries

Given the language-neutral aspect of COM, it makes little sense to define an inter-
face using the syntax of a particular and specific programming language. For
example, consider the previous C++ definition of ICar. If you wish to build a COM
client using VB 6.0, you are out of luck. Simply put, how can the VB 6.0 compiler
understand an interface defined in C++? It cannot. On a related note, what if you
defined ICar using VB 6.0? Certainly Delphi, C++, C, and Java (J++) clients have
little understanding of the syntax of VB 6.0. What is needed is a way to define a
COM type in a language-neutral format.

The IDL is the metalanguage used to describe COM items in language-
independent terms. Once you have created an *.idl file describing the COM
types in a given COM server, the resulting *.idl file is sent into the Microsoft IDL
compiler: midl.exe. The midl.exe compiler emits a binary equivalent termed a type
library. This library contains the same information as the raw IDL, tokenized into
a language-neutral format. By convention, type libraries end with the *.tlb file
extension. This file, however, may be bundled into the COM server itself to keep
the binary image more modular.

As an example, assume that you have created such an IDL file and produced
an equivalent type library using the MIDL compiler. If you were to build a VB 6.0
client, you could reference this information using the IDE’s Project | References
menu option. The resulting dialog (Figure 2-7) lists all type libraries that are regis-
tered on the development machine.

Figure 2-7. Type information is binary IDL (and is thus language-independent).

The Anatomy of a COM Server

65

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 65

The Full MIDL Output

In addition to the *.tlb file, the MIDL compiler also generates a number of files
that are intended to be used during the development of the COM server and C++
COM clients. Figure 2-8 illustrates the complete MIDL output.

Figure 2-8. Output of the Midl.exe compiler

As you can see, the name of each output file is based on the name of the initial
IDL file. For your purposes, you don’t need to concern yourself with the *._p.c or
dlldata.c files, as you will not need to marshal your interfaces out of process. You
will see the *._i.c and *.h files in action as you build your C++ client (and the COM
server itself).

The Role of the System Registry

Once a COM server (and the related type information) has been created, the final
step is to catalog the server into the system registry. The role of the system registry
cannot be overstated in COM, given that if a server is not registered (or registered
incorrectly) the COM client is completely unable to make use of the contained
types. Although the system registry is an incredibly complex beast, the good news
is that COM programmers only need to be aware of a very small subset of its
overall functionality. You examine the core set of registry entries later in this
chapter.

Chapter 2

66

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 66

Creating the COM DLL Project Workspace

Now that you have seen the high-level layout of the COM server you will be
constructing, we can get down to the business of building the DLL itself. To begin,
create a new Win32 Dynamic-Link Library project workspace named RawComCar
(Figure 2-9). From the resulting dialog, select “A simple DLL project” (Figure 2-10).

Figure 2-9. Creating the DLL project workspace

Figure 2-10. Selecting the DLL project type

The Anatomy of a COM Server

67

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 67

As you can see, your project workspace contains a single *.cpp file that
contains a definition for DllMain(). Technically speaking, COM DLLs do not need
to support DllMain(), however, if the DLL does indeed support this method, it is
called automatically when the binary is loaded and unloaded from memory (see
Chapter 1). For illustrative purposes, update the dummy implementation to
display a Win32 message box based on the reason for the invocation.

// Need to include <windows.h> to access the MessageBox() function.

#include <windows.h>

BOOL APIENTRY DllMain(HANDLE hModule,

DWORD ul_reason_for_call, LPVOID lpReserved)

{

// Just for fun...

if (ul_reason_for_call = = DLL_PROCESS_ATTACH)

MessageBox(NULL, "I have been loaded!", "DllMain says:", MB_OK);

if (ul_reason_for_call = = DLL_PROCESS_DETACH)

MessageBox(NULL, "I have been Unloaded!", "DllMain says:", MB_OK);

return TRUE;

}

Understanding COM Interfaces

Like the previous ICar interface, COM interfaces are a collection of semantically
related functions. When you wish to define a true COM interface, you typically
make use of IDL rather than C++. In addition, COM interfaces differ from the
previous C++ ICar interface in the following ways:

• COM interfaces are identified using a Globally Unique Identifier (GUID).

• COM interfaces must eventually derive from IUnknown.

The Role of the GUID

First, let’s qualify the GUID. Given that numerous developers may decide that the
string token “I-C-a-r” is a great alias for a specific interface, name clashes are
almost certain. For example, if you install five COM servers on your development
machine and three of these binaries define an interface named ICar, imagine how
confused the COM runtime becomes, given that there are numerous entities iden-
tified by the same string token.

Chapter 2

68

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 68

To solve these potential name clashes, COM demands that each and every
interface be uniquely specified using a GUID. A GUID is a 128-bit number that is
statically unique. Physically, a GUID is a four-field structure defined as follows:

// GUIDs define numerous COM entities.

typedef struct _GUID

{

DWORD Data1;

WORD Data2;

WORD Data3;

BYTE Data4[8];

} GUID;

When you want to generate a new GUID, you can do so programmatically by
using the COM library function CoCreateGuid():

// Get a GUID on the fly.

GUID myInterfaceID;

CoCreateGuid(&myInterfaceID);

When you need a GUID at design time, it is far simpler to make use of
the guidgen.exe utility supplied with Microsoft Visual Studio. You will find
guidgen.exe installed under your “<drive>:\Program Files\Microsoft Visual
Studio\Common\Tools” directory (provided you used the default install paths).
Guidgen.exe defines four possible formats. However, when you create IDL files,
the only option you care about is the Registry Format selection (Figure 2-11).

Figure 2-11. Obtaining a GUID at design time

The Anatomy of a COM Server

69

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 69

A GUID by Any Other Name…

One aspect of COM development that can be a source of confusion is the fact that
the same GUID structure is used to describe any sort of COM-ism. For example,
when a GUID is used to define a COM interface, this is termed an IID (interface
ID). If the GUID is used to specify the coclass itself, the GUID is called a CLSID
(class ID). Similar terms exist to define a COM type library (LIBID), COM category
(CATID), and the COM server application itself (AppID). Always remember that
regardless of what the GUID is referring to, it is the same GUID structure defined
in winnt.h.

Common GUID Helpers

The COM library provides a set of useful functions and types for working with
GUIDs programmatically. Many COM library functions take GUIDs as parameters,
and given that a 128-bit number might be a bit hefty to pass by value, a number of
system defines (found in wtypes.h) are provided to pass these structures around
by reference:

// wtypes.h lists a number of defines to work with GUIDs in code.

#define REFGUID const GUID * const

#define REFIID const IID * const

#define REFCLSID const CLSID * const

You are also given a set of COM library functions to do comparisons of two
existing GUIDs:

// Defined in objbase.h

BOOL IsEqualGUID(REFGUID g1, REFGUID g2);

BOOL IsEqualIID(REFIID i1, REFIID i2);

BOOL IsEqualCLSID(CLSID c1, CLSID c2);

Each function performs a memcmp() of the two structures and returns a
BOOL as the result of the comparison. For example, the implementation of
IsEqualGUID() follows:

// IsEqualGUID can be used to determine if two GUIDs are identical.

BOOL IsEqualGUID(REFGUID rguid1, REFGUID rguid2)

{

return !memcmp(&rguid1, &rguid2, sizeof(GUID));

}

Chapter 2

70

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 70

In addition to IsEqualGUID(), the COM library has overloaded the C++
equality operator (= =) and the not equal operator (!=), allowing you to compare
two GUIDs as follows:

// We may also use = = and != with two existing GUIDs, as

// we have overloaded operators at our disposal.

if(g1 = = g2) {…} // GUIDs are the same!

if(g1 != g2) {…} // GUIDs are different!

The implementation of the operator = = function calls IsEqualGUID(), while
the operator != implementation simply leverages operator = =:

// The overloaded operators simply call IsEqualGUID()

BOOL operator == (const GUID& guidOne, const GUID& guidOther)

{

return IsEqualGUID(guidOne,guidOther);

}

BOOL operator != (const GUID& guidOne, const GUID& guidOther)

{

return !(guidOne == guidOther);

}

The Role of IUnknown

Next, you must reflect on the role of the kingpin of COM: IUnknown. This stan-
dard COM interface is like any other COM interface in that it defines a set of
semantically related functions. The official (slightly simplified) definition found
in unknwn.idl is as follows (note the predefined GUID that identifies this
interface):

[object, uuid(00000000-0000-0000-C000-000000000046)]

interface IUnknown

{

HRESULT QueryInterface([in] REFIID riid,

[out, iid_is(riid)] void **ppvObject);

ULONG AddRef();

ULONG Release();

};

The Anatomy of a COM Server

71

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 71

As you see in far greater detail in Chapter 4, IDL supports the notion of
attributes. In IDL, an attribute is simply a set of keywords (or a single keyword)
that is used to disambiguate a given type definition. These keywords are always
placed within square brackets ([,]) and apply to the item directly below or to the
immediate right. Here, you see that the IUnknown interface is qualified using the
[object] and [uuid] attributes. The two parameters to the QueryInterface() method
take additional attributes: [in] and [out, iid_is()]. Again, I comment on numerous
IDL attributes throughout this text. For the time being, simply understand that
IDL attributes are used to remove any hint of ambiguity as to the function of a
given COM entity.

IUnknown defines three methods, which provide two discrete behaviors to
every coclass:

• Lifetime management of the COM object

• The ability to obtain interfaces from the COM object

First, IUnknown is used to manage the lifetime of a given COM object. One
marked difference from traditional C++ memory management is the fact that the
COM client is completely decoupled from the direct creation and destruction of a
given COM class. Under the COM paradigm, a client never directly creates a
coclass but does so indirectly using COM library calls. On a similar note, a COM
client never directly deletes a given COM type from memory. So how is a coclass
deallocated?

COM memory management is a joint venture between the client and object.
Every COM object maintains a private internal reference counter that reflects the
number of outstanding references on the object (represented by an unsigned long,
or ULONG, data type). When a client receives a given COM interface reference, the
client is obligated to call IUnknown::Release() when it is finished using the inter-
face pointer. As you may have guessed, this action decrements the internal refer-
ence counter by one. When the reference count is exactly zero, the object
deallocates itself from memory.

On the other side of the coin, you have the COM object. Recall that COM
objects typically support a great number of interfaces, each representing a specific
behavior the COM type is capable of providing. When a COM client asks for an
interface that is supported by the COM type, the COM object itself calls
IUnknown::AddRef() to increment its reference by one. In effect, an object’s refer-
ence counter reflects the current number of active users at any given time.

The second role of IUnknown is to provide a manner in which an external
client can discover the interfaces supported on a particular COM object. Recall
that by definition, a COM class (coclass) must support at least IUnknown, but will
need to support at least one additional interface to be deemed useful. More often

Chapter 2

72

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 72

than not, a given COM class supports numerous interfaces to fully qualify its
behavior (consider an ActiveX control, which supports anywhere between 10 and
15 COM interfaces). The QueryInterface() method allows a COM client to ask the
object if it supports a particular interface (specified using an IID) at runtime. If
the object in question supports the requested interface, the object returns an
interface reference for use by the client (and increments its internal reference
counter).

Defining the ICar Interface in IDL

Now that you have a better feel for the role of IUnknown, you are able to define the
ICar interface. Using the File | New menu selection, inset a new *.txt file into your
current project workspace and save it under the name “rawcomcar.idl”. Using IDL
syntax, populate your file as follows:

// Bring in the core COM data types.

import "oaidl.idl";

// The ICar interface.

[uuid(710D2F54-9289-4f66-9F64-201D56FB66C7), object]

interface ICar : IUnknown

{

HRESULT SpeedUp([in] long delta);

HRESULT CurrentSpeed([out, retval] long* currSp);

};

As you can see, this iteration of the ICar interface is quite different than the
previous C++ version. First and foremost, this custom interface has been adorned
with the mandatory [uuid] and [object] attributes. As you may assume, the GUID
used to identify this COM type was generated using the guidgen.exe utility. The
[object] attribute is used to mark this interface as a COM-style interface, rather
than an older RPC interface (which has nothing to do with COM itself).

Of course, the ICar interface derives from the IUnknown interface (also note
that unlike C++, inheritance is not specified using the public keyword). Recall that
the formal IDL definition of IUnknown is contained within unknwn.idl. However,
given that most IDL files need additional COM type definitions, it is commonplace
to import oaidl.idl, which will import unknwn.idl on your behalf. Oaild.idl defines
a number of core COM types such as IDispatch, BSTR, VARIANT, and other impor-
tant data types that are typical for most COM applications.

The Anatomy of a COM Server

73

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 73

The Role of the HRESULT

Our ICar interface supports two methods. As you can see, each returns the stan-
dard function return type: HRESULT. The COM HRESULT is a 32-bit number that
contains statistics concerning the success or failure of the method invocation.

As you may have seen during your career as a COM developer, there are
numerous predefined HRESULTs that can be used to report information to the
COM client. The most common HRESULTs are simply S_OK (the function
completed without error) and E_FAIL (something went wrong).

As you will see, C++ COM clients often make use of the SUCCEEDED and
FAILED macros to test for a successful method invocation. Visual Basic program-
mers typically do not directly see the returned HRESULT value, however, it is
possible to obtain the return code using the intrinsic VB Err object. Other COM-
aware language mappings contend with the HRESULT in their own ways. As you
see later in this text, .NET COM clients map HRESULTs (and COM error objects)
into the paradigm of structured exception handling (SEH).

IDL Parameter Attributes

COM interface method parameters also take IDL attributes that are used to disam-
biguate how a given argument is to be marshaled across a given process boundary.
You examine the exact details of IDL parameter attributes in greater detail in
Chapter 4. For the time being, Table 2-2 hits the highlights.

Table 2-2. IDL Parameter Attributes

IDL Parameter Attribute Meaning in Life

[in] The parameter is passed by value (which is to say, a copy of

the data is supplied to the called function).

[out] [out] parameters are sent into the method as unassigned

values. The called method fills the outbound parameter to a

set value.

[in, out] Value is assigned by caller, but may be reallocated by the

called function. The classic “pass by reference” scenario.

[out, retval] This parameter configuration is used by higher level

languages such as VB 6.0. The role of an [out, retval]

parameter is to map a logical return value to a physical

return value.

Chapter 2

74

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 74

Defining the Coclass (ComCar) in IDL

Given that COM interfaces are rather useless on their own, most IDL files also
define the set of coclasses that reside within the binary COM server. When you
want to define a COM class, your goal is to define a unique CLSID value as well as
document each custom interface supported by the COM type. Assume that you
wish to define a COM-aware automobile (ComCar) in IDL syntax (again, use
guidgen.exe to obtain new GUIDs).

// Bring in the core IDL COM data types.

import "oaidl.idl";

// The ICar interface.

[uuid(710D2F54-9289-4f66-9F64-201D56FB66C7), object]

interface ICar : IUnknown

{

HRESULT SpeedUp([in] long delta);

HRESULT CurrentSpeed([out, retval] long* currSp);

};

// The Raw Car Library.

[uuid(D679F136-19C9-4868-B229-F338AE163656), version(1.0)]

library RawComCarLib

{

// Bring in the COM type definitions with our own library.

importlib("stdole32.tlb");

// Define the COM class.

[uuid(096AC71D-3EB6-4974-A071-A3B1C0B7FC8D)]

coclass ComCar

{

[default] interface ICar;

};

};

As you can see, coclass definitions are placed within a special section of an IDL file
termed the library statement (marked by the IDL library keyword). Libraries are
typically attributed with a [version] attribute to mark the current version of the
COM server. COM libraries must also be marked with a [uuid] attribute, which as
you recall is termed a library identifier (LIBID).

Each coclass in the server is marked using the coclass keyword and the
mandatory CLSID. Following the coclass definition is a list of each and every

The Anatomy of a COM Server

75

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 75

nth-most interface supported by the COM class. By “nth-most” I am referring to
the fact that you do not list the base IUnknown directly in your coclass definition,
given that ICar “is-a” IUnknown.

Defining the [default] Interface

On a related coclass-centric topic, note the use of the [default] IDL attribute.
Recall that COM demands the use of interfaces. Also recall that some higher level
COM-aware programming languages attempt to hide that simple fact from view to
make the process of working with COM a bit more intuitive. The [default] attribute
is used to mark the interface that is automatically returned to the COM client once
instantiated. Again, using VB 6.0 as an example:

Dim myCar as ComCar

Set myCar = New ComCar ' [default] ICar returned automatically!

myCar.SpeedUp 10

On the other hand, C++ itself does not honor the [default] attribute. Rather,
the user of the ComCar is required to ask directly for the ICar interface via
QueryInterface(). I formalize client-side COM code at later in this chapter.

Defining and Supporting Multiple Interfaces

To make our ComCar coclass a bit more interesting, assume you have defined an
additional COM interface named IRadio.

// The IRadio interface

[uuid(3B6C6126-92A8-47ef-86DA-A12BFFD9BC42), object]

interface IRadio : IUnknown

{

HRESULT CrankTunes();

};

If you want the ComCar to support the ability to blare music and annoy
passersby, you can update the coclass definition as follows:

// Our COM class.

[uuid(096AC71D-3EB6-4974-A071-A3B1C0B7FC8D)]

coclass ComCar

{

[default] interface ICar;

interface IRadio;

};

Chapter 2

76

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 76

Compiling the IDL File with the MIDL Compiler

Now that you have created the IDL file that describes the COM types contained in
the RawComCar.dll, you can compile it with the MIDL compiler. While you are free
to run midl.exe from the command line, your task will be much simpler if you
make use of Visual Studio when compiling your *.idl files. First, right-click
anywhere on the open file window and select “Insert File into Project” from the
context menu.

The MIDL compiler itself can be configured using the MIDL tab of the project
settings dialog box (found under the Project | Settings menu). By default, MIDL is
set to the MkTypLib-compatible option, which means all IDL code is expected to
conform under the older ODL syntax rather than modern day IDL. Be sure to turn
this feature off in your raw C++ COM projects (see Figure 2-12).

Figure 2-12. Configuring the MIDL compiler

Once you insert a *.idl file into the project workspace, you can simply right-
click the file from FileView and select Compile. This activates the MIDL compiler
and automatically sends the output files into your project directory. The MIDL
compiler also runs automatically when you build your projects, if you have
inserted one or more *.idl files.

The Anatomy of a COM Server

77

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 77

Examining the MIDL-Generated Files

Assuming your IDL file has compiled without error, you will find the MIDL-gener-
ated files have been dumped into your project folder. First, locate and open the
generated type library file (RawComCar.tlb). As shown in Figure 2-13, the type
library is little more than a binary, tokenized version of the original IDL.

Figure 2-13. Type libraries are binary IDL.

The contents of the RawComCar_i.c file is quite simple. The MIDL compiler
creates this file to define C/C++ constants for every GUID contained in the IDL. As
you can guess, whenever the MIDL compiler encounters a [uuid] attribute, a new
constant is generated. Note that the name of each constant is prefixed with
CLSID_, IID_, or LIBID_ (depending on what the [uuid] attribute was describing).

const IID IID_ICar =

{0x710D2F54,0x9289,0x4f66,{0x9F,0x64,0x20,0x1D,0x56,0xFB,0x66,0xC7}};

const IID IID_IRadio =

{0x3B6C6126,0x92A8,0x47ef,{0x86,0xDA,0xA1,0x2B,0xFF,0xD9,0xBC,0x42}};

Chapter 2

78

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 78

const IID LIBID_RawComCarLib =

{0xD679F136,0x19C9,0x4868,{0xB2,0x29,0xF3,0x38,0xAE,0x16,0x36,0x56}};

const CLSID CLSID_ComCar =

{0x096AC71D,0x3EB6,0x4974,{0xA0,0x71,0xA3,0xB1,0xC0,0xB7,0xFC,0x8D}};

Finally, you have the generated header file, RawComCar.h. This file contains
C/C++ language definitions for each custom interface (as well as COM enumera-
tions and COM structures) found in the IDL file. For example, here is the C++ ICar
interface definition (IRadio is also defined in this file):

ICar : public IUnknown

{

public:

virtual HRESULT STDMETHODCALLTYPE SpeedUp(

/* [in] */ long delta) = 0;

virtual HRESULT STDMETHODCALLTYPE CurrentSpeed(

/* [retval][out] */ long __RPC_FAR *currSp) = 0;

};

A Brief Word on COM-Centric Macros

While the MIDL-generated code contains a number of COM-centric macros
(STDMETHODCALLTYPE) to define the interface, the essence of the ICar interface
should look familiar. C++ COM developers typically make use of these COM
macros to provide some degree of platform neutrality. For example, the
STDMETHOD and STDMETHOD_ macros are used in C++ coclass header files to
ensure that the method prototypes expand correctly on various target platforms.
STDMETHODIMP and STDMETHODIMP_ are used in the corresponding C++
implementation files for the same reason. Table 2-3 defines the use of each of
these core COM macros (all of which are defined in objbase.h, so take a peek if you
are interested).

The Anatomy of a COM Server

79

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 79

Table 2-3. C++ COM-Centric Macros

COM-Centric Macro Meaning in Life

STDMETHOD Used to define a method prototype that returns the HRESULT

data type.

STDMETHOD_ Used to define a method prototype that does not return an

HRESULT. The first parameter to this macro is the data type to

return.

STDMETHODIMP Used to implement (IMP) a method that returns an HRESULT.

STDMETHODIMP_ Used to implement a method that does not return an HRESULT.

Implementing the ComCar

Since the MIDL compiler was kind enough to generate the *_i.c and *.h files that
express the IDL definitions in C++, you can now implement the ComCar type.
Begin by inserting a new C++ class definition using the Insert | New Class menu
selection (Figure 2-14). Name your class ComCar, and if you desire, change the
names of the header and implementation files to suit your fancy. Finally, specify
ICar as the base class for your new type (ignore the warning generated when you
dismiss the dialog).

Figure 2-14. Inserting the ComCar class

Chapter 2

80

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 80

When implementing a coclass in C++, the standard approach is to simply
inherit from each interface you wish the coclass to support. Given that our type
information states that ComCar supports the ICar and IRadio interfaces (which in
turn derive from IUnknown), the ComCar must now implement a total of six inter-
face methods. Here is the class definition (making use of the correct COM macros):

#include <windows.h>

// MIDL generated file!

#include "rawcomcar.h"

// ComCar implements IUnknown, ICar, and IRadio.

class ComCar : public ICar, IRadio // Add IRadio to the list.

{

public:

ComCar();

virtual ~ComCar();

// IUnknown methods.

STDMETHOD_(ULONG,AddRef)();

STDMETHOD_(ULONG,Release)();

STDMETHOD (QueryInterface)(REFIID riid, void**);

// ICar methods.

STDMETHOD (SpeedUp)(long delta);

STDMETHOD (CurrentSpeed)(long* currSp);

// IRadio impl.

STDMETHOD (CrankTunes)();

// Ref counter for this COM object.

ULONG m_refCount;

// Current speed!

long m_currSpeed;

};

Implementing IUnknown

As you recall, the AddRef() and Release() methods of IUnknown are used to
control the lifetime of a COM object. Simply put, AddRef() increments the class’
reference counter by one. Release decrements this counter by one and checks for
the final release (meaning the Release() invocation that sets the reference counter

The Anatomy of a COM Server

81

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 81

to zero). At that time, the COM type removes itself from memory. Add the
following implementation code into your ComCar.cpp implementation file.

// Don't forget to set your member variables to a default value!

ComCar::ComCar() : m_refCount(0), m_currSpeed(0) {}

ComCar::~ComCar() {}

STDMETHODIMP_(ULONG) ComCar::AddRef()

{ return ++m_refCount; }

STDMETHODIMP_(ULONG) ComCar::Release()

{

if(--m_refCount = = 0)

delete this;

return m_refCount;

}

Notice that both AddRef() and Release() return the current number of
outstanding interface pointers to the client. Never use this value for any purpose
other than general debugging. The COM specification does not state that this
returned reference count is a perfect reflection of the object’s number of clients.
Although a client can examine this return value to get a general feel of the object
in use, it should never use this value in production code.

Implementing QueryInterface() is also fairly simple. Recall that this method
allows the client to ask the object “Do you support an interface named X?” The
interface in question is identified (of course) by the associated IID. If the COM
type does indeed implement the requested interface, the client receives a refer-
ence that forces the COM object to AddRefs itself. As for the physical HRESULT
return value, convention dictates that E_NOINTERFACE is used when the client
asks you for an interface you do not support. If you do, simply return S_OK. Given
that ComCar supports three interfaces, you must test for three possible IIDs.

// Note! All standard COM interfaces (such as IUnknown) have a predefined GUID

// constant that can be obtained by simply including windows.h.

STDMETHODIMP ComCar::QueryInterface(REFIID riid, void** ppInterface)

{

// Remember! Always AddRef() when handing out an interface.

if(riid = = IID_IUnknown)

{

ppInterface = (IUnknown)(ICar*)this;

((IUnknown*)(*ppInterface))->AddRef();

return S_OK;

}

Chapter 2

82

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 82

else if(riid = = IID_ICar)

{

ppInterface = (ICar)this;

((IUnknown*)(*ppInterface))->AddRef();

return S_OK;

}

else if(riid = = IID_IRadio)

{

ppInterface = (IRadio)this;

((IUnknown*)(*ppInterface))->AddRef();

return S_OK;

}

else

{

*ppInterface = NULL;

return E_NOINTERFACE;

}

}

Implementing ICar and IRadio

The final step in building your coclass is to implement the interface methods
themselves. To keep focused on the COM architecture, I offer the following trivial
implementation:

// Increase the speed of the Car.

STDMETHODIMP ComCar::SpeedUp(long delta)

{

m_currSpeed += delta;

return S_OK;

}

// Return the current speed as an output parameter.

STDMETHODIMP ComCar::CurrentSpeed(long* currSp)

{

*currSp = m_currSpeed;

return S_OK;

}

// Jam.

STDMETHODIMP ComCar::CrankTunes()

{

MessageBox(NULL, "Cranking music!", "ComCar", MB_OK);

return S_OK;

}

The Anatomy of a COM Server

83

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 83

Understanding IClassFactory

Because COM is a language-independent architecture, a client cannot create a
COM object using a language-specific keyword. For example, the C++ “new”
operator has no built-in ability to create a new instance of a binary object. Also, a
COM client can create a server that may be located at any location in the Enter-
prise. Given these two issues (locality- and language-independence), you need a
language- and location-neutral way in which a client can create a COM object.
This is accomplished through another standard COM interface named
IClassFactory. IClassFactory (also defined in unknwn.idl) defines two methods:

// The IClassFactory interface.

[object,

uuid(00000001-0000-0000-C000-000000000046)]

interface IClassFactory : IUnknown

{

HRESULT CreateInstance(

[in, unique] IUnknown * pUnkOuter,

[in] REFIID riid,

[out, iid_is(riid)] void **ppvObject);

HRESULT LockServer([in] BOOL fLock);

};

The most critical (and most often called) method is CreateInstance(), which
creates an instance of the associated coclass on behalf of the calling client.
LockServer() is used less often and is used to hold the binary server itself in
memory per client request (recall the global lock counter?).

Class objects exist only to create another type of COM object. This is how
COM provides a language- and location-neutral means by which a client can
create a coclass located in a binary server. If every COM-enabled language has
some way to access the IClassFactory interface, every client is able to create the
object it desires in a language-independent manner. Furthermore, as the actual
implementation of the IClassFactory methods is hidden at the binary level, you
(as the object creator) can use whatever language keywords you have at your
disposal (such as the C++ new operator) to create the associated coclass. If you
like, consider the COM class factory to be a language- and location-independent
new operator.

Chapter 2

84

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 84

Building Your Class Factory

Your class factory, which I will call ComCarCF, is responsible for creating ComCar
objects for a client and returning some interface pointer from ComCar. The defini-
tion of ComCarCF should appear straightforward:

#include <windows.h>

// Class factories NEVER implement the interfaces

// of the COM class they create!

class ComCarCF : public IClassFactory

{

public:

ComCarCF();

virtual ~ComCarCF();

// IUnknown methods.

STDMETHOD_(ULONG,AddRef)();

STDMETHOD_(ULONG,Release)();

STDMETHOD (QueryInterface)(REFIID riid, void** pInterface);

// IClassFactory methods.

STDMETHOD (CreateInstance)(LPUNKNOWN pUnkOuter,

REFIID iid, void** pInterface);

STDMETHOD (LockServer)(BOOL lock);

// Ref counter (set to zero in constructor).

ULONG m_refCount;

};

As with any COM object, the implementation of AddRef() and Release() for a
class factory simply increments or decrements the internal reference counter, and
checks for the final release to remove itself from memory:

// Class objects, being COM objects, maintain a reference count.

STDMETHODIMP_(ULONG) ComCarCF::AddRef()

{ return ++m_refCount; }

STDMETHODIMP_(ULONG) ComCarCF::Release()

{

if(--m_refCount = = 0)

{

delete this;

return 0;

}

return m_refCount;

}

The Anatomy of a COM Server

85

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 85

QueryInterface() simply hands out pointers to the standard IUnknown or
IClassFactory interfaces (if the class factory is checking for a valid license file, you
could also implement and test for IClassFactory2):

// Note that class factories never supported the

// interfaces of the related coclass (ComCar)!

STDMETHODIMP ComCarCF::QueryInterface(REFIID riid, void** pIFace)

{

if(riid = = IID_IUnknown)

pIFace = (IUnknown)this;

else if(riid = = IID_IClassFactory)

pIFace = (IClassFactory)this;

if(*pIFace){

((IUnknown*)(*pIFace))->AddRef();

return S_OK;

}

*pIFace = NULL;

return E_NOINTERFACE;

}

Implementing IClassFactory::CreateInstance()

As mentioned, CreateInstance() is responsible for creating a new instance of the
associated COM object, asking the object for the client-specified interface, and
returning it back to the client.

The first parameter of CreateInstance() is used in conjunction with COM
aggregation. I do not examine the details of aggregation here. Assume this param-
eter is always NULL (which specifies no aggregation support is being requested).
The second parameter is the IID of the interface the client is interested in
obtaining from the coclass once it has been created. The final parameter (of
course) is a pointer to the fetched interface. Without further ado, here is the imple-
mentation of CreateInstance():

// Create the related coclass.

STDMETHODIMP ComCarCF::CreateInstance(LPUNKNOWN pUnkOuter,

REFIID riid, void** ppInterface)

{

// We do not support aggregation in this class object.

if(pUnkOuter != NULL)

return CLASS_E_NOAGGREGATION;

Chapter 2

86

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 86

ComCar* pCarObj = NULL;

HRESULT hr;

// Create the car.

pCarObj = new ComCar;

// Ask car for an interface.

hr = pCarObj -> QueryInterface(riid, ppInterface);

// Problem? We must delete the memory we allocated.

if (FAILED(hr))

delete pCarObj;

return hr;

}

Implementing IClassFactory::LockServer()

Finally, you need to address the LockServer() method of IClassFactory to finish up
your ComCar class factory. LockServer() provides a way for a client to lock the
COM binary in memory, even if there are currently no active objects in the server.
The reason to do so is client optimization. Once a client obtains an IClassFactory
pointer, it may call LockServer(TRUE), which will bump up a global level lock
counter maintained by the server. When the COM runtime attempts to unload a
server from memory, this lock count is consulted first. If the value of the global
lock counter is not zero (which signifies that there are locks), COM will stop by
later and ask again.

Any client that calls LockServer(TRUE) must call LockServer(FALSE) before
terminating, to decrement the server’s global lock counter. With that said, create a
global ULONG named g_lockCount in your rawcomcar.cpp file. The LockServer()
method may then be implemented as follows:

// Assume that the lock counter has been defined in the rawcomcar.cpp file.

extern ULONG g_lockCount;

// LockServer() simply increments or decrements

// the server level global lock counter.

STDMETHODIMP ComCarCF::LockServer(BOOL lock)

{

if(lock)

g_lockCount++;

else

g_lockCount--;

return S_OK;

}

The Anatomy of a COM Server

87

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 87

Implementing DLL Component Housing

The next major hurdle facing you before ComCar is ready for client access is
creating a binary home for itself and its class object to dwell. As you recall, every
COM-based DLL exports (through a standard *.def file) four well-known functions.

The implementation of DllGetClassObject() creates a new class factory and
returns the correct IClassFactory interface to the client. If your server contains a
collection of coclasses, you should examine the incoming CLSID parameter of
DllGetClassObject() to determine which class factory to create. This method has
the following signature:

// Creates a given class factory for

// the client based on the CLSID of the coclass.

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, void** ppv);

Here then is an implementation of the first server export, DllGetClassObject():

// DllGetClassObject() is in charge of creating a class factory, and returning the

// IClassFactory interface to the COM client.

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)

{

// We only know how to make cars!

if(rclsid = = CLSID_ComCar)

{

// Make a ComCarCF and return requested interface.

ComCarCF* pCarCF = new ComCarCF();

return pCarCF->QueryInterface(riid, ppv);

}

else

{

return CLASS_E_CLASSNOTAVAILABLE;

}

}

Managing Server Lifetime: DllCanUnloadNow()

In addition to the global lock counter, COM DLLs maintain a global object counter
that identifies the number of active objects in the server at any given time. When-
ever a coclass (ComCar) or class object (ComCarCF) is created, the constructors of
these types should bump up this global object counter variable by one. Whenever
a coclass (ComCar) or class object (ComCarCF) is terminated, the destructors

Chapter 2

88

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 88

should decrement this global object counter by one. Here is the revised ComCar
class, which properly adjusts the serverwide object counter (ComCarCF would
also need to be retrofitted in the same way):

// Assume that the object counter has been defined in the rawcomcar.cpp file

extern ULONG g_ObjectCount;

ComCar::ComCar()

{

g_objCount++; // Also increment in class factory.

}

// Server lost an object.

ComCar ::~ComCar

{

g_objCount--; // Also decrement in class factory.

}

A COM DLL can be unloaded safely by the COM runtime only if there are no
server locks and no active objects within the server. DllCanUnloadNow() can
check the two global variables maintaining this information, and return S_OK or
S_FALSE accordingly:

// The DllCanUnloadNow() server export informs the COM runtime when it is

// safe to unload the DLL from memory.

ULONG g_lockCount = 0; // Modified by ICF::LockServer.

ULONG g_objCount = 0; // Modified by ctor & dtor of any coclass in the server.

STDAPI DllCanUnloadNow(void)

{

if(g_lockCount = = 0 && g_objCount = = 0)

return S_OK; // Unload me.

else

return S_FALSE; // Keep me alive.

}

The Anatomy of a COM Server

89

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 89

Contending with DllRegisterServer() and
DllUnregisterServer()

If you were to implement these two remaining DLL exports, you would have a
good deal of code to contend with. Not only would you need to build numerous
structures to represent every registry entry, but you would also need to be
comfortable programming the registry using numerous API calls. Given that this
would take you a bit off task, we will simply define the following stub code and
enter your registry information using a (much simpler) *.reg file.

// Typically these methods are called by an installation program or using

// the regsvr32.exe command line tool.

STDAPI DllRegisterServer(void)

{

MessageBox(NULL, "If I had code, I would register these types...",

"DllRegisterServer", MB_OK);

return S_OK;

}

STDAPI DllUnregisterServer(void)

{

MessageBox(NULL, "If I had code, I would UN-register these types...",

"DllUnregisterServer", MB_OK);

return S_OK;

}

Exporting the Exports

Now that you have implemented the necessary exports, you need to expose them
to the outside world. To export these DLL functions, you need to assemble a stan-
dard Win32 *.def file, which must be included into your current project. The name
of the library is the exact same name as your project workspace:

; RawComCar.def : Declares the module parameters.

LIBRARY "RawComCar.dll"

EXPORTS

DllCanUnloadNow @1 PRIVATE

DllGetClassObject @2 PRIVATE

DllRegisterServer @3 PRIVATE

DllUnregisterServer @4 PRIVATE

Chapter 2

90

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 90

At this point, you have created the necessary infrastructure for a C++-based
COM DLL server! (As you can tell, building COM binaries in raw C++ is a labor of
love.) However, before a client could create and use the object, you must enter the
correct information in the system registry.

Registering the COM Server

The registry is a local system database, which specifies (among other things) all
the COM-centric information for a given computer. You may access the Registry
Editor by running regedit.exe from the Run command. The registry is broken into
a series of topmost nodes called hives. The most important hive for COM devel-
opers is HKEY_CLASSES_ROOT (abbreviate to HKCR). Figure 2-15
illustrates the hives found on a Windows XP Professional installation.

Figure 2-15. The core COM hive (HKCR)

Entries under a hive are called keys, which may contain subkeys. A given
key or subkey may contain string or numerical values. Entire books have been
written about the layout and programming of the Windows registry; luckily COM
developers only need to understand a small subset of its overall functionality,
beginning with the ProgID.

Programmatic Identifiers (ProgIDs)

The first thing listed under HKCR is a long list of file extensions, which we have no
interest in at all. Scroll past this list until you find the first real text entry located
after the final file extension. When you find that item, expand it as shown in
Figure 2-16.

The Anatomy of a COM Server

91

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 91

Figure 2-16. ProgIDs are listed off HKCR.

These strings are termed Programmatic Identifiers (ProgIDs). ProgIDs are a
text-based alternative used to refer to a COM object residing in some server.
ProgIDs are simply text mappings for CLSIDs. As you can see, every ProgID listing
has a subkey mapping to the corresponding CLSID value as well as an optional
CurVer (current version) subkey. The standard format to follow when creating a
ProgID for your coclass is “ServerName.CoclassName.Version” (the version is
optional). For example: “RawComServer.ComCar.1”.

ProgIDs are useful for certain COM-enabled languages that have no ability to
refer to the raw GUID associated to your coclass. In effect, a ProgID is a language-
neutral way to identify a COM object. For example, VBScript needs the ProgID of a
coclass to load the server into memory as VBScript does not provide a way to
directly reference the raw 128-bit CLSID of ComCar (as seen later in this chapter).

A Critical Key: HKEY_CLASSES_ROOT \ CLSID

The next point of interest is the CLSID key. The CLSID key is where SCM ultimately
ends up when it looks for the physical path to your COM server. Each subkey of
HKCR\CLSID begins with the GUID for the entry. Figure 2-17 reveals the CLSID of
Microsoft’s Data Access Object’s (DAO) DBEngine coclass.

Chapter 2

92

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 92

Figure 2-17. CLSIDs are used to resolve the location of a COM type.

Under a given CLSID entry, you may find any of the following core subkeys
listed in Table 2-4.

Table 2-4. Core Entries Under HKCR\CLSID

HKCR\CLSID Subdirectory Meaning in Life

ProgID This key maps to the ProgID associated with the

coclass. When you call ProgIDFromCLSID(), the COM

runtime returns the ProgID subkey for a given CLSID

listing.

VersionIndependentProgID Same value as the ProgID key, without the version

suffix. Recall that ProgIDs do not have to be versioned.

InprocServer32 For in-process COM servers, this is the most

important of all CLSID subkeys. This value is the

physical path to the DLL server (for example,

“C:\MyServers\Cars\Debug\RawComCar.dll”).

LocalServer32 If you have COM objects that live in an EXE,

rather than a DLL, the value of LocalServer32 is the

path to the COM executable (for example,

“C:\MyServers\Cars\Debug\Cars.exe”).

The Anatomy of a COM Server

93

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 93

Another Critical Key: HKEY_CLASSES_ROOT\TypeLib

A server’s type information file (*.tlb) also needs to be registered if you expect tools
such as the VB 6.0 Add Reference dialog to find the type library automatically. Even
more important, if your COM interfaces are to be marshaled using the universal
marshaler, you must register the location of your type library, given that its
contents are read at runtime to build stubs and proxies on the fly.

Recall that an IDL library statement is qualified using the [version] and [uuid]
attributes:

[uuid(D679F136-19C9-4868-B229-F338AE163656), version(1.0)]

library RawComCarLib

{ … }

This very same information is listed under HKCR\TypeLib. The location of the
*.tlb file is placed under the \0\Win32 subdirectory (“0” marks the default locale of
the type library, which I will assume to be US English). Be aware that many COM
frameworks such as VB 6.0 and ATL embed the *.tlb file as a resource of the binary
DLL or EXE COM server. Thus, the value contained under the \Win32 subdirectory
could be the path to an *.tlb, *.dll, or *.exe file. For example, Figure 2-18 shows the
entry for your current RawComServer (which you have yet to formally register).

Figure 2-18. Type information is located under HKCR\TypeLib.

Other COM Registration Possibilities

In addition to ProgIDs, CLSIDs, and LIBIDs, there are two other valid registration
entries of note. First, HKCR\Interface is the place to log your custom COM inter-
faces. Understand that you are not required to register your COM interfaces unless
they are intended to be marshaled out of process. Given that our

Chapter 2

94

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 94

RawComServer.dll is always accessed in process (by a client with the same
threading model), you do not have to register the IRadio or ICar interfaces.

The final subfolder of interest is HKCR\Component Categories. It is possible
to generate a GUID termed a CATID, which is used to refer to a COM category.
These GUIDs are used to group like objects together under a unique ID, even if the
members of the category are located in independent COM servers. Using CATIDs,
the COM client may make a request (using the COM library) for a list of all
coclasses that belong to a given Component Category. The result is a set of
CLSIDs, which can then be used to activate each member.

Registering Your COM Servers

So much for your tour of the Windows registry. As mentioned, you will write your
own registry scripts (*.reg files) that can be used to merge your server information
into the registry automatically, bypassing the need to code DllRegisterServer() by
hand. Thus, insert a new *.txt file and save it under the name RawComServer.reg.

Here is the complete registration syntax for the RawComCar.dll. To save your-
self the pain of typing in each line by hand, feel free to simply copy and adjust the
*.reg file supplied with the downloaded code. Be aware that the GUIDs used in the
*.reg file must match the values found in your IDL code (your paths may differ
from mine, so update accordingly)!

REGEDIT

; This is the ProgID!

HKEY_CLASSES_ROOT\RawComCar.CoCar\

CLSID = {096AC71D-3EB6-4974-A071-A3B1C0B7FC8D}

; A CLSID entry typically has these lines (at minimum).

HKEY_CLASSES_ROOT\CLSID\

{096AC71D-3EB6-4974-A071-A3B1C0B7FC8D} = RawComCar.CoCar

HKEY_CLASSES_ROOT\CLSID\{096AC71D-3EB6-4974-A071-A3B1C0B7FC8D}

\InprocServer32 = C:\Apress Books\InteropBook\Labs

\Chapter 2\RawComCar\Debug\RawComCar.dll

HKEY_CLASSES_ROOT\CLSID\

{096AC71D-3EB6-4974-A071-A3B1C0B7FC8D}\

TypeLib = {D679F136-19C9-4868-B229-F338AE163656}

The Anatomy of a COM Server

95

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 95

; TypeLib Settings

HKEY_CLASSES_ROOT\TypeLib\

{D679F136-19C9-4868-B229-F338AE163656} = Car Server Type Lib

HKEY_CLASSES_ROOT\TypeLib\{D679F136-19C9-4868-B229-F338AE163656}

\1.0\0\Win32 = C:\Apress Books\InteropBook\

Labs\Chapter 2\RawComCar\Debug\RawComCar.tlb

Once you save this file, simply double-click it from within Windows Explorer.
Using regedit.exe, you will now be able to find your ProgID (Figure 2-19), CLSID
(Figure 2-20), and LIBID (seen previously in Figure 2-18).

Figure 2-19. The ProgID

Figure 2-20. The CLSID

Chapter 2

96

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 96

Excellent! If you followed along with this example, you have successfully
created a COM DLL from the ground up. As you have seen, building a COM server
using raw C++ can be quite an undertaking. In the next chapter, you briefly
examine two popular COM frameworks (ATL and Visual Basic 6.0) that help lessen
the burden of creating COM binaries.

CODE The RawComCar application is included under the Chapter 2
subdirectory.

Developing a C++ COM Client

Now that you have implemented your first COM-based in-process server, you
need to investigate the necessary COM library calls to access it. Regardless of the
client’s language, under the hood the same basic sequence of COM library calls
are used. Some COM language mappings (such as VB) hide this process so well
that the developer has little exposure to what is happening under the hood.

When COM developers make requests to runtime, they do so by calling COM
library functions, which (for the most part) are contained in the granddaddy of all
COM system DLLs, ole32.dll. This core system file is the gateway between your
client code and the COM runtime. The very first thing COM clients must be sure to
do is initialize the COM subsystem. Each and every thread using the COM libraries
must make a call to CoInitialize() before making any further requests from the
COM runtime. When that thread is finished with the COM subsystem, a comple-
menting call to CoUninitialize() must be made to clean things up.

Activating COM Objects

Once the COM runtime is ready to receive your requests, clients typically
make calls to one of two COM activation functions, CoGetClassObject() or
CoCreateInstance(), to load a server and create a new COM object. You examine
the use of CoGetClassObject() first, as CoCreateInstance() is simply a helper func-
tion, wrapping the call to CoGetClassObject() on your behalf. CoGetClassObject()
tells COM runtime to locate, load, and retrieve the IClassFactory pointer for a
given coclass.

The Anatomy of a COM Server

97

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 97

From this pointer, you can create an instance of the associated coclass, (via
CreateInstance()) and go to town. Here is the signature of CoGetClassObject():

// This activation function is used to return the

// IClassFactory pointer for a given

// class factory. Using this interface, the client

// can then create the corresponding class object.

HRESULT CoGetClassObject(REFCLSID rclsid, DWORD dwClsContext,

COSERVERINFO * pServerInfo,

REFIID riid, LPVOID * ppv);

The first parameter is the CLSID of the coclass you wish to create, for example
CLSID_ComCar. As you entered this information into the system registry, the COM
SCM knows where to find the path to the binary and load the server. The second
parameter is a member from the CLSCTX enumeration, which specifies the class
context of the server. You know that COM offers you location transparency, and
this parameter allows you to specify if you wish an in-proc, local, or remote
version of the server. The core values of the CLSCTX are as follows:

// The class context allows a COM client to specify

// which 'local' they are interested in.

enum tagCLSCTX

{

CLSCTX_INPROC_SERVER = 0x1, // In-proc server.

CLSCTX_LOCAL_SERVER = 0x4, // Local server.

CLSCTX_REMOTE_SERVER = 0x10 // Remote server

}CLSCTX;

You specify CLSCTX_INPROC_SERVER if you desire in-proc servers,
CLSCTX_LOCAL_SERVER for local servers, or CLSCTX_REMOTE_SERVER for a
remote server. You may also combine any of the CLSCTX flags, and SCM finds the
server closest to the client. If you specify the predefined CLSCTX_SERVER (which
is an OR-ing together of INPROC, LOCAL, and REMOTE) you can effectively say to
SCM “Just give me the one closet to me.” If SCM finds an in-proc version, you get
this version. Next is local, followed by remote (resolved using the AppID).

The third parameter, COSERVERINFO, is a structure that specifies useful
information about a remote server machine. Of course, if you are not accessing a
remote COM server, you can simply send in NULL. The fourth and fifth parame-
ters identify the IID of the interface you want from the coclass and a place to store
it (void**).

Chapter 2

98

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 98

Let’s write some client code that loads up the RawComCar.dll server and
returns the IClassFactory pointer for the ComCarCF coclass. Before you do so, you
must copy over the MIDL-generated RawComCar_i.c and RawComCar.h files from
your server project into the new this Win32 Console application (given that the
client must be able to understand the IRadio, ICar, and GUID definitions). Once
you have done so, you can take your car out for a test drive as follows.

// Client side C++ COM code.

#include "RawComCar_i.c" // Defines GUIDs.

#include "RawComCar.h" // Defines interface definitions.

int main(int argc, char* argv[])

{

CoInitialize(NULL);

ICar* pCar = NULL;

HRESULT hr = E_FAIL;

IClassFactory* pCF = NULL;

// Use CoGetClassObject().

hr = CoGetClassObject(CLSID_ComCar, CLSCTX_INPROC_SERVER,

NULL, IID_IClassFactory, (void**)&pCF);

hr = pCF->CreateInstance(NULL, IID_ICar, (void**)&pCar);

// Speed up car.

if(SUCCEEDED(hr))

{

for(int i = 0; i < 5; i++)

{

long currSp = 0;

pCar->SpeedUp(10);

pCar->CurrentSpeed(&currSp);

cout << "Car Speed: " << currSp << endl;

}

}

// Turn on radio.

IRadio* pRadio = NULL;

pCar->QueryInterface(IID_IRadio, (void**)&pRadio);

pRadio->CrankTunes();

// Clean up.

if(pCar != NULL) pCar->Release();

if(pCF!= NULL) pCF->Release();

The Anatomy of a COM Server

99

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 99

if(pUnk!= NULL) pUnk->Release();

if(pRadio!= NULL) pRadio->Release();

CoUninitialize();

return 0;

}

When using CoGetClassObject(), the client is required to directly create the
COM class using the returned IClassFactory interface. Once you have exercised
your ComCar type, you must call Release() on each acquired interface when you
are finished in order for the server’s object counter to eventually reach zero (and
thus be unloaded).

Accessing a Coclass Using CoCreateInstance()

Having seen CoGetClassObject() in action, you can now look at CoCreateInstance().
This function is useful if you only require a single instance of the coclass.
CoCreateInstance() finds the class object and calls CreateInstance()from the
IClassFactory pointer automatically. All you do is pass in the CLSID and IID you
are looking for:

// CoCreateInstance() creates the class factory for you automatically.

HRESULT CoCreateInstance(REFCLSID rclsid, LPUNKNOWN pUnkOuter,

DWORD dwClsContext, REFIID riid,

LPVOID * ppv);

The only difference from CoGetClassObject() is the second parameter,
pUnkOuter. This parameter is used only in COM aggregation. Do not worry about
this now; simply pass in NULL. Because CoCreateInstance() does not provide
direct access to IClassFactory, you can alter the client code using CoCreateInstance(),
thus bypassing any reference to the class object. For illustrative purposes, let’s ask
for the IUnknown interface right off the bat. Here is the relevant update:

int main(int argc, char* argv[])

{

CoInitialize(NULL);

IUnknown* pUnk = NULL;

ICar* pCar = NULL;

HRESULT hr = E_FAIL;

// Specify CLSID, context and IID (and a place to store the pointer).

hr = CoCreateInstance(CLSID_ComCar, NULL, CLSCTX_INPROC,

IID_IUnknown, (void**)&pUnk);

Chapter 2

100

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 100

// Now ask for ICar.

if(SUCCEEDED(hr))

hr = pUnk->QueryInterface(IID_ICar, (void**)&pCar);

…

}

Regardless of which COM library function you use, the result is seen in Figure
2-21 followed by a message box informing you the radio has been turned on.

Figure 2-21. The C++ COM client

So, using this function looks a lot easier than CoGetClassObject(). Why
would you not use CoCreateInstance() every time? Realize that when you use
CoCreateInstance(), the class object is created and destroyed each and every time.
Thus, if you are interested in creating, say, ten ComCar objects, CoCreateInstance()
creates and destroys the class factory ten times. CoGetClassObject() is far more
efficient when you wish to create a batch of objects, as you are directly holding the
IClassFactory pointer.

Furthermore, as CoCreateInstance() does not give you back an IClassFactory
pointer directly, your client could never lock the server. Whenever you wish to lock
a server into memory, you must do so using an IClassFactory pointer, and thus
must use CoGetClassObject().

CODE The CppRawComClient application is included under the
Chapter 2 subdirectory.

The Anatomy of a COM Server

101

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 101

Building a C++ Client Using the #import Directive

When developers make use of the COM library “in the raw,” tradition dictates
making manual calls to the methods of IUnknown, CoCreateInstance(), CoInitialize(),
and other COM primitives. While this allows developers to get rather close to the
action, direct manipulation to the COM API can be a bit verbose. To help lessen
the burden, many C++ programmers choose to make use of the Visual C++
#import directive.

Essentially, the #import directive reads the type information of a given COM
server and generates entities named smart pointers. These generated types wrap
up the raw COM types into more convenient object instances. While I do not want
to dive into a full discourse of this C++ directive, here is some sample usage (do
understand that MSDN online help contains complete details of this aspect of C++
COM client programming).

// CppImportClient.cpp

#include "stdafx.h"

#include <iostream.h>

// Import the type info for the rawcomcar.dll (adjust your path accordingly).

#import "C:\ RawComCar\Debug\RawComCar.tlb" \

no_namespace named_guids

int main(int argc, char* argv[])

{

CoInitialize(NULL);

// Create the ComCar and get ICar..

ICarPtr spCar(__uuidof(ComCar));

spCar->SpeedUp(10);

cout << "Speed is: " << spCar->CurrentSpeed() << endl;

// Now turn on the radio.

IRadioPtr spRadio = spCar; // Calls QueryInterface().

spRadio->CrankTunes();

// Clean up.

spCar = NULL;

spRadio = NULL;

CoUninitialize();

return 0;

}

Chapter 2

102

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 102

As you may be able to tell, the generated smart pointers make C++ client-side
programming look a bit more like VB 6.0 programming and a bit less like raw COM
API development (depending on your view, this may be either a good thing or a
bad thing). Speaking of Visual Basic 6.0…

CODE The CppImportClient application is included under the
Chapter 2 subdirectory.

A Visual Basic 6.0 COM Client

Given that you have described the types within your C++ RawComServer.dll, you
are able to build client applications using any number of languages. To illustrate,
assume you have launched Visual Basic 6.0 (not VB .NET!) and created a brand-
new Standard EXE application. Using the VB 6.0 ToolBox, assemble a simple GUI
that allows the user to speed up the ComCar (and view the current speed) as well
as turn on the radio. Figure 2-22 shows a possible UI .

Figure 2-22. The VB 6.0 client UI

The Anatomy of a COM Server

103

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 103

Now, before you are able to build the code base, you must set a reference to
the COM server’s type information using the Project | References menu option.
Given that you registered the type library, you see the RawComCar library is listed
alphabetically. Once you have set a reference to this type information, open the VB
6.0 Object Browser utility (F2 is the hotkey). Check out Figure 2-23.

Figure 2-23. Viewing the type information

As you can see, the ICar interface is nowhere to be found! Recall that you
assigned the [default] attribute to this interface in our IDL file. As you may also
recall, higher-level languages such as Visual Basic hide the default interface from
view to simulate a direct object reference. Thus, our client-side code is greatly
simplified.

' The car.

Private theRawCar As ComCar

Private Sub btnUseRawCar_Click()

' Speed up raw car.

theRawCar.SpeedUp 10

txtCurrSpeed.Text = theRawCar.CurrentSpeed()

End Sub

Private Sub Form_Load()

Set theRawCar = New ComCar

End Sub

Chapter 2

104

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 104

Private Sub Form_Unload(Cancel As Integer)

' Explicitly decrement ref count.

Set theRawCar = Nothing

End Sub

Notice that VB 6.0 client-side code hides the low-level COM library calls from
view. Remember, when you create a new instance of a COM class as follows:

Dim o as ComCar

Set o = New ComCar ' Really holds a reference to ICar!

Visual Basic automatically calls CoCreateInstance(), obtains the default interface,
and stores it into the declared variable. VB 6.0 automatically calls Release() on all
interfaces when they fall out of scope. However, if you wish to explicitly force a call
from Release() using VB, simply set the variable to Nothing.

Finally, when you wish to trigger QueryInterface() using VB syntax, declare a
variable of the type of interface you desire and set it to an active interface refer-
ence. Thus, to trigger the CrankTunes() method of IRadio from VB 6.0, you can
write

Private Sub btnTurnOnRadio_Click()

' Declare an IRadio variable.

Dim itfRadio As IRadio

Set itfRadio = theRawCar ' Calls QueryInterface() for IID_IRadio

itfRadio.CrankTunes

Set itfRadio = Nothing

End Sub

CODE The Vb6RawCarClient application is included under the
Chapter 2 subdirectory.

Understanding COM Properties

Until this point you have created interfaces supporting a collection of semantically-
related methods. Beyond this, COM supports the use of properties in an interface
definition. In a nutshell, properties are a shorthand notation for traditional
accessor and mutator methods (for example, GetPetName() and SetPetName()).
In Visual Basic 6.0, a class property (such as PetName) is internally represented by
a pair of Property Let (or Property Set if the property wraps an object type) and

The Anatomy of a COM Server

105

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 105

Property Get methods. The VB object user indirectly triggers the correct variation
based on the calling syntax. If you, as a VB class builder, write the following code
in a CLS file (named CVBCar), you can define a property (PetName) for a single
private String called mName:

Private mName as String

' A read/write COM property.

Public Property Get PetName() as String

PetName = mName

End Property

Public Property Let PetName(n as String)

mName = n

End Property

IDL Syntax for Interface Properties

As you would expect, COM properties have a particular IDL notation. Given the
previous VB 6.0 example, you can see that your single PetName property has been
mapped to two separate function definitions. In IDL, the [propget] attribute marks
a method as an accessor function, whereas [propput] marks a mutator. Here is the
IDL generated by VB for the PetName property (you address IDispatch and the [id]
attribute later in the chapter):

// Properties do not have to be part of an IDispatch derived

// interface!

// They can be supported by any IUnknown derived interface.

interface _CVBCar : IDispatch

{

[id(0x68030000), propget]

HRESULT PetName([out, retval] BSTR*);

[id(0x68030000), propput]

HRESULT PetName([in, out] BSTR*);

};

Keep in mind that COM properties are always represented internally as
methods. Interfaces can only contain methods, and the fact that some languages
support properties is not much more than “syntactic sugar” provided by COM
languages.

If you write an IDL property definition by hand and examine the MIDL-
generated header file, you would see two functions named put_PetName() and

Chapter 2

106

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 106

get_PetName():

// IDL property syntax.

interface ICarStats: IUnknown

{

[propget] HRESULT PetName([out, retval] BSTR*);

[propput] HRESULT PetName([in, out] BSTR*);

};

// A single property resolves to 'get' and 'put' functions.

STDMETHOD(get_PetName)(/*[out, retval]*/ BSTR *pVal);

STDMETHOD(put_PetName)(/*[in]*/ BSTR newVal);

Properties: The Client’s Point of View

Clients using straight C++ access the PetName property as any other interface
method (more on BSTRs in Chapter 4):

// Create a new car named Fred.

BSTR carName;

carName = SysAllocString(L"Fred");

pMyCar -> put_PetName(carName);

SysFreeString(carName);

// Print out name of my car.

char buff[80];

pMyCar -> get_PetName(&carName);

WideCharToMultiByte(CP_ACP, NULL, carName, -1, buff, 80, NULL, NULL);

cout << "Your car is called" << buff << endl;

SysFreeString(carName);

Visual Basic developers can get at the PetName property as follows:

' A little VB code illustrating property manipulation.

Dim myCar as New ComCar

myCar.PetName = "Fred" ' [propput]

MsgBox myCar.PetName, , "My car is named…" ' [propget]

The Anatomy of a COM Server

107

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 107

Building Scriptable Objects (Using IDispatch)

The final topic of this chapter is to refresh the role of IDispatch. As you have just
seen, C++ and Visual Basic 6.0 are able to exercise early binding when making use
of COM types. Early binding describes the process of understanding the calling
conventions for a given interface method at compile time rather than at runtime.
Using this (preferred) technique, a COM client is able to make sure that the
method name and parameter format is abiding by the contract laid out in the
server’s type library. This is quite helpful given that any syntactic errors are found
at compile time.

Other COM clients are not so fortunate in having a detailed understanding of
an interface’s methods at compile time for the simple reason that they are not
compiled! Consider for example Web-scripting languages such as VBScript. When
a Web developer wishes to make use of a COM object from an HTML or classic ASP
page, the only way to do so is by using an intrinsic method named CreateObject(),
which returns a loosely typed Object variable (stored in a COM VARIANT). As the
late-bound client interprets the scripting code, it is at runtime that the caller is
able to determine if a given method exists, and if so, whether the parameters are of
the correct type and order. Obviously, this is far less robust a programming model
than early binding. However, for scripting clients, this is the only option given that
the external GUIDs and type information have not been compiled into the code
base of the scripting engine!

When a coclass wishes to allow late-bound clients to access its functionality, it
must support a standard COM interface named IDispatch. This standard COM
interface allows a late-bound client to call any method or property on the object’s
IDispatch implementation (termed a dispinterface) using two well-known
methods: GetIDsOfNames() and Invoke(). In addition to these core members,
IDispatch defines two members of lesser importance (as far as the client is
concerned) named GetTypeInfo() and GetTypeInfoCount(). The latter members
are of great importance when you wish to read type information at runtime (as
you will do in Chapter 4). Here is the IDL definition of IDispatch (defined in
oaidl.idl):

[object, uuid(00020400-0000-0000-C000-000000000046)]

interface IDispatch : IUnknown

{

// Allows a client to see if the object can provide a type library.

HRESULT GetTypeInfoCount([out] UINT * pctinfo);

// Get type information for the supporting type.

HRESULT GetTypeInfo([in] UINT iTInfo, [in] LCID lcid,

[out] ITypeInfo ** ppTInfo);

Chapter 2

108

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 108

// Find the numerical ID of some method or property in the object.

HRESULT GetIDsOfNames([in] REFIID riid,

[in, size_is(cNames)] LPOLESTR * rgszNames,

[in] UINT cNames, [in] LCID lcid,

[out, size_is(cNames)] DISPID * rgDispId);

// Call a method or property.

HRESULT Invoke([in] DISPID dispIdMember,

[in] REFIID riid, [in] LCID lcid, [in] WORD wFlags,

[in, out] DISPPARAMS * pDispParams,

[out] VARIANT * pVarResult,

[out] EXCEPINFO * pExcepInfo,

[out] UINT * puArgErr);

};

Table 2-5 gives a breakdown of the role of each method.

Table 2-5. The Methods of IDispatch

Method of IDispatch Meaning in Life

GetTypeInfoCount() This method is used by clients wishing to know if the

object’s functionality is described in an associated type

library. This coclass fills the [out] parameter to zero (0) if the

object does not support type information.

GetTypeInfo() Allows a client to obtain type information for a given

COM type.

GetIDsOfNames() A client calls this method to retrieve a numerical cookie

(termed a DISPID) that identifies the number of the method

or property it is attempting to call.

Invoke() This is the method that invokes the property or method on

behalf of the client, based on the numerical cookie (DISPID)

obtained from GetIDsOfNames().

Understanding Dispinterfaces and DISPIDs

A dispinterface is the term for a specific implementation of IDispatch by a given
coclass. As a scriptable coclass exposes its functionality using a single interface, it
must identify each property and method with a numerical cookie called a DISPID
(dispatch identifier), which is defined in oaidl.idl as a simple LONG:

typedef LONG DISPID; // DISPIDs are not GUIDs.

The Anatomy of a COM Server

109

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 109

If you build a COM class that can only be accessed using IDispatch (which is
not typical in this day and age), you could define your dispinterface using the
following IDL (note that the dispinterface keyword must be contained in a library
statement):

[uuid(D679F136-19C9-4868-B229-F338AE163656), version(1.0)]

library RawComCarLib

{

[uuid(0899D87E-80FE-4e9e-A831-6FCF0A149A9B)]

dispinterface _CarDispinterface

{

properties:

methods:

[id(1)] HRESULT PopTheTrunk(VARIANT_BOOL popIt);

};

[uuid(1A57D988-6A5F-4ef6-B991-7D64C51003A0)]

coclass LateBoundOnlyCar

{

[default] dispinterface _CarDispinterface;

};

};

Notice that when you build an IDispatch-only based COM class, you simply
add all your properties and methods to the [default] dispinterface. The reason is
simple: Late-bound clients can only access members defined by the [default].
Thus, although you could write the following IDL coclass statement:

[uuid(1A57D988-6A5F-4ef6-B991-7D64C51003A0)]

coclass LateBoundOnlyCar

{

[default] dispinterface _CarDispinterface;

interface ICantBeUsed;

interface ICantBeUsedEither;

};

a late-bound client can only make use of the members defined by the IDispatch-
based _CarDispinterface (by the way, the under-bar prefix is not required. It is
simply a naming convention that informs various object browsers to hide this
interface from view).

Chapter 2

110

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 110

Obtaining DISPIDs

Because late-bound clients do not have compile-time access to a server’s type
information, the first step to triggering the object’s functionality is to see if the
type in question supports a given method. To obtain the associated DISPID for
some property or method, the late-bound client sends in the textual name of the
method or property it hopes the object supports by calling GetIDsOfNames().
Using this method, a late-bound client is able to obtain the numerical value of a
given property or method in the dispinterface. GetIDsOfNames() takes a total of
five parameters:

// Breaking down GetIDsOfNames().

HRESULT GetIDsOfNames(

[in] REFIID riid, // Reserved, and will always be IID_NULL.

[in] LPOLESTR * rgszNames, // Text name of method/property.

[in] UINT cNames, // Number of names.

[in] LCID lcid, // The language ID.

[out] DISPID * rgDispId); // Place to hold the DISPIDs.

The first parameter is reserved for (possible) future use, and is always
IID_NULL. The second and third parameters represent the string name and the
number of names requested, respectively. The fourth parameter is the “locale”
requested (for example, US English). The final parameter is a place to store the
numerical value of the method or property (aka, the DISPID).

Invoking the Member

Once the client knows the DISPID that identifies the property or method, a call to
Invoke() may be made to actually trigger the item in the dispinterface. As you can
guess, one of the parameters to Invoke() is the DISPID. Here is a breakdown of
each parameter of the Invoke() method:

// Breaking down the Invoke() method.

HRESULT Invoke(

[in] DISPID dispIdMember, // DISPID of method or property.

[in] REFIID riid, // Reserved (also IID_NULL)

[in] LCID lcid, // Locale ID (again).

[in] WORD wFlags, // Flag used to specify a property or method.

[in, out] DISPPARAMS * pDispParams, // An array of parameters for the method.

[out] VARIANT * pVarResult, // A place to store the logical return value.

[out] EXCEPINFO * pExcepInfo, // Error information (if any).

[out] UINT * puArgErr); // Error information index (if any).

The Anatomy of a COM Server

111

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 111

Because of the fact that a dispinterface can contain properties and/or
methods, the value of the WORD parameter (wFlags) specifies if the client
wants to invoke a method (DISPATCH_METHOD), a “put” version of a
property (DISPATCH_PROPERTYPUT), or a “get” version of the property
(DISPATCH_PROPERTYGET). Recall that an interface property is identified by
two methods in the object and marked in IDL with the [propput] or [propget]
attributes. Using this flag, Invoke() can call the correct get_ or put_ method in
the coclass.

The DISPPARAMS structure is an array of VARIANT-compatible data types,
which contains the parameters for the invoked method (you see the details of this
structure in a moment). Finally, beyond the final two parameters (which are used
for automation error-handling), you have a [out] parameter of type VARIANT*.
This is used to hold the logical return value of the method (if any).

The VARIANT Data Type

As you can see, the DISPPARAMS structure and the VARIANT data type are
interrelated. COM programmers have long been aware of a special data type
termed the VARIANT. The VARIANT itself is realized in C++ as a union of all
possible [oleautomation] compatible data types. Beyond specifying the union of
all possible data types, the VARIANT structure also specifies a VARTYPE field. You
use this field to specify what sort of thing the VARIANT represents (a BSTR, long,
short, IUnknown pointer, and so forth). The definition of the VARIANT is
expressed in IDL (oaidl.idl) as the following:

// The VARIANT structure may take on the value of any possible automation

// data type.

struct tagVARIANT {

union {

VARTYPE vt; // What is my current type?

union {

LONG lVal; /* VT_I4 */

BYTE bVal; /* VT_UI1 */

SHORT iVal; /* VT_I2 */

FLOAT fltVal; /* VT_R4 */

DOUBLE dblVal; /* VT_R8 */

VARIANT_BOOL boolVal; /* VT_BOOL */

_VARIANT_BOOL bool; /* (obsolete) */

SCODE scode; /* VT_ERROR */

CY cyVal; /* VT_CY */

DATE date; /* VT_DATE */

Chapter 2

112

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 112

BSTR bstrVal; /* VT_BSTR */

IUnknown * punkVal; /* VT_UNKNOWN */

IDispatch * pdispVal; /* VT_DISPATCH */

SAFEARRAY * parray; /* VT_ARRAY */

BYTE * pbVal; /* VT_BYREF|VT_UI1 */

SHORT * piVal; /* VT_BYREF|VT_I2 */

LONG * plVal; /* VT_BYREF|VT_I4 */

FLOAT * pfltVal; /* VT_BYREF|VT_R4 */

DOUBLE * pdblVal; /* VT_BYREF|VT_R8 */

VARIANT_BOOL * pboolVal; /* VT_BYREF|VT_BOOL */

_VARIANT_BOOL * pbool; /* (obsolete) */

SCODE * pscode; /* VT_BYREF|VT_ERROR */

CY * pcyVal; /* VT_BYREF|VT_CY */

DATE * pdate; /* VT_BYREF|VT_DATE */

BSTR * pbstrVal; /* VT_BYREF|VT_BSTR */

IUnknown ** ppunkVal; /* VT_BYREF|VT_UNKNOWN */

IDispatch ** ppdispVal; /* VT_BYREF|VT_DISPATCH */

SAFEARRAY ** pparray; /* VT_BYREF|VT_ARRAY */

VARIANT * pvarVal; /* VT_BYREF|VT_VARIANT */

PVOID byref; /* Generic ByRef */

CHAR cVal; /* VT_I1 */

USHORT uiVal; /* VT_UI2 */

ULONG ulVal; /* VT_UI4 */

INT intVal; /* VT_INT */

UINT uintVal; /* VT_UINT */

DECIMAL * pdecVal; /* VT_BYREF|VT_DECIMAL */

CHAR * pcVal; /* VT_BYREF|VT_I1 */

USHORT * puiVal; /* VT_BYREF|VT_UI2 */

ULONG * pulVal; /* VT_BYREF|VT_UI4 */

INT * pintVal; /* VT_BYREF|VT_INT */

UINT * puintVal; /* VT_BYREF|VT_UINT */

};

…

};

};

The comments that appear in the definition of the VARIANT type are the flags
used to set the underlying type of VARIANT you are working with. In essence, the
VARIANT structure allows you to express any [oleautomation]-compatible data
types that can be understood by all COM-aware languages. The whole of these
data types is expressed as a C style union. To specify the sort of VARIANT you are
defining, set the VARTYPE field of the structure using the correct VT_ flag.

The Anatomy of a COM Server

113

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 113

Working with VARIANTs (in C++)

When you want to create a VARIANT data type in the C++ programming language,
you make use of a handful of COM library functions, which shield you from the
need to manage the memory associated with a given VARIANT. To create a brand-
new VARIANT, you begin by defining a VARIANT variable and initialize it using the
VariantInit() COM library function:

// Create and initialize a VARIANT in C++

VARIANT myVar;

VariantInit(&myVar);

At this point, you have an empty (but safe) VARIANT structure. To establish
what sort of data the variant is holding (BSTR, long, short, pointer to a BSTR, and
so on) you set the VARTYPE field, by specifying the correct VT_ flag. Let’s say you
want to create a VARIANT that starts out life as a short, which is to say VT_I2:

VARIANT myVar;

VariantInit(&myVar);

myVar.vt = VT_I2;

Next, you need to establish the value of this short, by setting the correct
member in the union with an appropriate value. As you can see from the defini-
tion of the VARIANT structure, a short is identified as the iVal member of the
union. Thus, to create a short with the value of 20 using the VARIANT data type:

VARIANT myVar;

VariantInit(&myVar);

myVar.vt = VT_I2;

myVar.iVal = 20;

As another example, here is a VARIANT of type long, with the value of 5000:

VARIANT myOtherVar;

VariantInit(&myOtherVar);

myVar.vt = VT_I4;

myVar.lVal = 5000;

In addition to VariantInit(), the COM library defines a set of additional func-
tions that operate on the VARIANT data type. Some of the most common are
shown in Table 2-6.

Chapter 2

114

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 114

Table 2-6. VARIANT COM Library Functions

VARIANT-Centric Meaning in Life
COM Library Function

VariantInit() Initializes a VARIANT structure.

VariantClear() Frees up any memory consumed by the current VARIANT.

This method automatically frees BSTRs, release interface

pointers, and so forth.

VariantCopy() Copies the content of one VARIANT to another VARIANT.

This method also frees any memory of the destination before

performing the copy.

VariantChangeType() Sets the underlying type of the VARIANT to another type.

Working with VARIANTs (in VB 6.0)

As you would expect, all this nastiness is hidden from view when using the Visual
Basic Variant data type:

Dim v as Variant

v = "Hello there" ' vt = VT_BSTR

v = 100 ' vt = VT_I4

Set v = txtCarPetName ' vt = VT_BYREF | VT_DISPATCH

The DISPPARAMS Structure

Once you can create a single VARIANT, you can build the DISPPARAMS structure.
Using IDispatch from a C++ client can be difficult. The trouble comes from
needing to package any necessary parameters to the method in the form of
an array of VARIANTS, which is represented by the DISPPARAMS structure.
DISPPARAMS is defined in <oaidl.idl> as the following (do note that the
VARIANTARG type is a simple typedef to the VARIANT structure):

// The DISPARAMS structure allows you to send over all required parameters to

// a method using one data structure.

typedef struct tagDISPPARAMS {

[size_is(cArgs)] VARIANTARG * rgvarg; // Array of arguments.

[size_is(cNamedArgs)] DISPID * rgdispidNamedArgs; // Array of named arguments.

UINT cArgs; // # of items in array.

UINT cNamedArgs; // # of named arguments.

} DISPPARAMS;

The Anatomy of a COM Server

115

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 115

More often than not, you only need to concern yourself with the first and third
fields of the DISPPARAMS structure. As for the other fields, automation objects
can support the idea of named arguments. The Visual Basic language allows devel-
opers to call a method and send in any required parameters in an order different
from the one in which the method was declared. To keep things simple, I will not
support any named arguments, so the values of these fields will be NULL.

The other fields of the DISPARAMS structure specify the upper bound of the
array of VARIANT parameters and the array itself. If a C++ client is calling a
member of a dispinterface that takes no parameters, the DISPPARAMS structure
can be assembled quite easily:

// When you are calling a member of a dispinterface that does not require

// any arguments at all (named or otherwise) set up your DISPPARAMS as follows:

DISPPARAMS params = {0, 0, 0, 0};

A C++ IDispatch Example

Most members of a dispinterface do, of course, take parameters, and thus you are
required to create some VARIANTS. For example, the _CarDispinterface defines
the PopTheTrunk() method which takes a single VARIANT Boolean. If you call this
method using C++, you would build the following DISPPARAMS structure:

// C++ late binding code.

void main()

{

CoInitialize(NULL);

IDispatch* pDisp = NULL;

CLSID clsid;

DISPID dispid;

// Go look up the CLSID from the ProgID.

CLSIDFromProgID(OLESTR("RawComCar.LateBoundOnlyCar"),&clsid);

LPOLESTR str = OLESTR("PopTheTrunk");

// Create object and get IDispatch…

CoCreateInstance(clsid, NULL, CLSCTX_SERVER, IID_IDispatch,

(void**)&pDisp);

// Get DISPID from object…

pDisp->GetIDsOfNames(IID_NULL, &str, 1,

LOCALE_SYSTEM_DEFAULT, &dispid);

Chapter 2

116

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 116

// Build dispatch parameters.

VARIANT myVars[1];

VariantInit(&myVars [0]);

myVars [0].vt = VT_ BOOL;

myVars [0].lVal = VARIANT_TRUE;

DISPPARAMS myParams = { myVars, 0, 1, 0};

// Call PopTheTrunk() using Invoke().

pDisp->Invoke(dispid, IID_NULL, LOCALE_SYSTEM_DEFAULT,

DISPATCH_METHOD, &myParams, NULL, NULL, NULL);

// Clean up…

pDisp->Release();

CoUninitialize();

}

Assuming that you have indeed implemented the LateBoundOnlyCar COM
type (including the methods of IDispatch) and registered the server with the
system, you would be able to activate and manipulate this coclass using nothing
but the well-known IDispatch interface. In the previous code, notice that there are
no #includes for MIDL-generated files or #imported type information. Everything
is happening on the fly at runtime. For example, notice that you obtain the
CLSID of the LateBoundOnlyCar dynamically using the type’s ProgID (and
the CLSIDFromProgID() COM library function).

A Visual Basic IDispatch Client

Although you may never need to build a C++ client that makes use of pure late
binding, you hopefully have a better idea (and appreciation) what Visual Basic is
doing on your behalf. For example, here is a late-bound Visual Basic 6.0 client:

' obj is pointing to IDispatch!

Dim obj as Object

Set obj = CreateObject("RawComCar.LateBoundOnlyCar")

obj.PopTheTrunk True

The Anatomy of a COM Server

117

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 117

Understanding the Dual Interface

As mentioned, most COM classes do not support pure dispinterfaces, given that
this would force all clients to interact with the type using IDispatch (which can be
a pain). Objects that support dual interfaces provide both an IDispatch implemen-
tation as well as the set of custom COM interfaces supported by the object. In this
way, early-bound clients can simply access your custom interfaces (ICar, IRadio)
as expected (and by pass any dynamic lookup of DISPIDs) while the late-bound
clients are still able to make use of your coclass using IDispatch.

Building a dual interface object is quite simple if you make use of the COM
library. For the most part, you write the IDL to describe the dual interface and use
the associated COM library calls to fill in the details of GetTypeInfoCount(),
GetTypeInfo(), GetIDsOfNames(), and Invoke(). This leaves your only task to
implement your interface methods as usual.

However, dual interfaces do have one very important restriction. If you build a
dual interface object, every single parameter of every single method must be
variant compliant (meaning, it must be able to be represented in a VARIANT struc-
ture). Just like a raw dispinterface, it is important to understand that late-bound
clients are only able to access the [default] dual interface (even though it is techni-
cally possible to build a COM class with multiple [dual] interfaces).

Defining a Scriptable Object

To illustrate the use of [dual] interfaces and see a complete implementation of
IDispatch, let’s add a new coclass to the current RawComCar project. As with most
things in COM, writing a dual interface begins with the IDL code. Defining a dual
interface in IDL looks like the following (note you are defining a COM property):

// The IScriptableCar interface

[uuid(DBAA0495-2F6A-458a-A74A-129F2C45B642), dual, object]

interface IScriptableCar : IDispatch

{

[id(1), propput] HRESULT Speed([in] long currSp);

[id(1), propget] HRESULT Speed([out, retval] long* currSp);

[id(2)] HRESULT CrankTunes();

};

Like any COM interface, dual interfaces are marked with the [uuid] and
[object] attributes. However, you must also specify the [dual] attribute and derive
your custom interface directly from IDispatch. Furthermore, each member in the
dispinterface must be marked with a unique DISPID using the [id] attribute.

Chapter 2

118

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 118

As you can see, [dual] interfaces are a hybrid of traditional COM interfaces and the
pure dispinterface.

Now assume that you have updated your library statement to support the
following coclass (notice that we are making use of the interface keyword rather
than the dispinterface keyword when specifying a [dual] interface):

[uuid(D679F136-19C9-4868-B229-F338AE163656), version(1.0)]

library RawComCarLib

{

importlib("stdole32.tlb");

// The first ComCar as before…

// Our other COM class.

[uuid(7AD9AFC9-771C-495c-A330-006D54A23650)]

coclass ScriptableCar

{

[default] interface IScriptableCar;

};

};

Implementing IScriptableCar

If you insert a new C++ class named ScriptableCar, you would suddenly be in the
position of implementing a total of ten methods on the type. Here is the header file:

class ScriptableCar : public IScriptableCar

{

public:

ScriptableCar();

virtual ~ScriptableCar();

// IUnknown.

STDMETHOD_(DWORD, AddRef)();

STDMETHOD_(DWORD, Release)();

STDMETHOD (QueryInterface)(REFIID riid, void** ppv);

// IDispatch.

STDMETHOD (GetTypeInfoCount)(UINT *pctinfo);

STDMETHOD (GetTypeInfo)(UINT iTInfo, LCID lcid, ITypeInfo **ppTInfo);

STDMETHOD (GetIDsOfNames)(REFIID riid, LPOLESTR *rgszNames,

UINT cNames, LCID lcid, DISPID *rgDispId);

The Anatomy of a COM Server

119

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 119

STDMETHOD (Invoke)(DISPID dispIdMember, REFIID riid, LCID lcid,

WORD wFlags, DISPPARAMS *pDispParams,

VARIANT *pVarResult, EXCEPINFO *pExcepInfo,

UINT *puArgErr);

// Members of IScriptableCar.

STDMETHOD (put_Speed)(long delta);

STDMETHOD (get_Speed)(long* currSp);

STDMETHOD (CrankTunes)();

long m_currSpeed;

ULONG m_refCount;

// To hold onto our type information (see below).

ITypeInfo* m_ptypeInfo;

};

Like any COM class, ScriptableCar needs to implement the three methods of
IUnknown. I won’t bother listing this here, but check your companion code for full
details (it should be no surprise that QueryInterface() is returning three possible
interfaces!).

When it comes down to the process of implementing the methods of IDispatch,
you have a number of possible techniques ranging from building a custom lookup
table to leveraging your own type information. The simplest possible way to
support IDispatch is to make use of your own type information and a small set of
COM library functions as shown in Table 2-7.

Table 2-7. IDispatch Helper Functions

IDispatch-Centric Meaning in Life
COM Library Function

LoadRegTypeLib() This COM library function loads a type library into memory.

The returned ITypeLib interface represents this in-memory

hook, and from it you are able to obtain a valid ITypeInfo

interface that describes the current COM type.

DispGetIDsOfNames() This method of the COM library maps a string name to the

correct DISPID by reading your type information.

DispInvoke() This COM library function calls a method on our C++ class

based on the current DISPID.

Using these members of the COM library, you are able to equip your COM
class to read its own type information to obtain the correct DISPID for the caller,
as well as route the invocation request to a member on your C++ class type.

Chapter 2

120

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 120

Notice how the ScriptableCar type maintains a private ITypeInfo interface
member variable. This standard COM interface represents a pointer to a specific
COM type in a loaded type library. You learn much more about this interface later
in the text. Just understand for the time being that this standard COM interface
allows you to read type information about a COM item at runtime.

Given the fact that ITypeInfo represents the type information for the
ScriptableCar, the first step is to load the type information into memory (repre-
sented by the ITypeLib interface), and hold onto your type information using the
ITypeInfo member variable. When the COM class self-destructs, you need to
release the interface reference. Here is the initial update:

// Load our type information on start up.

ScriptableCar::ScriptableCar() : m_currSpeed(0), m_ptypeInfo(NULL),

m_refCount(0)

{

++g_ObjectCount;

// When our object is constructed, we are going to

// load up the *tlb file and store it in our ITypeInfo pointer.

ITypeLib* pTypeLibrary = NULL;

HRESULT hr;

hr = LoadRegTypeLib(LIBID_RawComCarLib, 1, 0,

LANG_NEUTRAL, &pTypeLibrary);

if(SUCCEEDED(hr))

{

pTypeLibrary->GetTypeInfoOfGuid(IID_IScriptableCar, &m_ptypeInfo);

pTypeLibrary->Release();

}

}

// Release our type information on shut down.

ScriptableCar::~ScriptableCar()

{

--g_ObjectCount;

m_ptypeInfo->Release();

}

Now that you have a handle to your type information, the implementation of
IDispatch is rather straightforward. Here is the code (with analysis to follow):

STDMETHODIMP ScriptableCar::GetTypeInfoCount(UINT *pctinfo)

{

// Return type info count.

*pctinfo = 1;

return S_OK;

The Anatomy of a COM Server

121

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 121

}

STDMETHODIMP ScriptableCar::GetTypeInfo(UINT iTInfo,

LCID lcid, ITypeInfo **ppTInfo)

{

// Return reference to our ITypeInfo interface.

*ppTInfo = m_ptypeInfo;

m_ptypeInfo->AddRef();

return S_OK;

}

STDMETHODIMP ScriptableCar::GetIDsOfNames(REFIID riid,

LPOLESTR *rgszNames, UINT cNames, LCID lcid, DISPID *rgDispId)

{

// Now we just delegate the work of the look-up to our type library.

return DispGetIDsOfNames(m_ptypeInfo, rgszNames, cNames, rgDispId);

}

STDMETHODIMP ScriptableCar::Invoke(DISPID dispIdMember, REFIID riid,

LCID lcid, WORD wFlags, DISPPARAMS *pDispParams,

VARIANT *pVarResult, EXCEPINFO *pExcepInfo, UINT *puArgErr)

{

// Again, delegate work to the type library.

return DispInvoke(this, m_ptypeInfo, dispIdMember, wFlags, pDispParams,

pVarResult, pExcepInfo, puArgErr);

}

The implementation of GetTypeInfoCount() fills the incoming UINT to 1,
which is the standard way of informing the caller that this COM object has access
to its own type information (1 being the number of ITypeInfo interfaces the type is
maintaining). If the client wishes to obtain access to our type information,
GetTypeInfo() returns a reference to the caller.

The real point of interest is GetIDsOfNames(), which delegates the work to the
COM library function DispGetIDsOfNames(). Using our type information, this
function obtains the correct DISPID for the client based on the incoming string
value. Invoke() is also rather simple, given that DispInvoke() will do the work of
calling the correct method on the ScriptableCar based on the incoming DISPID
(note that the first parameter to this COM library function is a pointer to the
implementing object!).

Chapter 2

122

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 122

Building the Class Factory

Given that the ScriptableCar is a creatable COM class, it must have a unique class
factory to activate it. The truth of the matter is that all COM class factories have a
very similar look and feel and are quite boilerplate in nature. In fact, if you copy
and paste the ComCar’s class factory definition (changing the name of the class of
course), the only update of note is in the implementation of CreateInstance(). This
time you construct a ScriptableCar type:

STDMETHODIMP ScriptableCarCF::CreateInstance(LPUNKNOWN pUnkOuter,

REFIID riid, void** ppInterface)

{

if(pUnkOuter != NULL)

return CLASS_E_NOAGGREGATION;

ScriptableCar* pCarObj = NULL;

HRESULT hr;

// Create the scriptable car.

pCarObj = new ScriptableCar;

hr = pCarObj -> QueryInterface(riid, ppInterface);

if (FAILED(hr))

delete pCarObj;

return hr;

}

The remainder of the ScriptableCarCF class is identical to ComCarCF.

Updating DllGetClassObject

Recall that the role of DllGetClassObject() is to return the correct IClassFactory
interface based on the CLSID of the coclass provided by the client. Given that
our COM server now contains two coclasses, you must update your previous
DllGetClassObject() implementation to test against two MIDL-generated constants:

// Don't forget to #include "scriptablecarcf.h"

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)

{

// Which Car do you want?

if(rclsid == CLSID_ComCar)

{

The Anatomy of a COM Server

123

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 123

ComCarCF* pCarCF = new ComCarCF();

return pCarCF->QueryInterface(riid, ppv);

}

else if(rclsid == CLSID_ScriptableCar)

{

ScriptableCarCF* pCarCF = new ScriptableCarCF();

return pCarCF->QueryInterface(riid, ppv);

}

else

return CLASS_E_CLASSNOTAVAILABLE;

}

Updating the Server’s Registration File

Finally, like all COM objects, you must ensure that the type is registered in the
system registry. Here are the new entries to your current *.reg file (be sure to rereg-
ister this information by double-clicking the file!).

; Scriptable car entries.

HKEY_CLASSES_ROOT\RawComCar.ScriptableCar\CLSID

= {7AD9AFC9-771C-495c-A330-006D54A23650}

HKEY_CLASSES_ROOT\CLSID\{7AD9AFC9-771C-495c-A330-006D54A23650}

= ScriptableCar.CoCar

HKEY_CLASSES_ROOT\CLSID\{7AD9AFC9-771C-495c-A330-006D54A23650}

\InprocServer32 = C:\Apress Books\InteropBook\Labs\Chapter 2

\RawComCar\Debug\RawComCar.dll

HKEY_CLASSES_ROOT\CLSID\{7AD9AFC9-771C-495c-A330-006D54A23650}

\TypeLib = {D679F136-19C9-4868-B229-F338AE163656}

Building a VBScript Late-Bound Client

The point of IDispatch really hits home when you look at the process of using a
COM object from an existing piece of software. Consider, for example, Microsoft
Internet Explorer. Obviously, you do not have the source code for this desktop
application, and therefore cannot simply #include the MIDL-generated files into
the code base. Nevertheless, IE still needs to make use of the same GUIDs,
member names, and type information as would an application that you

Chapter 2

124

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 124

constructed yourself. Using your HTML editor of choice, activate the COM type
using the VBScript CreateObject() method and trigger some functionality:

<HTML>

<HEAD>

<TITLE>Document Title</TITLE>

</HEAD>

<BODY>

<H1>Behold, the need for <i>IDispatch</i>.</H1>

<SCRIPT language="VBScript">

Dim o

Set o = CreateObject("RawComCar.ScriptableCar")

o.CrankTunes

o.Speed = 100

MsgBox o.Speed

</SCRIPT>

</BODY>

</HTML>

If you now load this file (simply by double-clicking) you find something like
what you see in Figure 2-24.

Figure 2-24. IDispatch in action

The Anatomy of a COM Server

125

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 125

So, with this you reach the conclusion of Chapter 2. Based on your current
exposure to the guts of COM, this chapter may have been quite illuminating, or a
rather obvious reiteration of facts you have committed to memory long ago. In
either case, I hope this chapter has clarified the core aspects of COM develop-
ment. The next chapter offers a quick-and-dirty compare and contrast between
two popular COM frameworks: ATL 3.0 and Visual Basic 6.0.

CODE The ScriptableCar.htm file as well as a C++ late-bound client
(CppLateBoundClient) are included under the Chapter 2 subdirectory.

Summary

The stated goal of this chapter was to examine the internal composition of a COM
DLL server. To reach this objective, you spent a good deal of time digging into the
inner goo that constitutes the COM infrastructure. As you have learned, all COM
types (interfaces, coclasses, enumerations, and structures) are defined in IDL. IDL,
as a language-neutral way to define COM types, is sent into the MIDL compiler to
produce language-specific language binding (the most important of which is the
type library file).

All COM classes must support the IUnknown interface, which provides
memory management and interface navigation for the implementing coclass.
To be activated in a language-neutral manner, each coclass is assigned a COM class
factory, which by definition supports the IClassFactory interface. Finally, COM
classes and the related class factories are packaged into DLL or EXE file formats.
Here, you focused on the composition of DLL servers and came to understand
the role of DllGetClassObject(), DllCanUnloadNow(), DllRegisterServer(), and
DllUnregisterServer(). You also spent time examining how COM classes can be
activated and manipulated by various COM-aware languages such as C++ and
Visual Basic 6.0.

Finally, you took a quick tour of the role of IDispatch and related late-binding
atoms such as the VARIANT data type, and the ITypeLib and ITypeInfo interfaces.
Using IDispatch, a late-bound client is able to invoke members on a COM type
without needing to reengineer its code base to reference external dependencies
(GUIDs, interface constants, and whatnot).

Now on to a (very) short course on ATL 3.0 and VB 6.0.

Chapter 2

126

*0112_Ch02_CMP4.qxp 3/25/02 1:57 PM Page 126

CHAPTER 3

A Primer
on COM Programming

Frameworks

The previous chapter introduced you to the process of building COM DLLs using
raw C++ and IDL. Although it is illuminating to see exactly what takes place under
the hood to build a COM server from the ground up, I am sure you agree that the
process is tedious and error prone. In this chapter, I draw your attention to the
creation of COM servers using two popular frameworks, namely the Active
Template Library 3.0 (ATL 3.0) and Microsoft Visual Basic 6.0. This chapter also
illustrates how to make use of a core development tool: the OLE/COM Object
Viewer (oleview.exe), which will be used throughout this text.

Obviously, entire books have been written about COM development using
ATL 3.0 and VB 6.0. To be sure, a single chapter cannot do justice to each COM
framework. However, given that this book is all about getting the COM and .NET
architecture to coexist in harmony, I feel compelled to cover the basics of each of
these COM toolkits. Even if you are a seasoned veteran of ATL 3.0 and VB 6.0, I
invite you to read along and build the sample applications, given that you make
use of these COM servers later in the text. So without further introductory fluff,
let’s formalize the role of ATL.

The Role of the Active Template Library

ATL is a very popular C++ COM development framework that consists of a
number of templates, magic macros, and base class types. The overall goal of ATL
is to provide default boilerplate implementations for the necessary COM infra-
structure (IUnknown, class factories, IDispatch, and so on), giving you more time
to concentrate on the business problem you are trying to solve. Consider for

127

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 127

example the C++ ComCar you created in Chapter 2. Although all you really wanted
to do was allow the outside world to access this functionality:

// The essence of the ComCar.

STDMETHODIMP ComCar::SpeedUp(long delta)

{

m_currSpeed += delta;

return S_OK;

}

STDMETHODIMP ComCar::CurrentSpeed(long* currSp)

{

*currSp = m_currSpeed;

return S_OK;

}

STDMETHODIMP ComCar::CrankTunes()

{

MessageBox(NULL, "Cranking music!", "ComCar", MB_OK);

return S_OK;

}

you were required to implement the methods of IUnknown, build IDL type defini-
tions, and construct a class factory, as well as contend with several DLL exports
(not to mention register the critical server information in the system registry). If
you choose to build your COM servers using C++, ATL will be a welcome addition
to your programmer’s bag of tricks.

Understand that even though ATL does provide stock implementations of
numerous COM atoms, you are always able to extend and override this default
behavior if you so choose. In any case, ATL does not exonerate you from the need
to understand IDL or the constructs of COM. To illustrate the basics, you will
construct an ATL DLL that mimics the functionality of the previous
RawComCar.dll.

Generating the Component Housing

Every ATL project begins by making use of the ATL COM AppWizard utility, which
can be activated from the File | New menu of the Visual Studio 6.0 IDE (Figure 3-1).
If you wish to follow along, name your project AtlCarServer and click the OK
button.

Chapter 3

128

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 128

Figure 3-1. ATL projects begin here.

The ATL COM AppWizard allows you to choose among a small set of options.
Most important, you are able to specify if you wish to build an in-process server
(DLL) or a COM-based EXE server (used for local or remote access). For the
current example, leave all the default settings to receive a new DLL. The only
purpose of this tool is to generate the necessary files for a COM server. Thus, at
this point you do not have any interface or coclass IDL definitions or C++ coclass
implementations.

The ATL Project Files

When you create a new ATL DLL project workspace, you are provided with a
number of files that represent the component housing. Table 3-1 documents the
role of each file.

A Primer on COM Programming Frameworks

129

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 129

Table 3-1. Generated ATL Project Workspace Files

ATL COM AppWizard Meaning in Life
Generated File

stdafx.h Precompiled header files. Includes the core ATL files into your

stdafx.cpp current project.

AtlCarServer.cpp Implements the DLL export functions for this server, enlisting

help from the ATL class, CComModule. Also defines a DllMain()

implementation to initialize and terminate the CComModule

instance and declares the server’s OBJECT_MAP data structure.

AtlCarServer.def Exports your DLL functions.

AtlCarServer.idl Your project’s IDL file, doing nothing more at this point than

declaring an empty library statement.

AtlCarServer.h MIDL-generated files to hold your C/C++ interface bindings,

AtlCarServer_i.c GUID definitions, proxy/stub code (including DLL exports), and

AtlCarServer_p.c the binary type library. These files will not be generated until

dlldata.c. after your first compile (which triggers the midl.exe compiler).

AtlCarServer.tlb

AtlCarServer.mk ATL-generated makefile and DEF file used to build a custom

AtlCarServer.def stub/proxy DLL using the nmake.exe utility.

resource.h Minimal resource files for this project.

AtlCarServer.rc

At this point, if you view the list of global members using ClassView, you will
be pleased to find that each of the required DLL exports have been implemented
on your behalf (Figure 3-2).

Figure 3-2. ATL autogenerates the necessary DLL exports.

Chapter 3

130

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 130

Now compile this project (to run the MIDL compiler) and switch to FileView.
You should now be able to see the full set of files that constitute the empty COM
DLL (Figure 3-3).

Figure 3-3. Initial project files

Although you do not need to examine the contents of each and every file, take
the time to check out three important files. (I’ll assume you’ll investigate the
remaining files in whatever level of detail you so choose.)

The Initial IDL File

If you open the generated IDL file, you will see an empty library definition,
complete with a generated LIBID, version, and a new IDL attribute termed a
[helpstring]:

import "oaidl.idl";

import "ocidl.idl";

[

uuid(B6D55CDA-D4AA-42E5-A5E3-D3034DE6A575),

version(1.0), helpstring("AtlCarServer 1.0 Type Library")

]

library ATLCARSERVERLib

A Primer on COM Programming Frameworks

131

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 131

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

};

The [helpstring] attribute may be applied to the libraries, coclasses, interfaces,
and methods. These simple text strings are displayed in various tools (such as the
VB 6.0 Object Browser utility) and provide a convenient way to document the
functionality of your COM binary.

The AtlCarServer.cpp File

Every ATL project contains a primary *.cpp file that takes the same name as the
current project. Within this C++ implementation file are the full implementations
of the four required DLL exports. In addition to a number of #include directives
(including references to the MIDL-generated *_i.c and *.h files), you also see a
global object of type CComObject (whose usefulness you will understand shortly)
and a server-wide “object map.” Here are the abbreviated contents:

// All ATL projects have a single global CComModule…

CComModule _Module;

// …and a server-wide object map.

BEGIN_OBJECT_MAP(ObjectMap)

END_OBJECT_MAP()

extern "C"

BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD dwReason,

LPVOID /*lpReserved*/)

{

if (dwReason == DLL_PROCESS_ATTACH)

{

_Module.Init(ObjectMap, hInstance, &LIBID_ATLCARSERVERLib);

DisableThreadLibraryCalls(hInstance);

}

else if (dwReason == DLL_PROCESS_DETACH)

_Module.Term();

return TRUE; // ok

}

STDAPI DllCanUnloadNow(void)

{ return (_Module.GetLockCount()==0) ? S_OK : S_FALSE; }

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)

{ return _Module.GetClassObject(rclsid, riid, ppv); }

STDAPI DllRegisterServer(void)

Chapter 3

132

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 132

{ return _Module.RegisterServer(TRUE); }

STDAPI DllUnregisterServer(void)

{ return _Module.UnregisterServer(TRUE); }

The Project’s *.def File

Finally, you are provided with a properly configured *.def file that is used to expose
your DLL exports.

; AtlCarServer.def : Declares the module parameters.

LIBRARY "AtlCarServer.DLL"

EXPORTS

DllCanUnloadNow @1 PRIVATE

DllGetClassObject @2 PRIVATE

DllRegisterServer @3 PRIVATE

DllUnregisterServer @4 PRIVATE

Inserting COM Objects Using the ATL Object Wizard

Once you have established the component housing using the ATL COM
AppWizard, you make use of another integrated tool, the ATL Object Wizard, when
you wish to insert COM objects into the binary DLL. You can use numerous
methods to activate this wizard, the simplest of which is the Insert | New ATL
Object menu selection. When you make this selection, you are greeted by the
dialog box in Figure 3-4.

Figure 3-4. The ATL Object Wizard

A Primer on COM Programming Frameworks

133

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 133

As you can tell, the ATL Object Wizard defines a number of COM object types
ranging from a simple coclass (Simple Object) to complete ActiveX controls (found
under the Controls category). For the purposes of this example, you only need to
concern yourself with Simple Object types. These COM object types are initially
configured using two tabs: Names and Attributes.

The Names tab is simple enough. Here, you are able to specify the names of
each generated C++ file as well as various COM atoms (such as the ProgID and
name of the default interface). Insert a new type named ComCar (Figure 3-5).
Notice the ProgID is based on the name of your COM server and the object you are
about to insert.

Figure 3-5. Establishing the names of your new coclass

The Attributes tab is used to configure numerous settings such as support for
COM error handling, COM connection points (the COM event model), and various
threading details. Here, the only modification you need to make is to select a
custom rather than dual interface (Figure 3-6).

If you select the default Dual option, your class will be equipped to support
the standard IDispatch interface. When you do, your ATL coclass will be derived
from the IDispatchImpl<> template, which provides a full implementation of the
four members of IDispatch. In fact, ATL is making use of the exact same COM
library calls you did in the previous chapter (DispInvoke() and so on). Also, when
you choose a dual interface, the integrated wizards will automatically assign
DISPIDs to each new member. ATL hides IDispatch so well that you can more or
less forget about the details and simply add your custom methods.

Chapter 3

134

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 134

Figure 3-6. Configuring various coclass attributes

Code Updates

Once you have inserted your new Simple Object, the coclass and [default] inter-
face will be reflected in your original IDL. Although the Object Wizard is kind
enough to make this initial IDL update, don’t be lulled into believing that you can
forget about manually editing your *.idl files. When you wish to add support for
additional COM interfaces, you will need to do so manually. Here are the relevant
changes:

[object, uuid(16C19100-5881-40E0-8844-8C0B8436B603),

helpstring("IComCar Interface"), pointer_default(unique)]

interface IComCar : IUnknown

{};

[uuid(B6D55CDA-D4AA-42E5-A5E3-D3034DE6A575),

version(1.0),helpstring("AtlCarServer 1.0 Type Library")]

library ATLCARSERVERLib

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

[uuid(8225387E-8453-484C-96D4-CBB4FF3A5329),

helpstring("ComCar Class")]

coclass ComCar

{

[default] interface IComCar;

};

};

A Primer on COM Programming Frameworks

135

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 135

In addition to updating your type information, the Object Wizard also alters
your server-wide “object map” with a new OBJECT_ENTRY macro.

// Each object in your ATL server will be listed here.

BEGIN_OBJECT_MAP(ObjectMap)

OBJECT_ENTRY(CLSID_ComCar, CComCar)

END_OBJECT_MAP()

The major code updates come by way of the addition of three new source
code files:

• ComCar.h: The header file for your new coclass

• ComCar.cpp: The implementation file for your new coclass

• ComCar.rgs: The registration script file for your new coclass

Let’s examine each file in turn, focusing on the provided functionality.

ATL’s Implementation of Your Coclass

Once of the best things about the ATL framework is that you never need to
manually implement the methods of IUnknown for your COM types. The frame-
work provides a default implementation using two core base-class templates:
CComObjectRootEx<> and its immediate parent, CComObjectRoot<>. These
templates work in conjunction with another entity termed the COM map. This
may be one of the most misnamed entities in the ATL class libraries, given that the
COM map is used to catalog the set of interfaces supported by the current COM
class. Although the internal construction of the ATL COM map (and related
templates) is a bit outside the scope of this text, do understand that helper func-
tions of these templates will make calls to the COM map whenever an external
QueryInterface() request is made on the object. Thus, keeping your COM map
up-to-date is just as critical to the health of your COM object as manually
updating the QueryInterface() of a coclass written in raw C++.

In addition to providing a default implementation of IUnknown, ATL provides
a free default implementation of the IClassFactory interface. Each creatable ATL
class has CComCoClass<> as a member of its inheritance chain. Nested deep
within this template definition is a macro named DECLARE_CLASSFACTORY.
When expanded, this macro defines a C++ class that implements
IClassFactory::LockServer() and IClassFactory::CreateInstance() on your behalf.
Here then is the initial header file definition of ComCar:

Chapter 3

136

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 136

// Recall! These base class templates provide an automatic

// implementation of IUnknown and IClassFactory.

class ATL_NO_VTABLE CComCar :

// Core IUnknown support here.

public CComObjectRootEx<CComSingleThreadModel>,

// Class factory defined here!

public CComCoClass<CComCar, &CLSID_ComCar>,

// Custom interface(s) here!

public IComCar

{

public:

CComCar(){}

DECLARE_REGISTRY_RESOURCEID(IDR_COMCAR)

DECLARE_PROTECT_FINAL_CONSTRUCT()

// Table driven QueryInterface().

BEGIN_COM_MAP(CComCar)

COM_INTERFACE_ENTRY(IComCar)

END_COM_MAP()

};

ATL’s Registration Support

Recall from Chapter 2 that a given COM server requires a good deal of system
registration. If you were to build a C++ implementation of DllRegisterServer() and
DllUnregisterServer(), you would have a good deal of code on your hands. Using
*.reg files is a less code-intensive alternative; however, the syntax of a *.reg file is
hardly friendly. One extra bit of white space (or not enough in the correct places)
can cause a number of corrupt entries to be encoded under
HKEY_CLASSES_ROOT. The ATL framework takes a middle-of-the-road approach
using *.rgs files.

When an ATL COM server is told to register itself with the system (via
regsvr32.exe or some installation software package), the implementation of
DllRegisterServer() simply makes a call on the global CComModule helper class:

STDAPI DllRegisterServer(void)

{

return _Module.RegisterServer(TRUE);

}

A Primer on COM Programming Frameworks

137

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 137

CComModule::RegisterServer() in turn consults the server-wide object map
and walks the list of entries (that is, each OBJECT_ENTRY listing), calling each
member’s UpdateRegistry() method. For this example, you have a single listing in
your object map for the ComCar type. Notice how the second parameter to the
OBJECT_ENTRY macro is the name of the C++ class that has the implementation
code for the given CLSID.

// The CComModule type walks the list of

// entries and tells each C++ class to register

// itself by calling the UpdateRegistry() method.

BEGIN_OBJECT_MAP(ObjectMap)

OBJECT_ENTRY(CLSID_ComCar, CComCar)

END_OBJECT_MAP()

Sadly, if you look in the CComCar header file, you will not see a method
named UpdateRegistry(). You should, however, notice the following macro:

class ATL_NO_VTABLE CComCar :

public CComObjectRootEx<CComSingleThreadModel>,

…

{

…

DECLARE_REGISTRY_RESOURCEID(IDR_COMCAR)

};

If you examine the expansion of this macro, you will see a method named
UpdateRegistry(). Notice how the macro parameter (IDR_COMCAR) is passed
as an argument to the CComModule::UpdateRegistryFromResource() helper
function:

// This ATL macro expands to define UpdateRegistry()

// for your class.

#define DECLARE_REGISTRY_RESOURCEID(x)\

static HRESULT WINAPI UpdateRegistry(BOOL bRegister)\

{\

return _Module.UpdateRegistryFromResource(x, bRegister);\

}

So, if you are following the bouncing ball, you will see that ATL’s default
implementation of DllRegisterServer() calls CComModule::RegisterServer().
This method calls the UpdateRegistry() method (supplied via the
DECLARE_REGISTRY_RESOURCEID macro) for each C++ class listed in the object
map. The final question is, what is this magical parameter IDR_COMCAR that is
passed into CComModule.UpdateRegistryFromResource()? If you examine your
ResourceView tab, you will see a new custom resource folder named “REGISTRY”
(Figure 3-7).

Chapter 3

138

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 138

Figure 3-7. IDR_xxx is a custom resource.

These “IDR_” resources are a binary equivalent of the autogenerated *.rgs file.
This file is compiled into a “REGISTRY” resource, which is then embedded in your
COM DLL (or EXE). Thus, each ATL COM server has all the necessary information
to register and unregister itself on demand. Here is the *.rgs file that describes
ComCar:

HKCR

{

AtlCarServer.ComCar.1 = s 'ComCar Class'

{

CLSID = s '{8225387E-8453-484C-96D4-CBB4FF3A5329}'

}

AtlCarServer.ComCar = s 'ComCar Class'

{

CLSID = s '{8225387E-8453-484C-96D4-CBB4FF3A5329}'

CurVer = s 'AtlCarServer.ComCar.1'

}

NoRemove CLSID

{

ForceRemove {8225387E-8453-484C-96D4-CBB4FF3A5329} = s 'ComCar Class'

{

ProgID = s 'AtlCarServer.ComCar.1'

VersionIndependentProgID = s 'AtlCarServer.ComCar'

InprocServer32 = s '%MODULE%'

{

val ThreadingModel = s 'Apartment'

}

'TypeLib' = s '{B6D55CDA-D4AA-42E5-A5E3-D3034DE6A575}'

}

}

}

A Primer on COM Programming Frameworks

139

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 139

Even if you have never seen ATL’s Registry Scripting Language, you should be
able to pull out the ProgID and CLSID registration information. For example, you
can see that the value stored under HKCR\CLSID\{<your GUID>}\InprocServer32
is based on a placeholder named %MODULE%. At runtime, this placeholder is
replaced by the current location of the DLL or EXE on the target machine.

Adding Members to the [Default] Interface

Now that you have a better feel for how ATL composes your COM server, you can
begin to add your custom logic. When you wish to add methods to a given COM
interface, you certainly could make the necessary code adjustments by hand.
However, ATL projects support yet another wizard to facilitate this process. Simply
right-click an interface icon from ClassView and select Add Method (or if you
wish, Add Property) from the context menu (Figure 3-8).

Figure 3-8. Adding methods a la ATL

The resulting dialog box prompts you for the name, return type, and param-
eter list of the new interface method. Be aware that all parameters are entered as
IDL (so don’t forget about the [in], [out], [in, out], and [out, retval] attributes). If
you add the SpeedUp() method shown in Figure 3-9, you will find that your *.idl,
ComCar.h, and ComCar.cpp files have been updated as follows:

// IDL file update.

interface IComCar : IUnknown

{

[helpstring("method SpeedUp")] HRESULT SpeedUp([in] long delta);

Chapter 3

140

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 140

};

// Header file update.

class ATL_NO_VTABLE CComCar :

public CComObjectRootEx<CComSingleThreadModel>,

public CComCoClass<CComCar, &CLSID_ComCar>,

public IComCar

{

…

public:

STDMETHOD(SpeedUp)(/*[in]*/ long delta);

};

// Implementation file update.

STDMETHODIMP CComCar::SpeedUp(long delta)

{

// TODO: Add your implementation code here

return S_OK;

}

Figure 3-9. Adding interface methods

As you can see, ATL is making use of the same COM-centric macros shown in
Chapter 2. Now assume you have added a private data member (m_currSpeed) to
your ATL ComCar to hold the current speed. The implementation of SpeedUp() is
trivial:

STDMETHODIMP CComCar::SpeedUp(long delta)

{

// Speed up.

m_currSpeed = m_currSpeed + delta;

MessageBox(NULL,"Speeding Up", "ATL ComCar", MB_OK);

return S_OK;

}

A Primer on COM Programming Frameworks

141

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 141

Adding a More Interesting Method

SpeedUp() is a step in the right direction for this iteration of ComCar. However, to
make things a bit more enticing (and preview some additional COM types), add
one more method to the IComCar interface. The TurnOnRadio() method takes a
single inbound argument that just happens to be a COM enumeration. Like C(++)
enumerations, the IDL enum keyword is used to define a custom user-defined
type with a fixed set of name/value pairs. When defining enums in IDL, you are
not required to add any IDL attributes to the enum type itself, but you are required
to make use of the C typedef syntax. To illustrate, assume your IDL file now has the
following COM type:

// IDL COM enum definition.

typedef enum RADIOTYPE

{

EIGHT_TRACK,

CD,

AM_RADIO,

FM_RADIO

} RADIOTYPE;

The RADIOTYPE enumeration has four possible values, numerically identified
as {0, 1, 2, 3}. The TurnOnRadio() method can now take a RADIOTYPE parameter
in the exact same manner as any intrinsic IDL data type (which are all fully
defined in the next chapter). Here is the updated ICar interface:

interface IComCar : IUnknown

{

[helpstring("method SpeedUp")]

HRESULT SpeedUp([in] long delta);

[helpstring("method TurnOnRadio")]

HRESULT TurnOnRadio([in] RADIOTYPE make);

};

When this IDL file is processed by the MIDL compiler, the IDL enumeration is
embedded in the type library and is therefore usable by any COM-aware language.
C++ clients (as well as the COM server) can also opt to make use of the definition
placed in the MIDL-generated header file:

// MIDL-generated C++ enum definition.

typedef enum RADIOTYPE

{ EIGHT_TRACK = 0,

CD = EIGHT_TRACK + 1,

AM_RADIO = CD + 1,

FM_RADIO = AM_RADIO + 1

}RADIOTYPE;

Chapter 3

142

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 142

To flesh out the details of the TurnOnRadio() method, you can take the
easy route and display a message based on the value of the client-supplied
RADIOTYPE:

// Play some tunes.

STDMETHODIMP CComCar::TurnOnRadio(RADIOTYPE make)

{

switch(make)

{

case EIGHT_TRACK:

MessageBox(NULL, "Upgrade your system!", "ATL ComCar", MB_OK);

break;

case CD:

MessageBox(NULL, "Good choice...", "ATL ComCar", MB_OK);

break;

case AM_RADIO:

MessageBox(NULL, "Sports talk radio on!", "ATL ComCar", MB_OK);

break;

case FM_RADIO:

MessageBox(NULL, "Top 40 crap on...", "ATL ComCar", MB_OK);

break;

}

return S_OK;

}

You’ll see your COM enum in action a bit later in this chapter.

Supporting Additional COM Interfaces

The final ATL topic I address here is how to add additional COM interfaces to an
ATL-based coclass. The process begins by writing an empty interface definition in
your IDL file. Once the interface has been defined, you must add it to the list of
supported interfaces for each implementing coclass. For example:

[object,

uuid(E98B898C-5C0A-4318-AFCB-541695E4945D),

helpstring("This interface floors it")]

interface ITurbo: IUnknown

{

};

[uuid(2EE867E1-C237-48FC-B6C7-D2804FB52C68),

version(1.0), helpstring("AtlCarServer 1.0 Type Library")]

library ATLCARSERVERLib

A Primer on COM Programming Frameworks

143

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 143

{

…

coclass ComCar

{

[default] interface IComCar;

interface ITurbo;

};

};

You now need to compile your IDL file once again to correctly activate the
Implement Interface Wizard utility. To do so, right-click the CComCar icon in
ClassView (Figure 3-10).

Figure 3-10. Activating the Implement Interface Wizard

The resulting dialog box lists each IDL interface that is currently not
supported by the C++ ATL coclass. Once you check off support for ITurbo
(Figure 3-11), you see the following source code modifications:

• The new interface has been added to the class’ inheritance chain.

• The class’ COM map has been updated with a new
COM_INTERFACE_ENTRY listing.

Chapter 3

144

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 144

Figure 3-11. Supporting a new COM interface using ATL

Here are the relevant code updates:

// After running the wizard, your ATL coclass is

// equipped to return the new interface.

class ATL_NO_VTABLE CComCar :

public CComObjectRootEx<CComSingleThreadModel>,

public CComCoClass<CComCar, &CLSID_ComCar>,

public IComCar,

public ITurbo

…

BEGIN_COM_MAP(CComCar)

COM_INTERFACE_ENTRY(IComCar)

COM_INTERFACE_ENTRY(ITurbo)

END_COM_MAP()

At this point, you can make use of the Add Method tool as before:

STDMETHODIMP CComCar::TurboBlast()

{

MessageBox(NULL, "Turbo blast!!", "ATL ComCar", MB_OK);

return S_OK;

}

So, that wraps up this rapid-fire tour of developing basic COM servers with
ATL. As I am sure you would agree, ATL greatly simplifies the creation of C++-
based COM servers. Obviously, there is a great deal more to ATL than what I have

A Primer on COM Programming Frameworks

145

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 145

covered here. You will see additional aspects of ATL when you examine COM
connection points, COM error handling, and the COM enumeration object
(IEnumXXXX). Nevertheless, at this point you should be able to move around the
ATL framework a bit more fluidly.

CODE The AtlCarServer application is included under the Chapter 3
subdirectory.

The Role of Visual Basic 6.0

ATL is a vast improvement to the raw C++/IDL development cycle, yet it poses one
minor problem (depending on your point of view): ATL still uses C++. To be frank,
C++ will never win an award for the most elegant programming language (or most
user friendly, or most intuitive, or . . .). C++ is a powerful language, and when you
need to build a very complex COM server that makes use of numerous advanced
techniques such as tear-off interfaces, COM categories, custom marshaling, and
so forth, C++ is an absolute necessity. However, when it comes to raw productivity,
nothing comes close to Visual Basic 6.0.

When developers build COM servers using VB 6.0, they are making a
conscious choice to focus on nothing but the business logic of the current
problem domain. As alluded to in the previous paragraph, VB COM servers are
unable to take advantage of advanced COM programming patterns. Likewise, VB
6.0 does not allow you to directly establish GUID values, edit (or alter) the gener-
ated IDL code, or participate in exotic COM threading models. Nevertheless, VB
6.0 is the most popular COM development paradigm in use, given that many
applications don’t need to use these advanced features in the first place. To see just
how simple building a COM server can be, let’s re-create the essence of ComCar
from the cozy confines of VB 6.0.

Building COM Servers Using Visual Basic 6.0

Visual Basic supports two core project workspace types used to build in-proc or
local (and remote) COM servers: ActiveX DLLs and ActiveX EXEs (see Figure 3-12).

Chapter 3

146

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 146

Figure 3-12. Core VB 6.0 COM project types

Having chosen an ActiveX DLL project workspace, you will be presented with
a single *.cls file. Unlike most programming languages, VB 6.0 does not support
specific language keywords that are used to build class and interface definitions.
Rather, each COM type is placed in a *.cls file (as you may be aware, VB .NET does
support specific keywords). To begin, change the name of this initial class type to
CoCar using the (Name) property in the Properties window (Figure 3-13).

Figure 3-13. Naming your coclass

A Primer on COM Programming Frameworks

147

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 147

As you learned in the previous chapter, COM development demands the use
of interfaces. However, given that VB 6.0 generally attempts to hide interfaces from
view, you receive a [default] interface automatically as you add Public properties,
functions, and subroutines to a given *.cls file. Put another way, each *.cls file is
expressed as the [default] interface of the coclass. Therefore, if you add the
following VB code to CoCar.cls, you are actually defining the members of the
[default] interface of the CoCar coclass.

Option Explicit

' Define class level variables in the

' [General][Declaration] section.

Private mCurrSpeed As Long

Public Property Get Speed() As Long

Speed = mCurrSpeed

End Property

Public Property Let Speed(delta As Long)

mCurrSpeed = mCurrSpeed + delta

End Property

Defining Auxiliary Interfaces

As mentioned, Visual Basic 6.0 does not supply a keyword to define a COM inter-
face. Rather, interfaces are placed into *.cls files and are represented as empty
method (or property) implementations. This is just about as close as VB 6.0 comes
to the concept of a pure virtual function. If you insert a new *.cls file (using the
Project | Add Class Module menu selection), you are free to define the following
IVBTurbo interface (be sure to change the name of the class file accordingly):

' A VB 6.0 interface definition

Option Explicit

Public Sub TurboBlast()

End Sub

When you are building a VB 6.0 interface definition, it is good practice to set
the type’s Instancing property to PublicNotCreatable (Figure 3-14).

Chapter 3

148

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 148

Figure 3-14. Interfaces should not be directly creatable.

This is considered good practice because it will prevent the COM client from
directly “New-ing” the interface. Any attempt to do so will result in a compiler
error:

' PublicNotCreatable types cannot be directly created!

Dim itfIVBTurbo as New IVBTurbo ' Nope!

Implementing Interfaces in VB 6.0

When you wish to implement additional interfaces on an existing COM type,
make use of the Implements keyword. Note that Implements definitions must
appear in the [General][Declarations] section of a given *.cls file. Once you have
specified which behaviors your coclass supports, you may make use of the VB 6.0
IDE to generate stub code for each member of a particular interface. Simply select
the interface (by name) from the left-hand drop-down list and each interface
member from the right-hand drop-down list. The finished product is shown in
Figure 3-15.

A Primer on COM Programming Frameworks

149

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 149

Figure 3-15. The completed VB 6.0 CoCar

When you make use of the VB 6.0 IDE to generate default stub code, notice
that the members are declared as Private rather than Public:

' This seems strange…

Private Sub IVBTurbo_TurboBlast()

mCurrSpeed = mCurrSpeed + 50

End Sub

The reason for this is simple. If you declare this type as Public, you will
suddenly have a member named IVBTurbo_TurboBlast() as a member of the
[default] public interface! In such a case, the object user would need to make use
of the following oddball syntax:

' Yuck.

Dim c3 as CoCar

Set c3 = New CoCar

c3.IVBTurbo_TurboBlast

Chapter 3

150

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 150

By defining the TurboBlast() method of the IVBTurbo interface as Private, you
force the user to obtain the IVBTurbo interface explicitly:

' Better.

Dim c4 as CoCar

Set c4 = New CoCar

Dim iftIVBTurbo as IVBTurbo

Set iftIVBTurbo = c4

IftIVBTurbo.TubroBlast

At this point, you are free to compile your VB 6.0 COM server using the File |
Make menu selection. Notice that you don’t need to manually create any IDL defi-
nitions. Also notice that each DLL export and the required class factory have been
supplied on your behalf.

As a final positive note, VB 6.0 will automatically register this COM server on
your development machine as part of the compilation cycle (thus you can hunt
down the registration entries using regedit.exe).

Setting Binary Compatibility

I have one final point to make regarding VB 6.0 COM development. Because VB is
attempting to simplify the creation of COM servers, GUIDs are assigned automati-
cally behind the scenes. In fact, each time you compile your project, VB 6.0 will
generate new GUIDs for your COM types! This is obviously a huge annoyance,
given that any existing clients using this COM server are effectively broken.

To prevent this GUID generation madness from occurring, get in the habit of
enabling binary compatibility as soon as you have performed your first compile.
When you do so, VB will stop generating new GUIDs and freeze the current identi-
fiers. If you attempt to alter the definition of any interface, you will be warned
through a series of dialog boxes. To specify this type of version compatibility,
choose the Binary Compatibility option in the Project Properties dialog box
(Figure 3-16).

A Primer on COM Programming Frameworks

151

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 151

Figure 3-16. Freezing the current GUID values

Viewing the Generated IDL Using Oleview.exe

To prove that the VB 6.0 IDE is maintaining the same binary standard as a COM
server created using C++ or ATL, you need to be introduced to the oleview.exe
utility. This tool, which ships with Visual Studio, allows you to investigate the set of
registered COM servers on your development machine. Using oleview.exe, you are
able to view the set of interfaces supported on a given object (provided the inter-
face has been registered under HKCR\Interface), the underlying IDL, and the
numerous registration entries for the COM binary. Figure 3-17 shows the set of
expandable nodes.

Chapter 3

152

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 152

Figure 3-17. The oleview.exe utility

The most important node in this instance is the All Objects category. Once
you expand this node, you will be able to find the CoCar and IVBTurbo types listed
alphabetically by ProgID (Figure 3-18).

Figure 3-18. Locating your VB 6.0 COM types

A Primer on COM Programming Frameworks

153

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 153

As you can see, VB has automatically implemented a number of standard
COM interfaces on the CoCar type. You will get to know the role of these interfaces
as you progress through the text, but for now Table 3-2 provides a quick rundown
of the core behaviors (grouped by related functionality).

Table 3-2. COM Interfaces Automatically Supported by VB 6.0 COM

VB 6.0 Autoimplemented Meaning in Life
Interface

IUnknown VB automatically implements AddRef(), Release(), and

QueryInterface() for each COM type.

<_ClassName> Recall that VB 6.0 automatically generates a [default]

interface, which is populated with each Public member

defined in the *.cls file. The name of the [default]

interface is always _NameOfTheClass. Thus, if you have

a class named CoCar, the default interface is _CoCar.

IConnectionPointContainer These two interfaces allow a COM class to send events

IConnectionPoint to a connected client.

IDispatch Provide late-binding capabilities. Required for late-

IProvideClassInfo bound scripting languages such as VBScript.

ISupportErrorInfo Allows a COM class to send COM “error” objects to

report a processing error.

Now on to viewing the IDL itself. Simply right-click the coclass icon and
select View Type Information from the context menu. The end result is shown in
Figure 3-19.

Figure 3-19. Viewing the IDL

Chapter 3

154

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 154

If you select the CoCar type, you will see an IDL definition that should look
quite familiar at this point.

// The VB CoCar type definition.

[uuid(E93D5FF5-3F76-4BE9-A547-5398B2AA4CF7),

version(1.0)]

coclass CoCar {

[default] interface _CoCar;

interface _IVBTurbo;

};

Here, you can see that the [default] interface is indeed _CoCar. This interface
defines a single COM property. As you may remember, COM properties are
defined using the [propget] and [propput] IDL keywords.

// The [default] interface.

[odl, uuid(BFC753BA-4CEB-4682-BD63-8973D3CB2186),

version(1.0), hidden, dual,

nonextensible, oleautomation]

interface _CoCar : IDispatch {

[id(0x68030000), propget]

HRESULT Speed([out, retval] long*);

[id(0x68030000), propput]

HRESULT Speed([in, out] long*);

};

You can see from the _CoCar IDL definition that VB 6.0 always creates dual
interfaces, which by definition support the [dual] interface and are derived
directly from IDispatch rather than IUnknown. As mentioned in Chapter 2, this
core COM interface provides a way for late-bound clients (such as scripting
clients) to determine the functionality of a COM class at runtime.

The auxiliary IVBTurbo interface is not directly listed in the coclass statement,
however. Rather, an intermediate interface, _VBTurbo, is listed, and it has the
following IDL definition:

[odl, uuid(0FE9EC86-7959-42CA-97B3-61B14214718D),

version(1.0), hidden, dual, nonextensible,

oleautomation]

interface _IVBTurbo : IDispatch {

[id(0x60030000)] HRESULT TurboBlast();

};

A Primer on COM Programming Frameworks

155

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 155

While examining the remaining IDL definitions, also notice that VB has
assembled a COM library statement listing each type, as well as a raw dispinter-
face definition for each COM interface. In the next chapter, I drill much deeper
into the world of COM type information. For the time being, simply understand
that VB 6.0 manually generates the correct COM metadata.

CODE The Vb6CarServer project is included under the Chapter 3
subdirectory.

Making Use of Your COM Servers

To test the functionality of your ATL and VB 6.0 COM servers, you wrap up by
creating a new standard EXE VB application. As always, before you can use the
COM types created in a separate binary file, you must set references to the COM
type information (Figure 3-20).

Figure 3-20. Setting references to the COM type libraries

Chapter 3

156

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 156

If you examine the Object Browser (Figure 3-21), you will see that the COM
enumeration you defined in your ATL server project has mapped correctly to the
Visual Basic language (observe as well that the various [helpstrings] are displayed
in the lower pane of the tool).

Figure 3-21. Viewing IDL COM types

The user interface of your VB client is short and sweet. As shown in Figure
3-22, you are simply providing a way for the client to activate the ATL ComCar and
VB 6.0 CoCar.

Figure 3-22. Another COM client

A Primer on COM Programming Frameworks

157

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 157

As for the code, things look much like they did when you accessed your
RawComCar types in Chapter 2. Here is the complete code behind the VB form:

Option Explicit

' The cars.

Private vbCar As Vb6CarServer.CoCar

Private atlCar As ATLCARSERVERLib.ComCar

Private Sub btnATLCoCar_Click()

' Speed up ATL car and crank some tunes.

atlCar.SpeedUp 10

atlCar.TurnOnRadio AM_RADIO

' Get ITurbo.

Dim itfTurbo As ATLCARSERVERLib.ITurbo

Set itfTurbo = atlCar

itfTurbo.TurboBlast

Set itfTurbo = Nothing

End Sub

Private Sub btnUseVb6Car_Click()

' Use [default] interface of VB 6.0 coclass.

vbCar.Speed = vbCar.Speed + 10

' Get IVBTurbo

MsgBox "Turbo boosting", , "Message from Car Command..."

Dim itfVbTurbo As IVBTurbo

Set itfVbTurbo = vbCar

itfVbTurbo.TurboBlast

txtCurrVbSpeed.Text = vbCar.Speed

Set itfVbTurbo = Nothing

End Sub

Private Sub Form_Load()

Set vbCar = New Vb6CarServer.CoCar

Set atlCar = New ATLCARSERVERLib.ComCar

End Sub

Private Sub Form_Unload(Cancel As Integer)

' Explicitly decrement ref counts.

Set vbCar = Nothing

Set atlCar = Nothing

End Sub

Chapter 3

158

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 158

CODE The Vb6CarsClient application is included under the Chapter 3
subdirectory.

Excellent! At this point, you have learned the basic process of building COM
servers using raw C++, the Active Template Library, and Visual Basic 6.0. Better yet,
you now have a total of three COM servers that you make use of through various
.NET-aware languages later in this text.

Summary

This chapter and the preceding one have guided you through the process of
building three COM servers, beginning with the most complex (but most
powerful) technique of using raw C++/IDL. The Active Template Library (ATL)
attempts to lessen the burden of C++ COM server development by defining a
number of base-class templates (and integrated wizards). Visual Basic 6.0 is far
and away the least painful approach to COM server development, given that VB
hides the low-level COM grunge from view. Now that you have seen the process of
building various COM servers, the next (and final) COM-centric chapter drills into
the type system of classic COM.

A Primer on COM Programming Frameworks

159

*0112_Ch03_CMP4.qxp 3/25/02 1:39 PM Page 159

CHAPTER 4

COM Type
Information

The previous two chapters were more concerned with the internal composition of
COM in-process servers than the finer details of IDL (or COM type information in
general). Understanding COM type information is critical when exploring the
issues behind COM and .NET interoperability for one simple reason: When a .NET
type attempts to access a legacy COM type, an intermediate object (termed a
Runtime Callable Wrapper, or simply RCW) is responsible for translating between
COM types and .NET types. For example, COM SAFEARRAY types map into the
.NET System.Array class, COM BSTR types map into System.String, and so on. A
similar operation occurs when a .NET type makes use of a legacy COM type (using
an intervening COM Callable Wrapper, or simply CCW). Because IDL types are
mapped into managed equivalents (and vice versa), this chapter pounds out the
finer details of COM IDL.

In this chapter, you not only solidify the set of core COM types and intrinsic
data types, but you also learn how to generate COM type information at runtime.
The COM library contains a small set of interfaces, functions, and data structures
that allow developers to generate COM type information on the fly, and save out
the resulting *.tlb file to storage. It is also possible to build applications that are
capable of reading type information at runtime (think the VB 6.0 Object Brower
utility).

Just in case you are thinking that the topics of dynamically reading and
writing COM type information are obsolete with the advent of .NET, understand
that the System.Runtime.InteropServices namespace defines a good number of
members that expose identical functionality using managed types. Therefore
(hang onto your hat) it is completely possible to build a .NET application that
emits and reads COM type libraries (!). In fact, you explore this very topic during
the second half of this chapter.

As a friendly heads-up, understand that the only unmanaged language that is
directly capable of dynamically writing and reading COM IDL is (alas) C++. For my
fellow Visual Basic friends not familiar with C++, and who may not be thrilled with
another chapter of pointer arithmetic, just grin and bear it for the time being.

161

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 161

The Format of a COM IDL File

To open this chapter, I want to ensure that you are comfortable with the overall
structure of an IDL file. In general, an IDL file can be stratified into two regions:
the library statement and everything else outside the library statement. To be
specific, if a given COM type is only defined outside the IDL library statement,
you have created an item that is only usable from the C(++) COM language
mapping. Be aware that it is the case that some IDL constructs (such as cpp_quote
and const) are only valid outside an IDL library statement in the first place and
(therefore) are only applicable to C(++) COM projects. On the other hand, any type
that is referenced (or explicitly defined) within a library statement is visible from
any COM-aware language mapping (provided that the language in question
honors the IDL). Here then, is the general layout of an IDL file:

/***** MyIDL.idl *****/

// Bring in core IDL definitions.

#import "oaidl.idl";

// Items outside of the library statement

// will be placed in the MyIDL_i.c and

// MyIDL.h C(++) files. If these items are

// not referenced within the library statement,

// they will not be part of the type library!

// The library statement.

[uuid(<some GUID>), version(<major.minor>)]

library MyIDL_Library

{

// Bring in any standard COM

// definitions using importlib().

importlib("stdole32.tlb");

// Any item referenced or defined within

// the library will be placed

// within the *.tlb file,

// and (typically) usable from all

// COM language mappings.

};

Chapter 4

162

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 162

Recall from Chapter 2 that type information defined outside an IDL library
statement is placed in the MIDL-generated *_i.c and *.h files. The *_i.c file
contains C(++)-friendly GUID constants that are created based on the [uuid] value
of each item. The *.h file contains C(++)-friendly interface definitions. Clearly,
these two files will be used during the construction of a C(++) COM server as well
as a C(++) COM client.

Although a library statement is not a mandatory requirement of a well-formed
IDL file, as far as the language-independent nature of COM is concerned, a given
COM type is only usable if (and only if) it is accounted for within the library state-
ment. Even if you define dozens of elaborate COM interfaces, enums, and struc-
tures outside a library statement (and fail to reference the item within the library
statement), they will be unreachable from any language other than C(++).

The IDL library statement itself must be qualified with the [uuid] attribute
(which functions as the LIBID for the type information) at minimum. In addition,
most type libraries support a [version] attribute that is of the form <Major.Minor>
(if you do not specify a [version] attribute, the default version is <0.0>). As you are
aware, whenever you update a type library that is in production, the numerical
version should be updated and reregistered on each target machine.

Defining COM Types

As you have seen over the course of the previous two chapters, COM is all about
coclasses and their supported interfaces. In COM IDL, the coclass and interface
keywords are used to define these core types. However, COM also defines addi-
tional data types that may (or may not) be recognized in a given COM-aware
programming language. When I speak of COM types I am not referring to COM
data types. Simply put, COM types are the set of custom user defined types (UDTs)
that you can express using IDL syntax. COM data types, on the other hand, repre-
sent a set of intrinsic data members (int, long, BSTR and so forth) that you can
send between COM binaries as method parameters or as building blocks for other
COM types (such as enums and structures).

To make things a bit more intriguing, understand that you can also create
COM interface methods that take other COM types as method parameters (as seen
in the previous chapter when you examined COM enumerations). Table 4-1
defines the core set of COM types.

COM Type Information

163

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 163

Table 4-1. COM Types

COM Type IDL Keyword Meaning in Life

Interface interface By now you should understand that the COM

universe demands that clients and server

objects communicate using interface

references (the same is not true for .NET).

An interface is little more than a named set of

semantically related methods that ultimately

derive from IUnknown.

Coclass coclass A coclass is simply a concrete implementation

of some number of interfaces.

Enumerations enum Enumerations are a way to programmatically

express a range of name/value pairs. Using

enums, you are able to avoid cluttering your

global namespace with magic numbers.

Structures struct Structures can best be understood as a

and Unions union lightweight class type. Specifically, structures

are a collection of disparate data types bound

under a shared name.

C(++) style unions are also supported in IDL:

however, the only language that can make use

of them is C(++). Given this, I do not address

this COM type in this chapter (after all,

interoperating with the same language is not

all that interesting . . .).

Primitive COM Data Types

In addition to the set of COM types, IDL also supports a set of COM data types.
Now be clear on the distinction here. COM types represent the set of possible
UDTs you can create to represent the programming entities in your programs.
COM data types represent the intrinsic data types of COM IDL (pardon the redun-
dancy). Given that COM IDL does not allow you to define global-level data types,
understand that COM data types must be used within the context of a method
parameter or structure field.

Chapter 4

164

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 164

NOTE COM IDL does allow you to make use of the const keyword. Like C++, the IDL
const keyword can be used to define shared programming constants. Understand,
however, that IDL constants are translated into C(++) #define statements and are not
understood by other COM-aware languages (such as VB 6.0).

As you may already be aware, Microsoft IDL is based on an older IDL format
that was specifically geared to the task of describing C-style data types for RPC
(remote procedure calls). Given COM IDL’s legacy in a very C-centric description
language, MIDL supports the following core base types (Table 4-2). Do note that
most of these core data types may support the signed and unsigned IDL keywords
and each may be declared as a pointer variable.

Table 4-2. The Core IDL Data Types

Base MIDL Data Type Meaning in Life Default Sign

boolean 8 bits. This Boolean data type is not Unsigned

usable from any language other

than C(++).

byte 8 bits. (not applicable)

char 8 bits. Unsigned

double 64-bit floating-point number. (not applicable)

float 32-bit floating-point number. (not applicable)

hyper 64-bit integer. Signed

int 32-bit integer. On 16-bit platforms, Signed

cannot appear in remote functions

without a size qualifier such as short,

small, long, or hyper.

__int32 32-bit integer. Equivalent to long.

__int3264 An integer that is 32-bit on 32-bit Signed

platforms, and is 64-bit on 64-bit

platforms.

__int64 64-bit integer. Equivalent to hyper.

long 32-bit integer. Signed

short 16-bt integer. Signed

COM Type Information

165

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 165

Table 4-2. The Core IDL Data Types (continued)

Base MIDL Data Type Meaning in Life Default Sign

small 8-bit integer. Signed

void Indicates that the procedure (not applicable)

does not return a value.

wchar_t 16-bit predefined type for wide

characters. Unsigned

If you build COM interface definitions (or structures) using these core IDL
base types, the chances are very good that you have built a COM entity that can
only be accessed by C and C++ clients. For example, the IDL boolean data type
does not translate into a VB 6.0 Boolean. C(++)-style string representation (null
terminated character arrays) does not translate correctly into other COM-aware
languages. Because one of the driving forces behind COM is language independ-
ence, most programmers make use of an alternate set of COM IDL data types
termed the oleautomation-compatible data types (also known as the variant-
compliant types).

The Oleautomation (aka Variant) Data Types

The term oleautomation is used to describe a COM interface that is accessible
through late binding (that is, using IDispatch). Any oleautomation interface
(which is to say a dispinterface) must make use of the set of oleautomation data
types, given that the universal marshaler can only build stubs and proxies for
interfaces making use of this well-known set. Formally speaking, this well-known
set is any data type that can be represented as a VARIANT data type (see Chapter 2).
The core oleautomation data types (and constructs) are showcased in Table 4-3.

Table 4-3. The Core [oleautomation]-Compatible Data Types

Oleautomation-Compatible Description
Data Type/Construct

VARIANT_BOOL The VARIANT-compliant Boolean data type.

double 64-bit IEEE floating-point number.

float 32-bit IEEE floating-point number.

int Integer whose size is system dependent. On 32-bit

platforms, MIDL treats int as a 32-bit signed integer.

Chapter 4

166

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 166

Table 4-3. The Core [oleautomation]-Compatible Data Types (continued)

Oleautomation-Compatible Description
Data Type/Construct

long 32-bit signed integer.

short 16-bit signed integer.

BSTR The de facto COM string type.

CY 8-byte fixed-point number (formerly represented as the

CURRENCY data type).

DATE 64-bit floating-point fractional number of days since

December 30, 1899.

enum Signed integer, whose size is system dependent. In

remote operations, enum objects are treated as 16-bit

unsigned entities. Applying the [v1_enum] attribute to an

enum type definition allows enum objects to be

transmitted as 32-bit entities.

struct C(++) and Visual Basic 6.0 clients are able to map IDL

structures. This IDL construct is not supported by all

COM language mappings.

IDispatch * Pointer to IDispatch interface (VT_DISPATCH).

IUnknown * Pointer to interface that is not derived from IDispatch.

(Any COM interface can be represented by its IUnknown

interface.)

VARIANT Parameters can be expressed as a VARIANT, which allows

you to pass any variant-compliant type as a single

argument.

SAFEARRAY When you wish to send arrays of data between the caller

and COM class, use the SAFEARRAY structure. In essence,

a SAFEARRAY is a self-describing array of VARIANTs.

IDL Method Parameter Attributes

As you recall from Chapter 2, parameters can take the [in], [out], [in, out], and
[out, retval] attributes. Using these attributes, you are able to configure how a
parameter should be passed to and from an interface method. You can also
directly influence how a given parameter is represented in various COM language
mappings. In Table 4-4, you see a bit more detail of these attributes than seen
earlier in this text.

COM Type Information

167

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 167

Table 4-4. IDL Parameter Attributes

IDL Parameter Attribute Meaning in Life

[in] Indicates that this parameter is allocated by the caller and

passed into the method. Be aware that if an IDL

parameter attribute is not used, [in] is assumed. This IDL

attribute maps to the VB 6.0 ByVal parameter modifier.

[out] Indicates that this parameter is a pointer supplied by the

caller and filled by the method. Be aware that while VB

COM clients are able to call methods taking [out]

parameters, VB COM objects cannot implement interfaces

with methods containing [out] parameters.

[in, out] When a parameter has both [in] and [out] IDL attributes

on a single parameter, this represents passing a data item

by reference. Thus, the caller supplies an initial value that

may be changed within the method implementation. Be

aware that [in, out] parameters must be defined as

pointers (realized in VB 6.0 as the ByRef parameter

modifier).

[out, retval] This combination of parameter attributes is a cue to

higher level languages (such as VB 6.0) that this parameter

should be mapped as a physical return value. The literal

HRESULT return value will be mapped to some other

language-specific entity (such as the intrinsic VB Err

object).

To illustrate, assume you have the following IDL interface:

interface IParams : IUnknown

{

[helpstring("This method only takes [in] params")]

HRESULT InParamsOnly([in] long x, [in] long y);

[helpstring("This method only takes [out] params")]

HRESULT OutParamsOnly([out] long* x, [out] long* y);

[helpstring("Takes two [in, out] params.")]

HRESULT InAndOutParams([in, out] long* x, [in, out] long* y);

[helpstring("method SumByRetVal")]

HRESULT SumByRetVal([in] long x, [in] long y,

[out, retval] long* answer);

};

Chapter 4

168

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 168

Also assume you have an ATL Simple Object (see Chapter 3) that implements
these methods as follows:

STDMETHODIMP CParams::InParamsOnly(long x, long y)

{

// Just use the incoming data…

return S_OK;

}

STDMETHODIMP CParams::OutParamsOnly(long *x, long *y)

{

// Allocate data for the caller.

*x = 100;

*y = 200;

return S_OK;

}

STDMETHODIMP CParams::InAndOutParams(long *x, long *y)

{

// Client sends us some initial data, but we can

// reallocate.

*x = *x + 100; // Add 100 to x.

*y = *y + 100; // Add 100 to y.

return S_OK;

}

STDMETHODIMP CParams::SumByRetVal(long x, long y, long *answer)

{

// Return sum.

*answer = x + y;

return S_OK;

}

A Visual Basic client could call each of the methods of interest as follows:

Private Sub btnUseMethods_Click()

Dim o As Params

Set o = New Params

Dim x As Long, y As Long, z As Long

' Use [out] params.

o.OutParamsOnly x, y

MsgBox "x = " & x & vbLf & "y = " & y, , "After [out] call"

' Use [in, out] params.

COM Type Information

169

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 169

o.InAndOutParams x, y

MsgBox "x = " & x & vbLf & "y = " & y, , "After [in, out] call"

' Use [out, retval]

z = o.SumByRetVal(x, y)

MsgBox "x = " & x & vbLf & "y = " & y & vbLf & "z = " & z _

, , "After [out, retval] call"

End Sub

The output of this application is seen in three message boxes, as shown in
Figures 4-1 to 4-3.

Figure 4-1. Using [out] parameters

Figure 4-2. Using [in, out] parameters

Figure 4-3. Using [out, retval] parameters

Chapter 4

170

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 170

[in], [out], and [in, out] parameters in C++ are self-explanatory (raw C++ COM
clients ignore [out, retval] parameters).

// Assume we have already created the coclass

// and obtained an IParams interface.

long x = 0; long y = 0; long z = 0;

pIParams->OutParamsOnly(&x, &y);

pIParams->InAndOutParams (&x, &y);

pIParams->SumByRetVal(&x, &y, &z);.

Now that you have seen the set of COM types and IDL data types, you are
ready to formalize the IDL syntax used to express each COM type. Understand
that each COM type can be qualified using various IDL keywords. Although this
chapter does not provide an exhaustive description of each and every IDL
keyword, I will point out items of interest. If you require additional information,
check out the MIDL Language Reference document using online Help.

Defining COM Interface Types in IDL

You have already seen how to build interface types in the previous two chapters.
However, now that you have seen IDL data types in a more formal light, let’s walk
through the IDL syntax used to define the COM interface type, while at the same
time making further mention of oleautomation compliance.

Defining Raw Dispinterfaces

The first form of a COM interface is termed a dispinterface, which is always
defined within the scope of an IDL library statement. Each member of the
dispinterface is assigned a corresponding DISPID using the IDL [id] keyword
(by necessity, DISPIDs are numbered beginning at 1 and must be unique within
the definition. Microsoft has reserved all negative DISPID values). Recall from
Chapter 2 that dispinterfaces are a set of properties and methods that can only be
invoked using late binding (via IDispatch). When you build raw dispinterfaces,
every member is automatically oleautomation compliant. Here is the syntax
behind a raw dispinterface:

// Raw dispinterfaces must be within a type library!

[uuid(E5909DB1-F271-433C-BB02-4D0BFA95D387),

version(1.0), helpstring("My Type Library 1.0")]

library MyTypeLibrary

COM Type Information

171

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 171

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

// A pure IDispatch based interface (dispinterface).

[uuid(A8B2AA3A-1138-4C43-8596-D99CBD2BDAA3),

helpstring("IDispOnlyInterface")]

dispinterface _IDispOnly

{

properties:

methods:

[id(1), helpstring("method LateBoundMethod")]

HRESULT LateBoundMethod([in] BSTR msg);

};

};

In this day and age, raw dispinterfaces are most commonly used when you
wish to build an outbound interface with the COM connection point model
(more details on this later in this text). When you are building an inbound inter-
face designed to be supported by a given COM object, dispinterfaces are not all
that helpful, given that the only way to access the object’s members is through
late binding.

Defining Dual Interfaces

Recall that COM also supports dual interfaces. This form of COM interface is very
helpful when you wish to build an interface that can be accessed using both early
and late binding. When you build a dual interface, you make use of the [dual]
attribute to force the MIDL compiler to ensure oleautomation conformance (recall
that Visual Basic 6.0 COM classes are always configured to support [dual] inter-
faces automatically). The core IDL is as follows:

// A dual interface.

[object,

uuid(62401BC6-7892-46A0-939E-5D19D3B764D2),

dual, helpstring("Dual Interface")]

interface IDualInterface : IDispatch

{

[id(1), helpstring("method MethodA")]

HRESULT MethodA();

};

Chapter 4

172

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 172

Dual interfaces are indeed a hybrid of a raw dispinterface as well as a standard
IUnknown-derived interface. Note that dual interface members still must have an
associated DISPID (for the late-bound clients) and derive from IDispatch (to
ensure the implementing object contends with the four methods of IDispatch).
However, the interface itself (IDualInterface) may also be directly accessed by
type-safe, early-bound clients such as VB 6.0 and C(++). When a client makes use
of the custom IDualInterface reference, the members of IDispatch are generally
ignored.

Building IUnknown-Derived Interfaces

Finally, you should be aware that it is completely possible to build standard
IUnknown-derived interfaces that are also oleautomation compliant, by explicitly
making use of the [oleautomation] attribute (note the lack of the [id] attribute):

[object,

uuid(60FBF1E1-3F08-4893-94BB-4A2C4B341342),

oleautomation, helpstring("IDispOnly Interface")]

interface IUseUniversalMarshaling : IUnknown

{

[helpstring("method MethodA")]

HRESULT MethodA();

};

[oleautomation]-compatible custom interfaces can be helpful for two reasons.
First, if you intend your COM interfaces to be used by any COM-aware language,
the presence of the [oleautomation] attribute again forces the MIDL compiler to
perform sanity checks. Furthermore, if you wish to leverage the universal
marshaler (and therefore avoid the need to build your own stub and proxy DLL),
the ATL compilation cycle registers each interface to use the universal marshaler
(oleaut32.dll).

Common IDL Interface Modifiers

COM interfaces (excluding dispinterfaces) are required to take the [object] and
[uuid] attributes at minimum. In addition to the [dual] and [oleautomation]
attributes seen in the previous sections, IDL does allow COM interfaces to be
defined with other attributes to further qualify their usage. Table 4-5 lists some of
the more interesting attributes.

COM Type Information

173

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 173

Table 4-5. Additional IDL Interface Attributes

IDL Interface Attribute Meaning in Life

hidden When a COM type (including a type library) is marked with

the [hidden] attribute, it will not be displayed within the

Visual Basic 6.0 Object Browser utility. Other browser types

may or may not honor this IDL keyword.

pointer_default This IDL attribute is used to describe how parameters

expressed as C(++) pointers should be marshaled between

boundaries. When set to “ref,” pointers are handled in the

same manner as a C++ reference (and is typically what you

require).

local If an interface is marked with the [local] attribute, it cannot

be marshaled across boundaries and is only usable from

another in-process COM object. Local interfaces are

permitted to return values other than the mandatory

HRESULT.

Defining COM Classes in IDL

Coclasses are defined in IDL using the coclass keyword and must be configured
with the [uuid] attribute. Within the scope of the coclass definition is a list of each
interface supported by the COM class. For example, here is a library containing
two coclasses, each of which supports two distinct COM interfaces (recall that the
[default] attribute is used to identify which interface is returned automatically
when used by a higher level language such as VB 6.0).

// This type library contains two coclasses.

[uuid(E5909DB1-F271-433C-BB02-4D0BFA95D387),

version(1.0), helpstring("My Type Library 1.0")]

library MyTypeLibrary

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

[uuid(5C3D4955-17C1-4ACC-BB1C-72F6B63D22F2),

helpstring("First COM Class")]

coclass CoClassOne

{

[default] interface IA;

interface IB;

};

Chapter 4

174

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 174

[uuid(5C3D4955-17C1-4ACC-BB1C-72F6B63D22F3),

helpstring("Another COM Class")]

coclass AnotherCoClass

{

[default] interface IOne;

interface ITwo;

};

};

In addition to the mandatory [uuid] IDL attribute (and optional help-centric
modifiers), coclasses can be assigned additional IDL keywords, to help further
qualify their usage. Table 4-6 documents two of the more common coclass modi-
fiers (both of which are ignored by C(++) COM clients).

Table 4-6. Additional IDL Coclass Attributes

IDL Coclass Attribute Meaning in Life

appobject When a coclass is marked with the [appobject] attribute,

Visual Basic will automatically create an instance of the

object for use at the global level (therefore, the client code

does not need to make use of the VB New keyword).

noncreatable At times, you might want to have a coclass only directly

creatable by another coclass. In this situation, the object

user must obtain the noncreatable object from a method of

the creatable object.

By using the IDL [noncreatable] attribute, you force higher-

level languages such as VB 6.0 to generate compiler errors if

the client attempts to “New” the object.

For example, if your library contained the following coclass definitions:

[uuid(E817E78F-E13E-4954-AC63-FF1B36A46C05),

helpstring("GlobalObject Class"), appobject]

coclass GlobalObject

{

[default] interface IGlobalObject;

};

[uuid(E1B45767-3909-4838-B035-D04F9B459D98),

noncreatable, helpstring("CantCreateDirectly Class")]

coclass CantCreateDirectly

{

[default] interface ICantCreateDirectly;

};

COM Type Information

175

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 175

Visual Basic 6.0 could make use of the application object as follows (note the lack
of the New keyword):

' VB 6.0 Client calling [appobject] aware COM type.

GlobalObject.SomeMethod

On the other hand, VB would not be able to directly ‘New’ a [noncreatable] object:

Dim wontWork as CantCreateDirectly

Set wontWork = New CantCreateDirectly ' Error!

Defining IDL Enumerations

As you have seen, COM also supports enumerations. These name/value pairs are
defined by the IDL enum keyword. Like C(++), the first member of an enumeration
is automatically assigned the value of zero, following an n+1 incrementation. COM
enums may be assigned a [uuid] value, and may be defined as [hidden] should the
need arise. The only enum attribute that deserves special mention is [v1_enum].
By default, enumerations are transmitted between boundaries as 16-bit entities.
When you qualify your custom enumerations to support [v1_enum], variables of
this type are transmitted as 32-bit entities:

[v1_enum, uuid(2358F2E6-3887-405e-BD25-4F73EDF32400)]

enum MyEnum

{ FIRST, SECOND, THIRD };

As you have already seen in Chapter 3, COM IDL enums translate directly into
C(++) enumerations and VB 6.0 Enum constants.

Defining IDL Structures

The final COM type you examine is the structure. Structures have long been used
in C to represent a user-defined data type. Like classes, structures allow you to
group related data under a common name. Unlike classes, you have no true
support for polymorphic behavior or type extension. Nevertheless, structures can
be helpful when you want to build lightweight types. Consider the classic
MYPOINT example:

// IDL structures may take the [uuid] attribute,

// especially if the structure is to be stuffed

// into a VARIANT or SAFEARRAY.

[uuid(FB58A440-ABD8-43a3-969D-0B7D8700664A)]

Chapter 4

176

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 176

typedef struct

{

long xPos;

long yPos;

}MYPOINT;

Be aware that if you intend your IDL structures to function correctly in Visual
Basic 6.0, you must pass all structures by reference! Therefore, the following IDL
interface definition translates correctly in both C(++) and VB 6.0:

// Structures must be passed by reference ([in, out])

// not by value ([in]) to work correctly in VB 6.0.

[object, uuid(C3CBCB15-901F-44d6-885C-16836DD267F5)]

interface IDraw

{

HRESULT DrawALine([in, out] MYPOINT* p1,

[in, out] MYPOINT* p2);

};

If you had an implementing class named Drawer that supported IDraw as the
[default] interface, you would make use of DrawALine() from VB 6.0 as follows:

' Assume Drawer specified IDraw as the

' default interface.

Dim o As Drawer

Set o = New Drawer

' COM structs map to VB 6.0 Types.

Dim p1 As MYPOINT, p2 As MYPOINT

p1.xPos = 100

p1.yPos = 100

p2.xPos = 300

p2.yPos = 100

o.DrawALine p1, p2

COM String Representation

COM strings should always be exposed as BSTR data types, period. The reason is
that different COM languages internally represent string data in different ways.
For example, C(++) programmers view strings as a null-terminated array of char
data types (char*). However, you should understand that (a) COM strings demand
to be expressed as Unicode and (b) Visual Basic can’t understand strings repre-
sented as char*. While you might be tempted to represent your strings as wchar_t*

COM Type Information

177

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 177

(a null-terminated array of Unicode characters) you have resolved issue (a) but are
still left to contend with issue (b).

Visual Basic does not internally represent string data as an array of null-termi-
nated characters (char* or wchar_t) but rather a byte-length prefixed null-termi-
nated array of Unicode characters. This string format is termed a BSTR (BASIC
String). Visual Basic programmers generate BSTR data types whenever they
declare a variable of type String:

' A VB 6.0 BSTR data type.

Dim s as String

C(++) programmers, on the other hand, make use of a set of COM library
functions specifically geared toward the creation, manipulation, and destruction
of BSTRs. Whenever you work with the raw BSTR data type, be sure to make use of
the core library functions defined in Table 4-7, as they will properly configure the
byte-length prefix of the BSTR.

Table 4-7. BSTR COM Library Functions

BSTR COM Meaning in Life
Library Function

SysAllocString() Creates a BSTR based on an array of Unicode characters.

Typically this array of Unicode characters is represented

programmatically as an array of OLECHAR data types

(OLECHAR*).

SysReAllocString() Reallocates an existing BSTR to a new value (with new byte-

length-prefix) given a new OLECHAR*.

SysFreeString() Used to free the memory attached to a BSTR created by

SysAllocString().

When C(++) COM clients obtain a BSTR from a method

invocation, be sure to call SysFreeString()!

If you create a BSTR locally in some scope (and don’t pass it back

to the client) be sure to call SysFreeString()!

SysStringLen() Returns the character length of an existing BSTR.

While it is completely possible to make use of these raw COM API functions, it
is a bit of a hassle. It is far more common to make use of (or create) a C++ class
that hides these raw calls from view. For example, ATL programmers typically
make use of the CComBSTR class to manipulate raw BSTRs. CComBSTR also

Chapter 4

178

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 178

defines a set of helper functions (and overloaded operators) to simplify COM
string types. For example:

// ATL CComBSTR at work.

STDMETHODIMP CCoClass::UseABstr()

{

USES_CONVERSION;

// SysAllocString() called automatically.

CComBSTR message("Hello There!");

message.ToLower();

MessageBox(NULL, W2A(message), "Lower case BSTR", MB_OK);

message.ToUpper();

MessageBox(NULL, W2A(message), "Upper case BSTR", MB_OK);

// SysFreeString() called when object drops out of scope.

return S_OK;

}

A Brief Comment on ATL Conversion Macros

The previous code block made use of two ATL string conversion macros:
USES_CONVERSION and W2A. These macros (defined in atlconv.h) allow the
programmer to translate between Unicode and ANSI string encoding with
minimal fuss and bother. Although a great many of these macros exist, the pair to
be aware of is W2A (Unicode to ANSI) and A2W (ANSI to Unicode), both of which
require that the USES_CONVERSION macro be placed in the method performing
the conversion.

In the previous code example, you converted the Unicode BSTR into an ANSI
char* to place the value into the MessageBoxA() method. No, that is not a typo.
Recall from Chapter 1 that under Win32, there is actually no function called
MessageBox(). Rather, an ANSI version and Unicode (or wide) version both exist.
Based on your project settings, all API calls taking textual parameters expand to
the wide (that is, Unicode) or ANSI equivalent. Unless you are willing to create a
Unicode-only build of your project (and work incorrectly on various versions of
Windows), you need to do such manual conversions. In this case, W2A and A2W
are your greatest allies.

COM (Safe)Array Representation

Arrays are also supported in COM IDL, and as you would expect, different COM
language mappings express arrays in unique manners. When you wish to use

COM Type Information

179

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 179

arrays that can be used from all COM-aware language mappings, you should stick
to the SAFEARRAY data type as opposed to variable or fixed-length C-style arrays.
The COM SAFEARRAY (which has multidimensional capabilities) may contain any
[oleautomation]-compliant data type, which is to say, is able to hold any data type
that can be expressed as a VARIANT. The SAFEARRAY itself is a structure defined in
oaidl.idl as follows:

// The COM SAFEARRAY structure.

typedef struct tagSAFEARRAY {

USHORT cDims; // Number of dimensions.

USHORT fFeatures; // Flags which describe the data.

ULONG cbElements; // Holds size of an element in the array.

ULONG cLocks; // Holds number of locks on this array.

PVOID pvData; // Pointer to the actual data.

SAFEARRAYBOUND rgsabound[];

} SAFEARRAY;

Notice that the last field of the SAFEARRAY structure is an array of yet another
structure of type SAFEARRAYBOUND. This entity is used to catalog the upper and
lower bound for each dimension in the array:

typedef struct tagSAFEARRAYBOUND {

ULONG cElements;

LONG lLbound;

} SAFEARRAYBOUND, * LPSAFEARRAYBOUND;

As you might be suspecting, Visual Basic always represents array types as
SAFEARRAYs. Thus, if you build an interface definition as follows:

' [default] interface of the VB 6.0 CoSafeArray class.

Option Explicit

' This parameter is a COM SAFEARRAY.

Public Sub UseArrayOfStrings(theStrings() As String)

Dim i As Integer

For i = 0 To UBound(theStrings)

MsgBox theStrings(i), , "BSTR says:"

Next i

End Sub

you would find the resulting IDL:

// Recall! VB 6.0 always builds [dual] interfaces.

interface _CoSafeArray : IDispatch

{

[id(0x60030000)]

HRESULT UseArrayOfStrings([in, out] SAFEARRAY(BSTR)* theStrings);

};

Chapter 4

180

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 180

The manipulation of the SAFEARRAY type is far more robust (which is to say
far more complex and painful) than when using Visual Basic. Much like the BSTR
data type, C++ programmers make use of the COM library to allocate, fill, access,
and destroy items in this complex data type. Table 4-8 lists some (but by no means
all) of the core library functions.

Table 4-8. SAFEARRAY COM Library Functions

SAFEARRAY COM Meaning in Life
Library Function

SafeArrayCreate() Allocates a SAFEARRAY based on the underlying type,

SafeArrayCreateVector() dimensions, and bounds. The vector variation allocates a

fixed-size SAFEARRAY.

SafeArrayDestroy() Cleans up all memory stuffed in the SAFEARRAY. By reading

the fFeatures flag, this function is able to call Release() on

interface references, SysFreeString() on BSTR references,

and so forth.

SafeArrayGetUBound() Gets the upper/lower bounds for a given dimension of the

SafeArrayGetLBound() safe array.

SafeArrayAccessData() These methods lock/unlock the SAFEARRAY (by adjusting

SafeArrayUnaccessData() the cLocks field) and provide access to the underlying data.

Unaccessing the data results in NULLing the pointer to

the data.

Making use of these C++ COM library APIs in not impossible, but it is very
(very) verbose. To illustrate, assume you have an interface that allows the user to
send in a SAFEARRAY of BSTRs for display by the COM object, as well as another
method that returns an array of BSTRs for use by the COM client. Here is the IDL:

// One of many ways to define safe array parameters.

interface ISafeArray : IUnknown

{

[helpstring("Pass in a SafeArray of Strings.")]

HRESULT UseThisSafeArray([in] SAFEARRAY(BSTR)* ppStrings);

[helpstring("Return a SafeArray of Strings.")]

HRESULT GiveMeSomeStrings([out, retval] SAFEARRAY(BSTR)* ppStrings);

};

COM Type Information

181

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 181

If you had an ATL coclass that supports this COM interface, you could
make use of the SAFEARRAY COM library functions to build the following
implementation:

// Show each item in the array.

STDMETHODIMP CCoWidget::UseThisSafeArray(SAFEARRAY** ppStrings)

{

USES_CONVERSION;

SAFEARRAY* pSA = *ppStrings;

// Be sure we don't have a multidimensional array.

UINT numbOfDims = SafeArrayGetDim(pSA);

if(numbOfDims != 1)

return E_INVALIDARG;

// Be sure we have strings in the array.

VARTYPE vt = 0;

SafeArrayGetVartype(pSA, &vt);

if(vt != VT_BSTR)

return E_INVALIDARG;

// Get upper bound of array.

long ubound = 0;

SafeArrayGetUBound(pSA, 1, &ubound);

// Now show each string.

BSTR* temp = NULL;

SafeArrayAccessData(pSA, (void**)&temp);

for(int i = 0; i <= ubound; i++)

{

MessageBox(NULL, W2A(temp[i]), "BSTR says...", MB_OK);

}

SafeArrayUnaccessData(pSA);

return S_OK;

}

// Build an array and return to the caller.

STDMETHODIMP CCoWidget::GiveMeSomeStrings(SAFEARRAY** ppStrings)

{

// Send back some strings to the client.

SAFEARRAY *pSA;

SAFEARRAYBOUND bounds = {4, 0};

// Create the array

pSA = SafeArrayCreate(VT_BSTR, 1, &bounds);

// Fill the array with data.

BSTR *theStrings;

SafeArrayAccessData(pSA, (void**)&theStrings);

Chapter 4

182

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 182

theStrings[0] = SysAllocString(L"Hello");

theStrings[1] = SysAllocString(L"from");

theStrings[2] = SysAllocString(L"the");

theStrings[3] = SysAllocString(L"coclass!");

SafeArrayUnaccessData(pSA);

// Set return value.

*ppStrings = pSA;

return S_OK;

}

For ease of use, assume a simple VB 6.0 COM client that triggers each function
as follows (VB destroys the SAFEARRAY structure automatically):

Private Sub btnSafeArray_Click()

Dim w As CoWidget

Set w = New CoWidget

Dim itfSA As ISafeArray

Set itfSA = w

' Send strings to object.

Dim theStrings(2) As String

theStrings(0) = "Hello"

theStrings(1) = "from"

theStrings(2) = "Visual Basic!"

itfSA.UseThisSafeArray theStrings

' Get strings from object.

Dim moreStrings() As String

moreStrings = itfSA.GiveMeSomeStrings()

Dim i As Integer

For i = 0 To UBound(moreStrings)

MsgBox moreStrings(i), , "Strings from COM object"

Next i

End Sub

As you would expect, when you run the application you see a total of six
message boxes pop up as the array of BSTRs is sent across boundaries. Under-
stand that the SAFEARRAY structure is capable of containing more complex types
(such as custom structures, interface pointers, and so forth). You see additional
examples of COM array manipulation later in this text.

COM Type Information

183

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 183

ATL 4.0 SAFEARRAY Helper Templates

Until the advent of ATL 4.0, C++ developers were forced to pound out dozens of
lines of code all for the sake of creating a simple array of types (Visual Basic
programmers are free to emit a hearty belly laugh at this point). However, ATL 4.0
now supplies the CComSafeArray and CComSafeArrayBounds helper templates.
I’ll assume you will check out online Help for further details.

CODE The ATL WidgetServer server and VB 6.0 client application
(WidgetClient) are included under the Chapter 4 subdirectory.

COM Interface Types As Method Parameters

As mentioned at the start of this chapter, COM interface methods may take other
COM types (including interfaces) as parameters. During the course of this chapter,
you have already seen how to pass structures and enumerations between caller
and callee, however, you have not yet examined how to pass interface types
between COM entities. Notice that I did not say “how to pass coclass types.” It is
always important to remember that COM clients can never access an object’s
functionality except using an interface pointer. Therefore, it is not possible to pass
a COM object reference to another part of your system.

Passing interface references is quite common when building a COM collection
object that exposes a set of inner objects. For example, you might have a coclass
named Garage that maintains a set of internal Car types. In IDL, you might
concoct the following IGarage interface:

interface IGarage : IUnknown

{

HRESULT GetCar([in] long carID, [out, retval] ICar** pTheCar);

HRESULT InsertNewCar([in] ICar* pTheCar);

};

Assuming you do indeed have an implementation of the IGarage and ICar
interfaces, we would be able to make use of these types in VB 6.0 as follows:

' Make a Garage and insert new Car.

Dim g as Garage

Set g = New Garage

Chapter 4

184

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 184

Dim c as Car

Set c = New Car

g.InsertNewCar c

' Get back car number with ID 123

Dim c123 as Car

c123 = g.GetCar (123)

You examine the code behind this sort of collection (and other related
patterns) later in this text. At this point in the chapter you should now have a
better understanding (or received a painless refresher) of the core COM types,
intrinsic data types, and various IDL constructs. Understand that you will see
additional IDL keywords (and COM concepts) where necessary during the
remainder of this text. The remainder of this chapter examines the process of
programmatically generating and reading COM type information at runtime using
both unmanaged (C++) and managed (C#) code.

The ITypeInfo Interface

As you know, once you have defined your COM types in IDL syntax, you compile
the IDL into a binary equivalent termed a type library (that may or may not be
embedded into the COM binary). Programmatically speaking, when you wish to
read information from a type library, you make use of the methods of the standard
ITypeInfo COM interface. This single interface is able to return a wealth of infor-
mation about any COM type (interface, coclass, enum, struct) at runtime. Sadly,
there is not a unique one-to-one mapping of COM interface to COM type (thus
you will not find a specific standard COM interface that only reads interface infor-
mation, another that reads only coclass information, and so forth). ITypeInfo is
your one-stop shop, and it is defined in IDL (within oaidl.idl) as follows:

// This interface allows you to examine COM types at runtime.

[object,

uuid(00020401-0000-0000-C000-000000000046)]

interface ITypeInfo : IUnknown

{

HRESULT GetTypeAttr([out] TYPEATTR ** ppTypeAttr);

HRESULT GetTypeComp([out] ITypeComp ** ppTComp);

HRESULT GetFuncDesc([in] UINT index,

[out] FUNCDESC ** ppFuncDesc);

HRESULT GetVarDesc([in] UINT index,

[out] VARDESC ** ppVarDesc);

COM Type Information

185

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 185

HRESULT GetNames([in] MEMBERID memid,

[out,size_is(cMaxNames),length_is(*pcNames)] BSTR * rgBstrNames,

[in] UINT cMaxNames, [out] UINT * pcNames);

HRESULT GetRefTypeOfImplType([in] UINT index,

[out] HREFTYPE * pRefType);

HRESULT GetImplTypeFlags([in] UINT index,

[out] INT * pImplTypeFlags);

HRESULT GetIDsOfNames(

[in, size_is(cNames)] LPOLESTR * rgszNames,

[in] UINT cNames,

[out, size_is(cNames)] MEMBERID * pMemId);

HRESULT Invoke([in] PVOID pvInstance,

[in] MEMBERID memid,

[in] WORD wFlags,

[in, out] DISPPARAMS * pDispParams,

[out] VARIANT * pVarResult,

[out] EXCEPINFO * pExcepInfo,

[out] UINT * puArgErr);

HRESULT GetDocumentation([in] MEMBERID memid,

[out] BSTR * pBstrName,

[out] BSTR * pBstrDocString,

[out] DWORD * pdwHelpContext,

[out] BSTR * pBstrHelpFile);

HRESULT GetDllEntry([in] MEMBERID memid,

[in] INVOKEKIND invKind,

[out] BSTR * pBstrDllName,

[out] BSTR * pBstrName,

[out] WORD * pwOrdinal);

HRESULT GetRefTypeInfo([in] HREFTYPE hRefType,

[out] ITypeInfo ** ppTInfo);

HRESULT AddressOfMember(

[in] MEMBERID memid,

[in] INVOKEKIND invKind,

[out] PVOID * ppv);

HRESULT CreateInstance([in] IUnknown * pUnkOuter,

[in] REFIID riid, [out, iid_is(riid)] PVOID * ppvObj);

HRESULT GetMops([in] MEMBERID memid,

[out] BSTR * pBstrMops);

HRESULT GetContainingTypeLib(

[out] ITypeLib ** ppTLib,

[out] UINT * pIndex);

void ReleaseTypeAttr([in] TYPEATTR * pTypeAttr);

void ReleaseFuncDesc([in] FUNCDESC * pFuncDesc);

void ReleaseVarDesc([in] VARDESC * pVarDesc);

};

Chapter 4

186

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 186

Even though ITypeInfo defines a good number of members, the truth of the
matter is that only a subset of these items are necessary when attempting to
programmatically investigate a COM type library. Table 4-9 shows the highlights.

Table 4-9. Core Members of ITypeInfo

Relevant ITypeInfo Method Meaning in Life

CreateInstance() If the current ITypeInfo interface is pointing to a COM

class (coclass), this method allows you to activate the

object (assuming the coclass is implemented in a

registered COM server).

GetContainingTypeLib() This method allows you to gain an ITypeLib reference of

the type library containing the COM type.

GetDocumentation() Fetches the [helpstring] value for the type, as well as

any help file information for the type.

GetFuncDesc() Retrieves information about an interface method held

in a FUNCDESC structure.

GetIDsOfNames() Much like the IDispatch equivalents, these methods

Invoke() allow you to obtain a DISPID given a string token and

trigger a member of the dispinterface using late

binding.

GetImplTypeFlags() Returns a set of flags that describe the IDL attributes of

a coclass’ supported interface (e.g., [default], [hidden]).

GetNames() Returns an array of BSTRs that describe a given

member.

GetRefTypeInfo() If the current type description references other type

descriptions, this method returns the associated

ITypeInfo for the referenced type.

GetRefTypeOfImplType() If a type description describes a COM class, it retrieves

the type description of the implemented interface

types.

GetTypeAttr() Returns a TYPEATTR structure that describes the

current type.

GetVarDesc() Returns a VARDESC structure that defines a variable in

the type library.

ReleaseFuncDesc() These methods free the structure allocated for you

ReleaseTypeDesc() when calling GetFuncDesc(), GetTypeDesc(), and

ReleaseVarDesc() GetVarDesc().

COM Type Information

187

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 187

A Brief Word on ITypeInfo2

In addition to ITypeInfo, COM also defines a derived interface named (of course)
ITypeInfo2. This interface extends the functionality of ITypeInfo by adding
members that allow you to retrieve custom IDL attributes (identified with the
[custom] attribute). You’ll see the ITypeInfo2 interface in action a bit later in this
chapter.

Related ITypeInfo Data Types

If you were reading over the previous table carefully, you should have noticed that
many of the ITypeInfo accessor methods return various related structures. These
structures are your key to ciphering among the numerous members that lurk
within a COM type library. Table 4-10 documents some (but not all) of the items
of interest.

Table 4-10. ITypeInfo-Related Structures (and Enums)

Related ITypeInfo Meaning in Life
Structure Type

ARRAYDESC Array description referenced by TYPEDESC, containing the

element type, dimension count, and a variable-length array.

ELEMDESC Includes the type description and process-transfer information

for a variable, a function, or a function parameter.

FUNCDESC Describes a function.

FUNCFLAGS Enumeration containing constants that are used to define

properties of a function.

FUNCKIND Enumeration for defining whether a function is accessed as a

virtual, pure virtual, nonvirtual, static, or through IDispatch.

HREFTYPE A handle identifying a type description.

PARAMDESC Describes the type of the parameter.

IMPLTYPEFLAGS Represents various flags that may adorn COM implementation

types (interfaces and coclasses).

MEMBERID Identifies the member in a type description. For IDispatch

interfaces, this is the same as a DISPID.

Chapter 4

188

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 188

Table 4-10. ITypeInfo-Related Structures (and Enums) (continued)

Related ITypeInfo Meaning in Life
Structure Type

TYPEATTR Contains attributes of the current type.

TYPEDESC Describes the type of a variable, the return type of a function, or

the type of a function parameter.

TYPEFLAGS Defines the properties and attributes of a type description.

TYPEKIND Defines properties of a type.

VARDESC Describes a variable, constant, or data member.

VARFLAGS Used to set attributes of a variable.

VARKIND Defines the kind of variable.

Generating COM Type Information Programmatically

Unless you happen to be a tool builder by trade, chances are that you will build
your COM type information using the Keyboard Wizard and the MIDL compiler.
However, it is worth pointing out that the COM library defines a small set of stan-
dard interfaces (used in conjunction with a small set of COM library functions)
that allow you to programmatically generate type information at runtime. Of
course, this in-memory type information may be then committed to file for later
use. In a nutshell, creating type information requires the use of three core COM
interfaces and a single COM library function. Table 4-11 hits the highlights.

Table 4-11. Type Library Creation Elements

COM Type Information Meaning in Life
Creation Element

ICreateTypeLib This interface is used to establish the characteristics of the type

ibrary itself (i.e., the library statement and its attributes).

ICreateTypeInfo This interface is used to insert COM types into a type library.

CreateTypeLib() This COM library function creates a coclass that supports the

ICreateTypeLib interface.

ITypeInfo As seen, while not really an interface that directly creates a COM

type, this interface represents a COM type description in

memory.

COM Type Information

189

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 189

A Brief Word on ICreateTypeLib2 and ICreateTypeInfo2

In addition to this small set of COM type creators, you may wish to know that both
the ICreateTypeLib and ICreateTypeInfo interfaces function as a base interface to
two versioned equivalents (ICreateTypeLib2 and ICreateTypeInfo2). These inter-
faces support the ability to remove a given element from an existing library state-
ment or COM type. If you wish to interact with these interfaces, you need to first
call the CreateTypeLib2() COM library function (rather than CreateTypeLib()
proper) to obtain the ICreateTypeLib2 interface. However, to keep things simple, I
avoid using these interfaces (but check out online Help for a full description of the
defined interface members).

The Target IDL

To illustrate the basic functionality of building type information at runtime, you
make use of the items defined in Table 4-11 to build the following type informa-
tion programmatically:

[uuid(<some guid>), version(1.0),

helpstring("The Hello Library")]

library HelloLibrary

{

importlib("stdole32.tlb");

[odl, uuid(<some guid>),

helpstring("Hello Interface"), hidden]

interface IHello : IUnknown

{

[helpstring("This method says hello...")]

HRESULT _stdcall SayHello();

};

[uuid(<some guid>), helpstring("Hello Class")]

coclass Hello

{

[default] interface IHello;

};

};

As you can see, your COM class (Hello) supports a single [default] interface
(IHello). The IHello interface contains a single method named (of course)
SayHello(). To keep things simple, the SayHello() method does not take any
parameters and returns the standard HRESULT. Do note, however, that you are

Chapter 4

190

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 190

making use of the [helpstring] attribute at various levels to help document the
functionality of the type information. Finally, notice that the values assigned to
the [uuid] attributes are generated on the fly using CoCreateGuid().

If you wish to follow along and build your own COM type generator (and I’m
sure you do), begin by creating a brand-new Win32 Console Application named
CppComTypeWriter using Visual Studio 6.0 (a simple application will be fine). All
of your programming logic will be contained within the initial C++ file.

Building the Type Library (ICreateTypeLib)

The first step in your endeavor is to create a helper function that will create a new
*.tlb file and return a valid ICreateTypeLib interface. Using this interface reference,
you will be able to insert the individual types into the library definition. Here is the
prototype:

// This global method will be called by main() in order

// to create the *.tlb file and obtain an ICreateTypeLib interface.

ICreateTypeLib* CreateTypeLibrary();

The ICreateTypeLib interface defines a number of methods that allow you to
establish numerous library attributes ([version], [uuid], [helpstring], and so forth).
The official IDL definition can be found in oaidl.idl and looks like the following
(see Table 4-12 for an explanation of each method):

[object,

uuid(00020406-0000-0000-C000-000000000046),

pointer_default(unique), local]

interface ICreateTypeLib : IUnknown

{

HRESULT CreateTypeInfo([in] LPOLESTR szName,

[in] TYPEKIND tkind,

[out] ICreateTypeInfo ** ppCTInfo);

HRESULT SetName([in] LPOLESTR szName);

HRESULT SetVersion(

[in] WORD wMajorVerNum,

[in] WORD wMinorVerNum);

HRESULT SetGuid([in] REFGUID guid);

HRESULT SetDocString([in] LPOLESTR szDoc);

HRESULT SetHelpFileName(

[in] LPOLESTR szHelpFileName);

COM Type Information

191

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 191

HRESULT SetHelpContext(

[in] DWORD dwHelpContext);

HRESULT SetLcid([in] LCID lcid);

HRESULT SetLibFlags([in] UINT uLibFlags);

HRESULT SaveAllChanges();

};

Table 4-12. Members of ICreateTypeLib

ICreateTypeLib Method Meaning in Life

CreateTypeInfo() Creates a new type description instance (interface, coclass,

and so forth) within the type library.

SaveAllChanges() Saves the type library to file.

SetDocString() Sets the [helpstring] attribute for the type library.

SetGuid() Sets the [uuid] attribute (LIBID) for the type library.

SetHelpContext() Sets the Help context ID and help file name for the type

SetHelpFileName() library.

SetLcid() Sets the locale identifier (LCID) code indicating the national

language associated with the library.

SetLibFlags() Sets any library flags for the type library. Valid values are

taken from the LIBFLAGS enumeration.

SetName() Sets the name of the type library.

SetVersion() Sets major and minor version numbers for the type library

(the [version] attribute).

Now that you have a better idea of the behavior offered by the ICreateTypeLib
interface, you can build the implementation of your custom CreateTypeLibrary()
method:

// Create a type library and gain an ICreateTypeLib

// interface to reference it.

ICreateTypeLib* CreateTypeLibrary()

{

cout << "Creating COM type library!" << endl;

ICreateTypeLib *pCTL = NULL;

GUID theGUID;

CoCreateGuid(&theGUID);

// Make the type lib file and get the ICreateTypeLib interface.

Chapter 4

192

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 192

CreateTypeLib(SYS_WIN32, L"MyTypeLib.tlb", &pCTL);

// Set version, name and LIBID and return ICreateTypeLib.

pCTL->SetVersion(1, 0);

pCTL->SetName(L"HelloLibrary");

pCTL->SetGuid(theGUID);

pCTL->SetDocString(L"The Hello Library");

return pCTL; // Caller will Release().

}

This process begins filling our GUID (which will become the LIBID) using
CoCreateGuid(). After this point, make use of the CreateTypeLib() COM library
function to (a) define the target platform for this type information, (b) the name of
the *.tlb file, and (c) specify storage for the returned ICreateTypeLib interface. The
first parameter used to establish the target OS is a value from the SYSKIND
enumeration:

// Yes, the Macintosh does support

// COM type information…

typedef [v1_enum] enum tagSYSKIND {

SYS_WIN16 = 0,

SYS_WIN32, // This is all we care about…

SYS_MAC

} SYSKIND;

Once you obtain a reference to the returned ICreateTypeLib interface, you
make a number of calls to establish the form of the type library statement. In
effect, you have just built the following IDL in memory:

// The story thus far.

[uuid(<some guid>), version(1.0),

helpstring("The Hello Library")]

library HelloLibrary

{

}

Creating the IHello Interface

Now that you have a valid ICreateTypeLib interface, you are able to insert the indi-
vidual COM types. Now, let me warn you that you are about to view some terse C

COM Type Information

193

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 193

code (remember, knowledge is power). Assume you have defined the following
new function prototype:

// Creates the IHello interface and returns an associated

// ITypeInfo pointer.

ITypeInfo* CreateInterface(ICreateTypeLib *pctlib);

The purpose of this helper function is to create the characteristics of the
IHello interface ([uuid], base interface, and the single SayHello() method) and
then insert it into the previously created type library. Notice that you need to
pass in the ICreateTypeLib interface you obtained from the previous call to the
CreateTypeLibrary() helper function. As you may expect, the returned ITypeInfo
reference represents the in-memory representation of the IHello interface. Here is
the complete method implementation (with analysis to follow):

// Add an interface to the incoming type library.

ITypeInfo* CreateInterface(ICreateTypeLib* pctlib)

{

cout << "Creating IHello interface!" << endl;

ICreateTypeInfo *pctinfo = NULL;

HREFTYPE hreftype;

ITypeInfo *ptinfoIUnknown = NULL;

ITypeLib *ptlibStdOle = NULL;

ITypeInfo* ptinfoIHello = NULL;

GUID theGUID;

FUNCDESC funcdesc; // Used to define IHello::SayHello().

CoCreateGuid(&theGUID);

// Get type info for IUnknown (as it is the base interface

// of IHello).

LoadTypeLib(OLESTR("stdole32.tlb"), &ptlibStdOle);

ptlibStdOle->GetTypeInfoOfGuid(IID_IUnknown, &ptinfoIUnknown);

ptlibStdOle->Release();

// Make the IHello interface.

pctlib->CreateTypeInfo(OLESTR("IHello"), TKIND_INTERFACE, &pctinfo);

pctinfo->SetGuid(theGUID);

pctinfo->SetDocString(OLESTR("Hello Interface"));

pctinfo->SetTypeFlags(TYPEFLAG_FHIDDEN);

// Save typeinfo of IHello for others who may refer to it.

pctinfo->QueryInterface(IID_ITypeInfo, (void**)&ptinfoIHello);

Chapter 4

194

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 194

// Output base interface of IHello (IUnknown)

pctinfo->AddRefTypeInfo(ptinfoIUnknown, &hreftype);

pctinfo->AddImplType(0, hreftype);

// Make SayHello() method (using FUNCDESC structure).

cout << "Creating IHello.SayHello() method!" << endl;

OLECHAR * rgszFuncArgNamesSH[1] = {OLESTR("SayHello")};

funcdesc.memid = 1;

funcdesc.lprgscode = NULL;

funcdesc.lprgelemdescParam = NULL;

funcdesc.funckind = FUNC_PUREVIRTUAL;

funcdesc.invkind = INVOKE_FUNC;

funcdesc.callconv = CC_STDCALL;

funcdesc.cParams = 0;

funcdesc.cParamsOpt = 0;

funcdesc.oVft = 0;

funcdesc.cScodes = 0;

funcdesc.elemdescFunc.tdesc.vt = VT_HRESULT;

funcdesc.elemdescFunc.idldesc.dwReserved = NULL;

funcdesc.elemdescFunc.idldesc.wIDLFlags = IDLFLAG_NONE;

funcdesc.wFuncFlags = 0;

pctinfo->AddFuncDesc(0, &funcdesc);

pctinfo->SetFuncAndParamNames(0, rgszFuncArgNamesSH, 1);

pctinfo->SetFuncDocString(0, OLESTR("This method says hello..."));

pctinfo->LayOut();

pctinfo->Release();

// Return ITypeInfo for IHello.

return ptinfoIHello;

}

Breaking Down the CreateInterface() Helper Method

Hmmm. This looks a bit more complex than the process of creating the type
library itself. Well, that’s why you get paid the big bucks. In reality it isn’t all that
bad if you break things down bit by bit. The function begins by loading the stan-
dard OLE type library (stdole32.tlb) to obtain a reference to the type information
for IUnknown. This reference is held in an ITypeInfo interface (described in detail
earlier in this chapter). Why do you need to do this? Well, as you recall, all COM
interfaces must ultimately derive from this base interface, and therefore you best

COM Type Information

195

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 195

have access to its type information! Like all things in COM, once you have made
use of a given interface, you call Release():

// Get type info for IUnknown (as it is the base interface

// of IHello).

ITypeInfo *ptinfoIUnknown = NULL;

ITypeLib *ptlibStdOle = NULL;

…

LoadTypeLib(OLESTR("stdole32.tlb"), &ptlibStdOle);

ptlibStdOle->GetTypeInfoOfGuid(IID_IUnknown, &ptinfoIUnknown);

ptlibStdOle->Release();

Once you have a reference to the base interface of IHello, you perform a series
of steps to establish IHello. Here is the relevant code under dissection:

// Make the IHello interface.

HREFTYPE hreftype;

ICreateTypeInfo *pctinfo = NULL;

ITypeInfo* ptinfoIHello = NULL;

…

pctlib->CreateTypeInfo(OLESTR("IHello"), TKIND_INTERFACE, &pctinfo);

pctinfo->SetGuid(theGUID);

pctinfo->SetDocString(OLESTR("Hello Interface"));

pctinfo->SetTypeFlags(TYPEFLAG_FHIDDEN);

// Save typeinfo of IHello for others who may refer to it.

pctinfo->QueryInterface(IID_ITypeInfo, (void**)&ptinfoIHello);

// Output base interface of IHello (IUnknown)

pctinfo->AddRefTypeInfo(ptinfoIUnknown, &hreftype);

pctinfo->AddImplType(0, hreftype);

The key point to this code block is the call to ICreateTypeLib::CreateTypeInfo().
As you can see, you are specifying a name for your type (IHello as a
Unicode string), storage for the returned ICreateTypeInfo interface, and the
TKIND_INTERFACE member of the TYPEKIND enumeration (due to the fact that
we are creating a COM interface type). Here is the IDL description of TYPEKIND:

// This IDL enum defined in oaidl.idl

typedef [v1_enum] enum tagTYPEKIND {

TKIND_ENUM = 0,

TKIND_RECORD,

TKIND_MODULE,

TKIND_INTERFACE,

TKIND_DISPATCH,

Chapter 4

196

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 196

TKIND_COCLASS,

TKIND_ALIAS,

TKIND_UNION,

TKIND_MAX // End of enum marker

} TYPEKIND;

Once the [uuid] and [helpstring] values have been set (a la the
ICreateTypeInfo::SetGuid() and ICreateTypeInfo::SetDocString() methods), you
make a call to ITypeInfo::SetTypeFlags(). As suggested by the name of the method,
SetTypeFlags() is used to further qualify the COM type with various IDL attributes.
Given that a COM type may be any number of entities (interfaces, coclasses, and
so forth), the parameters sent into SetTypeFlags()depend on the type you are
attempting to generate. All in all, you may specify any of the following values of
the TYPEFLAGS enumeration:

typedef enum tagTYPEFLAGS {

TYPEFLAG_FAPPOBJECT = 0x01,

TYPEFLAG_FCANCREATE = 0x02,

TYPEFLAG_FLICENSED = 0x04,

TYPEFLAG_FPREDECLID = 0x08,

TYPEFLAG_FHIDDEN = 0x10,

TYPEFLAG_FCONTROL = 0x20,

TYPEFLAG_FDUAL = 0x40,

TYPEFLAG_FNONEXTENSIBLE = 0x80,

TYPEFLAG_FOLEAUTOMATION = 0x100,

TYPEFLAG_FRESTRICTED = 0x200,

TYPEFLAG_FAGGREGATABLE = 0x400,

TYPEFLAG_FREPLACEABLE = 0x800,

TYPEFLAG_FDISPATCHABLE = 0x1000,

TYPEFLAG_FREVERSEBIND = 0x2000

} TYPEFLAGS;

Hopefully, Table 4-13 provides some degree of insight as to what the core
TYPEFLAGS values mean in terms of COM IDL.

COM Type Information

197

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 197

Table 4-13. Various TYPEFLAGS Values

TYPEFLAGS (Values You Meaning in Life
Might Actually Care About)

TYPEFLAG_FAPPOBJECT Defines an application object. These types are

automatically created on the loading of the COM

server (think VB 6.0’s Instancing =GlobalSingleUse).

TYPEFLAG_FCANCREATE Instances of the type can be created by

ITypeInfo::CreateInstance().

TYPEFLAG_FLICENSED The type is licensed.

TYPEFLAG_FHIDDEN The type should not be displayed to browsers.

TYPEFLAG_FDUAL The interface supplies both late and early binding.

TYPEFLAG_FOLEAUTOMATION The types used in the interface are fully compatible

with Automation, including early binding support.

Basically, this flag sets the [oleautomation]

attribute.

TYPEFLAG_FRESTRICTED Should not be accessible from macro languages.

This flag is intended for system-level types or types

that type browsers should not display.

TYPEFLAG_FAGGREGATABLE The class supports aggregation.

TYPEFLAG_FDISPATCHABLE Indicates that the interface derives from IDispatch,

either directly or indirectly. This flag is computed.

Building the SayHello() Method

The final block of code within the CreateInterface() helper method (and the largest
block of said code) is the establishment of the SayHello() method. Members of a
COM interface are ultimately described using a FUNCDESC structure:

// Defined in oaidl.idl

typedef struct tagFUNCDESC

{

MEMBERID memid;

SCODE __RPC_FAR *lprgscode;

ELEMDESC __RPC_FAR *lprgelemdescParam;

FUNCKIND funckind;

INVOKEKIND invkind;

CALLCONV callconv;

Chapter 4

198

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 198

SHORT cParams;

SHORT cParamsOpt;

SHORT oVft;

SHORT cScodes;

ELEMDESC elemdescFunc;

WORD wFuncFlags;

} FUNCDESC;

As you may be able to tell, many of the fields of the FUNCDESC are in fact
enumeration values. Rather than detailing each and every possible value of each
and every FUNCDESC-centric structure, let’s just focus of the behavior established
for the SayHello() method:

// Establish the SayHello() function.

FUNCDESC funcdesc;

…

OLECHAR* rgszFuncArgNamesSH[1] = {OLESTR("SayHello")};

funcdesc.memid = 1;

funcdesc.lprgscode = NULL;

funcdesc.lprgelemdescParam = NULL;

funcdesc.funckind = FUNC_PUREVIRTUAL;

funcdesc.invkind = INVOKE_FUNC;

funcdesc.callconv = CC_STDCALL;

funcdesc.cParams = 0;

funcdesc.cParamsOpt = 0;

funcdesc.oVft = 0;

funcdesc.cScodes = 0;

funcdesc.elemdescFunc.tdesc.vt = VT_HRESULT;

funcdesc.elemdescFunc.idldesc.dwReserved = NULL;

funcdesc.elemdescFunc.idldesc.wIDLFlags = IDLFLAG_NONE;

funcdesc.wFuncFlags = 0;

// Remember! pctinfo is a handle to IHello!

pctinfo->AddFuncDesc(0, &funcdesc);

pctinfo->SetFuncAndParamNames(0, rgszFuncArgNamesSH, 1);

pctinfo->SetFuncDocString(0, OLESTR("This method says hello..."));

pctinfo->LayOut();

pctinfo->Release();

In essence what we are saying is “Build a method named SayHello()
that takes no parameters and returns an HRESULT” via various fields of the
FUNCDESC structure (I’ll assume you will check out each possible value at your
leisure). Do note that it is critical to call ICreateTypeInfo::LayOut() once you have

COM Type Information

199

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 199

established a COM type to commit the changes (if you will). At this point, you have
effectively created the following IDL in memory:

[uuid(<some guid.>),

helpstring("Hello Interface"), odl, hidden]

interface IHello : IUnknown

{

[helpstring("This method says hello...")]

HRESULT SayHello(void);

};

In case you are wondering why you attributed the [hidden] attribute to the
IHello interface, understand that you are using type library creation interfaces to
insert COM type definitions within a library statement (rather than outside the
scope of the type library). Recall that if an interface is referenced within the scope
of a library statement, it will be visible to higher-level languages such as VB 6.0.
Given that the Hello coclass supports IHello as its [default] interface, it would be
redundant (and a bit confusing) to have this same interface visible from the VB
Object Browser.

Building the Hello Coclass

The final step of this exercise is to create type information for the Hello coclass
itself. Given that coclasses support interfaces and are defined in a type library, it
makes sense that your final function prototype takes the following parameters:

// Create a coclass using this type library (ICreateTypeLib)

// and list the IHello interface (ITypeInfo).

void CreateCoClass(ICreateTypeLib* pctlib, ITypeInfo* pCurrType);

The implementation is far less formidable than the creation of the interface
itself:

void CreateCoClass(ICreateTypeLib* pctlib, ITypeInfo* ptinfoIHello)

{

cout << "Creating Hello CoClass!" << endl;

GUID theGUID;

CoCreateGuid(&theGUID);

ICreateTypeInfo *pctinfo = NULL;

HREFTYPE hreftype;

Chapter 4

200

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 200

// Create the coclass.

pctlib->CreateTypeInfo(OLESTR("Hello"), TKIND_COCLASS, &pctinfo);

pctinfo->SetGuid(theGUID);

pctinfo->SetTypeFlags(TYPEFLAG_FCANCREATE);

pctinfo->SetDocString(OLESTR("Hello Class"));

// List IHello in the coclass.

pctinfo->AddRefTypeInfo(ptinfoIHello, &hreftype);

pctinfo->AddImplType(0, hreftype);

pctinfo->SetImplTypeFlags(0, IMPLTYPEFLAG_FDEFAULT);

pctinfo->LayOut();

pctinfo->Release();

}

Again, take the incoming ICreateTypeLib interface and make use of the call
CreateTypeInfo(), this time specifying a TYPEKIND value of TKIND_COCLASS.
Using the resulting ICreateTypeInfo reference, you are able to set the GUID,
type flags, and [helpstring]. To specify IHello as the default interface requires
little less than adding the correct ITypeInfo reference while specifying the
IMPLTYPEFLAG_FDEFAULT flag. Once ICreateTypeInfo::LayOut() has been
called, you have the following in-memory type IDL information:

[uuid(<some guid>),

helpstring("Hello Class")]

coclass Hello

{

[default] interface IHello;

}

Testing the Application

With each of your three helper functions established, you can now configure
main() as follows (without excessive error checking):

// Make that type information!

int main(int argc, char* argv[])

{

CoInitialize(NULL);

ICreateTypeLib *pCTL = NULL;

ITypeInfo *pCurrType = NULL;

// Create the type library.

pCTL = CreateTypeLibrary();

COM Type Information

201

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 201

// Create IHello interface.

pCurrType = CreateInterface(pCTL);

// Now create the coclass.

CreateCoClass(pCTL, pCurrType);

// Save the type lib!

pCTL->SaveAllChanges();

// COM clean up.

if(pCTL != NULL) pCTL->Release();

if(pCurrType != NULL) pCurrType->Release();

CoUninitialize();

return 0;

}

Once you execute this application, you will find the MyTypeLib.tlb file is
present and accounted for (Figure 4-4).

Figure 4-4. Proof that the exotic world of runtime COM type generation is possible

If you open this *.tlb file using the VB 6.0 Project | References menu option
(and manually navigate to location of your new file using the Browse button), you
will be able to view the types using the Object Browser tool (F2) as seen in Figure
4-5 (note the [helpstring] for the SayHello() method).

Chapter 4

202

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 202

Figure 4-5. Recall! IHello is the [default] interface of Hello.

CODE The CppComTypeWriter application is located under the
Chapter 4 subdirectory.

Programmatically Reading COM Type Information

So at this point you have received a lesson in the process of building COM type
information on the fly using a small subset of the COM library. As you would
expect, there are equivalent types that allow you to read COM type information at
runtime. For example, consider the VB 6.0 Object Browser. Essentially all this tool
does is load a *.tlb file from disk, read the contents, and display the binary IDL
within a functional user interface.

Your next goal is to build your type library browser application. Of course, it
will not look as sharp as the GUI-based tool (as you opt for a simple console
window UI) but it should get the point across that it is completely possible to
programmatically read type libraries at runtime. Formally speaking, this process is
termed reflection. The key players involved in COM reflection services are listed in
Table 4-14.

COM Type Information

203

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 203

Table 4-14. Type Library-Centric COM Library Items

COM Type Information Meaning in Life
Reader Atom

LoadTypeLib() This COM API function is used to load (and optionally

register) a COM type library.

ITypeLib This interface represents a handle to a loaded COM type

library.

As you may suspect, the process of reading a COM type library is far simpler
than creating one in memory. Again, if you wish to follow along, create a new
Win32 Console Application (CppComTypeReader).

The Program Skeleton

Basically, your console application will prompt the user for input that specifies
the path to the COM *.dll, *.exe, or *.tlb file he or she is interested in browsing.
Given this input, you will attempt to programmatically load the file using the
LoadTypeLib() COM library function, and pass the obtained ITypeLib interface
into two helper functions:

// Displays general statistics about the type library.

void DumpLibraryStats(ITypeLib* pTypeLib);

// Iterates over each COM type and dumps

// selective information for each.

void DumpComTypes(ITypeLib* pTypeLib);

You will also construct a do/while loop to keep prompting for path names
until the user tells you to stop this madness by typing n (No). Before you see the
implementation of each function, here is the general form of the main() function
(and some important preprocessor include directives to leverage ATL string
conversion macros):

// Include these ATL files to get the string stuff...

#include <atlbase.h>

#include <atlconv.h>

#include <iostream.h>

…

int main(int argc, char* argv[])

Chapter 4

204

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 204

{

USES_CONVERSION;

char oneMoreTime; // ('n' or 'y')

char pathToComServer[100] = {0};

do

{

// Get path to COM server.

cout << "Please enter path to COM server (or *tlb file)";

ITypeLib* pTypeLib = NULL;

cin.ignore(0, '\n');

cin.get(pathToComServer, 100);

// Load type information for a COM server.

if(SUCCEEDED(LoadTypeLibEx(A2W(pathToComServer),

REGKIND_DEFAULT, &pTypeLib)))

{

// Read info about the type lib.

DumpLibraryStats(pTypeLib);

// Read info about COM types.

DumpComTypes(pTypeLib);

// COM clean up.

pTypeLib->Release();

}

// Want another?

cout << "Do you want to enter another? (y or n)";

cin >> oneMoreTime;

}while (oneMoreTime != 'n');

return 0;

}

Displaying COM Library Information

The implementation of DumpLibraryStats() takes the incoming ITypeLib interface
and calls a series of methods to print out general traits. Table 4-15 showcases the
core members of ITypeLib.

COM Type Information

205

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 205

Table 4-15. Core Members of ITypeLib

ITypeLib Meaning in Life
Interface Member

FindName() Finds occurrences of a type description in a type library.

GetDocumentation() Retrieves the library's documentation string, name of the

complete Help file name and path, and the context

identifier for the library Help topic.

GetLibAttr() Retrieves the structure (TLIBATTR) containing the library's

attributes. The returned TLIBATTR must be released by

calling ReleaseTLibAttr() to free the allocated memory.

GetTypeInfo() Retrieves an ITypeInfo interface for a given COM type in the

library.

GetTypeInfoCount() Retrieves the number of types in the type library.

GetTypeInfoOfGuid() Retrieves the type description corresponding to the

specified globally unique identifier (GUID).

GetTypeInfoType() Retrieves the type of a type description.

ReleaseTLibAttr() Releases the TLIBATTR structure, originally obtained from

ITypeLib::GetLibAttr().

With this, here is the implementation of DumpLibraryStats():

void DumpLibraryStats(ITypeLib* pTypeLib)

{

pTypeLib->AddRef();

cout << "****** Stats about the Library ******" << endl;

USES_CONVERSION;

TLIBATTR* libAttr;

pTypeLib->GetLibAttr(&libAttr);

CComBSTR bstrGuid(libAttr->guid);

cout << "Major: " << libAttr->wMajorVerNum << endl;

cout << "Minor: " << libAttr->wMinorVerNum << endl;

cout << "LibID: " << W2A(bstrGuid.Copy()) << endl;

cout << "Locale ID: " << libAttr->lcid << endl;

pTypeLib->ReleaseTLibAttr(libAttr);

pTypeLib->Release();

}

Chapter 4

206

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 206

If you take a test run of the logic thus far (assuming you do not yet call the
DumpComTypes() function), you will be able to read the MyTypeLib.tlb file gener-
ated by the CppComTypeWriter application (see Figure 4-6 for output).

Figure 4-6. Reading type library attributes at runtime

Dumping COM Type Information

Recall that every COM type can be represented by an ITypeInfo interface refer-
ence. Also recall that the TYPEKIND structure allows you to specify a given type
programmatically. Given these two factoids, the DumpComTypes() helper func-
tion begins by asking the incoming ITypeLib interface to return the number of
type definitions via GetTypeInfoCount(). Once you know exactly how many COM
types are in the library, you are able to enter a loop to test for each member of the
TYPEKIND enumeration. Here is the skeleton code (you fill in the case statements
in just a bit):

void DumpComTypes(ITypeLib* pTypeLib)

{

// Get number of COM types in this library.

USES_CONVERSION;

pTypeLib->AddRef();

ULONG typeCount = pTypeLib->GetTypeInfoCount();

cout << "\n****** The COM Types ******" << endl;

cout << "There are " << typeCount << " in this type lib" << endl << endl;

// Now list out each COM type.

for(ULONG typeIndex = 0; typeIndex < typeCount; typeIndex++)

{

ITypeInfo* pInfo = NULL;

TYPEATTR* typeAtt;

CComBSTR temp;

COM Type Information

207

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 207

ULONG index = 0;

ULONG numbMembers = 0;

pTypeLib->GetTypeInfo(typeIndex, &pInfo);

pInfo->GetTypeAttr(&typeAtt);

switch(typeAtt->typekind)

{

case TKIND_COCLASS: // type is a coclass.

break;

case TKIND_DISPATCH: // type is a IDispatch derived interface.

break;

case TKIND_INTERFACE: // Type is an IUnknown derived interface.

break;

case TKIND_ENUM: // Type is an COM enumeration.

break;

default:

cout << "Some other type I don't care about..." << endl;

}

cout << endl;

pInfo->ReleaseTypeAttr(typeAtt);

pInfo->Release();

}

pTypeLib->Release();

}

Listing CoClass Statistics

The case statement for TKIND_COCLASS prints out the number of interfaces on
the object, its CLSID, its friendly name, and any supplied [helpstring]. To do so
requires some COM string conversion mumbo-jumbo (simplified using the ATL
CComBSTR helper class). Beyond this fact, the code is not too painful to observe:

case TKIND_COCLASS: // type is a coclass.

cout << "(" << typeIndex << ")" << " Coclass with "

<< typeAtt->cImplTypes << " interface(s). ******" << endl;

temp = typeAtt->guid;

cout << "->CLSID: " << W2A(temp.Copy()) << endl;

pInfo->GetDocumentation(-1, &temp, NULL, NULL, NULL);

cout << "->Name: " << W2A(temp.Copy()) << endl;

break;

Chapter 4

208

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 208

Listing IDispatch-Based Interface Statistics

TKIND_DISPATCH-based COM types will be asked to return the number of
methods they define, each of which is represented by FUNCDESC. Using
FUNCDESC, you will obtain the number of parameters for each method:

case TKIND_DISPATCH: // type is a IDispatch derived interface.

cout << "(" << typeIndex << ")" << " IDispatch based interface with "

<< typeAtt->cFuncs << " method(s). ******" << endl;

temp = typeAtt->guid;

cout << "->IID: " << W2A(temp.Copy()) << endl;

pInfo->GetDocumentation(-1, &temp, NULL, NULL, NULL);

cout << "->Name: " << W2A(temp.Copy()) << endl;

numbMembers = typeAtt->cFuncs;

for(index = 0; index < numbMembers; index++)

{

FUNCDESC* fx;

pInfo->GetFuncDesc(index, &fx);

pInfo->GetDocumentation(fx->memid, &temp, NULL, NULL, NULL);

cout << " ->" << W2A(temp.Copy()) << " has "

<< fx->cParams << " params" << endl;

pInfo->ReleaseFuncDesc(fx);

}

break;

Listing IUnknown-Based Interface Statistics

The story here is short and sweet. Basically, TKIND_INTERFACE is implemented
identically as the case for TKIND_DISPATCH. In fact this is so much the case, I’ll
just assume you copy and paste the implementation between implementations
(and tweak the cout statements).

Listing COM Enumeration Statistics

TKIND_ENUM is along the same lines as the other cases. This time, however, you
are interested in printing out the number of members (identified by the VARDESC
structure) for the enum and any specified [helpstring].

COM Type Information

209

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 209

case TKIND_ENUM: // Type is an enum.

cout << "(" << typeIndex << ")" << " Enum with "

<< typeAtt->cVars << " member(s). ******" << endl;

pInfo->GetDocumentation(-1, &temp, NULL, NULL, NULL);

cout << "->Name: " << W2A(temp.Copy()) << endl;

numbMembers = typeAtt->cVars;

for(index = 0; index < numbMembers; index++)

{

VARDESC* var;

pInfo->GetVarDesc(index, &var);

pInfo->GetDocumentation(var->memid, &temp, NULL, NULL, NULL);

cout << " ->" << W2A(temp.Copy()) << endl;

pInfo->ReleaseVarDesc(var);

}

Reading the MyTypeLib.tlb file

So! If your fingers are not worn to the bone from the typing of these last two appli-
cations, you are now in the position to take the current application out for a test
drive. For example, Figure 4-7 shows the output for specifying MyTypeLib.tlb as
the input (which I have moved to my C:\ drive to save myself some typing).

Figure 4-7. Reading the MyTypeLib.tlb file

Chapter 4

210

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 210

Now, let’s try something more exotic. If you enter in the path to msado15.dll
(the COM server describing the Active Data Objects, or ADO), you see 96 different
COM types whirl down the console application (you may want to update your
code to print out 10 or so at a time to see them all). Figure 4-8 shows item 85
(remember, numbering starts at zero), which happens to be the Connection type.

Figure 4-8. Reading the ADO type library

Of course you could reflect on the COM servers you created back in the
previous chapters as well. For example, here is the Vb6CarSever.dll dump
(Figure 4-9).

COM Type Information

211

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 211

Figure 4-9. Reading your VB 6.0 COM server

I think you get the general idea. Using the COM library, you are able to build
type information and commit it to file as well as programmatically read COM type
information at runtime.

Defining Custom IDL Attributes

The IDL language is, to some extent, extendable. Using the [custom] IDL attribute,
you are able to add your annotations to a COM type library. In effect, when you
make use of the [custom] attribute, you are building new IDL attributes that can

Chapter 4

212

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 212

be programmatically obtained at runtime using the ITypeLib2 and ITypeInfo2
interfaces.

The key point to understand about defining custom IDL attributes is the fact
that the semantics of these data points is meaningless unless some other piece of
software is “aware” of their presence. If you do not specifically poll a type library
for a chunk of custom data, it is completely ignored by COM-centric tools.
However, as you will see later in this text, the [custom] attribute is quite helpful
when working with COM/.NET interoperability issues.

Custom IDL attributes are realized as simple name/value pairs. The name of a
custom attribute is (of course) a GUID. The value of the attribute can be any
[oleautomation]-compliant data type (that is, the data type must be able to be
represented as a VARIANT). To illustrate, assume you have the following *.idl file
that establishes three custom attributes (each GUID has been generated using
guidgen.exe):

[object,

uuid(267943B0-50E4-400C-8F79-4B68D4A839FA),

custom(1403B3A5-38FE-4ba9-94E2-54577F712E7A,

"ToDo: Implement methods..."),

helpstring("IFoo Interface"),

pointer_default(unique)]

interface IFoo : IUnknown

{

[helpstring("method MethodA")] HRESULT MethodA();

};

[uuid(365739ED-EE97-4F7C-A050-BC157F04663A),

version(1.0),

helpstring("CustomIDLServer 1.0 Type Library"),

custom(FF69F249-3FC0-4062-9CB6-7901E4DD3B7A,

"Updated: 3/24/01")]

library CUSTOMIDLSERVERLib

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

[uuid(EA0AF1B1-5EA7-4352-AF6D-E78606614CCA),

helpstring("Foo Class"),

custom(97240DA1-C8DD-4548-95B7-DFBEF217C026,

"ProgID: CustomIDLServer.Foo")]

coclass Foo

{

[default] interface IFoo;

};

};

COM Type Information

213

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 213

As you can see, each [custom] attribute makes use of a BSTR data type to
represent its value. Again, these annotations are only of use to a software entity
that is on the lookout for these GUIDs. What the application in question does with
this information is a matter of choice. Here, your first two [custom] attributes are
little more than internal notes for our development team (or simply ourselves).
The third attribute however does have some value. Using the custom attribute
named 97240DA1-C8DD-4548-95B7-DFBEF217C026, a client is able to automati-
cally obtain the ProgID of the COM type (can anyone say late binding?).

Understand that the [custom] IDL attribute may be assigned to numerous
aspects of a COM IDL file. Specifically, you are free to assign custom annotations
to library statements, coclasses, interfaces (including dispinterfaces), methods,
and even individual method parameters.

Reading Custom Attributes

Now that you have established a set of [custom] attributes, you need to learn how
to extract these name/value pairs at runtime. Before you see the code, Figure 4-10
shows the output you are shooting for.

Figure 4-10. Reading [custom] IDL attributes

When you wish to read [custom] IDL attributes, you must make use of the
ITypeLib2 and ITypeInfo2 interfaces (in addition to the LoadTypeLibEx() COM
library function). First, get to know ITypeLib2. This interface derives from ITypeLib
and adds a number of methods specifically designed to read [custom] metadata
from a COM type library. Table 4-16 lists the methods of interest.

Chapter 4

214

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 214

Table 4-16. Core Members of TypeLib2

ITypeLib2 Method Meaning in Life

GetCustData() Returns a VARIANT containing the value of a given [custom]

attribute, based on the GUID of said [custom] attribute.

GetAllCustData() Returns a CUSTDATA structure that contains the name/value

pairs for all [custom] data in the library statement.

While ITypeLib2 allows you to read any [custom] attributes applied at the
library level, when you wish to read [custom] information for a given COM type,
you need to work with ITypeInfo2 (which of course derives from ITypeInfo). This
interface actually defines a number of helpful methods that are not necessarily
related to reading [custom] IDL metadata. I’ll allow you to check out the full set of
members from online Help and focus on the members listed in Table 4-17.

Table 4-17. Core Members of ITypeInfo2

ITypeInfo2 Method Meaning in Life

GetCustData() Returns a VARIANT or CUSTDATA structure for all custom

GetAllCustData() attributes for the current COM type

GetFuntCustData() Returns a VARIANT or CUSTDATA structure for all custom

GetAllFuntCustData() attributes for all functions of the COM type

GetParamCustData() Returns a VARIANT or CUSTDATA structure for all custom

GetAllParamCustData() attributes for all parameters of a method supported by the

COM interface

GetVarCustData() Returns a VARIANT or CUSTDATA structure for all custom

GetAllVarCustData() attributes for variables in the type library

GetImplTypeCustData() Returns a VARIANT or CUSTDATA structure for all custom

GetAllImplTypeCustData() attributes for all COM types

Both the ITypeLib2 and ITypeInfo2 interfaces define a number of methods
that return a single VARIANT. If you know the exact GUID of the custom attribute
you are looking for, you are able to crack of the value of the VARIANT and act
accordingly. If you would rather obtain all custom attributes for a given COM type

COM Type Information

215

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 215

(or type library) you will call one of the “all” methods (that is, GetAllCustData()
and friends) and obtain a CUSTDATA structure:

typedef struct tagCUSTDATA

{

DWORD cCustData; // Number of CUSTDATAITEMs.

LPCUSTDATAITEM prgCustData; // Array of CUSTDATAITEMs.

}CUSTDATA;

The cCustData field of the CUSTDATA structure represents the number of
items in the CUSTDATAITEM array (LPCUSTDATAITEM). The CUSTDATAITEM
structure contains (as you may guess) a GUID and VARIANT field:

typedef struct tagCUSTDATAITEM

{

GUID guid; // Name of custom attribute.

VARIANTARG varValue; // Value of custom attribute.

}CUSTDATAITEM;

Now that you understand the various types used to read [custom] IDL attrib-
utes, you can take a look at the code behind the CustomIDLDataReader console
application. Here is the code used to read the [custom] attribute found in the
library statement:

// …various #include statements…

int main(int argc, char* argv[])

{

USES_CONVERSION;

CoInitialize(NULL);

ITypeLib2* pTLib2 = NULL;

ITypeInfo2* pTInfo2 = NULL;

// Load the type library and get ITypeLib2 interface.

LoadTypeLibEx(L"customIDLServer.tlb",

REGKIND_NONE, (ITypeLib**)&pTLib2);

// Read out the custom data from the library.

CUSTDATA theCustomData;

pTLib2->GetAllCustData(&theCustomData);

for(ULONG i = 0; i < theCustomData.cCustData; i++)

{

VARIANT customValue;

VariantInit(&customValue);

VariantCopy(&customValue, &theCustomData.prgCustData[i].varValue);

if(customValue.vt == VT_BSTR)

{

Chapter 4

216

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 216

// Display custom data.

CComBSTR customGUID(theCustomData.prgCustData[i].guid);

cout << "Custom data name is: " << W2A(customGUID) << endl;

cout << "Custom data value is: " << W2A(customValue.bstrVal) << endl;

VariantClear(&customValue);

}

}

}

Begin by obtaining an ITypeLib2 interface via LoadTypeLibEx(). Notice how
you are able to obtain the number of [custom] attributes found on the library
statement using the cCustData field of the CUSTDATA structure. As you look
over each bit of metadata, you obtain the embedded GUID and VARIANT of the
CUSTDATAITEM and (if the VARIANT is a BSTR) dump out the values to the
console. You also make use of various ATL helper types (CComBSTR and various
conversion macros) to ease the pain of BSTR manipulation.

Reading custom attributes for each type is more or less the same operation.
Using the current ITypeLib2 interface, obtain each ITypeInfo2 interface (that is,
get each COM type in the library) and act accordingly:

// For each COM type in the library...

for(UINT j = 0; j < pTLib2->GetTypeInfoCount(); j++)

{

pTLib2->GetTypeInfo(j, (ITypeInfo**)&pTInfo2);

pTInfo2->GetAllCustData(&theCustomData);

// …get the custom data…

for(ULONG k = 0; k < theCustomData.cCustData; k++)

{

VARIANT customValue;

VariantInit(&customValue);

VariantCopy(&customValue, &theCustomData.prgCustData[k].varValue);

if(customValue.vt == VT_BSTR)

{

// …and display it.

CComBSTR customGUID(theCustomData.prgCustData[k].guid);

cout << "Custom data name is: " << W2A(customGUID) << endl;

cout << "Custom data value is: " << W2A(customValue.bstrVal) << endl;

VariantClear(&customValue);

}

}

pTInfo2->Release(); // Release current type.

cout << endl;

}

So! This concludes our examination of the core pieces of the COM architecture.

COM Type Information

217

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 217

At this point you may be wondering why is it important to understand how to
read and write COM type information. Now, think this one through just a bit. If a
piece of software is able to read a description of all the COM types contained
within a given server, it would be quite possible to build a translator, would it not?
For example, you could say “Every time I find a COM BSTR, translate that type into
a .NET System.String data type.” You could also do more exotic things such as
saying “Every time I find a coclass supporting a hierarchy of versioned interfaces
(for example, ICar2 deriving from ICar), build a .NET class that is a union of all
methods.”

These exact rules (as well as many others) are the foundation of .NET to COM
interoperability. As you’ll see in later chapters, whenever a .NET type wishes to
make use of a COM type, a translator termed the RCW (Runtime Callable Wrapper)
reads COM type information and builds corresponding .NET equivalents. All that
is required is a set of rules that make that translation possible (for example,
BSTR/System.String). As mentioned, the bulk of this book is concerned with
explaining these rules.

CODE The CustomIDLServer and CustomIDLDataReader projects are
included under the Chapter 4 subdirectory.

Introducing the System.Runtime.InteropServices
Namespace

To close the chapter, let’s take a first look at the key .NET namespace that makes
COM/.NET interoperability possible: System.Runtime.InteropServices. Using the
types within this namespace, you are able to dynamically create, load, manipulate,
and generate COM type information. Of course, this namespace also defines a
number of .NET types that allows you to marshal information between the COM
and .NET architectures, define how a .NET type should appear to COM, and
various other interoperability-related tasks. You will see the full glory of this
namespace throughout this text, but for the time being, Table 4-18 lists the .NET
items specifically used to interact with COM type information.

Chapter 4

218

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 218

Table 4-18. A Tiny Sampling of the System.Runtime.InteropServices Namespace

InteropServices Meaning in Life
COM Type Library–
Centric Member

UCOMITypeComp Managed definition of the ITypeComp interface

UCOMITypeInfo Managed definition of the ITypeInfo interface

UCOMITypeLib Managed definition of the ITypeLib interface

ELEMDESC Contains the type description and process transfer information

for a variable, function, or function parameter

FUNCDESC Defines a function description

PARAMDESC Contains information about how to transfer a structure element,

parameter, or function return value between processes

TYPEATTR Contains attributes of a UCOMITypeInfo

TYPEDESC Describes the type of a variable, return type of a function, or the

type of a function parameter

TYPELIBATTR Identifies a particular type library and provides localization

support for member names

VARDESC Describes a variable, constant, or data member

CALLCONV Identifies the calling convention used by a method described in

a METHODDATA structure

DESCKIND Identifies the type description being bound to

FUNCFLAGS Identifies the constants that define the properties of a function

FUNCKIND Defines how to access a function

IMPLTYPEFLAGS Defines the attributes of an implemented or inherited interface

of a type

LIBFLAGS Defines flags that apply to type libraries

PARAMFLAG Describes how to transfer a structure element, parameter, or

function return value between processes

SYSKIND Identifies the target operating system platform

TYPEFLAGS Defines the properties and attributes of a type description

TYPEKIND Specifies various types of data and functions

VARFLAGS Identifies the constants that define the properties of a variable

COM Type Information

219

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 219

The first item of note is the fact that many interfaces defined within the
System.Runtime.InteropServices namespace have a UCOM prefix, which stands
for “unmanaged COM.” As you can see, you have managed equivalents for
ITypeInfo, ITypeLib, and ITypeComp (which I have not addressed in this chapter).
Next, notice that you have managed equivalents for a number of different COM
structures (FUNCDESC, TYPEDESC, and so forth). Last but not least, you can see
that numerous COM enumerations that are used during type library development
also have a managed equivalent (VARFLAGS, SYSKIND, and so on).

It is important to note that System.Runtime.InteropServices does not define a
managed equivalent for each and every possible COM interface or each and every
COM type. Quite the contrary. The major purpose of this .NET namespace is to
provide types that hide the raw COM infrastructure from view. Nevertheless,
numerous managed COM types are present. If a required COM type is not repre-
sented in this namespace, you are free to build your managed equivalent (as you
will soon see).

Building a C# COM Type Information Viewer

To take the System.Runtime.InteropServices namespace out for a spin, the
remainder of this chapter illustrates how to build a C# .NET application that is
able to load and display COM type library information. This Windows Forms–
based application has a simple menu system that defines a File | Open and File |
Exit option.

Your Form-derived type defines a number of ListBox member variables that
will hold the coclasses, interfaces (IDispatch and IUnknown based), and COM
enums found in the *.dll, *.exe, or *.tlb file. Finally, you have a simple Label object
that will display some basic information about the type library itself. Figure 4-11
shows a test run after loading the MyTypeLib.tlb file that was generated by the
CppComTypeWriter application you created earlier in this chapter.

Chapter 4

220

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 220

Figure 4-11. A C# application reading a COM type library

Loading the COM Type Library

If you checked out the COM type library-centric .NET types defined in
System.Runtime.InteropServices, you may have noticed that this namespace does
not define managed equivalents of COM library functions. Thus, you will not find
a .NET version of LoadTypeLib(), CoCreateInstance(), CoGetClassObject(), or
what have you. When you need to make a call to the Win32 API (COM library or
otherwise) you need to make use of PInvoke. Recall that the core .NET type that
constitutes the services of PInvoke is the DllImport attribute (see Chapter 1).
Given this, ponder the following update to our initial Form type:

COM Type Information

221

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 221

namespace ManagedComTypeReader

{

// This enum is a .NET version of the COM REGKIND

// enum used in conjunction with the LoadTypeLibEx()

// API COM library function.

internal enum REGKIND

{

REGKIND_DEFAULT = 0,

REGKIND_REGISTER = 1,

REGKIND_NONE = 2

}

public class mainForm: System.Windows.Forms.Form

{

// Need to leverage the LoadTypeLibEx() API to do our dirty work.

// Param 3: UCOMITypeLib is the .NET version of ITypeLib.

[DllImport("oleaut32.dll", CharSet = CharSet.Unicode, PreserveSig = false)]

private static extern void LoadTypeLibEx(string strTypeLibName,

REGKIND regKind, out UCOMITypeLib TypeLib);

// The Type Library.

UCOMITypeLib theTypeLib;

…

}

}

Here you can see that you have declared an external function
(LoadTypeLibEx()) which is mapped to the COM library function of the same
name using DllImport. Thus, any time our Form wishes to load a type library, it is
able to make a call to LoadTypeLibEx() and trigger the raw COM API. Also notice
that you have rolled your managed version of the REGKIND enumeration. The
reason is simple. Given that there is not a managed REGKIND equivalent, you
need to establish the same entity for use by the LoadTypeLibEx() COM library call.
The process of manually defining COM types using managed code is formally
examined in Chapter 12 during your examination of advanced .NET to COM
interop topics. Finally, notice that your Form defines a private member variable of
type UCOMITypeLib to represent the loaded COM type information (recall that
this is the managed version of ITypeLib).

Loading the COM Type Library

To allow the user to pick a file to open, you make use of the Windows Forms
OpenFileDialog type. After prepping the object to our desired look and feel, you
extract the file name (if you click on the OK button) and call the DLLImported
LoadTypeLibEx() method. Also note that you pass in the name of the file to a
helper function (LoadTypeLibrary()) to save the handle to the loaded COM library
in your UCOMITypeLib member variable and print out various traits about the

Chapter 4

222

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 222

type library. Finally, you pass the UCOMITypeLib variable into a private helper
function named FillListBoxes(), which I define in just a moment. Here is the code
behind the File | Open menu Click handler:

private void mnuOpen_Click(object sender, System.EventArgs e)

{

string typeLibFile = "";

// Configure look and feel of open dlg.

OpenFileDialog myOpenFileDialog = new OpenFileDialog();

myOpenFileDialog.InitialDirectory = ".";

myOpenFileDialog.Filter = "Type library files (*.tlb)|*.tlb|In-proc COM server"

+ "(*.dll)|*.dll|Local COM server (*.exe)|*.exe|All files (*.*)|*.*" ;

myOpenFileDialog.FilterIndex = 1 ;

myOpenFileDialog.RestoreDirectory = true ;

// Do we have a file?

// If so, open the type library.

if(myOpenFileDialog.ShowDialog() == DialogResult.OK)

{

typeLibFile = myOpenFileDialog.FileName;

LoadTypeLibrary(typeLibFile);

// Fill ListBoxes.

FillListBoxes(theTypeLib);

}

}

The LoadTypeLibrary() helper function needs to do a bit of grunt work to
handle the translation of COM structures into .NET equivalents. Recall that the
ITypeLib COM interface defines a method named GetLibAttr(), which returns a
TYPELIBATTR structure. The managed UCOMITypeLib interface also defines
the GetLibAttr() method, however (alas), this method does not simply return
a managed TYPELIBATTR type. Rather, UCOMITypeLib.GetLibAttr() takes a
System.IntPtr type as an out parameter. The task, then, is to map a System.IntPtr
type into a new managed TYPELIBATTR equivalent.

This involves the use of the System.Runtime.InteropServices.Marshal type.
To keep focused on the reading of COM type information, I’ll hold off on the
details of the Marshal class, System.IntPtr types, and mapping pointers to struc-
tures until later in this book. Again, just ponder the following implementation of
the LoadTypeLibrary() helper function:

private void LoadTypeLibrary(string typeLibFile)

{

COM Type Information

223

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 223

// Load type library via DllImported COM f(x).

LoadTypeLibEx(typeLibFile, REGKIND.REGKIND_DEFAULT, out theTypeLib);

string typLibStats;

// Translate unmanaged TYPELIBATTR structure

// into a managed TYPELIBATTR type.

TYPELIBATTR libAtts = new TYPELIBATTR();

Type TYPELIBATTRType = libAtts.GetType();

int structSize = Marshal.SizeOf(TYPELIBATTRType);

IntPtr ptr = IntPtr.Zero;

ptr = Marshal.AllocHGlobal(structSize);

theTypeLib.GetLibAttr(out ptr);

libAtts = (TYPELIBATTR) Marshal.PtrToStructure(ptr, TYPELIBATTRType);

// Print out stats and release memory.

typLibStats = "LIBID: " + libAtts.guid.ToString()

+ "\nVersion (Major): " + libAtts.wMajorVerNum.ToString()

+ "\nVersion (Minor): " + libAtts.wMinorVerNum.ToString();

lblTypeLibStats.Text = typLibStats;

theTypeLib.ReleaseTLibAttr(ptr);

}

In a nutshell, this helper function creates a managed TYPELIBATTR structure
and extracts its .NET type information (represented by System.Type). Using the
static Marshal.SizeOf() method, you calculate the size of this structure, allocate the
memory, and obtain a pointer to the memory (stored in a System.IntPtr type).
Finally, you translate this pointer into the managed TYPELIBATTR structure. From
here, you are able to read out various bits of information (version and LIBID).

Displaying the COM Types

The FillListBoxes() helper function will dump minimal but complete statistics
about each COM type in the type library. I assume that you will extend the code to
dump method names, parameters, or whatever suits your fancy. As you look over
the following code, notice that it is basically the same look and feel as the
CppComTypeReader program you created in C++ (in fact, I simply copied and
pasted the C++ source code and performed the required cleanup). Also note that
you are making use of numerous managed types defined within the
System.Runtime.InteropServices namespace:

private void FillListBoxes(UCOMITypeLib itfTypeLib)

{

Chapter 4

224

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 224

// Clear out current contents.

lstBoxCoclasses.Items.Clear();

lstBoxInterfaces.Items.Clear();

lstBoxEnums.Items.Clear();

// Get # of COM types in the library.

int typeCount = itfTypeLib.GetTypeInfoCount();

lblNumbOfTypes.Text = "Number of COM Types in file: "

+ typeCount.ToString();

// Switch between COM type.

for(int typeIndex = 0; typeIndex < typeCount; typeIndex++)

{

string typeInfoString;

UCOMITypeInfo pInfo;

// Get TYPEATTR structure set up.

TYPEATTR typeAtt = new TYPEATTR();

Type TYPEATTRType = typeAtt.GetType();

int structSize = Marshal.SizeOf(TYPEATTRType);

IntPtr ptr = IntPtr.Zero;

ptr = Marshal.AllocHGlobal(structSize);

// Get next type info.

itfTypeLib.GetTypeInfo(typeIndex, out pInfo);

pInfo.GetTypeAttr(out ptr);

typeAtt = (TYPEATTR) Marshal.PtrToStructure(ptr, TYPEATTRType);

// Based on the kind of COM type, print out some information.

string typeName, helpFile, docString;

int helpID;

switch(typeAtt.typekind)

{

case TYPEKIND.TKIND_COCLASS: // type is a coclass.

pInfo.GetDocumentation(-1, out typeName, out docString,

out helpID, out helpFile);

typeInfoString = "Name: " + typeName + "\tCLSID: {"

+ typeAtt.guid.ToString() + "}";

lstBoxCoclasses.Items.Add(typeInfoString);

break;

case TYPEKIND.TKIND_INTERFACE: // type is an interface.

case TYPEKIND.TKIND_DISPATCH:

pInfo.GetDocumentation(-1, out typeName, out docString,

out helpID, out helpFile);

typeInfoString = "Name: " + typeName + "\tIID: {"

+ typeAtt.guid.ToString() + "}";

COM Type Information

225

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 225

lstBoxInterfaces.Items.Add(typeInfoString);

break;

case TYPEKIND.TKIND_ENUM: // type is an enum.

pInfo.GetDocumentation(-1, out typeName, out docString,

out helpID, out helpFile);

typeInfoString = "Name: " + typeName;

lstBoxEnums.Items.Add(typeInfoString);

break;

}

Marshal.DestroyStructure(ptr, typeAtt.GetType());

}

}

As you can see, you again need to deal with translating structures to
System.IntPtr types. The bulk of this method looks much like the previous C++
COM type reader application. Using the managed TYPEKIND type, you iterate
over the number of types in the loaded type library and check for coclasses,
interfaces (both IUnknown based and IDispatch based), and COM enums. The
only major change is the need to make use of the C# out keyword when you
wish to pass a parameter defined as an IDL [out] attribute. As another example,
Figure 4-12 shows the dump of the ATL server created in Chapter 3.

Not too shabby, huh? By virtue of the System.Runtime.InteropServices
namespace (and a bit of elbow grease) it is completely possible to create .NET
applications that can read unmanaged COM type information. Although this key
namespace does not support managed equivalents for COM type library creation
entities (ICreateTypeLibrary and friends), you could build managed equivalents
and make your own C# COM type library generator. You will look at building your
own managed ICreateTypeLibrary interface later in this text when you examine
the .NET to COM conversion process. However, as for the task of building a
managed COM type library generator, I’ll leave that to you.

Chapter 4

226

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 226

Figure 4-12. Reading your ATL COM server

CODE The ManagedComTypeReader application is included under the
Chapter 4 subdirectory.

COM Type Information

227

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 227

Summary

This chapter has covered quite a bit of ground. The initial goal was to solidify the
format of an *.idl file as well as the core set of COM types and intrinsic IDL data
types (most important, the [oleautomation]-compatible data types). During the
process you were exposed to a number of IDL keywords (appobject, custom,
hidden) that come in handy. As a bonus, this chapter also illustrated how to anno-
tate your type information with custom IDL attributes.

A majority of this chapter, however, was devoted to understanding how to
programmatically read and write COM type information using the COM library.
To be sure, the more you understand the COM type system, the more obvious
COM � .NET interoperability issues become. As you have seen, ITypeLib(2) and
ITypeInfo(2) allow you to examine the contents of a *.tlb file at runtime. Given
your work here, you should now be able to envision the code behind any number
of COM object browser tools and have some insight as to how COM types can be
mapped into managed equivalents.

This chapter wrapped up by taking a tour of some (but by no means all) of the
members of the System.Runtime.InteropServices namespace. As you have seen,
this namespace does define a number of managed equivalents for COM-type-
library-centric data structures. Using these types, you built a .NET application that
was able to read COM type libraries (which besides being quite a head trip is also
very illuminating).

Now that you have pondered the intricacies of COM type metadata, the next
two chapters pound out the details of .NET types. Then you will have all the infor-
mation you need to dive into COM and .NET interoperability.

Chapter 4

228

*0112_Ch04_CMP4.qxp 3/25/02 1:41 PM Page 228

CHAPTER 5

The Anatomy
of a .NET Server

Now that you have learned the core aspects of COM, it stands to reason that you
should tackle the core building blocks of the .NET platform. Over the course of
this chapter, you are given a grand tour of the composition of .NET code libraries
as well as the opportunity to solidify your understanding of intermediate language
(IL), type metadata, and assembly manifests. During the process, you build a
private C# assembly (and a shared VB .NET assembly) that will be consumed by
unmanaged COM clients later in this text. This chapter also pounds out the core
details of the .NET runtime, such as the use of application configuration files
(*.config) and the construction of shared assemblies.

I conclude this chapter by examining a very interesting .NET namespace that
you may have not yet been introduced to formally: System.CodeDOM. Using this
well-organized set of .NET types, you are able to represent managed code in
memory using language-independent terms. Once you have defined the coding
atoms, you are then able to save these tokens into language-specific source files
(*.cs or *.vb) as well as compile the files at runtime into .NET assemblies. As you
will see, the ability to represent (and possibly compile) code in memory is one
aspect of COM/.NET interoperability and should be of special interest to the tool
builders of the world.

Before you get started, do understand that the point of this chapter is not to
discuss the syntax or semantics of the C# or VB .NET programming languages.
My assumption is that you already have a handle of one (if not both) of these
languages, and are already comfortable with the famed pillars of OOP (encapsula-
tion, inheritance, and polymorphism) as well as interfaced-based programming. If
you require additional information regarding the specifics of either language, I’ll
assume that you will consult your favorite language reference for further details.

229

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 229

The Philosophy of .NET

Traditionally, building applications for the Windows OS required an intimate
understanding of the Win32 API, a set of C++ API wrapper classes such as MFC, or
a more elaborate wrapper such as Visual Basic 6.0. The problem with these
approaches is that they each rely on a specific programming language (C, C++, or
VB 6.0, respectively) that makes the sharing of implementation logic extremely
difficult; each language has its own type system, each language has its own set of
supported syntactical constructs, and each language contends with the pillars of
OOP in its own particular manner. To contend with this great lack of symmetry,
developers tend to take one of two paths to make their lives simpler: the path of
COM or the path of Java.

The path offered by classic COM is a standard binary format. As you have seen
during the previous three chapters, each COM-aware language generates files that
are up to snuff with the COM architecture. If COM programmers are disciplined
enough to only expose [oleautomation] compatible types, COM servers (written in
different programming languages) can communicate with each other rather well.
The bottom-line vision of COM states “If you stick to the rules of COM, you can
choose among different programming languages . . . as long as you only expect to
run on the Windows OS.”

The path of Java (and the numerous Java APIs) is to establish a way for a single
code base to be compiled on the fly to different platforms using a just-in-time
compiler. Although the capability to have a single code base run on numerous
operating systems is a great boon, one obvious downfall with the Java solution is
the fact that many solutions do not lend themselves to a single programming
language for every need. The bottom-line vision of Java states “If you only make
use of Java, your code can be run on any OS supporting the Java runtime.”

.NET takes the philosophy of COM and the philosophy of Java and blends
them into a brand-new architecture. For example, like Java, .NET binaries contain
platform-neutral instructions (IL code) that can be compiled on the fly to .NET-
aware operating systems using a just-in-time compiler. Like COM, .NET binaries
written in different programming languages can communicate with each other in
harmony. In effect, the bottom-line vision of .NET is “Build a code base using your
choice of programming language (or combination thereof) and you can run on
any operating system targeting .NET.”

The ultimate endgame of .NET is to make the concept of programming
language and operating system a matter of personal choice. At the time of this
writing, literally dozens of languages are being retrofitted to take advantage of the
.NET architecture (APL, COBOL, PL1, and so forth). As well, the .NET platform is
already being ported to non–Microsoft-specific operating systems. When you
combine the language- and platform-agnostic nature of .NET with the frame-

Chapter 5

230

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 230

work’s liberal use of XML, SOAP, and other industry standards, developers can
build extremely neutral and accessible software.

The Building Blocks of .NET

The fabric of the .NET philosophy can be summed up by three new acronyms:
CLR, CTS, and CLS. First, let’s check out the Common Type System (CTS). The CTS
defines in gory detail the full set of valid programming constructs supported by
the .NET architecture. For example, the CTS establishes the intrinsic data set
supported by a .NET-aware programming language and defines all the possible
ways in which classes, enumerations, structures, interfaces, and delegates may be
represented. Obviously, if your job is to build a new .NET programming language
(and the related compiler), the rules of the CTS are extremely important to under-
stand.

However, the full set of programming idioms defined by the CTS may or may
not be supported by every .NET programming language. For example, C# and
Managed C++ both support the definition and use of overloaded operators (unlike
VB .NET). As well, some languages (such as C#) support the use of unsigned types
(for example, unsigned long), whereas others (VB .NET) do not. To offer program-
mers a well-defined set of agreed-on programming atoms, we are provided with
the Common Language Specification (CLS). The CLS can be viewed as the
modern day equivalent of the IDL [oleautomation] attribute. Recall that
the [oleautomation] attribute defines a subset of known COM data types.
The CLS builds upon this concept by not only defining a subset of possible data
types, but programming constructs as well. In a nutshell, the CLS is a specific
subset of the CTS, which is guaranteed to be supported by each and every .NET
language mapping.

The rule of thumb is quite simple: If you wish to build a .NET code library that
can be consumed by any .NET-aware programming language, be sure to expose
only CLS-compliant types from your custom .NET assemblies. By default, VB .NET
will always emit CLS-compliant assemblies. However, if you make use of a
managed language (such as C#) that does allow you to use non–CLS-compliant
idioms, you can apply the following assembly-level attribute to force the C#
compiler to check your code for CLS compliance (you can examine the topic of
attributes in full detail in Chapter 6):

// C# applications can force CLS compliance as so.

[assembly: System.CLSCompliant(true)]

The final building block of .NET is the common language runtime (CLR).
The CLR can be viewed as two complementary pieces: a new runtime engine
(mscoree.dll) and a plethora of existing code that can be leveraged (and extended)

The Anatomy of a .NET Server

231

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 231

in your own custom solutions. The runtime engine is responsible for launching
your application, locating the types within the binary using the contained meta-
data, managing allocated memory on your behalf, and performing numerous
security checks.

The prefabricated code base (often called the .NET base class libraries) has
been semantically divided into numerous “assemblies” (defined shortly) that can
be referenced by your current application. As you are most likely aware, the base
class libraries define types that can be used for file IO, object serialization, GUI-
based development, XML manipulation, and the construction of Web applica-
tions/Web services (among many other common programming tasks).

Working with Managed Languages

When a programming language has a .NET-aware compiler, the source code itself
is referred to as managed code. Code that does not target .NET (including classic
COM languages) is thus termed unmanaged code. Visual Studio .NET ships with
four managed languages out of the box. First you have C#, which is a brand-new
programming language specifically geared for the construction of managed code.
Like other members of the C++ family, C# is full of curly brackets, semicolons, and
a streamlined (or, depending on your view, terse) set of language tokens. If you
already have a background in other C++-based languages (Java, C[++], or
Objective C), you will find the syntax of C# very natural.

Visual Basic .NET (VB .NET) is another key managed language, which is (of
course) a member of the BASIC family of languages. VB .NET is not a simple
upgrade from Visual Basic 6.0, however. Rather, VB .NET is best viewed as a brand-
new language that just happens to look a little like VB 6.0. If that seems a bit
alarmist in nature, understand that for the first time in BASIC’s history, VB .NET
offers developers full OOP support (inheritance, polymorphism, and encapsula-
tion), parameterized constructors, method overloading, and so forth. Although VB
.NET is a far cry from VB 6.0, VB .NET is likely to be the preferred choice for those
with a VB 6.0 background.

Finally, VS .NET also provides JScript .NET (a compiled OO language) as well
as a new set of keywords to the C++ programming language that enables program-
mers to build C++ applications that target the .NET platform. Formally speaking,
this dialect of C++ is termed C++ with managed extensions, also known as
Managed C++, and referred to by myself as the acronym MC++. To be honest, I
really can’t comment on the usefulness of JScript .NET. In fact, I will not make any
real mention of this language outside of this paragraph.

As for MC++, the language can best be viewed as a great tool for migrating
existing C++ code into the .NET platform. Even if you are a proficient C++
programmer, you will most likely find yourself more drawn to C# than MC++,

Chapter 5

232

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 232

given that (a) MC++ requires more typing and (b) numerous aspects of the C++
language are not supported under .NET (such as templates and multiple
inheritance).

During the course of this book, I make use of C# for a majority of my managed
code examples. This is really for no other reason than the fact that C# code is more
compact on the printed page than the corresponding VB .NET code. In the spirit of
fairness, however, this text will make use of VB .NET (as well as VB 6.0) where
appropriate.

The Composition of a .NET Binary

Regardless of which managed language you choose, all .NET-aware compilers emit
binaries that share the same internal composition. Although .NET binaries share
the same file extension as a classic COM server (*.dll and *.exe), they are
completely different under the hood. First and foremost, .NET binaries do not
contain platform-specific instructions, but rather platform-agnostic IL code that is
compiled to platform-specific instructions using a just-in-time compiler. In addi-
tion to the IL instruction set, .NET binaries contain full and complete metadata
that describes each and every .NET type referenced within the binary. Finally, a
.NET compiler emits binaries containing a manifest that describes the binary shell
itself.

In addition to a unique internal fabric, .NET binaries have been given a new
name, assembly. Assemblies are the unit of deployment and unit of versioning
under the .NET platform. Specifically speaking, an assembly can be a single-file
assembly or multifile assembly. Single-file assemblies (which are far and away the
most common) are a single *.dll or *.exe file that contains all .NET types in a single
unit. Multifile assemblies, on the other hand, are a collection of related files. When
developers build multifile assemblies (using the command line compilers
supplied with the .NET SDK), the end result is a collection of files that are
versioned as a single unit. More interesting, the individual modules of a multifile
assembly (which by convention take the file extension *.netmodule) are loaded on
demand by the .NET runtime. This can be especially useful if a remote client
needs to download an assembly to the local machine, given that the runtime will
only need to download a subset of the entire file set (which can save time).

.NET assemblies differ from classic COM servers in other ways as well.
Perhaps the most marked difference is that .NET assemblies are not registered in
the system registry. To whet your appetite, Table 5-1 enumerates some key differ-
ences between COM binaries and .NET binaries (I drill into more specifies where
necessary).

The Anatomy of a .NET Server

233

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 233

Table 5-1. COM Binaries and .NET Binaries Side by Side

Trait of the Binary Unit COM Approach .NET Approach

What is the code contained Platform-specific Platform-agnostic

within the binary? OS instructions IL code

How are types described? Using Interface Using .NET metadata

Definition Language

(IDL) code, which is

compiled into a

binary type library

How is the binary Using the IDL [library] Using assembly

itself described? attribute and numerous metadata (aka the

locations in the system manifest)

registry, specifically:

HKEY_CLASSES_ROOT\<ProgID>

HKEY_CLASSES_ROOT\CLSID

HKEY_CLASSES_ROOT\AppID

HKEY_CLASSES_ROOT\Interface

HKEY_CLASSES_ROOT\Component

Category

How are external N/A (COM IDL has no way to Using assembly

dependencies document externally required metadata (aka

documented? binaries.) the manifest)

How can I generate Using the [custom] IDL attribute By creating a new

custom metadata? type derived from

System.Attribute

How is the binary By consulting the system registry By looking in

located by the runtime? the application

directory, the GAC,

or elsewhere using

an application

configuration file

As you can see, a central theme in .NET is to place the required metadata and
IL code base into the same location (the assembly). Given that a single assembly
contains all the information it needs to be used by the runtime and by an inter-
ested client, assemblies are typically regarded as “self-describing” entities.

Chapter 5

234

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 234

Building a C# Code Library

Now that I have wrapped up my brief but necessary .NET architecture preamble,
I can turn your attention to the construction of your first C# .NET code library.
Understand that you will reuse this assembly during the course of the text to be
reachable by various COM clients. If you wish to follow along, open up VS .NET
and build a new Class Library solution named CSharpCarLibrary (Figure 5-1).

Figure 5-1. The C# Class Library

Given that your application will make use of the MessageBox class defined
within the System.Windows.Forms.dll assembly, be sure to add a project reference
(Figure 5-2).

The Anatomy of a .NET Server

235

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 235

Figure 5-2. Referencing the necessary external assembly

The class library that you will be constructing contains a small number of
.NET types that reside in the CSharpCarLibrary namespace. Here is a quick
rundown of each item:

• An abstract base class named Car

• Three derived types named HotRod, MiniVan, and Roadster

• An enumeration (CarColor) used to specify the color of the automobile

• The IConvertible interface, which will be implemented by a subset of the
automobiles

Figure 5-3 shows a logical view of the assembly you are constructing.

Chapter 5

236

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 236

Figure 5-3. The logical view of your C# car assembly

Physically speaking, CSharpCarLibrary.dll will be constructed as a single-file
assembly (as opposed to a number of discrete *.netmodule files). In terms of the
class library itself, Figure 5-4 shows the relationships of the core types (using the
familiar COM lollipop notation to represent supported interfaces).

Figure 5-4. The automobile hierarchy

The Anatomy of a .NET Server

237

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 237

Building the Abstract Car Type

Your endeavor begins by defining an abstract base class named Car (which directly
derives from System.Object). This type defines three private data members to
represent the pet name, color, and current speed of a specific automobile. As you
would imagine, these private data points are accessible using three public proper-
ties and initializable using a set of class constructors. Here is the story thus far:

// The enumeration.

public enum CarColor

{

Red, Green, Blue,

Pink, Yellow, Black

}

// The interface.

public interface IConvertible

{void OpenSunRoof(bool openIt);}

// The base class.

public abstract class Car

{

// State data.

protected string mPetName;

protected CarColor mCarColor;

protected int mCurrSpeed;

#region Class Constructors

public Car(){}

public Car(string name, CarColor color)

: this(name, color, 0){}

public Car(string name, CarColor color, int sp)

{

mPetName = name;

mCarColor = color;

mCurrSpeed = sp;

}

#endregion

#region Properties

public string PetName

{

get{ return mPetName;}

set{ mPetName = value;}

}

Chapter 5

238

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 238

public CarColor Color

{

get{ return mCarColor;}

set{ mCarColor = value;}

}

public int Speed // Read only!

{get{ return mCurrSpeed;}}

#endregion

}

Like all well-behaved base classes, the Car type defines a polymorphic inter-
face for each derived type. First, you have an abstract method named SpeedUp(),
which allows each type to adjust its internal speed in a specific manner. The
virtual DisplayBumperStickerText() method provides a default text string, which
may be overridden by child types:

public abstract class Car

{

// Polymorphic interface.

public abstract void SpeedUp();

public virtual void DisplayBumperStickerText()

{

MessageBox.Show("If you can read this you're too close.",

"C# Car Library");

}

…

}

Finally, the Car base class overrides System.Object.ToString() to dump out its
state data to interested invokers (using the StringBuilder type, which is defined
within the System.Text namespace):

// Change ToString() for Cars.

public override string ToString()

{

StringBuilder sb = new StringBuilder();

sb.AppendFormat("[C#] PetName: {0} Color: {1} CurrentSpeed: {2}",

mPetName, mCarColor, mCurrSpeed);

return sb.ToString();

}

The Anatomy of a .NET Server

239

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 239

Building the Derived MiniVan Type

The MiniVan class, which extends Car, does not define any additional state data;
however, it contends with the polymorphic interface as follows:

public class MiniVan : Car

{

#region Constructors

public MiniVan(){}

public MiniVan(string name, CarColor color)

: base(name, color){}

public MiniVan(string name, CarColor color, int sp)

: base(name, color, sp){}

#endregion

// Implement abstract SpeedUp(), but leverage the

// default implementation of DisplayBumperStickerText().

public override void SpeedUp()

{ mCurrSpeed += 10; }

}

Implementing the Convertibles

The HotRod and Roadster types each implement the IConvertible interface,
speed up appropriately, and sport a custom bumper sticker. Notice that you are
making use of explicit interface implementation to force the caller to obtain the
IConvertible before letting the sunshine in. First, the HotRod:

public class HotRod : Car, IConvertible

{

// IConvertible impl.

void IConvertible.OpenSunRoof(bool openIt)

{

if(openIt)

MessageBox.Show("Sun roof is open!", "C# Car Library");

else

MessageBox.Show("Closing sun roof...", "C# Car Library");

}

#region Overrides

public override void SpeedUp()

{mCurrSpeed += 20;}

Chapter 5

240

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 240

public override void DisplayBumperStickerText()

{

MessageBox.Show("Taking names and kickin' butt...",

"C# Car Library");

}

#endregion

#region Constructors

public HotRod() {}

public HotRod(string name, CarColor color)

: base(name, color){}

public HotRod(string name, CarColor color, int sp)

: base(name, color, sp){}

#endregion

}

The Roadster type does define a new property (TrunkSpace) that allows the
world to manipulate a private data member representing just how much luggage
you can fit into the cramped confines of your super car (the overridden ToString()
has also been updated to account for this new member):

public class Roadster : HotRod, IConvertible

{

#region Constructors

public Roadster(){}

public Roadster(string name, CarColor color)

: base(name, color){}

public Roadster(string name, CarColor color, int sp)

: base(name, color, sp){}

public Roadster(string name, CarColor color, int sp, short trunkSpace)

: base(name, color, sp)

{ mTrunkSpace = trunkSpace;}

#endregion

#region Overrides

public override void SpeedUp()

{mCurrSpeed += 20;}

public override void DisplayBumperStickerText()

{

MessageBox.Show("Faster is better...", "C# Car Library");

}

public override string ToString()

{

StringBuilder sb = new StringBuilder();

sb.Append(base.ToString());

The Anatomy of a .NET Server

241

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 241

sb.AppendFormat(" Trunk space: {0}", mTrunkSpace);

return sb.ToString();

}

#endregion

// IConvertible impl.

void IConvertible.OpenSunRoof(bool openIt)

{

if(openIt)

MessageBox.Show("Sun roof is open!", "C# Car Library");

else

MessageBox.Show("Looking through small plastic window...",

"C# Car Library");

}

// Custom state data.

private short mTrunkSpace;

public short TrunkSpace

{

get{return mTrunkSpace;}

set{mTrunkSpace = value;}

}

}

Establishing the Assembly Manifest

Before you compile, let’s update your assemblyinfo.cs file to establish the current
version of this .NET binary (1.0.0.0), enforce CLS compliance, and add any other
bits of information you feel the need to express:

[assembly: System.CLSCompliant(true)]

[assembly: AssemblyTitle("The CSharp Car Library")]

[assembly: AssemblyDescription("Another book, more Car types")]

[assembly: AssemblyCompany("Intertech, Inc")]

[assembly: AssemblyVersion("1.0.0.0")]

With this, you are able to compile your single-file assembly. You will build a
managed client in just a moment; however, for now let’s check out your binary
using ILDasm.exe.

Chapter 5

242

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 242

Introducing ILDasm.exe

The ILDasm.exe tool allows you to view the internal types, underlying IL, type
metadata, and assembly manifest for a given managed binary. As you will see
in the next chapter, you are also able to build custom applications that can
bind to a given assembly and reflect on the contained types at runtime using
the System.Reflection namespace. For now, simply open up your new
CSharpCarLibrary.dll using ILDasm.exe (Figure 5-5).

Figure 5-5. Viewing the types within your custom assembly

Viewing the Assembly Manifest

As you recall, every .NET binary contains assembly-level metadata, which is
termed the manifest. The manifest is used to describe the version of the binary,
the required external references and other assembly-level attributes. Later in this
chapter, you will find that if (and only if) your assembly has been constructed to
function as a shared assembly, the manifest also documents the public key for this
binary. In its simplest form, the format of an assembly’s manifest begins by listing

The Anatomy of a .NET Server

243

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 243

each external assembly referenced by the current assembly using the
[.assembly extern] directive:

.assembly extern mscorlib

{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89)

.ver 1:0:3300:0

}

.assembly extern System.Windows.Forms

{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89)

.ver 1:0:3300:0

}

Note how the [.assembly extern] tag documents the specific version of the
external assembly referenced at compile time. Furthermore, because each
of the referenced assemblies has been configured as shared assemblies, the
[.publickeytoken] is used to specify the initial bytes of the full public key.

The assembly itself is identified using the [.assembly] tag followed by the
friendly name of the .NET binary (in our case, CSharpCarLibrary). In addition to
specifying the version of this assembly (using the [.ver] tag), the [.assembly] tag
documents each assembly-level attribute specified in the assemblyinfo.cs file.
Here is a partial (and slightly formatted) snapshot:

.assembly CSharpCarLibrary

{

.custom instance void

[mscorlib]System.Reflection.AssemblyCompanyAttribute::.ctor(string)

= (01 00 0E 49 6E 74 65 72 74 65 63 68 2C 20 49 6E

// ...Intertech, Inc.

.custom instance void [mscorlib]

System.Reflection.AssemblyDescriptionAttribute::.ctor(string)

= (01 00 1C 41 6E 6F 74 68 65 72 20 62 6F 6F 6B 2C

// ...Another book, more Car types.

.custom instance void [mscorlib]

System.Reflection.AssemblyTitleAttribute::.ctor(string)

= (01 00 16 54 68 65 20 43 53 68 61 72 70 20 43 61

// ...The CSharp Car Library.

.custom instance void

[mscorlib]System.CLSCompliantAttribute::.ctor(bool)

= (01 00 01 00 00)

// true.

.hash algorithm 0x00008004

.ver 1:0:0:0

}

Chapter 5

244

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 244

The last item of note regarding the CSharpCarLibrary.dll assembly is the
[.module] tag, which is located at the end of the [.assembly] tag block and docu-
ments the name of the physical binary. Given that you have created a single-file
assembly, the value assigned to the [.module] tag is simply the following:

.module CSharpCarLibrary.dll

As you can see, the assembly manifest is a great improvement to the IDL
[library] keyword. Unlike classic COM, .NET manifests are able to document the
necessary external binaries, which are required for this assembly to function
correctly. This of course is a good thing, given that .NET assemblies “understand”
the additional binaries that they have been compiled against (in this case,
mscorlib.dll and System.Windows.Forms.dll).

Viewing the Type Metadata

In COM, IDL is used to describe the internal COM types found within a given
COM server. In the same spirit of self-describing binaries, .NET code libraries
support type metadata. Of course, the .NET type metadata does not have the same
syntax as COM IDL! Rather, type metadata is listed as a more “tabular” format.
Using ILDasm.exe, you are able to view the metadata that describes all types in the
assembly, using the Ctrl-m keyboard option. The end result of applying this
keystroke is seen in Figure 5-6.

Figure 5-6. Viewing an assembly’s metadata

The Anatomy of a .NET Server

245

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 245

.NET type metadata is very verbose when compared to COM IDL (for good
reason). Using this embedded metadata, the .NET runtime is able to locate and
load a given type for a calling client as well as obtain a complete description
of each item. If I were to list the entire set of metadata generated for your
CSharpCarLibrary.dll assembly, it would span several pages. Given that this
would be a woeful waste of your time (and paper), let’s just take a quick look at
some of the key items.

Viewing (Partial) Metadata for
the CarColor Enumeration

First, understand that each type contained within an assembly is documented
using a “TypeDef #n” token. Given that the CarColor enumeration is the first type
encountered by the C# compiler, you will find the following metadata description:

TypeDef #1

TypDefName: CSharpCarLibrary.CarColor (02000002)

Flags : [Public] [AutoLayout] [Class] [Sealed] [AnsiClass] (00000101)

Extends : 01000001 [TypeRef] System.Enum

…

Field #3

Field Name: Green (04000003)

Flags : [Public] [Static] [Literal] [HasDefault] (00008056)

DefltValue: (I4) 1

CallCnvntn: [FIELD]

Field type: ValueClass CSharpCarLibrary.CarColor

As you can see, TypDefName is used to establish the name of the given type.
The Extends metadata keyword is used to document the base class of a given .NET
type (in this case, System.Enum). Each field of an enumeration is marked using
the “Field #n” value. For brevity, I have simply listed the metadata for
CarColor.Green (field 3).

Chapter 5

246

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 246

Viewing (Partial) Metadata for
the IConvertible Interface

The second metadata type definition (IConvertible) marks this entity as an inter-
face and promptly documents the calling conventions of each member (notice
how each member is automatically marked as abstract):

TypeDef #2

TypDefName: CSharpCarLibrary.IConvertible (02000003)

Flags : [Public] [AutoLayout] [Interface] [Abstract] [AnsiClass] (000000a1)

Extends : 01000000 [TypeRef]

Method #1

MethodName: OpenSunRoof (06000001)

Flags : [Public] [Virtual] [HideBySig] [NewSlot] [Abstract] (000005c6)

RVA : 0x00000000

ImplFlags : [IL] [Managed] (00000000)

CallCnvntn: [DEFAULT]

hasThis

ReturnType: Void

1 Arguments

Argument #1: Boolean

1 Parameters

(1) ParamToken : (08000001) Name : openIt flags: [none] (00000000)

Viewing (Partial) Metadata for a Derived Type

Each of the class types is also completely documented using the .NET metadata
format. As you may expect, the complete metadata dump for a given type would
again be pages worth of data. To hit the highlights, here is a partial dump of the
Roadster type that illustrates (a) how a single type property is mapped to two
discrete member functions and (b) how an interface is bound to an implementing
type using the InterfaceImpl keyword:

TypeDef #6

TypDefName: CSharpCarLibrary.Roadster (02000007)

Flags : [Public] [AutoLayout] [Class] [AnsiClass] (00100001)

Extends : 02000005 [TypeDef] CSharpCarLibrary.HotRod

…

The Anatomy of a .NET Server

247

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 247

Method #9

MethodName: get_TrunkSpace (0600001F)

Flags : [Public] [HideBySig] [ReuseSlot] [SpecialName] (00000886)

hasThis

ReturnType: I2

No arguments.

Method #10

MethodName: set_TrunkSpace (06000020)

Flags : [Public] [HideBySig] [ReuseSlot] [SpecialName] (00000886)

hasThis

ReturnType: Void

1 Arguments

Argument #1: I2

1 Parameters

(1) ParamToken : (0800001e) Name : value flags: [none] (00000000)

Property #1

Prop.Name : TrunkSpace (17000004)

…

DefltValue:

Setter : (06000020) set_TrunkSpace

Getter : (0600001f) get_TrunkSpace

…

InterfaceImpl #1 (09000002)

Class : CSharpCarLibrary.Roadster

Token : 02000003 [TypeDef] CSharpCarLibrary.IConvertible

Remaining Bits of Interesting Metadata

.NET metadata does far more than document the custom types you have defined
using your managed language of choice. In addition, you will find metadata
descriptions for every base class library item you referenced in your coding
effort. For example, TypeRef tokens exist for each attribute type found in
your assemblyinfo.cs file, the System.Windows.Forms.MessageBox type
(because you displayed a number of message boxes), and the layout of the
System.Text.StringBuilder class (because you made use of this type during
the overriding of System.Object.ToString()).

Chapter 5

248

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 248

Finally, at the very end of the metadata dump, you will find an “AssemblyRef
#n” listing for each external assembly and a list of all string literals contained
within the binary, as shown in this example:

AssemblyRef #2

Token: 0x23000002

Public Key or Token: b7 7a 5c 56 19 34 e0 89

Name: System.Windows.Forms

Major Version: 0x00000001

Minor Version: 0x00000000

Build Number: 0x00000ce4

Revision Number: 0x00000000

Locale: <null>

HashValue Blob:

Flags: [none] (00000000)

User Strings

70000001 : (38) L"If you can read this you're too close."

7000004f : (14) L"C# Car Library"

7000006d : (46) L"[C#] PetName: {0} Color: {1} CurrentSpeed: {2}"

700000cb : (17) L"Sun roof is open!"

700000ef : (19) L"Closing sun roof..."

70000117 : (32) L"Taking names and kickin' butt..."

70000159 : (19) L"Faster is better..."

70000181 : (17) L" Trunk space: {0}"

700001a5 : (39) L"Looking through small plastic window..."

Now, at this point you should not be too concerned with the exact syntax of
each piece of .NET metadata. The bigger issue to be aware of is that .NET meta-
data is very descriptive and lists each custom (and referenced) type found in the
code base. Thinking again along the terms of COM/.NET interoperability, you can
most likely imagine a tool that could read .NET metadata and produce an equiva-
lent COM type library. You will see this topic in action a bit later.

(Not) Viewing the Underlying IL Code

Although the ILDasm.exe utility also allows you to view the underlying IL code for
a given item (simply by double-clicking an expanded node), you really don’t need
to check out the instructions that have been generated. To be honest, the crux of
COM/.NET interoperability has to do with translating COM metadata into .NET

The Anatomy of a .NET Server

249

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 249

metadata (not IL into OS-specific instructions). In most cases, any IL that is
lurking under the hood is not as important (especially given that the interop-
centric tools will generate it automatically). However, you certainly get a chance
to take a look at relevant IL where necessary during the remainder of this text.

CODE The CSharpCarLibrary and VbNetCarLibrary code libraries are
located under the Chapter 5 subdirectory.

Building a Managed Client

Before examining other interesting aspects of the .NET Framework, assume you
have created a brand-new Windows Forms application that is making use of the
CSharpCarLibrary type. The GUI of this Form-derived type simply maintains a
single Button type, which has the following implementation in the Click event
handler:

private void btnCSharpCars_Click(object sender, System.EventArgs e)

{

// Make array of C# Cars.

Car[] myCars =

{

new HotRod("Viper", CarColor.Red),

new MiniVan("Clunky", CarColor.Green),

new Roadster("Zippy", CarColor.Green, 50, 5)

};

// Loop over each array element using IEnumerator.

foreach(Car c in myCars)

{

// Call each car's ToString()

MessageBox.Show(c.ToString(), c.GetType().Name);

// Display each car's bumper sticker.

c.DisplayBumperStickerText();

// Do we have a convertible?

if(c is IConvertible)

{

IConvertible itfConvert;

itfConvert = (IConvertible)c;

// Enjoy the day!

itfConvert.OpenSunRoof(true);

}

}

}

Chapter 5

250

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 250

The code is quite straightforward. Using an array of base class Car types, you
create a set of derived types. As you loop over the array, you call each member of
the polymorphic interface defined by the abstract Car type, and check to see if the
current automobile is IConvertible compatible. If so, open the sunroof and enjoy
the ride!

CODE The CarClientApplication is included under the Chapter 5
subdirectory.

Configuring Private Assemblies

When you set a reference to an external assembly using VS .NET, the IDE responds
by placing a copy of the assembly directly within the folder containing the client
that is making use of the contained types. Formally speaking, the directory that
contains the client application is known as the application directory (Figure 5-7).

Figure 5-7. Viewing the application directory

Assemblies that reside in the same folder as the launching client are called
private assemblies. By its very nature, a private assembly is not intended to be used
by any other application on the machine other than the client it was compiled
against. Obviously, this approach makes the deployment of the application a
breeze: Simply copy the client and any referenced private assembly to a given
location on a given hard drive and run the program (no registration required).

The Anatomy of a .NET Server

251

*0112_Ch05_CMP3.qxp 3/23/02 7:07 PM Page 251

Although the process of placing all the required binaries into a single applica-
tion directory greatly simplifies the deployment of a .NET solution, this has the
unappealing byproduct of a rather unorganized file structure. What if you would
rather have a subdirectory off the application directory called MyAsms, which
contains the CSharpCarLibrary.dll assembly? The truth is that if you relocate the
referenced assemblies and attempt to run the client once again, you will crash at
runtime, as the location of the assemblies listed in the client manifest cannot be
resolved.

When you wish to instruct the runtime to probe for referenced assemblies
located within a given subfolder of the application directory, you must author an
application configuration file. These XML-based files contain any number of
“privatePath” attributes that will be read by the runtime as it attempts to resolve
the location of a private assembly. You must be aware, however, that the runtime
expects the name of the configuration file to be <NameOfTheClient>.exe.config.
For example, the configuration file for your CarClientApplciation.exe client would
be CarClientApplication.exe.config. Furthermore, the *.config file must be in the
client’s application directory.

Assume you have created a *.config file for your current client and moved the
CSharpCarLibrary assembly into a subdirectory named MyAsms (Figure 5-8).

Figure 5-8. The private assemblies have been relocated under the MyAsms
subdirectory.

Chapter 5

252

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 252

To instruct the runtime to probe under \MyAsms, you would author the
following XML:

<configuration>

<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<probing privatePath="MyAsms" />

</assemblyBinding>

</runtime>

</configuration>

Configuration files must begin with the root element <configuration>. Before
you specify the <probing privatePath> attribute, you must first specify the
<runtime> and <assemblyBinding> elements. Also understand that you may
specify multiple subfolders to be included in the probing process using a semi-
colon delimited list:

<probing privatePath="MyCSharpAsms;MyVbNetAsms" />

If you were to now launch the CarClientApplication.exe client program, the
execution engine would be able to locate the referenced assemblies using the
corresponding *.config file.

Specifying Arbitrary Assembly Locations

As you may already be aware, you can create *.config files containing additional
XML elements that instruct the runtime to load a specific localized assembly, as
well as consult other subdirectories (for example, C:\AllMyAssemblies) during the
probing process. Using the <codeBase> element, you are able to instruct the
runtime engine to probe under any folder on your machine, a remote networked
machine, or a given URL. For example, if you move C# car assembly under
C:\MyCoolAsms, you will need to update the CarClientApplication.exe.config file
as follows (the publicKeyToken value will be defined shortly):

<configuration>

<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>

<assemblyIdentity name="CSharpCarLibrary"

publicKeyToken="xxxxxxxxxxxxxxxx"

culture="neutral" />

The Anatomy of a .NET Server

253

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 253

<codeBase

href="file://c:/MyCoolAsms\CSharpCarLibrary.dll"/>

</dependentAssembly>

</assemblyBinding>

</runtime>

</configuration>

Now that you understand the basic configuration of a private assembly, let me
wrap up with a few final thoughts. First, although it is good protocol to document
a specific assembly version (1.0.0.0, 2.0.0.0, and so on) for each assembly you may
author, the runtime will ignore the version number when attempting to locate a
private assembly. The reason is simple. Given that private assemblies are intended
to be used by a single client, versioning is a bit of a nonissue. Second, private
assemblies will more likely than not end up being exactly what you desire for a
vast majority of your .NET development efforts. In fact, Visual Studio .NET is only
able to compile code libraries that are intended to be deployed as private binaries.
If you wish to build a shared assembly, you will need to make use of the command
line compiler csc.exe (C#) or vbc.exe (VB .NET).

Understanding the Shared Assembly

Although it is true that private assemblies will most likely be your configuration
option of choice, at times you will wish to share an assembly among multiple
clients on a single machine. Consider the System.Windows.Forms.dll assembly
(which, as you know, contains the types for building GUI desktop applications). If
this binary were created as a private assembly, this would mean that every .NET
application that has to show a simple message box would need to have a copy of
the same *.dll. This would be insane, of course, given that such a situation would
require hundreds of copies of the same binary to be installed on a given machine.

Rest assured that the .NET platform does provide a way for you to share a
single copy of a given assembly among multiple clients. When you wish to build a
shared assembly, you will ultimately place the binary into a very specific folder
named the Global Assembly Cache (GAC), which is located under
%windir%\Assembly (Figure 5-9).

Chapter 5

254

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 254

Figure 5-9. Shared assemblies are placed into the GAC.

However, you cannot simply take a private assembly, install it in the GAC, and
expect to end up with a shared assembly. Rather, you must retrofit an assembly to
support a strong name (also known as a shared name). A strong name is a combi-
nation of the simple name (for example, CSharpCarLibrary), culture information
(for example, English, Urdu), a version number (for example, 1.0.0.0), a public key,
and a digital signature. This strict level of identification provided by the strong
name is far superior to the COM AppID given that (a) multiple versions of the
same assembly can be installed in the GAC and (b) your company can create a
unique identity used to identify each assembly that has been shipped.

Generating a Strongly Named Assembly

So, as mentioned, shared assemblies must have a strong name. A strong name
consists of a friendly name, numerical version, culture ID, a public key, and a
digital signature. Gathering all the pieces of a string name is much simpler than
you may be thinking. To illustrate, let’s create a brand-new code library (this time
using VB .NET) named SharedVbNetAirVehicles (Figure 5-10).

The Anatomy of a .NET Server

255

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 255

Figure 5-10. The VB .NET project workspace

To keep focused on the process of configuring a shared assembly, the VB .NET
code library will be minimal but complete (as shown in Figure 5-11).

Figure 5-11. The AirVehicles hierarchy

Chapter 5

256

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 256

Prepping the Project Workspace

Like the C# automobile assembly, your VB .NET AirVehicles library will make use
of types contained within the System.Windows.Forms.dll assembly (go ahead and
set a reference to this binary now). Recall that in C#, you make use of the using
keyword whenever a source code file needs to reference external types. Although
you could make use of the VB .NET Imports keyword for the same purpose, VB
.NET also allows you to establish project-wide imports using the Project Property
window (Figure 5-12).

Figure 5-12. Setting up project-wide imports

As you would expect, this VB .NET shortcut allows each *.vb file in the project
to make direct reference to types contained in external assemblies (without the
need to explicitly use the Imports keyword).

Also be aware that every VB .NET project maintains an entity known as the
root namespace (located under the General node of the Project Property window).
The root namespace is another nicety provided by VB .NET, given that you can
avoid the need to wrap each type definition within a namespace specification. Do
note, however, that VB .NET does support the Namespace keyword when you wish
to explicitly define a namespace definition.

The Anatomy of a .NET Server

257

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 257

Building the Air Vehicles

Your base type, AirVehicle, defines a single abstract method and a property of type
AirLine (which happens to be a custom enumeration).

Public Enum AirLine

SunnyCountry

SouthEastAirlines

Unknown

ChucksInternationalAir

End Enum

Public MustInherit Class AirVehicle

' Polymorphic interface

Public MustOverride Sub RetractLandingGear()

' State data

Protected mAirLineName As AirLine

#Region "Constructors"

' Constructors.

Public Sub New()

End Sub

Public Sub New(ByVal al As AirLine)

mAirLineName = al

End Sub

#End Region

' Properties

Public Property AirLineName() As AirLine

Get

Return mAirLineName

End Get

Set(ByVal Value As AirLine)

mAirLineName = Value

End Set

End Property

End Class

The JumboJet type derives from AirVehicle and implements
RetractLandingGear() by issuing a friendly salutation:

Public Class JumboJet

Inherits AirVehicle

Public Overrides Sub RetractLandingGear()

Dim s As String

s = "Thanks for flying with " & Me.AirLineName.ToString()

Chapter 5

258

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 258

MessageBox.Show(s)

End Sub

Public Sub New(ByVal al As AirLine)

Me.AirLineName = al

End Sub

End Class

The UFO contends with the abstract RetractLandingGear() method by issuing
a more ominous message. The IHover interface is also implemented as follows:

Public Class UFO

Inherits AirVehicle

Implements IHover

Private canHover As Boolean

' Overrides

Public Overrides Sub RetractLandingGear()

Dim s As String

s = "UFO's don't have landing gear" _

& vbLf & "Activating molecule stimulator..."

MessageBox.Show(s)

End Sub

#Region "IHover Impl"

Public Function CanHoverWithoutDetection() As Boolean _

Implements IHover.CanHoverWithoutDetection

Return canHover

End Function

Public Sub Hover() _

Implements IHover.Hover

If (CanHoverWithoutDetection()) Then

MessageBox.Show("waiting and watching...")

Else

MessageBox.Show("Located by Earthling...Applying InvisoShield")

End If

End Sub

#End Region

Public Sub AbductHuman()

MessageBox.Show("Welcome aboard human...")

End Sub

Public Sub New()

AirLineName = AirLine.Unknown

canHover = True

End Sub

End Class

The Anatomy of a .NET Server

259

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 259

Generating the Strong Name

Now that you have your hierarchy in place, you can establish the necessary strong
name. Recall that this requires a number of individual pieces:

• The friendly name (for example, SharedVbNetAirVehicles)

• Culture information (for example, English, Urdu)

• A version number (for example, 1.0.0.0)

• A public key

• A digital signature

The friendly name is simply the name of the code library (not including the
exact file extension). Also recall that your project’s assemblyinfo.vb file allows you
to establish the version of your assembly using the AssemblyVersion attribute.
Given that the runtime takes the version of a shared assembly quite seriously, be
sure you set the AssemblyVersion attribute accordingly:

<Assembly: AssemblyVersion("1.0.0.0")>

As far as the culture identity of an assembly goes, you will make use of the
default “neutral” culture. Culture applies only if you are building an assembly that
contains resources, such as strings and bitmaps, which need to be customized for
various human languages. This type of assembly is called a satellite assembly,
which by definition does not contain any IL code. Therefore, given that your
SharedVbNetAirVehicles assembly does indeed contain implementation code, you
will not be applying a specific culture.

Your final task is to create a public key (and thus your digital signature). To do
so, you must make use of a command line tool named sn.exe to generate the *.snk
file that represents a public/private key pair (which is accomplished by specifying
the –k command line flag). Check out Figure 5-13.

Chapter 5

260

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 260

Figure 5-13. Generating the *.snk file

To bind the *.snk file into your current assembly, you make use of the
assembly-level attribute AssemblyKeyFile:

<Assembly: AssemblyKeyFile("C:\theKey.snk")>

At this point, when you compile your project, the key pair will be used to
sign the assembly.

Recall that assemblies containing strong names will have their public
keys recorded within the assembly manifest. If you examine your completed
SharedVbNetAirVehicles.dll using ILDasm.exe, you will find the [.publickey]
value shown in Figure 5-14.

Figure 5-14. The mark of a shared assembly

The Anatomy of a .NET Server

261

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 261

Now that your assembly has been assigned a strong name, you are able to drag
and drop your .NET binary into the GAC. Figure 5-15 shows the end result.

Figure 5-15. The VB .NET binary installed in the GAC

CODE The SharedVbNetAirVehicles project is included under the
Chapter 5 subdirectory.

Using the Shared Assembly

As far as the client is concerned, using a shared assembly is identical to the act of
using a private assembly. If you have a new VB .NET Windows Forms application at
your disposal, you set a reference to the assembly (as always), and code away. For
example, if the Form has a single Button that makes use of the shared UFO, you
might write the following:

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Dim u As New SharedVbNetAirVehicles.UFO()

u.Hover()

u.AbductHuman()

End Sub

Chapter 5

262

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 262

The only additional point of interest is that when the IDE encounters a refer-
ence to a shared assembly (meaning the IDE is able to detect a [.publickey] value),
it will not make a local copy of the binary (as noted in Figure 5-16).

Figure 5-16. By default, strongly named assemblies are not copied into the
application directory.

Also, recall that when a .NET client makes reference to a strongly named
assembly, the manifest will record a token of the public key (marked with the
[.publickeytoken] tag). This can be verified using ILDasm.exe (Figure 5-17).

Figure 5-17. Recording a shared assembly

The Anatomy of a .NET Server

263

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 263

CODE The SharedAsmClient project can be found under the Chapter 5
subdirectory.

Versioning Shared Assemblies

Like a private assembly, shared assemblies can also be configured using an appli-
cation configuration file. Of course, given that shared assemblies are placed in a
well-known location (%windir%\Assembly), you are not interested in specifying
privatePath attribute values. To understand the role of *.config files and shared
assemblies, you need to step back and take a closer look at the .NET versioning
scheme.

As you have observed during this chapter, the AssemblyVersion attribute is
used to control the four-part numerical version of an assembly (private or shared).
Specifically speaking, these four numbers represent the major, minor, build, and
revision numbers:

' Format: <Major version>.<Minor version>.<Build number>.<Revision>

<Assembly: AssemblyVersion("1.0.0.0")>

When an assembly’s version is recorded into the manifest, clients are able to
record the assembly’s version as well. For example, the SharedVbNetAirVehicles
assembly was set to version 1.0.0.0. The SharedAsmClient application in turn
records this value in its own assembly using the [.assembly extern] tag:

.assembly extern SharedVbNetAirVehicles

{

.publickeytoken = (61 EF FA 33 A2 52 B0 08)

.ver 1:0:0:0

}

Now, by default, the .NET runtime will only launch the client without error if
indeed there is a shared assembly named SharedVbNetAirVehicles, version 1.0.0.0
with a public key token of the value 61 EF FA 33 A2 52 B0 08 in the GAC. If any of
these elements is not correct, the runtime will throw a LoadTypeException excep-
tion. Again, remember that version checking only applies to shared assemblies.
Even though private assemblies can support a four-number version, this will be
ignored by the runtime.

Application configuration files can be used in conjunction with shared assem-
blies whenever you wish to instruct the runtime to bind to a different version of a

Chapter 5

264

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 264

given assembly. For example, imagine that you have shipped version 1.0.0.0 of a
given assembly and suddenly realized, to your horror, a major bug (or to be more
politically correct, a runtime anomaly) has reared its ugly head. Your first option
for corrective action would be to rebuild the client application to reference the
correct version of the bug-free assembly (say, 1.0.0.1) and redistribute the new
binaries to every client machine. Obviously, this would not be a very elegant
solution.

Your other option is to ship the new code library and a simple *.config file that
automatically instructs the runtime to bind to the new (bug-free) version. As long
as the new version has been installed in the GAC, the client runs without recompi-
lation or redistribution (or your fear of having to update your resume).

Another example: You have shipped the first version of a bug-free assembly
(1.0.0.0) and after a year or two, you have added a number of new types to the
current project to yield version 2.0.0.0. Obviously, previous clients that were
compiled against version 1.0.0.0 have no clue about these new types (given that
their code base makes no reference to them). New client applications, however,
may need to make reference to the new functionality found in version 2.0.0.0.

Under the COM model, programmers were forced to deal with the simple-in-
concept-but-hard-in-practice notion of interface versioning. A healthy dose of
code versioning is also very important under .NET; however, it is equally possible
to simply install both versions of the shared assembly into the GAC and allow a
client to bind to whichever version has been recorded in the manifest.

Versioning the Shared VB .NET AirVehicles Assembly

To illustrate versioning shared assemblies, assume that you have frozen version
1.0.0.0 of the SharedVbNetAirVehicles assembly and added the following new
class type:

Public Class MotherShip

Inherits UFO

Public Sub AbductOtherUFOs()

MessageBox.Show("You have failed your mission...beam aboard.")

End Sub

End Class

Assume as well that you have updated the version as follows:

<Assembly: AssemblyVersion("2.0.0.0")>

The Anatomy of a .NET Server

265

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 265

Once compiled, you are then able to place the new version into the GAC. Lo
and behold, you have installed two versions of the same assembly on the same
machine (a technique not possible under classic COM). Check out Figure 5-18.

Figure 5-18. Side-by-side execution

Now, if you wish to redirect your existing SharedAsmClient to make use of
version 2.0.0.0, for example, you could author the following *.config file:

<configuration>

<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>

<assemblyIdentity name="SharedVbNetAirVehicles"

publicKeyToken="61effa33a252b008" />

<bindingRedirect oldVersion="1.0.0.0"

newVersion="2.0.0.0" />

</dependentAssembly>

</assemblyBinding>

</runtime>

</configuration>

Here, the bindingRedirect element specifies two attributes: oldVersion
(the version documented in the client manifest) and newVersion (the, well,
new version you wish to bind to). As long as the configuration file
SharedAsmClient.exe.config is placed in the same directory as the client
application, the runtime will automatically bind to the newer version, and
thereby override the version listed in the client’s manifest.

Chapter 5

266

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 266

Of course, in this example you really have no need to redirect to version
2.0.0.0, given that the client code base is unable to make use of the MotherShip
type without recompiling in the first place. To understand the big picture, assume
that version 2.0.0.0 also fixed a bug (or two) found with the JumboJet type. In this
case, the use of a *.config file is much more clear. Nevertheless, even if version
2.0.0.0 of the SharedVbNetAirVehicles assembly did not contain any additional
bug fixes, there are still great benefits to having multiple copies of the same *.dll
safely installed on a single machine.

Working with Publisher Policy Assemblies

I wish to comment on one additional aspect of *.config files termed publisher
policy. As you have already seen, *.config files can be used by private assemblies to
instruct the runtime to probe under various subdirectories when resolving the
location of a given assembly. Shared assemblies can also make use of *.config files
to dynamically bind to an assembly other than the version recorded in the client
manifest. Do note that both of these approaches require that somebody (such as a
system administrator) create and edit the *.config file on each client machine.

Publisher policy allows the publisher of a given assembly to ship a special
binary version of a *.config file that is installed in the GAC along with the assembly
it is responsible for influencing. When these unique *.config files are placed into
the GAC, the client’s application directory does not need to support a specific
*.config file. Given this, the redirecting of shared assemblies is less of a burden on
the individual responsible for configuring individual .NET clients. All he or she
needs to do is install the new binary *.config file shipped by the publisher in the
GAC and walk away.

To be honest, the *.config file itself is not literally installed in the GAC, due to
the fact that the GAC will only accept files with a *.dll file extension. Rather, the
publisher of the bug-ridden assembly is responsible for creating is a *.xml file that
will be used to build a *.dll that contains the binary equivalent of the underlying
XML using a tool named al.exe (assembly linker). Understand that VS. NET does
not support the construction of publisher policy binaries, so you will be forced to
drop down to the command prompt.

The good news is that the syntax of a XML publisher policy configuration file
is identical to that of an application-specific *.config file. If you wish to retrofit the
previous SharedAsmClient.exe.config file into the publisher policy format, you can
run the following command at the command line:

al /link:SharedAsmClient.xml/out:policy.1.0.SharedVbNetAirVehicles.dll

/keyf:C:\theKey.snk /v:1.0.0.0

The Anatomy of a .NET Server

267

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 267

As you can see, you do need to specify the input *.xml file, the name of the output
file (which must be in the format “policy.<major>.<minor>.assemblyToConfigure”),
and the name of the file containing the public/private key pair.

Once the al.exe tool has executed, the end result is a new assembly that can be
placed into the GAC (Figure 5-19) to force all clients to bind to version 2.0.0.0 of
the SharedVbNetAirVehicles.dll file.

Figure 5-19. The policy assembly

If you are curious about exactly what is contained within the new .NET
assembly, you can use ILDasm.exe to see that this binary contains little more than
a bit of assembly metadata (Figure 5-20).

Figure 5-20. Inside the policy assembly

Chapter 5

268

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 268

The manifest itself is rather bland. Simply put, the manifest lists the name of
the XML file that was used to generate the assembly, which is embedded as an
internal resource (Figure 5-21).

Figure 5-21. The XML-based configuration file is embedded as an internal resource.

When the .NET runtime attempts to bind to the SharedVbNetAirVehicles
assembly for a client specifying version 1.0.0.0, the policy assembly automatically
redirects to version 2.0.0.0.

The Binding Process in a Nutshell

At this point, you have been exposed to each of the major facets of resolving the
location of an external assembly. To summarize the process that is followed by the
.NET runtime, here is a concise synopsis:

1. The runtime reads the client manifest for each [.assembly extern] tag and
determines the friendly name of the referenced assembly (for example,
CSharpCarLibrary).

2. The runtime then examines the [.assembly extern] tag to determine if a
[.publickeytoken] is listed. If so, the GAC is consulted for (a) a publisher
policy assembly and then (b) the shared assembly itself.

3. If the referenced assembly does not contain a [.publickeytoken], the
runtime attempts to locate a *.config file. If a *.config file is present and
accounted for, the underlying XML is parsed to locate the assembly in
question. If a *.config file is not found, the application directory is probed.

The Anatomy of a .NET Server

269

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 269

4. If any of the preceding steps fail, a LoadTypeException exception is raised.

To be sure, other aspects of the .NET binding process exist that I do not need
to comment on at this time (such as the machine-wide *.config file). Nevertheless,
at this point you should have a much better idea how .NET has divorced itself
from the COM-centric approach of server registration.

And Now for Something Completely Different:
System.CodeDOM

To wrap up this chapter, I wish to introduce a namespace with which you may not
be readily familiar: System.CodeDOM. Now I will be perfectly honest from the
onset and admit that the types contained within this namespace do not directly
relate to COM/.NET interoperability per se. In other words, when you are
attempting to make COM types and .NET types coexist, you will not need to
directly make use of the Code Document Object Model (CodeDOM), unless
perhaps you happen to be a tool builder who needs to dynamically generate
source code on the fly. However, to understand my rationale for discussing a
seemingly unrelated namespace, let’s begin by checking out a practical use of the
System.CodeDOM namespace.

If you have worked with the ASP.NET Web Services, you are likely familiar with
a utility named wsdl.exe (WSDL, being short for Web Service Description
Language). When you build a Web Service, the exposed [WebMethods] are
described using the WSDL metalanguage. Like other metalanguages (such as IDL
and .NET metadata), WSDL lives to document the entities it is describing in a
neutral format. For example, assume you have defined the following proverbial
HelloWorld Web Service in C#:

// A very simple Web Service.

public class HelloWorldWS : System.Web.Services.WebService

{

…

// This attribute qualifies this method as being "invokible" using HTTP

// requests.

[WebMethod]

public string HelloWorld()

{ return "Hello World"; }

}

Once compiled, the generated WSDL describes how to access the
HelloWorld() [WebMethod] using the HTTP GET, HTTP POST, and SOAP proto-
cols. As you may know, WSDL documentation is expressed using XML syntax. You

Chapter 5

270

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 270

may also know that when a Web Service client wishes to activate a given
[WebMethod], it is completely possible to build a client-side code base that is able
to read the XML elements one-by-one in order to interact with the remote Web
Service. Doing so, however, would be a very tedious and lengthy task, as suggested
by Figure 5-22.

Figure 5-22. The raw WSDL

Given the verbose nature of WSDL syntax, few programmers are willing to
manually parse the individual XML nodes. Lucky for you, using the wsdl.exe tool,
you don’t have to. This tool will read WSDL descriptions and dynamically generate
a corresponding proxy class, which behaves like any other .NET type.

Under the hood, however, the proxy class itself contains methods that map to
each exposed [WebMethod] at the given URL. In addition to specifying the wire
protocol you wish to leverage to interact with the remote Web Service (GET, POST,
or SOAP), the wsdl.exe tool also supports the “/language” flag, which allows you to
instruct the wsdl.exe utility to generate the proxy using C#, VB .NET, or JScript
.NET syntax. Enter System.CodeDOM.

The Anatomy of a .NET Server

271

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 271

System.CodeDOM: Its Meaning in Life

Tools such as wsdl.exe require the ability to generate and output source code in
multiple languages at runtime. Using the CodeDOM you are able to build custom
applications that can also output source code in multiple programming languages
at runtime, using a single, unified .NET object model that represents the code to
render.

The System.CodeDOM namespace provides a number of types that can be
used to represent the structure of source code, independent of a specific program-
ming language. Currently, the languages supported by CodeDOM include C# and
VB .NET. However, compiler vendors who develop CodeDOM support for their
language can do so by deriving from various base class types.

Although the thought of representing code in memory is a mind-expanding
concept, also understand that the System.CodeDOM namespace also provides
types that allow you to compile the source code represented by a CodeDOM object
graph at runtime. Given the ability to generate and compile code dynamically, it
should come as no surprise that tools such as wsdl.exe make heavy use of the
CodeDOM.

So, now that you have a better idea of what System.CodeDOM is used for, you
still might be wondering exactly why I am discussing its use (beyond the fact that
it is extremely interesting). Well, if you have been reading this book from the
beginning, I hope you are starting to see that the whole concept of interoperability
is a matter of type: COM types, .NET types, and the rules that translate them. In
this light, the ability to represent coding elements (constructors, nested classes,
properties, decision and iteration constructs, and so forth) in memory certainly
lends itself to a deeper understanding of the composition of the .NET type system
as well as how various interop-related tools can generate source code files for use
in your managed applications. So, without further ado, let’s check out
System.CodeDom and build an example application.

Introducing the System.CodeDOM Namespace

Given that CodeDOM is in charge of representing any possible .NET type (class,
interface, structure, enumeration, or delegate), its members (properties, methods,
and events), and their implementation (foreach loops, if/else statements, object
manipulation), you are correct to assume that System.CodeDOM contains
numerous types of interest. Although I will not bother to pound out the details of
each and every type located in the System.CodeDOM namespace (to be sure, a
small book in and of itself), let’s just focus on the highlights. Before you drill into a
number of tables, consider the generalized format of a .NET source code file,
presented in dazzling pseudo-code:

Chapter 5

272

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 272

// A namespace contains types.

NAMESPACE myNameSpace

[

// Interfaces types.

INTERFACE : <Other Interfaces>

[

{PROPERTY, METHOD, EVENT}

]

// Class types.

CLASS : <BaseClass>

[

{PROPERTY, METHOD, EVENT}

[NESTED TYPES] * n where n >= 0

]

// Enum types.

ENUM : System.Enum : STORAGE

[

NAME = VAULE

]

// Structure types.

STRUCTURE : System.ValueType

[

{PROPERTY, METHOD, EVENT}

]

// Delegates.

DELEGATE : System.MulticastDelegate

[

{METHOD}

]

]

Where:

PROPERTY[OPTIONAL PARAMS]

[

GET

SET

]

METHOD[OPTIONAL PARAMS][RETURN VALUE]

EVENT[DELEGATE]

And:

{PROPERTY, METHOD, EVENT}

[

[PARAMETER] * n where n >= 0

]

The Anatomy of a .NET Server

273

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 273

Obviously the previous skeleton is not using the syntax of a “real” managed
language. Rather, notice how the pseudo-code is simply representing the layout of
the possible types that can populate a .NET namespace. Once the form is under-
stood, you can represent this layout in memory using a number of types of the
CodeDOM. Next question: How exactly does System.CodeDOM represent these
programming atoms?

The Types of System.CodeDOM

First, System.CodeDOM defines a number of types that allow you to programmati-
cally represent a .NET namespace. In essence, you have two core types; however,
Table 5-2 documents each namespace-centric type.

Table 5-2. Namespace-Building Types of CodeDOM

Namespace-Building CodeDOM Type Meaning in Life

CodeNamespace Represents a single namespace declaration, or a

CodeNamespaceCollection collection of namespaces

CodeNamespaceImport Represents a single namespace import or a

CodeNamespaceImportCollection collection of namespace imports

As you know, .NET namespaces contain any number of types (classes, struc-
tures, enumerations, interfaces, and delegates). Each of these constructs can be
represented by the CodeTypeDeclaration/CodeTypeDelegate types (or, if you
rather, by a collection of related types). Check out Table 5-3.

Table 5-3. Type-Building Types of CodeDOM

Type-Building CodeDOM Type Meaning in Life

CodeTypeDeclaration A type declaration for a class, structure,

enumeration, or interface (as well as a nested type

contained within another type).

The underlying type is established using the

IsClass, IsInterface, IsStruct, and IsEnum

properties.

CodeTypeDeclarationCollection A type declaration collection.

CodeTypeDelegate A delegate declaration.

Chapter 5

274

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 274

Just as namespaces contain types, types contain any number of members
(properties, methods, and events). As you would expect, System.CodeDOM also
defines a number of members that allow you to represent the members of an in-
memory type. Table 5-4 hits the core items of interest.

Table 5-4. Member-Building Types of CodeDOM

Member-Building CodeDOM Type Meaning in Life

CodeTypeMember An abstract base class that represents a

member of a type

CodeTypeMemberCollection A collection of members of a type

CodeMemberMethod A class method declaration

CodeMemberField A class field declaration

CodeMemberProperty A class property declaration

CodeConstructor A constructor for a type

CodeTypeConstructor A static constructor for a type

CodeEntryPoint A member that is the entry point of a

program (for example, Main())

MemberAttributes Attributes with identifiers that are used by

CodeTypeMember

CodeMemberEvent A class event declaration

CodeParameterDeclarationExpression A parameter declaration

System.CodeDOM also defines a number of types that allow you to represent
various looping and decision constructs, code comments, structured exception
handling logic (try, catch, throw), and even the infamous Goto keyword. Again, the
point of this final task of the chapter is not to provide an exhaustive description of
System.CodeDOM types, but rather to facilitate the importance of type. In this
light, let’s see a concrete CodeDOM example and get to know various members
of this namespace.

The Anatomy of a .NET Server

275

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 275

Building a CodeDOM Example

The application you will now construct is a console application (written in C#)
named SimpleCodeDOM. The program is responsible for performing a series of
steps in addition to generating a set of CodeDOM nodes. Here are the specifics:

• The user will be prompted to specify C# or VB .NET as the target of the
source code.

• Once the code target has been obtained, you will build a namespace
containing a single class using System.CodeDOM. As you will see, this class
supports a property that manipulates a private string data type and a
method to display the value.

• Once the *.vb or *.cs file has been saved to file, you will dynamically compile
the source code into a .NET assembly (way cool).

• Finally, you prompt the user for a string value and make use of late binding
to interact with the generated assembly and its internal types.

Basically, this exercise allows you to build a (painfully) simplified custom
compiler that emits C# or VB .NET source code! Of course, the major limitation of
this example program is that it only knows how to compile the following class
(shown here in C#):

// This is the wicked cool Hello class.

namespace SimpleCodeDOMHelloClass {

using System;

using System.Windows.Forms;

public class HelloClass : object {

// The state data...

private string mMsg;

public HelloClass(string msg) {mMsg = msg;}

public HelloClass() {}

// The Message property.

public string Message {

get {return this.mMsg;}

set {mMsg = value;}

}

Chapter 5

276

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 276

// Show 'em what we got!

public void Display() {

MessageBox.Show(mMsg);

}

}

}

I will assume that you will take this example and add additional user interac-
tivity to fix this limitation as you see fit.

Building the Main() Function

The CodeDOM program is driven by a Main() function that is in charge of trig-
gering each aspect of your design specification. You do need to import a number
of namespaces to interact with the C# and VB .NET code providers
(Microsoft.CSharp and Microsoft.VisualBasic, respectively) as well as the types
necessary to facilitate late binding (System.Reflection). I drill into the details of
System.Reflection in the next chapter. Until then, here is your initial crack at the
SimpleCodeDom application:

using System;

using System.CodeDom;

using System.CodeDom.Compiler;

using Microsoft.CSharp;

using Microsoft.VisualBasic;

using System.IO;

using System.Reflection;

namespace SimpleCodeDOM

{

class HelloCodeGen

{

// Access to the code generator.

private static ICodeGenerator itfCG;

// Access to the code compiler.

private static ICodeCompiler itfCC;

// cs or vb?

private static string syntaxTarget;

private static string assemblyName;

[STAThread]

static void Main(string[] args)

The Anatomy of a .NET Server

277

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 277

{

// Prompt for target language.

Console.Write("Do you want to generate C# or VB .NET code? ");

syntaxTarget = Console.ReadLine();

// Get interface references from code provider type.

switch(syntaxTarget.ToUpper())

{

case "C#":

case "CSharp":

case "CS":

syntaxTarget = "cs";

CSharpCodeProvider cdp = new CSharpCodeProvider();

itfCG = cdp.CreateGenerator();

itfCC = cdp.CreateCompiler();

break;

case "VB .NET":

case "VB.NET":

case "VB":

syntaxTarget = "vb";

VBCodeProvider vbdp = new VBCodeProvider();

itfCG = vbdp.CreateGenerator();

itfCC = vbdp.CreateCompiler();

break;

default:

Console.WriteLine("Sorry...can't do it...");

syntaxTarget = null;

break;

}

// Only proceed if they picked a valid language

// supported by System.CodeDOM.

if(syntaxTarget != null)

{

// Now create the file and generate the code!

TextWriter txtWriter = CreateFile(syntaxTarget);

PopulateNamespace(itfCG, txtWriter);

txtWriter.Close();

Console.WriteLine("Done!");

// Now compile the code into a .NET DLL.

Console.WriteLine("Compiling code...");

CompileCode(itfCC, syntaxTarget);

Chapter 5

278

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 278

// Now launch the application!

Console.Write("Enter your message: ");

string msg = Console.ReadLine();

LoadAndRunAsm(msg);

Console.WriteLine("Thanks for playing...");

}

}

}

}

The crux of the Main() method is to build a “code provider” based on the user’s
choice of managed language. The Microsoft.CSharp and Microsoft.VisualBasic
namespaces each define a code provider type (CSharpCodeProvider and
VBCodeProvider, respectively) that support two interfaces, ICodeGenerator and
ICodeCompiler (note that you have declared a member variable of each type in
your HelloCodeGen class). Once you have figured out which language the user
wishes to use, you extract interface references from the correct code provider type
(also note that these interfaces are defined within the System.CodeDOM.Compiler
namespace).

ICodeGenerator provides a number of methods that enable CodeDOM to
create code in memory, given various aspects of the System.CodeDOM object
model (that is, a namespace, a type, a code statement, and so forth). Here is the
formal C# definition:

// This interface is used to generate source code using CodeDOM.

public interface System.CodeDom.Compiler.ICodeGenerator

{

string CreateEscapedIdentifier(string value);

string CreateValidIdentifier(string value);

void GenerateCodeFromCompileUnit(CodeCompileUnit e,

TextWriter w, CodeGeneratorOptions o);

void GenerateCodeFromExpression(CodeExpression e,

TextWriter w, CodeGeneratorOptions o);

void GenerateCodeFromNamespace(CodeNamespace e,

TextWriter w, CodeGeneratorOptions o);

void GenerateCodeFromStatement(CodeStatement e,

TextWriter w, CodeGeneratorOptions o);

void GenerateCodeFromType(CodeTypeDeclaration e,

TextWriter w, CodeGeneratorOptions o);

string GetTypeOutput(CodeTypeReference type);

bool IsValidIdentifier(string value);

bool Supports(GeneratorSupport supports);

void ValidateIdentifier(string value);

}

The Anatomy of a .NET Server

279

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 279

The ICodeCompiler, as you would guess, is used to compile a source code file
(or set of source code files) into a .NET assembly:

// Used to compile code into a .NET assembly.

public interface System.CodeDom.Compiler.ICodeCompiler

{

CompilerResults CompileAssemblyFromDom(CompilerParameters options,

CodeCompileUnit compilationUnit);

CompilerResults CompileAssemblyFromDomBatch(CompilerParameters options,

CodeCompileUnit[] compilationUnits);

CompilerResults CompileAssemblyFromFile(CompilerParameters options,

string fileName);

CompilerResults CompileAssemblyFromFileBatch(CompilerParameters options,

string[] fileNames);

CompilerResults CompileAssemblyFromSource(CompilerParameters options,

string source);

CompilerResults CompileAssemblyFromSourceBatch(CompilerParameters options,

string[] sources);

}

Finally, once a reference to each interface has been obtained, the Main() loop
calls a set of static helper functions to do the dirty work. Let’s see each helper
member in turn.

Building the File via CreateFile()

The first helper function, CreateFile(), simply generates a new *.vb or *.cs file and
saves it in the current application directory. To make things a bit simpler, the name
of this file will always be Hello.vb or Hello.cs:

// Build the physical file to hold the source code.

private static TextWriter CreateFile(string syntaxTarget)

{

string fileName = String.Format("Hello.{0}", syntaxTarget);

Console.WriteLine ("Creating source file {0}.", fileName);

TextWriter t = new StreamWriter (new FileStream (fileName, FileMode.Create));

return t;

}

Chapter 5

280

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 280

Building the HelloClass (and Containing Namespace)

The PopulateNamespace() helper method is where most of the action happens.
Although this is a rather lengthy code block, fear not. It is actually quite readable:

private static void PopulateNamespace(ICodeGenerator itfCG, TextWriter w)

{

// Add a code comment.

CodeCommentStatement c =

new CodeCommentStatement("This is the wicked cool Hello class");

itfCG.GenerateCodeFromStatement(c, w, null);

// Build root namespace.

CodeNamespace cnamespace =

new CodeNamespace("SimpleCodeDOMHelloClass");

// Reference other namespaces.

cnamespace.Imports.Add(new CodeNamespaceImport ("System"));

cnamespace.Imports.Add(new CodeNamespaceImport ("System.Windows.Forms"));

// Insert the HelloClass.

CodeTypeDeclaration co = new CodeTypeDeclaration ("HelloClass");

co.IsClass = true;

co.BaseTypes.Add (typeof (System.Object));

co.TypeAttributes = TypeAttributes.Public;

cnamespace.Types.Add(co);

// Make a custom constructor.

CodeConstructor ctor = new CodeConstructor();

ctor.Attributes = MemberAttributes.Public;

ctor.Parameters.Add(new CodeParameterDeclarationExpression

(new CodeTypeReference(typeof(string)), "msg"));

ctor.Statements.Add((new CodeAssignStatement(new

CodeArgumentReferenceExpression("mMsg"),

new CodeArgumentReferenceExpression("msg"))));

co.Members.Add(ctor);

// Add the default constructor.

ctor = new CodeConstructor();

ctor.Attributes = MemberAttributes.Public;

co.Members.Add(ctor);

The Anatomy of a .NET Server

281

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 281

// Insert a String field (mMsg).

CodeMemberField cf = new CodeMemberField("System.String", "mMsg");

cf.Comments.Add(new CodeCommentStatement("The state data..."));

cf.Attributes = MemberAttributes.Private;

co.Members.Add(cf);

// Add the Message property.

CodeMemberProperty cp = new CodeMemberProperty();

cp.Name = "Message";

cp.Attributes = MemberAttributes.Public | MemberAttributes.Final ;

cp.Type = new CodeTypeReference("System.String");

cp.Comments.Add(new CodeCommentStatement("The Message property"));

// Getter.

cp.GetStatements.Add(new CodeMethodReturnStatement

(new CodeFieldReferenceExpression(new

CodeThisReferenceExpression(), "mMsg")));

// Setter.

cp.SetStatements.Add(new CodeAssignStatement(

new CodeArgumentReferenceExpression("mMsg"),

new CodeArgumentReferenceExpression("value")));

co.Members.Add (cp);

// Add the Display() method.

CodeMemberMethod cm = new CodeMemberMethod();

cm.Name = "Display";

cm.Attributes = MemberAttributes.Public | MemberAttributes.Final ;

cm.Comments.Add(new CodeCommentStatement("Show 'em what we got!"));

cm.Statements.Add (new CodeMethodInvokeExpression

(new CodeTypeReferenceExpression("MessageBox"), "Show",

new CodeExpression [] {new CodeArgumentReferenceExpression ("mMsg")}));

co.Members.Add(cm);

// Generate the code!

itfCG.GenerateCodeFromNamespace (cnamespace, w, null);

}

As you can see, you begin by defining the name of the namespace
(SimpleCodeDOMHelloClass) and establish the set of additional namespaces
that will be referenced.

Chapter 5

282

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 282

// Build namespace.

CodeCommentStatement c =

new CodeCommentStatement("This is the wicked cool Hello class");

itfCG.GenerateCodeFromStatement(c, w, null);

CodeNamespace cnamespace =

new CodeNamespace("SimpleCodeDOMHelloClass");

cnamespace.Imports.Add(new CodeNamespaceImport ("System"));

cnamespace.Imports.Add(new CodeNamespaceImport ("System.Windows.Forms"));

Next, you create the HelloClass type, establish the characteristics of your class
type, and add it to the namespace itself:

// Insert the HelloClass.

CodeTypeDeclaration co = new CodeTypeDeclaration ("HelloClass");

co.IsClass = true;

co.BaseTypes.Add (typeof (System.Object));

co.TypeAttributes = TypeAttributes.Public;

cnamespace.Types.Add(co);

The HelloClass itself defines two constructors (one taking a System.String and
the other being the default constructor), a private field (or type System.String), a
property named Message, and a method called Display(), which shows the value
of the private string using the Windows Forms MessageBox class. Most of the
code is quite readable; however, when you wish to represent a method
invocation in memory using System.CodeDOM, you will need to build a
new CodeMethodInvokeExpression type.

The CodeMethodInvokeExpression type takes as constructor arguments a
new CodeTypeReferenceExpression type that represents the name of the type you
wish to invoke (MessageBox), the name of the member to invoke (Show), and a list
of parameters to send into the method (represented as an array of CodeExpression
types). For example, the following CodeDOM logic:

// Add the Display() message.

CodeMemberMethod cm = new CodeMemberMethod();

cm.Name = "Display";

cm.Attributes = MemberAttributes.Public | MemberAttributes.Final ;

cm.Comments.Add(new CodeCommentStatement("Show 'em what we got!"));

cm.Statements.Add (new CodeMethodInvokeExpression

(new CodeTypeReferenceExpression("MessageBox"), "Show",

new CodeExpression [] {new CodeArgumentReferenceExpression ("mMsg")}));

co.Members.Add(cm);

The Anatomy of a .NET Server

283

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 283

represents the following C# method implementation:

// Show 'em what we got!

public void Display()

{

MessageBox.Show(mMsg);

}

Finally, before exiting your helper function, you save the object graph to your
source code file using the namespace you have just created and the incoming
TextWriter:

private static void PopulateNamespace(ICodeGenerator itfCG, TextWriter w)

{

// … all the CodeDOM stuff…

// Generate the code!

itfCG.GenerateCodeFromNamespace (cnamespace, w, null);

}

Compiling the Assembly

Now that you have a source code file saved to disk, the CompileCode() method will
make use of the obtained ICodeCompiler interface and build a .NET DLL
assembly (always named HelloCSAsm.dll or HelloVBAsm.dll). If you have worked
with the raw C# or VB .NET compilers at the command line before, this should
look very familiar:

private static void CompileCode(ICodeCompiler itfCC, string syntaxTarget)

{

// Set assembly name.

assemblyName = String.Format("Hello{0}Asm", syntaxTarget.ToUpper());

// Compile the code.

CompilerParameters parms = new CompilerParameters();

parms.OutputAssembly = assemblyName + ".dll";

parms.CompilerOptions = "/t:library /r:System.Windows.Forms.dll";

itfCC.CompileAssemblyFromFile(parms,

String.Format("Hello.{0}", syntaxTarget));

}

Chapter 5

284

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 284

Running the Assembly (Using Late Binding)

The final helper function of the application LoadAndRunAsm() loads the assembly
into a new AppDomain and exercises the HelloClass using late binding. I
comment on reflection and late binding in the next chapter. Until then, ponder
the following code:

private static void LoadAndRunAsm(string msg)

{

// Load the assembly into a new AppDomain.

AppDomain ad = AppDomain.CreateDomain("HelloAppDomain");

Assembly a = ad.Load(assemblyName);

// Get the HelloClass type.

Type helloClass = a.GetType("SimpleCodeDOMHelloClass.HelloClass");

object obj = Activator.CreateInstance(helloClass);

// Set message property.

PropertyInfo pi = helloClass.GetProperty("Message");

MethodInfo mi = pi.GetSetMethod(true);

mi.Invoke(obj, new object[]{msg});

// Display message!

mi = helloClass.GetMethod("Display");

mi.Invoke(obj, null);

}

Running Your Application

Now then, take your application out for a test drive. Assume you have run the
application once for each target language. If you were to look at the application
directory for your project, you would find four dynamically generated files (two
source code files and two .NET assemblies). Check out Figure 5-23.

The Anatomy of a .NET Server

285

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 285

Figure 5-23. Your generated files, thanks to System.CodeDOM

The resulting console output (and message box display) would look some-
thing like what you see in Figure 5-24.

Figure 5-24. The completed application

Chapter 5

286

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 286

Given that you have already seen the resulting C# code, here is the generated
VB .NET code:

'This is the wicked cool Hello class

Imports System

Imports System.Windows.Forms

Namespace SimpleCodeDOMHelloClass

Public Class HelloClass

Inherits Object

'The state data...

Private mMsg As String

Public Sub New(ByVal msg As String)

MyBase.New

mMsg = msg

End Sub

Public Sub New()

MyBase.New

End Sub

'The Message property

Public Property Message As String

Get

Return Me.mMsg

End Get

Set

mMsg = value

End Set

End Property

'Show 'em what we got!

Public Sub Display()

MessageBox.Show(mMsg)

End Sub

End Class

End Namespace

The Anatomy of a .NET Server

287

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 287

As you can see, System.CodeDOM is a critical .NET namespace for the tool
builders of the world. Given that numerous interop-centric tools make use of
System.CodeDOM under the hood, I hope you found the previous section
enlightening.

CODE The SimpleCodeDOM project is included under the Chapter 5
subdirectory.

Summary

The .NET platform is a 100% new architecture that has no relationship to COM
whatsoever. However, like COM, .NET supports the ideals of binary reuse,
language independence, and interface-based programming. As you have seen,
.NET assemblies contain platform-agnostic IL code, type metadata, and an
assembly manifest. Collectively, these entities make .NET assemblies completely
self-describing. Given this, assemblies are not registered within the system
registry, but are located by the runtime by probing the application directory or
the GAC. Recall that the binding process can be modified using application
configuration files.

Within a given assembly, there will be some number of .NET types (classes,
interfaces, enumerations, structures, and delegates). Of course, most of the time,
you will simply fire up Visual Studio .NET and author your source code using the
IDE. However, the System.CodeDOM namespace contains a number of items that
allow you to represent .NET types and their implementations in memory and
commit this object graph to a physical file using a specific managed language.
Clearly, this is a very important aspect of building custom tools that can create
source code for use by other applications (such as wsdl.exe).

In the next (and final) chapter before you begin to formally examine specific
COM/.NET interoperability issues, you will get to understand the process of
reading .NET type information at runtime using the System.Reflection name-
space. As you will see, .NET makes the process of reading type information much
simpler than the classic COM ITypeLib(2) and ITypeInfo(2) interfaces.

Chapter 5

288

*0112_Ch05_CMP3.qxp 3/23/02 7:08 PM Page 288

CHAPTER 6

.NET Types

In Chapter 5, you examined the core traits of .NET assemblies. During this
discussion, I did not make much mention of the specific type system of the
.NET platform. Therefore, the first task of this chapter is to document the set of
CLS-compliant data types, their relationships, and how these core types map into
C# and VB .NET–specific keywords. After that I formalize each of the possible user-
defined types supported by the .NET Framework (classes, structures, interfaces,
and enumerations).

The bulk of this chapter, however, examines how to build applications that are
capable of reading the set of types contained within a given assembly using the
System.Reflection namespace. Along the way, you are exposed to a number of
related topics such as .NET attributes and late binding. Once you complete this
chapter, you will have a solid handle on the .NET type system, as well as that of
classic COM. In effect, you will be in a perfect position to truly understand the
inner details of COM/.NET interoperability.

The Role of System.Object

No examination of the .NET type system would be complete without discussing
the role of System.Object. This class type is the ultimate root of each and every
class entity in the .NET universe. System.Object is defined within mscorlib.dll as
follows:

// The chief base class.

public class Object

{

public Object();

// Instance methods.

public virtual bool Equals(object obj);

public virtual int GetHashCode();

public Type GetType();

public virtual string ToString();

// Static (that’s Shared in VB .NET) methods.

public static bool ReferenceEquals(object objA, object objB);

public static bool Equals(object objA, object objB);

}

289

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 289

As you can see, Equals(), GetHashCode(), and ToString() have each been
declared virtual and can thus be overridden by a derived type. Also note that two
members of System.Object (ReferenceEquals() and an alternative version of the
Equals() method) have been declared static and can thus be called at the class
level without first needing to create an object reference. Table 6-1 documents the
functionality of each member.

Table 6-1. The Methods of System.Object

Method of System.Object Meaning in Life

Equals() This instance-level method is used to test if two object

references point to the same object in memory. This method

may be overridden to test for value-based semantics.

Equals() The static version of Equals() compares two objects using

value-based or reference-based semantics (depending on

how the object being tested has been configured).

GetHashCode() This method is used to return a numerical value that can

identify an object held within a HashTable data structure.

GetType() As far as this chapter is concerned, this is the most

important member of System.Object. Using GetType()

callers are able to obtain a Type object that fully describes

the characteristics of a given object.

ReferenceEquals() This static method compares two objects using reference-

based semantics.

ToString() By default, this method returns the fully qualified name of a

given type (for example, Namespace.Type). This method is

typically overridden to return a string that contains

name/value pairs representing the state of the current

object reference.

Overriding ToString()

To illustrate how a derived class can override the virtual members of
System.Object, here is a simple Car type that has overridden ToString() to return
its current state data as a set of formatted name/value pairs. Notice that I am
making use of the StringBuilder type (defined in the System.Text namespace) for
reasons of efficiency. Simply making use of a System.String and the overloaded +
operator also fits the bill.

Chapter 6

290

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 290

// Overriding ToString().

public class SimpleCar // : object implied.

{

private string mPetName;

private string mColor;

private int mCurrSpeed;

public SimpleCar(string petname, string color, int sp)

{

mPetName = petname;

mColor = color;

mCurrSpeed = sp;

}

public SimpleCar(){}

public override string ToString()

{

StringBuilder sb = new StringBuilder();

sb.AppendFormat("[Pet Name: {0}, ", mPetName);

sb.AppendFormat("Color: {0}, ", mColor);

sb.AppendFormat("Current Speed: {0}]", mCurrSpeed);

return sb.ToString();

}

}

If you take your class type out for a spin, you might build a Main() loop as
follows:

class CarTester

{

[STAThread]

static void Main(string[] args)

{

SimpleCar car = new SimpleCar("Mel", "Yellow", 40);

Console.WriteLine(car); // ToString() called automatically.

}

}

The output (of course) prints "[Pet Name: Mel, Color: Yellow, Current Speed: 40]"
to the console window. If you did not override ToString(), you would simply see the
fully qualified name of the SimpleCar type.

.NET Types

291

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 291

The Two Faces of Equality

System.Object defines several ways to allow you to test if two objects have the
same internal state values (that is, value-based semantics) as well as if two object
references are pointing to the same entity on the managed heap (that is, refer-
ence-based semantics). To illustrate the distinction, consider the following update
to the Main() method:

class CarTester

{

[STAThread]

static void Main(string[] args)

{

SimpleCar car = new SimpleCar("Mel", "Yellow", 40);

Console.WriteLine(car);

// Test object refs.

SimpleCar carRef = car;

Console.WriteLine("Are Car and carRef pointing to same car? : {0}",

object.ReferenceEquals(car, carRef));

// Compare new refs.

SimpleCar car2 = new SimpleCar("Hank", "Pink", 90);

Console.WriteLine("Are car and car2 pointing to same car? : {0}",

object.ReferenceEquals(car, car2));

}

}

Here, you are first testing to see if the car and carRef variables are pointing to
the same object allocated on the managed heap (which they are). Next, you call
the static ReferenceEquals()on two distinct objects. In this case, you are told the
object variables are not the same (which is correct). Figure 6-1 shows the output
thus far.

Figure 6-1. Testing object references

Chapter 6

292

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 292

Now, let’s assume you updated Main() once again as follows:

static void Main(string[] args)

{

…

SimpleCar car2 = new SimpleCar("Hank", "Pink", 90);

// Compare state?

SimpleCar car3 = new SimpleCar("Hank", "Pink", 90);

Console.WriteLine("Do car2 and car3 contain same state ? : {0}",

object.Equals(car2, car3));

Console.WriteLine("Do car2 and car3 contain same state ? : {0}",

car2.Equals(car3));

}

Here, you begin by using the static System.Object.Equals() method as well as
the default inherited implementation of Equals() currently used by the SimpleCar
type. Notice that although car2 and car3 have been created with identical
constructor arguments, the test for identical state data fails!

The reason is simple. Both the static and instance-level System.Object.Equals()
methods, by default, only test object references and not the state data of an object.
When you wish to retrofit your custom class types to perform value-based seman-
tics, you need to explicitly override the Equals() method for your class. In addition,
understand that classes that override Equals() should also override GetHashCode()
to ensure that the object in question behaves property if placed in a hash
container. Thus, you could update the SimpleCar class as follows:

// Overriding Equals() and GetHashCode().

public class SimpleCar : object

{

….

public override bool Equals(object obj)

{

// Test values (not references).

if((((SimpleCar)obj).mColor == this.mColor) &&

(((SimpleCar)obj).mCurrSpeed == this.mCurrSpeed) &&

(((SimpleCar)obj).mPetName == this.mPetName))

return true;

else

return false;

}

// The System.String class implements a nice hash algorithm,

// so we just leverage it using the pet name member variable.

public override int GetHashCode()

{ return mPetName.GetHashCode(); }

}

.NET Types

293

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 293

If you now test the state values of car2 and car3 using the static or instance-
level Equals() method, you find that they do indeed contain the same state data
and will thus pump out the following to the console:

Do car2 and car3 contain same state? : True

The remaining member of System.Object, GetType(), is examined in gory
detail a bit later in this chapter. Until then, let’s get to know the set of intrinsic data
members supported by the .NET runtime.

CODE The CarObject project is located under the Chapter 6
subdirectory.

Examining the .NET Data Type System

As you recall from the previous chapter, the Common Type System (CTS) is a set of
rules that define the full set of programming constructs and data types that may
be present in a given .NET-aware programming language. Figure 6-2 documents
the intrinsic types supported by the CTS. Notice how all reference types ultimately
derive from the mighty System.Object.

As you can see, the System.ValueType type is the base class for any and all
intrinsic data types supported by a given programming language (for example, int,
string, long, and so forth). The role of System.ValueType is to ensure that the
derived type automatically obeys the rules of value-based semantics. Thus, when
you compare two C# int types (which is an alias for the System.Int32 type) you
are returned the result of the comparison of their underlying values, not their
location in memory. In fact, ValueTypes are not placed on the managed heap at all!
ValueTypes are always allocated on the stack (and thus are destroyed when they
fall out of the defining scope). For example:

// Remember, the C# 'int' is just an alias for System.Int32,

// and therefore we can call inherited members directly!

int x = 99;

int y = 9;

Console.WriteLine("Equal? : {0}", x.Equals(y)); // False!

In contrast, types that do not derive from ValueType are allocated on the
managed heap and typically make use of the default implementation of
System.Object.Equals() (meaning equality tests are made using reference-based
semantics).

Chapter 6

294

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 294

Figure 6-2. The hierarchy of core types

Do note, however, that even though System.String is not a ValueType (and is
thus allocated on the heap) the designers of this class type have overridden
Object.Equals() to use value-based semantics (just like you did for the SimpleCar
type). Thus:

// System.String.Equals() works with values, not references.

string s1 = "Hello";

string s2 = "Hello";

Console.WriteLine("Equal? : {0}", s1.Equals(s2)); // True!

string s3 = "Oh the humanity…";

Console.WriteLine("Equal? : {0}", s1.Equals(s3)); // False!

.NET Types

295

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 295

System Data Type Language Mappings

Regardless of which managed language you choose to work with (C#, VB .NET, and
so forth) you are given a set of language-specific keywords that alias the correct
ValueType-derived entity of the base class libraries. More often than not, you
simply make use of these keywords directly. However, understand that the
following two variable declarations are identical in the eyes of .NET:

// Two C# strings.

string myString;

System.String myOtherString;

In VB .NET you would get to the same result using the following syntax:

' Two VB .NET strings.

Dim myString as String

Dim myOtherString as System.String

Table 6-2 illustrates how a given base class data type maps into specific
keywords of the C#, MC++, and VB .NET programming languages. (Notice that
some of the intrinsic data types of the CTS are not supported under VB .NET since
they are not CLS-compliant.)

Table 6-2. .NET Data Type Language Mappings

.NET Base Class Visual Basic. NET C# Representation C++ with Managed
Representation Extensions

Representation

System.Byte Byte byte char

System.SByte Not supported Sbyte signed char

System.Int16 Short short short

System.Int32 Integer int int or long

System.Int64 Long long __int64

System.UInt16 Not supported ushort unsigned short

System.UInt32 Not supported uint unsigned int or

unsigned long

System.UInt64 Not supported ulong unsigned __int64

Chapter 6

296

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 296

Table 6-2. .NET Data Type Language Mappings (continued)

.NET Base Class Visual Basic. NET C# Representation C++ with Managed
Representation Extensions

Representation

System.Single Single float float

System.Double Double double double

System.Object Object object Object*

System.Char Char char __wchar_t

System.String String string String*

System.Decimal Decimal decimal Decimal

System.Boolean Boolean bool bool

Obviously, these intrinsic data types are used to function as method parame-
ters, member variables, and local variables in some method scope. Understand
that given the fact that these language-specific keywords alias a specific type in
the .NET base class library, and given the fact that all types ultimately derive from
System.Object, you are able to write code such as the following:

// 12 is a C# int, which is really System.Int32, which derives from

// System.ValueType, which derives from System.Object.

Console.WriteLine(12.ToString());

Console.WriteLine(12.GetHashCode());

Console.WriteLine(12.Equals(12));

The Set of Custom .NET Types

In addition to the set of internal data types, you will certainly need to build custom
data types for use in a given application. In the world of .NET, you have five
possible type constructs that can be used. Table 6-3 documents each possibility.

.NET Types

297

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 297

Table 6-3. .NET Types

.NET Type Meaning in Life

Class When you build custom classes (or hierarchies of classes)

you are building heap-allocated types that are managed by

the .NET garbage collector. Class types benefit from each

pillar of OOP, can work as base classes to other classes, and

can define any number of members.

Structure In essence, structures can be regarded as “lightweight class

types” that are used to group logically related data items.

Unlike classes, structures cannot be subclasses. They always

derive directly from System.ValueType.

As already mentioned, structures are allocated on the stack

(rather than the heap) and are therefore a bit more efficient

than a corresponding class definition.

Interface Interfaces are a named set of abstract methods that may (or

may not) be supported by a given class or structure. Given

that interfaces are strongly typed data types, you can obtain

an interface reference from a type and access a subset of its

overall functionality, as well as use interface variables as

function parameters and return values.

Enumeration Enums are a set of name/value pairs that always derive from

System.Enum. By default, the storage used for a given

enumeration is System.Int32, but you are able to specify a

different storage type if you are concerned with saving every

byte of memory.

In addition to these four categories of .NET types, delegates are often consid-
ered a fifth possibility. As you may know, delegates are indeed classes that derive
from the System.MulticastDelegate base class. More often than not, however,
when you are building a custom delegate, you make use of a language-specific
keyword (such as the C# delegate keyword). Whichever way you go, delegates are
used to represent a type-safe (and object-oriented) function pointer, which
provides the foundation for the .NET event model. I hold off on discussing dele-
gate types until you formally examine COM/.NET event interoperability. Until
then, let’s check out the core four.

Chapter 6

298

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 298

.NET Class Types

Every .NET-aware language supports the notion of a class type, which is the
cornerstone of object-oriented programming. A class is composed of any number
of properties, methods, and events that typically manipulate some set of state
data. As you would expect, the CTS allows a given class to support abstract
members that provide a polymorphic interface for any derived classes. CTS-
compliant classes may only derive from a single base class (multiple inheritance is
not allowed for a .NET class type). To help keep your wits about you, Table 6-4
documents a number of characteristics of interest to class types.

Table 6-4. .NET Class Characteristics

Class Characteristic Meaning in Life

Is the class “sealed”or not? Sealed classes are types that cannot

function as a base class to other classes.

Does the class implement any interfaces? An interface is a collection of abstract

members that provides contract between

the object and object user. The CTS allows

a class to implement any number of

interfaces.

Is the class abstract or concrete? Abstract classes cannot be directly

created, but they are intended to define

common behaviors for derived types.

Concrete classes are directly creatable.

What is the “visibility” of this class? Each class must be configured with a

visibility attribute. Basically, this trait

defines if the class can be used by external

assemblies or used only from within the

containing assembly (for example, a

private helper class).

.NET Types

299

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 299

Like other OO-based programming languages, managed languages support
the use of “nested” classes. This programming construct allows an outer (or
nesting class) to define and manipulate an inner (or nested) type. This technique
is yet another way to force tight encapsulation of related types and is especially
useful when you want to create an object factory using the nested type. For
example:

// This type makes cars.

public class CarFactory

{

….

// Return a Car type to the caller.

public Car GetNewCar()

{ return new Car();}

// Nested car type: CarFactory.Car.

public class Car{ /* some members */}

}

.NET Structure Types

The concept of a structure is also formalized by the CTS. If you have a C back-
ground, you should be pleased to know that these user-defined types (UDTs) have
survived in the world of .NET (although they behave a bit differently under the
hood). In general, a structure is a lightweight class type, with a number of notable
exceptions. For example, structures may define any number of parameterized
constructors (the no-argument constructor is reserved). In this way, you are able
to establish the value of each field during the time of construction. For example:

// Create a C# structure.

struct POINT

{

// Structures can contain fields.

public int mX, mY;

public POINT(int x, int y)

{ mX = x; mY =y; }

}

All CTS-compliant structures automatically derive from a common base class:
System.ValueType. As you have seen, this base class configures a structure to func-
tion as a value-based (stack) data type rather than a reference-based (heap) entity.
Be aware that the CTS permits structures to implement any number of .NET inter-
faces. Structures, however, may not derive from other types and are therefore
always “sealed.”

Chapter 6

300

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 300

.NET Interface Types

Unlike classic COM, .NET interfaces do not derive from a common base interface
such as IUnknown. In fact, topmost interfaces have no parent class (not even
System.Object!). Interfaces are nothing more than a collection of abstract
methods, properties, and event definitions. On their own, interfaces are of little
use. However, when a class or structure implements a given interface in its unique
way, you are able to request access to the supplied functionality using an interface
reference. When you build custom interfaces using a .NET-aware programming
language, the CTS permits a given interface to derive from multiple base inter-
faces (something not possible in classic COM). In this way, you are able to build
elaborate interface hierarchies. For example:

// A James Bond car is a submergible sports car.

public interface ISportsCar{}

public interface IUnderwaterVehicle{}

public interface IJamesBondCar : ISportsCar, IUnderwaterVehicle{}

.NET Enumeration Types

Finally, there are enumerations. These types are a handy programming construct
that allows you to group name/value pairs under a specific name. For example,
assume you are creating a video game application that allows the end user to
select one of three player types (Wizard, Fighter, or Thief). Rather than keeping
track of raw numerical values to represent each possibility, you could build a
custom enumeration:

// A C# enumeration.

enum PlayerType

{ Wizard = 100, Fighter = 200, Thief = 300 };

The CTS demands that enumerated types derive from a common base class,
System.Enum, which defines a number of members that allow you to interact with
the name/value pairs (such as testing if a given name exists within a given enum).
Also be aware that (by default) .NET enumerations make use of a System.Int32 for
the underlying storage. If you so choose, you may change this underlying storage
using the following syntax:

// Change storage type.

enum PlayerType : long

{ Wizard = 100, Fighter = 200, Thief = 300 };

.NET Types

301

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 301

Building a Complex Code Library

Now that you have had a chance to examine the essence of the .NET type system,
let’s build a complex C# code library that you can use during the remaining exam-
ples of this chapter. The assembly that you will construct (ComplexTypeLibrary.dll)
will define the following types (in two distinct but interrelated namespaces) as
shown by the following ILDasm.exe screen shot (Figure 6-3).

Figure 6-3. The ComplexTypeLibrary assembly

Because this chapter is more concerned with types than implementations of
types, the code is short and sweet. Here is the complete listing (note the nested
namespaces, nested classes, and interface definitions):

// Our 'complex' .NET code library.

namespace ComplexTypeLibrary

{

// A class.

public class SimpleClass{}

namespace TheTypes // Nested namespace.

{

Chapter 6

302

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 302

// An enum.

public enum TheEnum

{FieldA, FieldB}

// Interfaces.

public interface IFaceOne

{

string ReadOnlyProp{get;}

string WriteOnlyProp{set;}

TheEnum ReadWriteProp{get; set;}

}

public interface IFaceTwo

{int SimpleMethod();}

// A struct implementing an interface.

public struct TheStruct : IFaceTwo

{public int SimpleMethod(){return 0;}}

// The nesting class

public class TheNestingClass

{

// A nested class, with one property.

public class TheNestedClass

{

private string someStrVal = "I'm nested!";

public string GetInternalString()

{return someStrVal;}

}

}

// A class implementing an interface.

public class IFaceOneImplClass : IFaceOne

{

public IFaceOneImplClass()

{e = TheEnum.FieldB;}

private TheEnum e;

public string ReadOnlyProp

{get{return "Hey!";}}

public string WriteOnlyProp

{set {string x = value;}}

public TheEnum ReadWriteProp

{get{return e;} set{e = value;}}

}

}

}

.NET Types

303

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 303

The ComplexTypeLibrary.dll is very generic (by design). Nevertheless, this
gives us an interesting test bed to examine during the next topic under scrutiny:
.NET reflection services.

Understanding Reflection

As you already know, ILDasm.exe is the tool of choice to examine the types within
a given .NET assembly at design time (that is, after compilation). However, how
exactly is ILDasm.exe able to read the assembly metadata? To be sure, ILDasm.exe
is not making use of COM-centric type interfaces such as ITypeLib(2) or
ITypeInfo(2).

The core problem with reading COM type information at runtime is the fact
that you are forced to make use of a very non–OO-based architecture. As you recall
from Chapter 4, the process of runtime type discovery under COM requires us to
interact with the COM library and a small set of interfaces (and about 8 billion
related structures).

Under .NET, however, developers are able to leverage the System.Type class
and the related System.Reflection namespace. Like any other .NET namespace,
System.Reflection makes use of the same well-designed, OOP-based protocol that
is the .NET architecture. To begin, let’s check out the role of the Type class itself.

Working with System.Type

The System.Type class represents the runtime representation of the metadata,
which describes a given .NET type (class, interface, structure, enumeration, dele-
gate). As you saw in Chapter 5, the .NET metadata format is quite verbose. The
good news is that the type information contained within a Type reference is
manipulated using a small set of members that shield you from the raw metadata
information. Table 6-5 lists some (but not all) of the members of System.Type,
grouped by related functionality.

Chapter 6

304

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 304

Table 6-5. The Members of System.Type

System.Type Member Meaning in Life

IsAbstract These properties (among others) allow you to

IsArray discover a number of basic traits about the Type

IsClass you are referring to (for example, if it is an abstract

IsCOMObject method, an array, a nested class, and so forth).

IsEnum

IsInterface

IsPrimitive

IsNestedPublic IsNestedPrivate

IsSealed

IsValueType

GetConstructors() These methods (among others) allow you to obtain

GetEvents() an array representing the items (interface, method,

GetFields() property, and so on) you are interested in.

GetInterfaces() Each method returns a related array (for example,

GetMethods() GetFields() returns a FieldInfo array, GetMethods()

GetMembers() returns a MethodInfo array, and so forth).

GetNestedTypes() Be aware that each of these methods has a

GetProperties() singular form (for example, GetMethod(),

GetProperty()) that allows you to retrieve a

specific item by name, rather than an array of all

related items.

FindMembers() Returns an array of MemberInfo types, based on

search criteria.

GetType() This method returns a Type instance given

a string name.

InvokeMember() This method allows late binding to a given item.

Do be aware that many of the more elaborate methods of Type (that is,
GetProperties() and so forth) require that you explicitly make use of the types
contained within the System.Reflection namespace. However, before you examine
this namespace, let’s check out how to read basic metadata information using
some core members of the Type class.

.NET Types

305

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 305

Obtaining a Type Reference Using
System.Object.GetType()

There are many ways to obtain a reference of System.Type. As you already are
aware, System.Object defines a method named GetType() that returns (of course)
the underlying Type describing the item. For example:

// Get a Type reference using Object.GetType().

Type t = 12.GetType();

Console.WriteLine("->Containing assembly: {0}", t.Assembly);

Console.WriteLine("->Base class: {0}", t.BaseType);

Console.WriteLine("->Full Name: {0}", t.FullName);

Console.WriteLine("->Is this an array? : {0}", t.IsArray);

Console.WriteLine("->Is this a COM object? :{0}", t.IsCOMObject);

Understand that when you wish to obtain metadata information for a given
type using the inherited System.Object.GetType() method, you are required to
have an active object reference. What if you do not wish (or need) to create an
object reference but still require valid metadata?

Obtaining a Type Reference
Using the C# typeof Operator

Another (perfectly valid) approach to obtaining a Type reference is to make use of
the C# typeof operator. The nice thing about using typeof is the fact that you are
not required to create an object of the entity you wish to examine. The only
requirements are that you have

• Set a reference to the assembly containing the type you wish to examine

• Made use of the using or Imports statement (or whatever syntax is required
by your managed language of choice) to scope the type (or make use of the
fully qualified name)

Assume you have set a reference to the core ADO.NET assembly,
System.Data.dll. Once you have done so, you can obtain type information for the
DataSet class as follows:

// Now use typeof operator.

Console.WriteLine("Using typeof operator!");

Type t3 = typeof(DataSet);

Chapter 6

306

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 306

Console.WriteLine("->Containing assembly: {0}", t3.Assembly);

Console.WriteLine("->Base class: {0}", t3.BaseType);

Console.WriteLine("->Full Name: {0}", t3.FullName);

Console.WriteLine("->Is this an array? : {0}", t3.IsArray);

Console.WriteLine("->Is this a COM object? :{0}", t3.IsCOMObject);

Again, notice that although you are reading the same bits of metadata for the
DataSet type, using the typeof operator, you are not required to create an instance
of this class type.

Obtaining a Type Reference Using the Type Class

The final, and most flexible, way of obtaining a Type reference is to make use of
the static (or in terms of VB .NET, Shared) method Type.GetType(). The nice thing
about this avenue of type acquisition is that you are able to specify the name of
the assembly that contains the type you wish to examine. Like the C# typeof oper-
ator, you are still required to set a reference to the assembly containing the type
you wish to examine and do not need to make an active object. Unlike the typeof
operator, you are not required to make use of the “using”/“Imports” (or whatever)
keyword in the file using Type.GetType() because the string sent into this method
includes the name of the containing assembly. Assume you have set a reference to
the ComplexTypeLibrary assembly you created earlier in this chapter. You could
obtain type information for the SimpleClass type as follows:

// Now get a type in a different assembly using

// the static Type.GetType() method.

Console.WriteLine("Using static Type.GetType()!");

Type t2 =

Type.GetType("ComplexTypeLibrary.SimpleClass, ComplexTypeLibrary");

Console.WriteLine("->Containing assembly: {0}", t2.Assembly);

Console.WriteLine("->Base class: {0}", t2.BaseType);

Console.WriteLine("->Full Name: {0}", t2.FullName);

Console.WriteLine("->Is this an array? : {0}", t2.IsArray);

Console.WriteLine("->Is this a COM object? :{0}", t2.IsCOMObject);

As you can see, the basic form of the string sent into Type.GetType() takes the
following format:

// String format: "<namespace>.<typeName>, assemblyIdentity"

Type t2 =

Type.GetType("ComplexTypeLibrary.SimpleClass, ComplexTypeLibrary");

.NET Types

307

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 307

Basically, a dot is used to separate namespaces and types, while a comma is
used to mark the segment of the string that holds the name of the referenced
assembly (minus the file extension). Type.GetType() also honors using additional
string tokens, as seen in Table 6-6, which documents the core set of delimiters.

Table 6-6. Core Tokens Parsed by Type.GetType()

Type.GetType() Argument Token Meaning in Life

Comma (,) Precedes the Assembly name

Plus sign (+) Precedes a nested class

Period (.) Denotes namespace identifiers

Now then, assume you have a simple console application that makes use of
each of the three techniques illustrated in this section (where all the logic is
contained in the application’s Main() method). Figure 6-4 shows the output.

Figure 6-4. Fun with System.Type

Chapter 6

308

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 308

CODE The FunWithType project is located under the Chapter 6
subdirectory.

The System.Reflection Namespace

Although the Type class allows you to obtain basic type information for a given
item, most more elaborate methods of System.Type require additional types of the
System.Reflection namespace. Using these members, you are able to drill into a
reference type and obtain additional details such as the list of supported construc-
tors, properties, methods, and events. Table 6-7 contains a (very) partial list of the
members of the System.Reflection namespace.

Table 6-7. Select Members of the System.Reflection Namespace

Member of the Meaning in Life
System.Reflection Namespace

Assembly This class (in addition to numerous related types)

contains a number of methods that allow you to load,

investigate, and manipulate an assembly.

AssemblyName This class allows you to discover numerous details

behind an assembly’s identity (version information,

culture information, and so forth).

EventInfo Holds information for a given event.

FieldInfo Holds information for a given field.

MemberInfo This is the abstract base class that defines common

behaviors for the EventInfo, FieldInfo, MethodInfo, and

PropertyInfo types.

MethodInfo Contains information for a given method.

Module Allows you to access a given module within a multifile

assembly.

ParameterInfo Holds information for a given parameter.

PropertyInfo Holds information for a given property.

.NET Types

309

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 309

Dynamically Loading an Assembly

The real workhorse of System.Reflection is the Assembly class. Using this type, you
are able to dynamically load an assembly, invoke class members at runtime (late
binding), as well as discover numerous properties about the assembly itself.
Assume you have set a reference to the ComplexTypeLibrary assembly created
previously in this chapter. The static Assembly.Load() method can be called by
passing in the friendly string name:

// Investigate the ComplexTypeLibrary assembly.

using System;

using System.Reflection;

using System.IO; // Defines FileNotFoundException type.

…

public class MyReflector

{

public static int Main(string[] args)

{

// Use Assembly class to load the ComplexTypeLibrary.

Assembly a = null;

try

{

a = Assembly.Load("ComplexTypeLibrary");

}

catch(FileNotFoundException e)

{Console.WriteLine(e.Message);}

return 0;

}

}

Notice that the static Assembly.Load() method has been passed in the friendly
name of the assembly you are interested in loading into memory. As you may
suspect, this method has been overloaded a number of times to provide a number
of ways in which you can bind to an assembly. One variation to be aware of is that
the textual information sent into Assembly.Load() may contain additional string
segments beyond the friendly name. Specifically, you may choose to specify a
version number, public key token value, or locale (to load a shared assembly). You
see this approach later in this chapter when you examine late binding under the
.NET Framework.

Of equal interest is the static LoadFrom() method of the Assembly type. Using
this method, you are able to load an assembly using an arbitrary path:

// Load an assembly given a specific path.

Assembly otherAsm = Assembly.LoadFrom(@"C:\MyAsms\foo.dll");

Chapter 6

310

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 310

Enumerating Types in a Referenced Assembly

Once you have a reference to a loaded assembly, you may discover the characteris-
tics of each .NET type it contains using Assembly.GetTypes(). This method returns
an array of Type objects, from which you can call any of the members of the Type
class. For example:

// List all members within the assembly.

// Assume 'a' is a currently loaded assembly.

Console.WriteLine("Listing all types in {0}", a.FullName);

Type[] types = a.GetTypes();

foreach(Type t in types)

Console.WriteLine("Type: {0}", t);

Enumerating Class Members

Now assume you are interested in discovering the full set of members supported
by one of the .NET types located within a given assembly. To do so, you can make
use of the GetMembers() method defined by the Type class. As you recall, the
Type class also defined a number of related methods (GetInterfaces(),
GetProperties(), GetMethods(), and so forth) that allow you to specify a kind of
member. GetMembers() itself returns an array of MemberInfo types. Again, by
way of example:

// List all members of a given type.

Type t = a.GetType("ComplexTypeLibrary.SimpleClass");

MemberInfo[] mi = t.GetMembers();

foreach(MemberInfo m in mi)

Console.WriteLine("Member Type {0}: {1} ",

m.MemberType.ToString(), m);

Enumerating Method Parameters

Not only can you use reflection to gather information for the members of a type,
you can also obtain information about the parameters of a given member. To do
so requires the use of MethodInfo.GetParameters(). This method returns a
ParameterInfo array. Each item in this array contains numerous properties for a

.NET Types

311

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 311

given parameter. Assume that you have added a Foo() method to the SimpleClass
type and wish to read the metadata that describes its parameter set:

// Get information of the Foo() method..

Type t = a.GetType("ComplexTypeLibrary.SimpleClass");

MethodInfo mi = t.GetMethod("Foo");

// Show number of params.

Console.WriteLine("Here are the params for {0}", mi.Name);

ParameterInfo[] myParams = mi.GetParameters();

Console.WriteLine("Method has " + myParams.Length + " params");

// Show some info for param.

foreach(ParameterInfo pi in myParams)

{

Console.WriteLine("Param name: {0}", pi.Name);

Console.WriteLine("Position in method: {0}", pi.Position);

Console.WriteLine("Param type: {0}", pi.ParameterType);

}

Building a Custom .NET Type Viewer

In the previous few pages, you have seen bits and pieces of reflection-centric code.
To pull the related topics together into a cohesive unit, you now spend some time
building your own custom .NET type viewer application. As you will see, you will
basically build your own version of ILDams.exe. Specifically, this Windows Forms
application allows the end user to do the following:

• Select a given assembly to examine using a standard File Open dialog.

• View select characteristics of the loaded assembly.

• View a list of all types contained within the loaded assembly.

• View member details for a given type.

• View the set of parameters for a given member of a given type.

If you want to follow along, create a new Windows Forms application named
DotNetTypeReader. As you would expect, you have a topmost File menu that
supports Open and Exit submenus (File | Exit simply calls the static
Application.Exit() method). Once you open a valid .NET *.dll or *.exe, the type
names are extracted and placed into one of four list boxes. For example, here is the
dump of the ComplexTypeLibrary.dll assembly created earlier in this chapter
(Figure 6-5).

Chapter 6

312

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 312

Figure 6-5. Viewing type names in a given assembly

In addition to the various GUI widgets, the Form maintains an Assembly data
member that will be filled within the scope of the Click event handler for the Open
menu. Once the assembly has been loaded using the OpenFileDialog class, you
call a helper function named LoadLists(). Here is the code thus far:

public class MainForm : System.Windows.Forms.Form

{

// Reference to the loaded assembly.

private Assembly theAsm = null;

…

private void mnuFileOpen_Click(object sender, System.EventArgs e)

{

// Show the FileOpen dialog and get file name.

string fileToLoad = "";

.NET Types

313

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 313

// Configure look and feel of open dlg.

OpenFileDialog myOpenFileDialog = new OpenFileDialog();

myOpenFileDialog.InitialDirectory = ".";

myOpenFileDialog.Filter = "All files (*.*)|*.*" ;

myOpenFileDialog.FilterIndex = 1 ;

myOpenFileDialog.RestoreDirectory = true ;

// Do we have a file?

if(myOpenFileDialog.ShowDialog() == DialogResult.OK)

{

fileToLoad = myOpenFileDialog.FileName;

theAsm = null;

// Load the assembly.

theAsm = Assembly.LoadFrom(fileToLoad);

LoadLists(theAsm);

}

}

}

The LoadLists() helper function iterates through each Type in the assembly
and fills the correct list box based on the underlying type of the type (pardon the
redundancy!).

private void LoadLists(Assembly theAsm)

{

// Clear out current listings.

lstClasses.Items.Clear();

lstInterfaces.Items.Clear();

lstEnums.Items.Clear();

lstStructs.Items.Clear();

// Get all types in the assembly.

Type[] theTypes = theAsm.GetTypes();

// Fill each list box.

foreach(Type t in theTypes)

{

if(t.IsClass)

lstClasses.Items.Add(t.FullName);

if(t.IsInterface)

lstInterfaces.Items.Add(t.FullName);

if(t.IsEnum)

lstEnums.Items.Add(t.FullName);

if(t.IsValueType && !t.IsEnum) // enums are also value types!

lstStructs.Items.Add(t.FullName);

}

}

Chapter 6

314

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 314

Showing Selected Type Details

At this point, you should be able to load a given assembly and view its contained
types. The next aspect of your application is to intercept DoubleClick events for
each list box. If the user double-clicks a given entry, you extract metadata for the
selected item and display various details. The code behind each DoubleClick
event handler is about identical. Simply obtain the current selection from the
correct ListBox and call another helper method named ShowTypeStats(). For
example:

// Do the same thing for the struct, enum, and interface list boxes,

// just be sure you refer to the correct ListBox variable.

private void lstClasses_DoubleClick(object sender, System.EventArgs e)

{

// Get the current selection.

string currItem = lstClasses.Text;

Type t = theAsm.GetType(currItem);

ShowTypeStats(t);

}

ShowTypeStat() takes an incoming Type and dumps out the following:
private void ShowTypeStats(Type t)

{

// Build the stats.

StringBuilder sb = new StringBuilder();

sb.AppendFormat("Abstract? : {0}\n", t.IsAbstract);

sb.AppendFormat("Sealed? : {0}\n", t.IsSealed);

sb.AppendFormat("Base class? : {0}\n", t.BaseType);

sb.AppendFormat("Nested Private? : {0}\n", t.IsNestedPrivate);

sb.AppendFormat("Nested Public? : {0}\n", t.IsNestedPublic);

sb.AppendFormat("Public Class? : {0}\n", t.IsPublic);

MessageBox.Show(sb.ToString(),

"Type Details for: " + t.FullName);

}

If you select your custom enumeration (TheEnum) contained within the
ComplexTypeLibrary.dll, you find what appears in Figure 6-6.

.NET Types

315

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 315

Figure 6-6. Viewing selected type information

Building the More Details Menu

The other topmost menu of the main Form provides additional options to view
information about the assembly itself as well as the members of a given type (for
example, the methods of an interface, the fields of an enumeration, and whatnot).
Table 6-8 documents the name and purpose of each submenu.

Table 6-8. Listing the Submenus of the Topmost More Details Menu

More Details Submenu Meaning in Life

Get Assembly Details Launches a message box containing details of

the currently loaded assembly.

Get Members of Selected Class Launches a custom dialog box that lists each

member for the currently selected class.

Get Members of Selected Structure Launches a custom dialog box that lists each

member for the currently selected structure.

Get Members of Selected Enum Launches a custom dialog box that lists each

member for the currently selected

enumeration.

Get Members of Selected Interface Launches a custom dialog box that lists each

member for the currently selected interface.

Once you have constructed the menu system with the design-time menu
editor, your next goal is to build an appropriate Click event handler for each
submenu.

Chapter 6

316

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 316

Viewing Assembly Details

The implementation of More Details | Get Assembly Details simply displays core
bits of information using the Form’s Assembly member variable:

private void mnuGetAsmDetails_Click(object sender, System.EventArgs e)

{

if(theAsm != null)

{

StringBuilder sb = new StringBuilder();

sb.AppendFormat("FullName? : {0}\n", theAsm.FullName);

sb.AppendFormat("Loaded from GAC? : {0}\n", theAsm.GlobalAssemblyCache);

sb.AppendFormat("Location? : {0}\n", theAsm.Location);

MessageBox.Show(sb.ToString(), "Assembly Details");

}

}

For example, the assembly details for the ComplexTypeLibrary.dll assembly
would look something like Figure 6-7.

Figure 6-7. Viewing assembly details

Viewing Class, Enum, Interface, and Structure Details

The remaining Click event handlers each make use of a custom Windows Forms
dialog box (which I have called MemberInfoDialog). The dialog box contains a
ListBox type (to hold the method names), one Button that will function as the OK
button, and a final Button that allows the user to view the set of parameters for a
selected method (which you contend with in the next step). Once you have
constructed the GUI (Figure 6-8), be sure to set the DialogResult property of your
OK Button type to DialogResult.OK to ensure you can detect when the user has
dismissed the Form.

.NET Types

317

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 317

Figure 6-8. The initial GUI of your custom dialog

Given that this dialog box is required to display member information for the
item that has been selected on the parent Form, you need to add a few methods to
the MemberInfoDialog class. First, create a method named AddMember() to be
called by the parent Form to populate the ListBox. Next, add a method named
SetType() to set the value of a class-level Type reference. As you can guess, you use
this object to examine the set of parameters for a given item (which you do in just
a bit). Here are the relevant code updates:

// Extend your Form as so…

public class MemberInfoDialog : System.Windows.Forms.Form

{

private Type theType = null;

…

public void AddMember(string m)

{lstMembers.Items.Add(m);}

public void SetType(Type t)

{theType = t;}

}

Now that you have a dialog box to hold the given member information, you
can get back to the business of implementing the remaining menu Click events on
the main Form. Much like the implementation of the ListBox DoubleClick event
handlers, each submenu Click handler has a very similar code block: Simply
identify the currently selected item in a given ListBox, ask the Assembly for its type
information, and call a helper function named ShowMemberStats(). For example,
here is the code behind mnuGetClassMethods_Click():

Chapter 6

318

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 318

// The other submenu Click handlers are implemented

// in the same way (just change which ListBox to poll).

private void mnuGetClassMethods_Click(object sender, System.EventArgs e)

{

if(theAsm != null && lstClasses.Text != "")

{

// Get the current selection.

string currItem = lstClasses.Text;

Type t = theAsm.GetType(currItem);

ShowMemberStats(t);

}

}

ShowMemberStats() displays and populates your custom dialog Form and
sets the dialog’s internal Type member variable using the SetType() helper
method:

private void ShowMemberStats(Type t)

{

// Create the dialog & set Type.

MemberInfoDialog d = new MemberInfoDialog();

d.SetType(t);

// Get the members for the selected item.

StringBuilder sb = new StringBuilder();

MemberInfo[] allTheMembers = t.GetMembers();

// Fill the dialog’s ListBox with member info.

foreach(MemberInfo mi in allTheMembers)

{

d.AddMember(mi.Name);

}

d.ShowDialog();

}

.NET Types

319

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 319

Now, to test your new functionality, again assume you have loaded the
ComplexTypeLibrary.dll assembly, selected the SimpleClass item from the class
ListBox, and activated the Get Class Members menu item. The results are seen in
Figure 6-9 (note that I set this dialog’s ListBox.Sorted property to True).

Figure 6-9. Showing class member information

Likewise, if you select the custom enumeration (TheEnum) from the main
Form’s enumeration ListBox and select Get Enum Members, you find something
like what you see in Figure 6-10.

Figure 6-10. Viewing fields of a given enumeration

Chapter 6

320

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 320

Viewing Member Parameters

The final step of your custom type viewer is to implement the code behind the
dialog’s Show Method Parameters Button. As you might expect, when the user
selects a given item in the member ListBox (and clicks the Button), he or she sees a
list of each parameter for the selected item. For simplicity’s sake, the parameter
information is displayed in a Windows Forms message box. Here is the implemen-
tation of the Click event handler:

// Show the params (if any)!

private void btnShowParams_Click(object sender, System.EventArgs e)

{

if(theType != null)

{

try

{

string memberToExamine = lstMembers.Text;

StringBuilder sb = new StringBuilder();

ParameterInfo[] paramInfo =

theType.GetMethod(memberToExamine).GetParameters();

foreach(ParameterInfo pi in paramInfo)

{

sb.AppendFormat("Name: {0}, Type: {1}, Position: {2}\n",

pi.Name, pi.ParameterType.ToString(),

pi.Position);

}

MessageBox.Show(sb.ToString(), "Params for: " + lstMembers.Text);

}

catch(Exception ex)

{

MessageBox.Show(ex.Message, "Error building params!");

}

}

}

Given that some types do not have parameterized members (such as the fields
of a .NET enumeration), I have wrapped the parameter-building logic within a
generic try/catch statement. If you want to enhance this application, you may
want to disable the parameter-centric Button if the type is an enumeration. Never-
theless, here is the parameter information for the inherited Equals() method of the
ComplexTypeLibrary.SimpleClass type (Figure 6-11).

.NET Types

321

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 321

Figure 6-11. Parameter information

Your custom ILDasm-like application is now complete! To highlight the
use of your application, Figure 6-12 shows the set of types contained within
the System.Data.dll assembly (which, as you are aware, is the home of
ADO.NET types).

Figure 6-12. Viewing the types of ADO.NET using your custom type viewer

Chapter 6

322

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 322

CODE The DotNetTypeReader application is located under the
Chapter 6 subdirectory.

A Brief Word Regarding System.Reflection.Emit

Before moving to the next topic of the chapter, it is worth pointing out
that the System.Reflection namespace defines a nested namespace called
System.Reflection.Emit. Using these types, you can construct assemblies and
the contained IL instructions at runtime, on the fly. As you have already seen in
Chapter 5, the System.CodeDOM namespace defines a number of types that allow
you to dynamically generate language-specific source code files using a language-
independent object graph. The distinction between System.Reflection.Emit and
CodeDOM is that System.Reflection.Emit allows you to bypass obtaining an
ICodeCompiler interface to transform a given set of files into an assembly. Rather,
the types found in the System.Reflection.Emit namespace allow you to directly
build the entire assembly and IL code in one fell swoop. If you require additional
information, may I (modestly) suggest my first two Apress texts: C# and the .NET
Platform and VB .NET and the .NET Platform: An Advanced Guide.

Understanding .NET Attributes

At this point in the chapter, you have examined the details behind the .NET type
system and spent time coming to understand the process of runtime type
discovery using the System.Reflection namespace. Next, you need to examine
exactly how the .NET platform honors the use of attribute-based programming.

As you recall, COM IDL attributes are basically keywords placed within square
brackets (for example, [in, out]). As you recall from Chapter 4, the [custom] IDL
attribute can be used to create a custom name/value pair that allows you to
extend your type library with custom metadata. The major problem with custom
IDL COM attributes is the fact that they are simple keywords that only exist to
bind a GUID to a particular value.

Under .NET, attributes are objects. Specifically, .NET attributes are class types
that extend the System.Attribute base class type. Table 6-9 documents the core
members of the Attribute class.

.NET Types

323

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 323

Table 6-9. Core Members of System.Attribute

Member of System.Attribute Meaning in Life

TypeId This property is used to return a unique identifier for

this Attribute (the default implementation returns the

Type that describes this attribute). Using this unique

tag, you are able to refer to this item at runtime.

GetCustomAttribute() These static methods retrieve a custom attribute (or set

GetCustomAttributes() of attributes) of a specified type.

IsDefaultAttribute() When overridden in a derived class, returns an

indication of whether the value of this instance is the

default value for the derived class.

IsDefined This static property determines whether any custom

attributes of a specified type are applied to a specified

type or the assembly itself.

In addition to building your own custom attributes, you should also under-
stand that just about every .NET namespace defines a number of preexisting
attributes. As you begin to see in Chapter 7 (as well as for the remainder of this
book) COM/.NET interoperability makes heavy use of these existing attributes.
In fact, a majority of the members of the System.Runtime.InteropServices name-
space are System.Attribute-derived class types!

When you apply attributes to a given coding item, you are able to add custom
bits of metadata to your .NET assemblies. Understand that attributes in and of
themselves are useless. To be sure, attributes mean nothing unless some piece
of software is able to account for their presence. This piece of software could be
a custom application, a particular design-time tool, or a managed compiler.

For example, the System.ObsoleteAttribute attribute may be applied to a given
piece of code to identify items that are considered out of fashion. As you recall,
the ComplexTypeLibrary.dll assembly defined a rather uninteresting class
(SimpleClass). If you update the class definition as follows:

[ObsoleteAttribute("This class is useless. Use anything else")]

public class SimpleClass{}

you inform a managed compiler to generate a compile time warning whenever the
type is used (Figure 6-13).

Chapter 6

324

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 324

Figure 6-13. The Obsolete attribute in action

Creating and Applying Custom Attributes

To illustrate the process of building custom .NET attributes, let’s add the following
class definition to your existing ComplexTypeLibrary.dll assembly, which mimics
the custom IDL attribute created in Chapter 4:

// The custom attribute.

public class ToDoAttribute : System.Attribute

{

private string toDoComment;

public ToDoAttribute(string comment)

{ toDoComment = comment;}

public string Comment

{get {return toDoComment;}}

}

Like any other class type, ToDoAttribute maintains a set of data members and
may support any number of constructors, properties, or methods. Here, your
custom attribute maintains a string that represents an annotation that may be
applied to a given code block. For example, you could update the SimpleClass to
make use of your custom attribute rather than the predefined ObsoleteAttribute:

.NET Types

325

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 325

// Applying our attribute.

[ToDoAttribute("Make this class do something!")]

public class SimpleClass{}

As you have seen, the C# syntax used to apply a .NET attribute looks quite a
bit like that of classic IDL (VB .NET makes use of angled brackets for the same
purpose). The key difference between IDL attributes and .NET attributes is the fact
that you are able to specify constructor parameters at the time of application.

Also be aware that some .NET languages allow you to omit the “-Attribute”suffix.
Thus, you could write the following (slightly shortened) attribute syntax:

// Some .NET languages allow you to

// make use of the following

// shorthand notation.

[ToDo("This enum stinks!")]

public enum TheEnum

{FieldA, FieldB}

Viewing the Applied Metadata

If you open the updated ComplexTypeLibrary.dll assembly using ILDasm.exe
and examine the TheEnum type, you are able to view your custom metadata
(Figure 6-14).

Figure 6-14. Viewing your custom metadata

Chapter 6

326

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 326

Restricting Attribute Usage

Attributes can take attributes themselves. One of the more interesting
attributes you can apply to your custom System.Attribute-derived types is the
AttributesUsage type. Using this attribute, you are able to control exactly where
your custom attribute is applied. By default, custom .NET attributes can be
applied to any item (types, methods, parameters, or what have you). Obviously,
some attributes only make sense in a given context. Consider the COM IDL [retval]
attribute. Imagine how bizarre IDL definitions would become if [retval] was used
in the context of a library statement, [in]-bound parameters, or coclass definition!
To prevent this chaos, the AttributeUsage attribute may be assigned any values
from the AttributeTarget enumeration:

// This enumeration is used to control

// how a custom attribute can be applied.

public enum AttributeTargets

{

All,

Assembly,

Class,

Constructor,

Delegate,

Enum,

Event,

Field,

Interface,

Method,

Module,

Parameter,

Property,

ReturnValue,

Struct

}

For the sake of argument, if you wish to ensure that the ToDoAttribute can
only be applied to classes, interfaces, structures, or enumerations, you could
update the definition as follows:

// The restricted attribute.

[AttributeUsage(AttributeTargets.Class |

AttributeTargets.Interface |

AttributeTargets.Enum |

.NET Types

327

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 327

AttributeTargets.Struct)]

public class ToDoAttribute : System.Attribute

{

private string toDoComment;

public ToDoAttribute(string comment)

{ toDoComment = comment;}

public string Comment

{get {return toDoComment;}}

}

If you now attempt to apply the ToDoAttribute attribute to a method as follows:

// Ugh! Not allowed.

public interface IFaceTwo

{

[ToDo("Document this method...")]

int SimpleMethod();

}

you are issued a compile-time error.

Assembly- (and Module-) Level Attributes

It is also possible to apply attributes on all types within a given assembly using the
[assembly:] prefix. Recall the CLS-compliant attribute described in Chapter 5:

// Enforce CLS compliance!

[assembly:System.CLSCompliantAttribute(true)]

Visual Studio .NET projects define a file called AssemblyInfo.*. This file is a
handy place to place all global-level attributes that are to be applied at the
assembly level. Table 6-10 is run-through of some assembly-level attributes you
should be aware of.

Chapter 6

328

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 328

Table 6-10. Select Assembly-Level Attributes

Assembly-Level Attribute Meaning in Life

AssemblyCompanyAttribute Holds basic company information.

AssemblyConfigurationAttribute Build information, such as “retail” or

“debug.”

AssemblyCopyrightAttribute Holds any copyright information for the

product or assembly.

AssemblyDescriptionAttribute A friendly description of the product or

modules that make up the assembly.

AssemblyInformationalVersionAttribute Additional or supporting version

information, such as a commercial

product version number.

AssemblyProductAttribute Product information.

AssemblyTrademarkAttribute Trademark information.

AssemblyCultureAttribute Information on what cultures or

languages the assembly supports.

AssemblyKeyFileAttribute Specifies the name of the file containing

the key pair used to sign the assembly

(that is, establish a shared name).

AssemblyKeyNameAttribute Specifies the name of the key container.

Instead of placing a key pair in a file, you

can store it in a key container in the CSP.

If you choose this option, this attribute

contains the name of the key container.

AssemblyOperatingSystemAttribute Information on which operating system

the assembly was built to support.

AssemblyProcessorAttribute Information on which processors the

assembly was built to support.

AssemblyVersionAttribute Specifies the assembly’s version

information, in the format

major.minor.build.rev.

.NET Types

329

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 329

Reading Attributes at Runtime

To wrap up your examination of .NET attribute programming, let’s examine
how to read attributes at runtime. There are a number of ways to obtain
attribute metadata from a loaded assembly. First, the Assembly class defines the
GetCustomAttribute() and GetCustomAttributes() methods. The System.Type class
defines members of the same name. To illustrate, assume you wish to obtain the
ToDo comment for the TheEnum type. The following Main() method does
the trick:

using System;

using System.Reflection;

using ComplexTypeLibrary;

using ComplexTypeLibrary.TheTypes;

…

static void Main(string[] args)

{

// Get the Type of TheEnum.

Type t = typeof(TheEnum);

// Get all attributes on this type.

object[] customAtts = t.GetCustomAttributes(false);

// List TODO comment.

foreach(ToDoAttribute a in customAtts)

Console.WriteLine("ToDo: {0}", a.Comment);

}

The output can be seen in Figure 6-15.

Figure 6-15. Reading TheEnum’s ToDo comment

Chapter 6

330

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 330

CODE The AttributeReader application is included under the Chapter 6
subdirectory.

Late Binding Under the .NET Platform

To wrap up the chapter, let’s examine how the .NET platform contends with the
notion of late binding. Recall that late binding is a technique in which you are able
to resolve the existence of (and name of) a given type and its members at runtime
(rather than compile time). Once the presence of a type has been determined, you
are then able to dynamically invoke methods, access properties, and manipulate
the fields of a given entity.

To be sure, when you build your custom .NET types, you never need to
implement IDispatch to facilitate late binding. The truth of the matter is that you
will not need to do anything at all to allow clients to dynamically invoke your
members. When you build late-bound clients, however, you make use of the
System.Reflection namespace.

Like any late-binding scenario, the client code base does not refer to the
assembly containing the types it wishes to activate. In terms of managed code, this
means you will not set a reference to the assembly (and therefore you will not have
an [.assembly extern] tag in the client manifest) and you will not need make use of
the C# using (Imports under VB .NET) keyword.

Do understand, however, that the .NET runtime makes use of the same search
heuristics used with early binding (see Chapter 5). Thus, if the assembly you want
to interact with is a private assembly, you need to manually copy the assembly
into the current application directory (or author a *.config file). On the other hand,
if you attempt to bind late to a shared assembly stored in the GAC, you need to
refer to the assembly using the corresponding strong name. You will see each
approach, but first you need to check out the Activator class.

The Activator Class

The System.Activator class is the key to late binding. Beyond the methods inher-
ited from Object, Activator only defines a small set of members, all of which are
static (Table 6-11).

.NET Types

331

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 331

Table 6-11. Members of the Activator Class

Static Method of the Meaning in Life
Activator Class

CreateComInstanceFrom() Creates an instance of the COM object whose name

is specified using the named assembly file and the

constructor that best matches the specified

parameters.

CreateInstance() Overloaded. Creates an instance of the specified

type using the constructor that best matches the

specified parameters.

CreateInstanceFrom() Overloaded. Creates an instance of the type whose

name is specified, using the named assembly file

and the constructor that best matches the specified

parameters.

GetObject() Overloaded. Creates a proxy for a currently running

remote object, server-activated well-known object,

or XML Web service.

Activator.CreateInstance() is perhaps the core method, which creates an
instance of a type at runtime. This method has been overloaded numerous times,
to provide a good deal of flexibility. One variation of the CreateInstance() member
takes a valid Type object (representing the entity you wish to create) and returns a
System.Object reference, which represents a handle to the newly created type.

Late Binding to a Private Assembly

By way of example, assume that you have manually copied the
ComplexTypeLibrary.dll assembly into the application directory of a new
console application named LateBinder.exe. To create an instance of the nested
TheNestedClass type (found in the ComplexTypeLibrary.TheTypes namespace),
you would write the following:

// Bind late to a private assembly.

Assembly asm = Assembly.Load("ComplexTypeLibrary");

// Get type in the assembly.

string typeIWant =

"ComplexTypeLibrary.TheTypes.TheNestingClass+TheNestedClass";

Type t = asm.GetType(typeIWant);

// Create TheNestedClass on the fly.

object obj = Activator.CreateInstance(t);

Chapter 6

332

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 332

Once you have a reference to the type you wish to manipulate, you are
then able to make use of the members of System.Reflection to interact with
the type’s fields, methods, properties, and so forth. For example, to invoke the
GetInternalString() method of the TheNestedClass type, you would make use
of MethodInfo.Invoke():

// Get info for GetInternalString.

MethodInfo mi = t.GetMethod("GetInternalString");

// Invoke method ('null' for no parameters).

// The return value of Invoke() holds the methods

// physical return value.

object retval = mi.Invoke(obj, null);

Console.WriteLine(((string)retval).ToString());

If you run the application, you will be pleased to find what you see in
Figure 6-16.

Figure 6-16. Invoking a member using late binding

As you might guess, MethodInfo.Invoke() has also been overloaded a number
of times to allow you to qualify the member you wish to invoke. For example,
many of the overloaded signatures allow you to define a set of flags that control
the bind, using the BindingFlags enumeration (I’ll assume you will check out
online Help for full commentary). Do note that this enum takes the place of
the COM IDispatch binding flags such as DISPATCH_METHOD,
DISPATCH_PROPERTYGET, and DISPATCH_PROPERTYPUT.

// Binding Flags.

public enum System.Reflection.BindingFlags

{

CreateInstance,

DeclaredOnly,

Default,

ExactBinding,

FlattenHierarchy,

.NET Types

333

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 333

GetField,

GetProperty,

IgnoreCase,

IgnoreReturn,

Instance,

InvokeMethod,

NonPublic,

OptionalParamBinding,

Public,

PutDispProperty,

PutRefDispProperty,

SetField,

SetProperty,

Static,

SuppressChangeType

}

Invoking Parameterized Methods

The Invoke() method also allows you to specify the set of parameters that should
be sent (where “null” signifies a method with no parameters). Now, for the sake of
argument, assume that TheNestedClass also defines an additional method
(ShowMessage()) that takes two parameters:

// The updated nested type.

public class TheNestedClass

{

…

public void ShowMessage(string m, short numbOfTimes)

{

string message = "";

for(short i = 0; i < numbOfTimes; i++)

{

message += m;

message += " ";

}

MessageBox.Show(message);

}

}

}

Chapter 6

334

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 334

To invoke this member using late binding, you would need to build an array of
System.Object types to send in place of the null parameter of
MethodInfo.Invoke():

// Invoke method with parameters.

short numbOfTimes = 5;

// 'Oi' Is a UK punk rocker vocative chant…

object[] theParams = {"Oi!", numbOfTimes};

mi = t.GetMethod("ShowMessage");

mi.Invoke(obj, theParams);

This would yield the output shown in Figure 6-17.

Figure 6-17. Invoking parameterized members

Binding Late to Shared Assemblies

The first example illustrated how to bind to a private assembly, which requires a
local copy of the ComplexTypeLibrary.dll assembly. As you would expect, you are
also able to bind to an assembly placed into the GAC. To do so requires specifying
the strong name of the assembly, or if you prefer, a partial strong name of the
assembly. Consider the following code:

// Construct a partial strong name

// (assume you are using the default culture).

string strongName = "System.Windows.Forms,";

strongName += "PublicKeyToken=b77a5c561934e089, Version=1.0.3300.0";

// Load from GAC.

Assembly asm2 = Assembly.LoadWithPartialName(strongName);

// Get OpenFileDialog type in the assembly.

Type t2 = asm2.GetType("System.Windows.Forms.OpenFileDialog");

object obj2 = Activator.CreateInstance(t2);

// Get info for ShowDialog().

MethodInfo mi2 = t2.GetMethod("ShowDialog", new Type[0]);

// Launch the dialog!

mi2.Invoke(obj2, null);

.NET Types

335

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 335

As you would guess, when this application is launched, the OpenFileDialog is
displayed on the screen (again, totally on the fly at runtime). Notice that you have
made use of an overloaded version of the MethodInfo.GetMethod() member. The
optional second parameter is an array of Type objects that represents the parame-
ters of the given method. Understand that the array of Types does not literally
contain values to send into the method, but rather the signature of the method to
invoke! Given that ShowDialog() has been overloaded twice:

// Shows the form as a modal dialog box with no owner window.

public DialogResult ShowDialog();

// Shows the form as a modal dialog with the specified owner.

public DialogResult ShowDialog(IWin32Window owner);

you are specifying that you are interested in obtaining a parameter-less variation
using an empty array of Type types.

CODE The LateBinder project is included under the Chapter 6
subdirectory.

Contrasting COM and .NET Late-Binding Syntax

So then as you can see, the .NET platform still supports the ability to bind to a type
at runtime. Depending on your comfort level with COM late binding, you may
have noticed a very similar pattern between the two architectures. For example,
under COM you are required to package a DISPPARAMS structure that holds the
arguments to pass to the member specified by IDispatch::Invoke(). Under .NET,
this idea is expressed as an array of System.Object types.

To further illustrate the syntactic similarities between each approach, assume
you wish to invoke a method named Add() that returns the summation of two
integers. Under the COM model, a late-bound C++ client would obtain the
summation using IDispatch as follows:

// Once again, a C++ late bound client.
void main()
{

CoInitialize(NULL);
IDispatch* pDisp = NULL;
CLSID clsid;
DISPID dispid;

Chapter 6

336

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 336

// Go look up the CLSID from the ProgID.
CLSIDFromProgID(OLESTR("ATLAddServer.Calc"),&clsid);
LPOLESTR str = OLESTR("Add");
// Create object and get IDispatch.
CoCreateInstance(clsid, NULL, CLSCTX_SERVER, IID_IDispatch,

(void**)&pDisp);
// Get DISPID from object.
pDisp->GetIDsOfNames(IID_NULL, &str,1,

LOCALE_SYSTEM_DEFAULT, &dispid);
// Build dispatch parameters.
VARIANT args[2];
VariantInit(&args[0]);
args[0].vt = VT_I2;
args[0].intVal = 10;
VariantInit(&args[1]);
args[1].vt = VT_I2;
args[1].intVal = 51;
DISPPARAMS myParams = { args, 0, 2, 0};
VARIANT result;
VariantInit(&result);
// Call Add() using Invoke().
pDisp->Invoke(dispid, IID_NULL, LOCALE_SYSTEM_DEFAULT,

DISPATCH_METHOD, &myParams, &result, NULL, NULL);
cout << "10 + 51 is " << result.intVal << endl;
// COM clean up.
pDisp->Release();
CoUninitialize();

}

If you had a C# application that defined a class supporting a similar Add()
method, you would find the following client-side code:

static void Main(string[] args)
{

Assembly asm = Assembly.Load("CSharpAddServer");
// Get type in the assembly.
Type t = asm.GetType("CSharpAddServer.Calc");

// Create the Calc class on the fly.
object obj = Activator.CreateInstance(t);

// Get info for Add.
MethodInfo mi = t.GetMethod("Add");
// Invoke method.
object[] theParams = {10, 51};
object retval = mi.Invoke(obj, theParams);
Console.WriteLine("10 + 51 is {0}", ((int)retval).ToString());

}

.NET Types

337

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 337

As you can see from the code comments, the basic operation of late binding
has remained intact. In either architecture, you are required to specify a string
name of the member you wish to invoke and an array of items that represent
the parameter set. Under COM, you make use of VARIANTs, IDispatch, and the
DISPPARAMS structure. Under .NET, you are provided the more OO-aware
System.Object and System.Type data types as well as the System.Reflection
namespace.

Well, that wraps up the investigation of the .NET and COM type systems. If
you have been reading this book from the beginning (and I hope this is the case)
you should now feel quite familiar with how each architecture defines, represents,
and contends with the almighty notion of “type.” The remainder of this text dives
headlong into the details of building bridges between these completely unrelated
architectures.

Summary

The .NET type system is an extremely unified model when contrasted to that of
classic COM. First and foremost, the base class System.Object ensures that all
types maintain a shared polymorphic interface. As you have seen, you are able to
override a number of these methods in your custom types to build intelligent
user-defined types.

As far as the data type system of .NET is concerned, this chapter also exam-
ined how language-specific keywords map to a particular member of the System
namespace. In addition to the core intrinsic data types, the CTS also documents
how to construct the various members of the .NET type system—classes,
interfaces, enumerations, and structures—to ensure symmetrical access of
these types from any managed language.

The System.Reflection namespace is a key aspect to understanding the .NET
type system. Using the members of this namespace (in conjunction with the
System.Type class), you are able to obtain a complete runtime description of the
characteristics of a given assembly, type, member, or parameter.

Closely related to the topic of reflection is the use of attribute-based program-
ming. Unlike COM IDL, custom metadata is expressed under the .NET platform by
creating class types that derive from System.Attribute. Finally, you wrapped up by
making use of .NET reflection services to achieve client-side late binding. Next up,
it’s time to examine the basic details of .NET-to-COM interoperability.

Chapter 6

338

*0112_Ch06_CMP4.qxp 3/25/02 1:47 PM Page 338

CHAPTER 7

.NET-to-COM
Interoperability—

The Basics

The previous five chapters have exposed you to the core characteristics of the
COM and .NET type systems. The remainder of this book addresses how these
types can be expressed and manipulated across architectural boundaries. In this
chapter, you are exposed to the key .NET-to-COM interoperability issues you are
likely to encounter on a day-to-day basis (with some more exotic topics thrown in
for good measure). For example, you investigate a number of ways to build inter-
operability assemblies (including “primary” interop assemblies), examine core
IDL to .NET data type mappings, and understand how key COM data structures
(interfaces, coclasses, enumerations) are expressed in terms of .NET. Along the
way, you take a more detailed look at the types contained in the
System.Runtime.InteropServices namespace (first introduced in Chapter 1). As
you might expect, the materials presented here work as the backbone for more
advanced topics found in the remainder of the text.

A High-Level Overview of .NET-to-COM
Interoperability

As you have seen in Chapters 5 and 6, languages targeting the .NET runtime satisfy
each pillar of object-oriented technology. For example, when you build an
assembly using a given managed language, you are able to create classes that
support any number of constructors, overloaded methods, and overridden
members, and implement any optional interfaces. As well, the .NET platform
makes use of a runtime garbage collector, which is responsible for freeing an
object from the managed heap when it is no longer rooted in a given application.

In stark contrast, as you have seen in Chapters 2 through 4, COM types do not
adhere to each and every pillar of OOP in the classic sense of the topic. For
example, COM types are not created using class constructors, but rather using the

339

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 339

IClassFactory interface. In addition, COM classes are not allowed to define over-
loaded methods and cannot function as a base class to other COM types (as COM
has no support for classical inheritance). As far as lifetime management of a
coclass is concerned, COM does not make use of a garbage-collected heap, but
employs a strict reference counting scheme provided courtesy of IUnknown.

Given the fact that COM and .NET types have so little in common, you may
have deep-rooted fears regarding interoperability issues. Ideally, a .NET client
should be able to use a COM type with no concern for the mechanics of COM. For
example, a managed client should be able to create the COM type using
constructor semantics, derive new types from the COM wrapper class (given that
.NET supports classic inheritance), and should not be required to obtain or release
interface references (given that .NET does not demand the use of interface refer-
ences). In a nutshell, as far as a .NET client is concerned, manipulating a COM
type should look identical to the act of manipulating a native .NET type. For
example:

// COM classes should appear as .NET types.

MyComClass c = new MyComClass();

c.SomeMethod("Hello", 12);

Obviously, this cannot be achieved unless you have an intermediary that
stands between the .NET client and the existing COM type. In short, what we need
is a proxy that is in charge of transparently handling .NET-to-COM communica-
tions. To be sure, whenever a .NET application makes use of a legacy COM type, a
proxy is created by the .NET runtime. Formally, this proxy is termed a Runtime
Callable Wrapper (RCW).

In a similar vein, a COM client should be able to make use of a .NET type
without concern for the mechanics of .NET. For example, COM clients should be
able to activate a .NET class using CoCreateInstance(); directly call the members
of IUnknown, IDispatch, and IClassFactory; and should assume the type is main-
taining an internal reference count. When unmanaged code communicates with
managed .NET types, a different sort of proxy called a COM Callable Wrapper
(CCW) is used to translate COM requests into terms of .NET. Chapters 10 through
12 examine the process of COM-to-.NET interoperability. For the time being, let’s
concentrate on the role of the RCW.

Understanding the Role of the RCW

The RCW is a .NET object that is in charge of marshaling calls between a managed
unit of code and a given COM type. While a managed client is making calls to a
given COM type, the RCW intercepts each invocation, translates each incoming

Chapter 7

340

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 340

argument into terms of IDL data types, and invokes the coclass method. Likewise,
if the coclass returns any information to the caller (via [out] or [out, retval] IDL
parameters) the RCW is responsible for translating the IDL type(s) into the appro-
priate .NET type(s). As you would hope, there is a fixed set of translation rules used
to map between IDL and .NET atoms (demonstrated throughout the remainder of
this text).

In addition to marshaling data types to and fro, the RCW also attempts to fool
the .NET client into believing that it is communicating directly with a native .NET
type. To do so, the RCW hides a number of low-level COM interfaces from view
(IClassFactory, IUnknown, IDispatch, and so forth). Thus, rather than forcing the
.NET client to make manual calls to CoCreateInstance(), the client is free to use
the activation keyword of its code base (e.g., new, New, and so on). And rather
than forcing the managed client to manually call QueryInterface(), AddRef(), or
Release(), the client is able to perform simple casting operations to obtain a
particular interface and is never required to release interface references.

It is important to understand that a single RCW exists for each coclass the client
interacts with, regardless of how many interfaces have been obtained from the type.
In this way, an RCW is able to correctly manage the identity and reference count of
the COM class. For example, assume a C# Windows Forms application has created
three coclasses residing in various COM servers. If this is the case, the runtime
creates three RCW proxy types to facilitate the communication (Figure 7-1).

Figure 7-1. A single RCW exists for each coclass.

Notice how each RCW maintains an internal reference count for the corre-
sponding object. A given RCW maintains a cache of interface pointers on the COM

.NET-to-COM Interoperability—The Basics

341

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 341

object it wraps and releases these references when the RCW is no longer used
by the caller (and therefore garbage collected). In this way, the managed client
is able to simply “new” the COM wrapper and is blissfully unaware of COM
interface–based reference counting. Also, given that the RCW will not release the
referenced interfaces until it is garbage collected, you can rest assured that a given
coclass is alive as long as the .NET client is making use of the related RCW.

Understand, of course, that the RCW is responsible for more than simply
mapping .NET types into COM atoms. As you see later in this text, the RCW is also
responsible for mapping COM error objects (that is, IErrorInfo, ICreateErrorInfo)
into managed exceptions. In this way, if a coclass throws a COM error, the .NET
client is able to handle the problem using standard try, catch, and finally
keywords. The RCW is also responsible for mapping COM event handling primi-
tives (that is, IConnectionPointContainer, IConnectionPoint) into terms of
managed delegates.

One question that may pop up at this point is “Where does an RCW come from
in the first place?” As you will see, RCWs are .NET class types that are dynamically
created by the runtime. The exact look and feel of an RCW will be based on the
information contained within a related interop assembly. These assemblies contain
metadata that is used specifically to bridge the gap between managed and unman-
aged code. The good news is that you are not required to manually create interop
assemblies by hand (though you could). Rather, you more typically make use of the
tlbimp.exe tool that ships with the .NET SDK or the Visual Studio .NET IDE.

Building an Interop Assembly—
The Simplest Possible Example

Before I dig into the gory details of the RCW, let’s see a simple example. The goal is
to build a C# application that makes use of the VB 6.0 COM server you created in
Chapter 3. For the sake of illustration, assume you have a new Windows Forms
application named CSharpVBComServerClient. The main Form has a single
button that is used to activate and manipulate the VB 6.0 COM type (Figure 7-2).

Figure 7-2. The C# client application

Chapter 7

342

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 342

To generate an interop assembly using VS .NET could not be any simpler. To do
so, launch the Add Reference dialog box and select the COM tab. If your COM server
has been registered correctly, you will find it listed alphabetically (Figure 7-3).

Figure 7-3. Referencing a COM server using Visual Studio .NET

Once you select the Vb6CarServer COM binary and click the OK button, check
out the application directory of the C# client (Figure 7-4). You will find a new
private assembly has been generated automatically. Also note that the name of
this assembly has been prefixed with “Interop.” to clearly mark the role of this
binary. This is only a convention, however. An interop assembly can be named in
any way you so choose.

If you examine the binary using the VS .NET Object Browser, you find that the
interop assembly contains a single namespace that contains managed equivalents
of each COM type documented in the COM type library (Figure 7-5).

.NET-to-COM Interoperability—The Basics

343

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 343

Figure 7-4. VS .NET generates private interop assemblies.

Figure 7-5. Peeking into the generated interop assembly

Chapter 7

344

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 344

You examine the details of the conversion process soon enough, so for now,
let’s simply add the following code to the C# Windows Forms application to acti-
vate and exercise the VB 6.0 COM class:

// Need to reference namespace!

…

using Vb6CarServer;

namespace CSharpVBComServerClient

{

public class MainForm : System.Windows.Forms.Form

{

…

// Button Click event handler.

private void btnUseVb6ComCar_Click(object sender,

System.EventArgs e)

{

// Use the COM class.

CoCarClass vbComCar = new CoCarClass();

vbComCar.TurboBlast();

vbComCar.Speed = 20;

MessageBox.Show(vbComCar.Speed.ToString(),

"Speed is:");

}

}

}

As you can see, the C# client is completely hidden from the mechanics of
COM. If you were to run the application, you would find that the COM type is
activated (via the new keyword) and manipulated accordingly. Under the hood,
of course, the RCW makes a call to the COM API function CoCreateInstance().
Although VS .NET makes the process of using existing COM types quite intuitive,
you may have noticed a few items of interest. For example, notice that the name
of the .NET wrapper (CoCarClass) is not identical to the COM type (CoCar). Also
notice that the managed client is able to access the members of each interface
(_CoCar and IVBTurbo) from what appears to be an instance of the coclass. You
come to understand the details in the remainder of this chapter, so don’t sweat the
details for now.

.NET-to-COM Interoperability—The Basics

345

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 345

A Visual Basic .NET Client

As you would expect, you can make use of any managed language to interact with
legacy COM types. For example, if you make use of a VB .NET Windows Forms
application (rather than C#), you find an almost identical code base:

' Reference the generated namespace.

Imports Vb6CarServer

Public Class MainForm

Inherits System.Windows.Forms.Form

…

' VB .NET Button Click event handler.

Private Sub btnUseVb6ComType_Click(ByVal sender As _

System.Object, ByVal e As System.EventArgs) _

Handles btnUseVb6ComType.Click

' Make the VB 6.0 coclass.

Dim vbComCar As New CoCarClass()

vbComCar.TurboBlast()

vbComCar.Speed = 20

MessageBox.Show(vbComCar.Speed.ToString(), "Speed is:")

End Sub

End Class

So far, so good! Using Visual Studio .NET, you are able to work with the
existing COM servers with minimum fuss and bother. In fact, using the basic infor-
mation presented here, you can build managed solutions that leverage legacy
COM types. As is always the case, however, the devil is in the details.

CODE The CSharpVBComServerClient and VBDotNetVBComServerClient
applications are included under the Chapter 7 subdirectory.

Converting Between COM IDL Data Types
and Managed Data Types

Now that you have seen the basics of using an existing COM type from managed
code, it’s time to dig deeper into the role of the RCW. As previously stated, a
primary role of the RCW is to translate between IDL COM types and managed
equivalents. I have already alluded to some of these translation rules (for example,
BSTR to System.String). Table 7-1 documents the complete picture.

Chapter 7

346

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 346

Table 7-1. COM-to-.NET Data Type Mappings

COM IDL Data Type Managed .NET Data Type

bool, bool * System.Int32

char, char * System.SByte
small , small *

short, short * System.Int16

long, long * System.Int32
int , int *

hyper, hyper * System.Int64

unsigned char, unsigned char *,

byte, byte * System.Byte

wchar_t, wchar_t * System.UInt16
unsigned short, unsigned short *

unsigned long, unsigned long * System.UInt32
unsigned int, unsigned int *

unsigned hyper System.UInt64
unsigned hyper *

float, float * System.Single

double, double * System.Double

VARIANT_BOOL System.Boolean
VARIANT_BOOL *

void *, void ** System.IntPtr

HRESULT, HRESULT * System.Int16 or System.IntPtr

SCODE, SCODE * System.Int32

BSTR, BSTR * System.String

LPSTR or [string, …] char * System.String
LPSTR *

LPWSTR or [string, …] wchar_t * System.String
LPWSTR *

VARIANT, VARIANT * System.Object

DECIMAL, DECIMAL * System.Decimal
CURRENCY, CURRENCY *

DATE, DATE * System.DateTime

GUID, GUID * System.Guid

IUnknown *, IUnknown ** System.Object

IDispatch *, IDispatch ** System.Object

SAFEARRAY(type) type[] (i.e., a managed array deriving from
SAFEARRAY(type) * System.Array)

.NET-to-COM Interoperability—The Basics

347

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 347

As you may be able to tell, Table 7-1 is not exclusively confined to
[oleautomation]-compatible IDL data types. For example, although the hyper,
char*, and wchar_t* IDL data types can be expressed by a managed .NET base
type, these items are not VARIANT compliant. Given this factoid, I do not discuss
these mappings during the remainder of this chapter.

As far as the [oleautomation]-compatible types are concerned, note that
IUnknown-and IDispatch-derived interfaces are mapped into the .NET
System.Object data type. Although any COM interface can be represented by
System.Object, do understand that the COM/.NET conversion process will
generate managed equivalents for named COM interfaces. Thus, if your COM type
library defines an interface named ICar, the conversion process generates a
managed equivalent of the same name.

Also notice that COM BSTRs are mapped into the friendly System.String type,
while COM SAFEARRAYs are mapped (by default) into System.Array. Later in this
text, I examine a number of array-centric details, but for the time being it is safe to
assume that arrays of COM IDL types map into a managed System.Array. Beyond
these notable exceptions, most of the COM-to-.NET data type conversions should
provoke no raised eyebrows.

Working with Managed GUIDs (System.Guid)

As you have also noticed from Table 7-1, the .NET base class libraries also supply a
managed GUID equivalent. System.Guid provides a small number of members
that allow you to manipulate the underlying GUID structure. In addition to over-
loading the equality and nonequality operators, System.Guid also provides the
static (shared) NewGuid() method. For example, ponder the following C# code (as
you may suspect, NewGuid() simply makes a call to CoCreateGuid() on your
behalf).

// Get a GUID via System.Guid.NewGuid()

Guid myGuid = Guid.NewGuid();

Console.WriteLine(myGuid.ToString());

It is also useful to know that the Guid.ToString() method has been overloaded
to support an incoming string parameter. This argument allows you to specify any
of the following format characters:

// N format: ba5767980b834b7db8701b2e0377f58c

Console.WriteLine("N format {0}", myGuid.ToString("N"));

// D format: ba576798-0b83-4b7d-b870-1b2e0377f58c

Console.WriteLine("D format {0}", myGuid.ToString("D"));

// B format: {ba576798-0b83-4b7d-b870-1b2e0377f58c}

Console.WriteLine("B format {0}", myGuid.ToString("B"));

// P format: (ba576798-0b83-4b7d-b870-1b2e0377f58c)

Console.WriteLine("P format {0}", myGuid.ToString("P"));

Chapter 7

348

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 348

Here, you find that the “N” format produces a raw 32-digit number, “D” makes
use of a hyphen delimiter, and “B” and “P” make use of brackets and parentheses,
respectively. As you will see later in this text, when an interop assembly is gener-
ated by a given tool, the GUIDs documented within a COM type library will be
preserved and embedded into the interop assembly’s metadata. Given this, you
typically will not need to directly create a GUID from a managed client; however,
we will see its usefulness where necessary.

Blittable and Non-Blittable Data Types

Technically speaking, the .NET data types listed previously in Table 7-1 can be
broken down into two broad categories: blittable and non-blittable. The so-called
blittable types listed in Table 7-2 are entities that are represented identically
(under the hood) in both managed and unmanaged environments, and therefore
do not require any special translations when marshaled between .NET and COM
boundaries.

Table 7-2. The Blittable Types

Unmanaged Blittable Data Type Managed Blittable Meaning in Life
Data Type

unsigned char, unsigned char *, System.Byte Represents an 8-bit

byte, byte * unsigned integer

char, char *s System.SByte Represents an 8-bit

small , small * signed integer, and

is not CLS compliant

short, short * System.Int16 Represents a 16-bit signed

integer

wchar_t, wchar_t * System.UInt16 Represents a 16-bit

unsigned short, unsigned short * signed integer, and

is not CLS compliant

long, long *int , int * System.Int32 Represents a 32-bit

signed integer

unsigned long, unsigned long * System.UInt32 Represents a 32-bit

unsigned int, unsigned int * unsigned integer, and is

not CLS compliant

hyper, hyper * System.Int64 Represents a 64-bit

signed integer, and

is not CLS compliant

void *, void ** System.IntPtr A platform-specific type

that is used to represent

a pointer or a handle

.NET-to-COM Interoperability—The Basics

349

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 349

Given this information, it should be clear that if you have the following IDL
interface description:

// COM IDL data type.

interface IAmSimple : IUnknown

{

HRESULT Add([in] long x);

};

the resulting blittable type is System.Int32:

// .NET blittable data type.

void Add(int x);

In addition to stand-alone blittable types, arrays of blittable items and struc-
tures that contain blittable fields are themselves considered blittable. Thus, if you
create a fixed array of IDL longs, you will find a managed array of System.Int32
types.

The Non-Blittable Data Types

On the other end of the data type spectrum, there are non-blittable data types. As
the name suggests, non-blittable types are not represented identically between the
COM and .NET architectures. Check out the core non-blittable types listed in
Table 7-3.

Table 7-3. The Non-Blittable Data Types

Managed Meaning in Life
Non-Blittable
Data Type

System.Array Represents a managed version of a C-style array or a SAFEARRAY

System.Boolean Converts to a 1, 2, or 4-byte value with true as 1 or –1

System.Char Represents a Unicode or ANSI character

System.Object Represents a VARIANT or an interface

System.String Represents a managed version of a null-terminated string or BSTR

System.ValueType Converts to a structure with a fixed memory layout (details to come)

System.Multicast Converts COM connection points into managed delegates (details

Delegate to come)

Chapter 7

350

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 350

Non-blittable types do indeed require translations by the RCW to seamlessly
map information between architectural boundaries. For example, passing BSTRs,
COM interface pointers, and COM SAFEARRAYs between architecture boundaries
forces the RCW to make calls to the COM library to properly handle these complex
types. Again, the good news is that the RCW proxy type generally hides this internal
goo from view. Thus, if you have the following COM IDL interface definition:

// COM IDL data type.

interface IAmMoreComplex : IUnknown

{

HRESULT Speak([in] BSTR msg);

};

the non-blittable BSTR is translated into System.String automatically by the RCW:

// .NET non-blittable data type mapping.

void Speak(string msg);

Perhaps somewhat obviously, if you have a data type that contains non-
blittable members (such as a structure containing BSTR fields) or an array of
non-blittable types, the data structure in question is also non-blittable and
requires translation by the RCW.

Interfaces Consumed by the RCW

In addition to mapping primitive data types, the RCW is also responsible for
consuming a number of low-level COM interfaces from the .NET client, to make
the COM type behave well within a managed environment. Specifically speaking,
an RCW may consume any of the COM interfaces listed in Table 7-4 (depending
on which interfaces the COM type supports).

Table 7-4. COM Interfaces Hidden from a Managed Client

Consumed COM Interface Meaning in Life

IDispatch The RCW implements IDispatch to allow the .NET
client to activate the type using late binding, as well as
to allow the COM type to be examined using .NET
reflection services (System.Reflection).

IErrorInfo As you see in detail later in this text, COM types are able
to send COM error objects to a calling COM client. The
IErrorInfo interface allows the client to obtain a textual
description of the error, its source, a Help file, Help
context, and the GUID of the interface that defined the
error (always GUID_NULL for .NET classes). The RCW
intercepts this information and exposes it to the .NET
client via structured exception handling.

.NET-to-COM Interoperability—The Basics

351

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 351

Table 7-4. COM Interfaces Hidden from a Managed Client (continued)

Consumed COM Interface Meaning in Life

IProvideClassInfo If the COM object being wrapped implements
IProvideClassInfo (which is always the case when
building VB 6.0 COM servers), the RCW extracts the
type information from this interface to provide stronger
type identity.

IUnknown The RCW hides the functionality provided by IUnknown
(object identity, type coercion, and lifetime
management). Given this, a .NET client never directly
calls AddRef(), Release(), or QueryInterface().

IConnectionPoint and If the COM type sends COM-based events, the RCW
IConnectionPointContainer implements these interfaces to map COM connection

point events into .NET delegate-based events.

IDispatchEx The IDispatchEx interface is an extension of the
IDispatch interface that, unlike IDispatch, enables
enumeration, addition, deletion, and case-sensitive
calling of members. If the class implements
IDispatchEx, the RCW implements IExpando.

IEnumVARIANT Enables COM types that support enumerations to be
treated as .NET style collections (specifically, be
traversed using foreach syntax).

By way of a simple example, assume you have created a scriptable coclass that
implements a single [dual] interface, fires events to the connected client, and
exposes a set of subobjects using a COM collection (Figure 7-6). Note that the
managed client is not exposed to these low-level interfaces.

Figure 7-6. The RCW hides low-level COM interfaces from view.

Chapter 7

352

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 352

Of course, these key COM interfaces are used indirectly by the managed client
where necessary. For example, if a C# client were to intercept a COM event, the
RCW will interact with IConnectionPointContainer and IConnectionPoint behind
the scenes. Likewise, if a managed client wishes to activate a COM type using late
binding, IDispatch is manipulated automatically.

Options to Obtain an Interop Assembly

Clearly, the RCW is a critical part of the .NET-to-COM interoperability puzzle. As
you have already seen, VS .NET makes the process of generating interop assem-
blies quite painless. You do, however, have other options. For example, while it is
possible to build a custom interop assembly using your managed language of
choice and the types defined within the System.Runtime.InteropServices name-
space, you seldom (if ever) need to do so. In Chapter 9, you examine the process of
creating your own custom IDL-to-.NET interop assembly conversion utility. Until
that point, you make use of the following more practical alternatives:

• Use the command line tool tlbimp.exe.

• Use the Add Reference | COM tab provided by VS .NET.

To be sure, the functionality provided by VS .NET fits the bill most of the time
(as seen in the first example of this chapter). However, there are times when you
need to drop down to the command line and interact with tlbimp.exe explicitly. As
with most command line tools, the benefit of doing so is that you have much more
control over how the interop assembly will be generated. For example, using
various command line flags, you can specify a custom name of the generated
namespace, configure a strongly named interop assembly, and so forth. Given this,
let’s get to know how to manipulate the raw command line utility.

Using the tlbimp.exe Command Line Utility

The Type Library Importer utility (tlbimp.exe) is a command line tool that reads
COM type information (typically contained in *.tlb, *.dll or *.exe files) and gener-
ates a corresponding .NET interop assembly. In its simplest form, all you are
required to specify is the name of the COM server you wish to convert. However,
Table 7-5 documents the core flags used to build an interop assembly that does
not support a strong name (you will examine this aspect of tlbimp.exe a bit later in
the text).

.NET-to-COM Interoperability—The Basics

353

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 353

Table 7-5. Core Options of tlbimp.exe

Core tlbimp.exe Flag Meaning in Life

/asmversion: Specifies the version number of the assembly to produce. By

default, the assembly’s version is based on the [library]

attribute of the COM type library.

/namespace: Specifies the namespace in which to produce the assembly. If

not specified, the namespace is based on the name of the

output file.

/sysarray: Specifies that COM SAFEARRAYs should map into a managed

System.Array.

/out: Specifies the name of the output file, assembly, and namespace

in which to write the metadata definitions.

If you do not specify the /out flag, tlbimp.exe writes the metadata to a file with
the same name as the actual type library defined within the input file and assigns
it a .dll file extension. If this action were to result in a name clash, tlbimp.exe
generates an error.

Building an Interoperability Assembly with Tlbimp.exe

To illustrate the use of tlbimp.exe, let’s build an interop assembly for the
AtlCarServer.dll COM server you created in Chapter 3. Open a command window
and navigate to the location of your ATL COM server. In keeping with the recom-
mended naming convention, the name of the resulting interop assembly consists
of an “Interop.” prefix. Assuming the location of your COM server is located on the
root C drive, you can issue the following command:

C:\tlbimp AtlCarServer.dll /out:Interop.AtlCarServer.dll

If you now check the C drive, you will see your new interop assembly is
present and accounted for (Figure 7-7).

Chapter 7

354

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 354

Figure 7-7. The generated interop assembly

When you open this new .NET assembly using ILDasm.exe, you will be
pleased to find .NET types that represent the unmanaged COM atoms (Figure 7-8).

Figure 7-8. The managed COM wrapper types

.NET-to-COM Interoperability—The Basics

355

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 355

Examining the Generated .NET Types

To better understand the types that have been placed into the generated interop
assembly, think back to the original IDL definitions of the AtlCarServer.dll. First,
you defined two custom IUnknown derived interfaces:

// Each COM interface derives directly from IUnknown.

interface IComCar : IUnknown

{

HRESULT SpeedUp([in] long delta);

HRESULT TurnOnRadio([in] RADIOTYPE make);

};

interface ITurbo: IUnknown

{

HRESULT TurboBlast();

};

Recall that the IComCar::TurnOnRadio() method used a custom IDL enumer-
ation, RADIOTYPE:

// The COM IDL enumeration.

typedef enum RADIOTYPE

{

EIGHT_TRACK, CD,

AM_RADIO, FM_RADIO

} RADIOTYPE;

Finally, you have the ComCar coclass, which specifies the IComCar interface
as the [default]:

// ComCar supports two interfaces,

// where IComCar is the default.

coclass ComCar

{

[default] interface IComCar;

interface ITurbo;

};

Given that you have defined four COM types, you may wonder why tlbimp.exe
generated metadata for five .NET entities. To begin to understand the translation
process, examine Table 7-6.

Chapter 7

356

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 356

Table 7-6. Types Generated for the AtlCarServer.dll COM Server

Generated Managed Type Meaning in Life

ComCar Tlbimp.exe generates a type that has the same name as the

[default] interface, minus the “I-” prefix (ex: IFoo becomes

Foo). This type is creatable, but you will only be able to access

the members explicitly defined by this interface.

IComCar Tlbimp.exe always generates managed equivalents for each

ITurbo interface found within the COM type library. As you would

expect, managed interfaces are not creatable.

ComCarClass Each coclass listed in the IDL library statement is represented

by a managed .NET class type and always takes a “-Class”

suffix (e.g., MyComClass becomes MyComClassClass). These

.NET types are directly creatable and support the members of

each and every implemented COM interface.

RADIOTYPE COM IDL data types are mapped to .NET types that extend

System.Enum.

Manipulating COM Types Using
Generated “-Class” Types

Let’s see these types in action. Assume you have a new C# Console application
(CSharpAtlComServerClient) that has already set a reference to the generated
interop assembly using the Add Reference dialog box (use the Browse button of
the .NET tab to navigate to the Interop.AtlCarServer.dll).

To illustrate the simplest way to manipulate the ATL ComCar, begin by
creating an instance of the generated ComCarClass type as follows:

using System;

using interop.AtlCarServer;

namespace CSharpAtlComServerClient

{

class CSharpATLClient

{

[STAThread]

static void Main(string[] args)

{

.NET-to-COM Interoperability—The Basics

357

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 357

// Use the ATL Car using the ComCarClass

// type. Recall! '-Class' types allow you

// to call any member of each supported

// interface.

ComCarClass c = new ComCarClass();

c.TurnOnRadio(RADIOTYPE.EIGHT_TRACK);

c.SpeedUp(10);

c.TurboBlast();

}

}

}

When you create a new instance of generated “-Class” types, the object
instance (c, in this case) supports each member of each supported interface. This
is a good thing, of course, given that .NET does not demand that types implement
interfaces whatsoever, and therefore the C# client should not be forced to ask for
an interface before interacting with the type. Using ComCarClass, you can make
use of the functionality defined by IComCar and ITurbo from what seems to be a
simple .NET object reference.

Manipulating COM Types Using Discrete Interfaces

Recall that tlbimp.exe generates managed equivalents for each IDL interface.
Thus, if you wish, you are able to interact with the ATL ComCar using discrete
interface references. Understand, of course, that you will not make use of
QueryInterface() to obtain an interface reference, but will do so using C#-specific
techniques (explicit casting, or using the is or as keywords). VB .NET clients would
make use of the CType() casting function. For example:

// Now make use of explicit interfaces (C#).

IComCar itfComCar = new ComCarClass();

itfComCar.TurnOnRadio(RADIOTYPE.FM_RADIO);

try

{

// QueryInterface() triggered via explicit cast.

ITurbo itfTurbo = (ITurbo)itfComCar;

itfTurbo.TurboBlast();

}

catch(InvalidCastException e)

{Console.WriteLine(e.Message); }

' Now make use of explicit interfaces (VB .NET).

Dim itfComCar As IComCar = New ComCarClass()

itfComCar.TurnOnRadio(RADIOTYPE.FM_RADIO)

Chapter 7

358

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 358

Try

Dim itfTurbo As ITurbo = CType(itfComCar, ITurbo)

itfTurbo.TurboBlast()

Catch ex As InvalidCastException

Console.WriteLine(ex.Message)

End Try

Leveraging Managed Interfaces

When you make use of managed interfaces to interact with COM types, things
tend to look a bit more like classic COM. This is the case because you are now only
able to make use of members supported on a particular interface. Even though
working directly with the “-Class” generated types entails less effort on your part,
the generated managed interfaces still come in quite handy. For example, assume
that the AtlCarServer.dll COM binary supported another coclass that also
supported ITurbo:

// Another ITurbo compatible coclass.

coclass JetPlane

{

[default] interface IJet;

interface ITurbo;

}

If you wish to build a managed method that can manipulate ComCars as well
as JetPlanes, you could construct the following:

class CSharpATLClient

{

[STAThread]

static void Main(string[] args)

{

// Create some jets and comcars.

ComCarClass c3 = new ComCarClass();

JetPlaneClass j = new JetPlaneClass();

XCelerate(c3);

XCelerate(j);

}

// Turbo boost each COM type.

public static void XCelerate(ITurbo itfTurbo)

{

itfTurbo.TurboBlast();

}

}

.NET-to-COM Interoperability—The Basics

359

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 359

Given that the generated .NET interfaces behave like any other .NET interface
type, you are also allowed to make use of these interfaces from within managed
code (this topic is examined in greater detail in Chapter 12). For example, you
could build a custom C# class that implements ITurbo as follows:

// A C# class deriving from the COM ITurbo interface.

class UFO : ITurbo

{

public void TurboBlast()

{ Console.WriteLine("UFOs are always at warp speed...");}

}

And make use of it using the XCelerate() method:

class CSharpATLClient

{

[STAThread]

static void Main(string[] args)

{

// Create some jets, UFOs and ComCars.

ComCarClass c3 = new ComCarClass();

JetPlaneClass j = new JetPlaneClass();

UFO u = new UFO();

XCelerate(c3);

XCelerate(j);

XCelerate(u);

}

// Turbo each COM type.

public static void XCelerate(ITurbo itfTurbo)

{

itfTurbo.TurboBlast();

}

}

As you would expect, you can use generated interfaces to perform other inter-
face-based programming tricks. Assume you want to build an array of ITurbo
interfaces, where each member points to some type (COM-based or otherwise)
that supports the ITurbo interface. Once you have done so, you could loop over
the array and trigger each TurboBoost() implementation:

// Managed interface types may point to

// managed or unmanaged entities!

// (as long as they support the correct interface).

Chapter 7

360

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 360

ITurbo[] fastVehicles = {new ComCarClass(), // COM type.

new UFO(), // .NET type.

new JetPlaneClass()}; // COM type.

foreach(ITurbo i in fastVehicles)

i.TurboBlast();

Manipulating COM Types Using the
[Default] Interface Type

In addition to creating a “-Class” suffixed type that provides access to the
members of each implemented COM interface, tlbimp.exe also generates a type
that provides access to the members defined by the [default] interface of the
coclass. The name of this type is always the same name as the [default] interface
itself, minus the capital “I” prefix. For example, given that your ATL ComCar
marked IComCar as the [default], you are able to make use of your COM type
as follows:

// Now using 'default interface' type.

ComCar c2 = new ComCar();

c2.TurnOnRadio(RADIOTYPE.AM_RADIO);

Understand, of course, that when you manipulate a COM type using the
[default] class type, you are only able to call members defined by the interface
itself. If you attempt to access members of other interfaces, you are greeted by a
compile time error:

// Ack! TurboBoost() not defined by IComCar!

c2.TurboBoost(); // Compiler error!

To get at the members of other auxiliary interfaces, you need to make use of
language-specific interface casting:

ITurbo itfTurbo2 = (ITurbo)c2;

itfTurbo2.TurboBlast();

You may be wondering exactly why tlbimp.exe generates these rather limited
types in the first place. My hunch is that it is because Visual Basic 6.0 COM
programmers typically created COM classes that supported a single [default]
interface. Given that VB 6.0 is far and away the most popular COM language
mapping out there, this gives VB .NET programmers the benefit of creating
wrapper types that have the same name as the underlying COM type. In short, the
default interface types are another bit of syntactic sugar.

.NET-to-COM Interoperability—The Basics

361

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 361

CODE The CSharpAtlComServerClient application is included under
the Chapter 7 subdirectory.

So there you have it! At this point, you have seen how to create and manipu-
late COM types using the wrappers contained in a given interop assembly. What
you have not yet done is examine the specific rules that are used to map COM
types into terms of managed equivalents. To do so requires a deeper under-
standing of the members found within the System.Runtime.InteropServices
namespace.

Select Members of the
System.Runtime.InteropServices Namespace

Before I dig too much more deeply into the world of COM/.NET interop, you need
to be aware of the key members of the System.Runtime.InteropServices name-
space that help facilitate the translation process. These types are used in two
specific circumstances. First, when you generate a given interop assembly, the
assembly metadata contains numerous references to the types found in this
namespace, which are used to document bits of information regarding the original
COM IDL definitions. Second, be aware that when you create .NET types that need
to be exposed to COM (examined later in this text), you are making direct use of
these same types to control how a .NET atom is exposed to COM.

As you would guess, the members of System.Runtime.InteropServices can be
grouped by semantic similarity. In general, members of this namespace are used
to describe the following information:

• How to configure type libraries and interop assemblies

• How to expose and marshal types between architectures

• How to describe classes, interfaces, methods, events, and parameters

• How to express error information between architectures

• How to represent arrays and structures across architectures

Rather than dump out a single huge table of each and every member, let’s take
some time to check out the members that can be logically grouped together. To
begin, Table 7-7 lists the members that are specifically geared to the description of
COM type libraries and .NET interop assemblies.

Chapter 7

362

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 362

Table 7-7. Type Library/Interop Assembly–Centric Members of
System.Runtime.InteropServices

Type Library/Interop Meaning in Life
Assembly–Centric Member

TypeLibConverter Provides a set of services that allows you to

programmatically convert a managed assembly to

a COM type library and vice versa.

TypeLibFuncAttribute Contains the FUNCFLAGS that were originally

imported for this method from the COM type

library. Used in conjunction with the

TypeLibFuncFlags enumeration.

TypeLibTypeAttribute Contains the TYPEFLAGS that were originally

imported for this type from the COM type library.

Used in conjunction with the TypeLibTypeFlags

enumeration.

TypeLibVarAttribute Contains the VARFLAGS that were originally

imported for this field from the COM type library.

Used in conjunction with the TypeLibVarFlags

enumeration.

ImportedFromTypeLibAttribute Indicates that the types defined within an assembly

were originally defined in a COM type library.

PrimaryInteropAssemblyAttribute Indicates that the attributed assembly is a primary

interop assembly.

Closely related to the process of documenting COM type libraries and interop
assemblies is the process of documenting how these entities are registered and
how their internal types are exposed to the target architecture (Table 7-8).

Table 7-8. Registration/Visibility-Centric Members of
System.Runtime.InteropServices

Registration/Visibility-Centric Member Meaning in Life

ComRegisterFunctionAttribute Specifies the method to call when you

register an assembly for use from COM.

This allows the execution of user-written

code during the registration process.

.NET-to-COM Interoperability—The Basics

363

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 363

Table 7-8. Registration/Visibility-Centric Members of
System.Runtime.InteropServices (continued)

Registration/Visibility-Centric Member Meaning in Life

ComUnregisterFunctionAttribute Specifies the method to call when you

unregister an assembly for use from COM.

This allows for the execution of user-

written code during the unregistration

process.

RegistrationServices Provides a set of services for registering

and unregistering managed assemblies for

use from COM.

ComImportAttribute Indicates that the attributed type was

previously defined in COM.

ComVisibleAttribute Controls COM visibility of an individual

type, member, or all types in an assembly.

As you would guess, classes, interfaces, methods, and parameters are also
represented by various attributes of the System.Runtime.InteopServices name-
space. Tables 7-9, 7-10, and 7-11 document the items of interest.

Table 7-9. Class-Centric Members of System.Runtime.InteropServices

Class-Centric Member Meaning in Life

ExtensibleClassFactory Enables customization of managed objects that extend from

unmanaged objects during creation

ProgIdAttribute Allows the user to specify the ProgId of a .NET class when

exposed to COM

Table 7-10. Interface-Centric Members of System.Runtime.InteropServices

Interface-Centric Member Meaning in Life

ClassInterfaceAttribute Indicates the type of class interface that will be

generated for a class, if at all. Used in conjunction with

the ClassInterfaceType enumeration.

DispIdAttribute Specifies the COM DISPID of a method, field, or

property.

Chapter 7

364

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 364

Table 7-10. Interface-Centric Members of System.Runtime.InteropServices
(continued)

Interface-Centric Member Meaning in Life

IDispatchImplAttribute Indicates which IDispatch implementation the

common language runtime uses when exposing dual

interfaces and dispinterfaces to COM. Used in

conjunction with the IDispatchImplType enumeration.

InterfaceTypeAttribute Indicates whether a managed interface is exposed to

COM as a dual, IDispatch-, or IUnknown-based

interface. This attribute is used in conjunction with the

ComInterfaceType enumeration.

AutomationProxyAttribute Specifies whether the type should be marshaled using

the Automation Marshaler (oleaut32.dll) or a custom

proxy and stub DLL.

Table 7-11. Method and Parameter-Centric Members of
System.Runtime.InteropServices

Method- and Meaning in Life
Parameter-Centric Member

InAttribute Indicates that data should be marshaled from the caller

to the callee.

OptionalAttribute Indicates that a parameter is optional.

OutAttribute Indicates that data should be marshaled from callee

back to caller.

ComAliasNameAttribute Indicates the COM alias for a parameter or field type.

LCIDConversionAttribute Indicates that a method’s unmanaged signature expects

an LCID parameter.

PreserveSigAttribute Indicates that the HRESULT or retval signature

transformation that takes place during COM interop

calls should be suppressed.

DllImportAttribute Indicates that the attributed method is implemented

as an export from an unmanaged DLL. Used in

conjunction with the CallingConvention and CharSet

enumerations.

.NET-to-COM Interoperability—The Basics

365

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 365

There are two types used to document GUID-centric attributes, as shown in
Table 7-12.

Table 7-12. GUID-Centric Members of System.Runtime.InteropServices

GUID-Centric Member Meaning in Life

CoClassAttribute Identifies the class ID of a coclass imported from a type

library

GuidAttribute Supplies an explicit GUID when an automatically generated

GUID is undesirable

Finally, it is worth pointing out that System.Runtime.InteropServices defines a
class type that can be used to obtain information about the .NET runtime itself
(Table 7-13).

Table 7-13. .NET Runtime–Centric Members of System.Runtime.InteropServices

General .NET Utility–Centric Member Meaning in Life

RuntimeEnvironment Provides a collection of static (shared in Visual

Basic) methods that return information about

the common language runtime environment.

The FromGlobalAccessCache() method can

also be used to determine if a given assembly

in located in the GAC.

An Interesting Aside:
System.Runtime.InteropServices.RuntimeEnvironment

The RuntimeEnvironment type is helpful when you want to discover basic traits
regarding how the target machine has configured the .NET runtime. For example,
consider the following class:

class RuntimeSpy

{

[STAThread]

static void Main(string[] args)

{

// Check out the runtime...

Console.WriteLine("Runtime Directory is:\n-->{0}\n",

RuntimeEnvironment.GetRuntimeDirectory());

Chapter 7

366

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 366

Console.WriteLine("System Version is:\n-->{0}\n",

RuntimeEnvironment.GetSystemVersion());

Console.WriteLine(@"Location of system

config file is:\n-->{0}\n",

RuntimeEnvironment.SystemConfigurationFile);

}

}

The output can be seen in Figure 7-9.

Figure 7-9. The .NET Runtime spy

CODE The RuntimeSpy application is located under the Chapter 7
subdirectory.

COM Library Statement to .NET Assembly Statement
Conversion Rules

Now that you have a better idea of the key types that lurk within an interop
assembly, you can dig into the specifics. Begin by running tlbimp.exe and specify
the *.tlb file of the RawComServer.dll you created in Chapter 2. Given that you did
not embed the *.tlb file directly into the *.dll, you get an error if you attempt to
specify the *.dll itself. The following command does the trick:

C:\ tlbimp RawComCar.tlb /out:interop.RawComCarLib.dll

.NET-to-COM Interoperability—The Basics

367

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 367

As you may recall, COM type libraries maintain a special section termed the
library statement. At minimum, COM type libraries must be adorned with a [uuid]
attribute (which identified the LIBID). In addition, a well-behaved type library
statement should support a [version] attribute and may support the [lcid]
attribute to mark the locale of the type library itself. For example, ponder the
following library statement for the RawComCar.dll COM server:

// The Raw Car Library.

[uuid(D679F136-19C9-4868-B229-F338AE163656), version(1.0)]

library RawComCarLib

{

…

}

When an interop assembly is generated, the information found in the COM
type library statement is used to build the [.assembly] description statement of the
assembly manifest. For example:

.assembly interop.RawComCarLib

{

… GuidAttribute…

… ImportedFromTypeLibAttribute…

.ver 1:0:0:0

}

As you can see, the friendly name of the assembly is constructed based on
the value specified by the /out: flag sent into tlbimp.exe. However, if you do not
specify an /out: value, the assembly, namespace, and file names are all based
on the COM library name. In a similar light, the version of the assembly is
constructed based on the [version] identifier of COM type library. Thus, if you
update the library version as follows:

[uuid(D679F136-19C9-4868-B229-F338AE163656), version(3.5)]

library RawComCarLib

{

…

}

the generated interop assembly would now be marked as version 3.5.0.0:

.assembly interop.RawComCarLib

{

…

.ver 3:5:0:0

}

Chapter 7

368

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 368

In addition to building the assembly’s friendly name and version
identifier, the generated [.assembly] statement also documents the fact that
this assembly was generated from an existing COM type library using the
ImportedFromTypeLibAttribute type as well as the GUID value of the LIBID
itself using the GuidAttribute type.

Recall that the ImportedFromTypeLibAttribute type is used to indicate that
the types contained within the assembly were generated using COM type informa-
tion. Therefore, any assembly that contains this marker in its assembly manifest
can be correctly identified as an interop assembly. Here is the complete
[.assembly] statement for the generated interop assembly manifest (slightly
reformatted for ease of reading):

.assembly Interop.RawComCarLib

{

.custom instance void

[mscorlib]System.Runtime.InteropServices.

ImportedFromTypeLibAttribute

::.ctor(string) =

(01 00 0C 52 61 77 43 6F 6D 43 61 72 4C 69 62 00 00)

// ...RawComCarLib.

.custom instance void [mscorlib]System.Runtime.InteropServices.GuidAttribute

::.ctor(string) = (01 00 24 64 36 37 39 66 31 33 36 2D 31 39 63 39

2D 34 38 36 38 2D 62 32 32 39 2D 66 33 33 38 61

65 31 36 33 36 35 36 00 00)

// d679f136-19c9-4868-b229-f338ae163656

.hash algorithm 0x00008004

.ver 1:0:0:0

}

Notice that the value passed into the constructor of the
ImportedFromTypeLibAttribute is the name of the original COM type library
(RawComCarLib), while the value passed into the GuidAttribute is the original
LIBID (D679F136-19C9-4868-B229-F338AE163656).

Programmatically Controlling
the Namespace Definition

The default behavior of tlbimp.exe is to create a namespace that is based on the
name of the COM library statement. Although this is most likely exactly what you
require, you are able to instruct tlbimp.exe to generate an alternative name using
the /namespace or /out flags. However, the Visual Studio .NET IDE builds the
generated namespace verbatim. When you wish to generate an alternative
namespace for an interop assembly, you must make use of tlbimp.exe directly.

.NET-to-COM Interoperability—The Basics

369

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 369

Alternatively, if you wish to ensure that a generated namespace will always
take a particular form (regardless of the tool used to build the interop assembly),
you can retrofit the COM type library to support a [custom] IDL attribute with the
name 0F21F359-AB84-41e8-9A78-36D110E6D2F9 (see Chapter 4 for a discussion
of building custom IDL attributes). The value of this custom IDL attribute is a
literal string that is used to generate the name of the generated assembly. To illus-
trate, assume that you reengineered (and recompiled) the RawComCar library
statement as follows:

[uuid(D679F136-19C9-4868-B229-F338AE163656), version(1.0),

custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9,

"Intertech.RawComCarLib")]

library RawComCarLib

{

…

}

Once the interop assembly is regenerated, you would find the namespace
definition shown in Figure 7-10.

Figure 7-10. Creating custom namespace names

Understand, of course, that the chances are slim to none that you will import
a legacy COM server that supports this custom IDL attribute, simply because most
COM servers were created well before the release of .NET and had no foreknowl-
edge of this predefined GUID. If you wish to change the name of the generated

Chapter 7

370

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 370

namespace using this technique, you need to update the underlying IDL of the
original COM server. The only reason you may want to do so is to establish a
nested namespace definition (which requires the use of the dot notation). As you
may be aware, IDL [library] statements do not support the use of the dot notation
when creating the friendly name of a COM type library.

So much for this examination of converting COM type library statements into
.NET assembly definitions. Next up, let’s check out how the core COM types are
mapped into managed equivalents.

COM Types to .NET Types Conversion Rules

As you are well aware, a COM library statement contains numerous type defini-
tions. Simply put, COM interfaces become managed interfaces, coclasses become
.NET class types (which do indeed derive from System.Object), and COM enums
become System.Enum derived types. Of course, there is much more to the story
than meets the eye. To begin, let’s check out the conversion of COM interface types.

COM Interface Conversion

When a COM interface is translated into a managed equivalent, the conversion
process purposely strips away all members of IUnknown and, if necessary,
IDispatch, from the managed type. For example, the RawComCar.dll COM server
defined three custom interfaces, two of which (ICar and IRadio) derived directly
from IUnknown, while the other (IScriptableCar) was configured as a [dual]
interface and therefore derived from IDispatch. Here is the original IDL:

// The ICar interface

[uuid(710D2F54-9289-4f66-9F64-201D56FB66C7), object]

interface ICar : IUnknown

{

HRESULT SpeedUp([in] long delta);

HRESULT CurrentSpeed([out, retval] long* currSp);

};

// The IRadio interface

[uuid(3B6C6126-92A8-47ef-86DA-A12BFFD9BC42), object]

interface IRadio : IUnknown

{

HRESULT CrankTunes();

};

.NET-to-COM Interoperability—The Basics

371

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 371

// The IScriptableCar interface

[uuid(DBAA0495-2F6A-458a-A74A-129F2C45B642), dual, object]

interface IScriptableCar : IDispatch

{

[id(1), propput] HRESULT Speed([in] long currSp);

[id(1), propget] HRESULT Speed([out, retval] long* currSp);

[id(2)] HRESULT CrankTunes();

};

Much like the LIBID assigned to the COM type library, IID values are encoded
into .NET metadata using the GuidAttribute type. In addition, IUnknown-derived
interfaces (meaning, interfaces that have not been configured as [dual] or raw
dispinterfaces) are also adorned with the InterfaceTypeAttribute. The underlying
value assigned to the InterfaceTypeAttribute is one of the following members of
the ComInterfaceType enumeration, as seen in Table 7-14.

Table 7-14. Values of the ComInterfaceType Enumeration

ComInterfaceType Member Name Description

InterfaceIsDual Indicates the interface was configured as a dual

interface

InterfaceIsIDispatch Indicates the interface was configured as a

dispinterface

InterfaceIsIUnknown Indicates the interface was defined as an

IUnknown-derived interface (as opposed to a

dispinterface or a dual interface)

For example, if you examine the IL behind the IRadio interface, you find the
following IL (again, slightly reformatted for readability):

.class interface public abstract auto ansi import IRadio

{

.custom instance void[mscorlib]

System.Runtime.InteropServices.GuidAttribute::

.ctor(string) =

(01 00 24 33 42 36 43 36 31 32 36 2D 39 32 41 38

2D 34 37 45 46 2D 38 36 44 41 2D 41 31 32 42 46

46 44 39 42 43 34 32 00 00)

// ..$3B6C6126-92A8-47EF-86DA-A12BF FD9BC42

.custom instance void[mscorlib]

System.Runtime.InteropServices.InterfaceTypeAttribute::

.ctor(int16) =

(01 00 01 00 00 00)

} // end of class IRadio

Chapter 7

372

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 372

The ICar interface has similar attributes. However, when tlbimp.exe
encounters a [dual] interface, the underlying IL does not record an
InterfaceTypeAttribute, but rather the TypeLibTypeAttribute type to document
the TYPEFLAGS that were originally imported for this type from the COM type
library. Recall from Chapter 4 that the TYPEFLAGS enumeration contains fields
that identify if the entity is hidden, creatable, an application object, and so forth.
For example, here is the IL definition of IScriptableCar:

.class interface public abstract auto ansi import IScriptableCar

{

.custom instance void [mscorlib]

System.Runtime.InteropServices.TypeLibTypeAttribute::

.ctor(int16) =

(01 00 40 10 00 00)

.custom instance void [mscorlib]

System.Runtime.InteropServices.GuidAttribute::

.ctor(string) =

(01 00 24 44 42 41 41 30 34 39 35 2D 32 46 36 41

2D 34 35 38 41 2D 41 37 34 41 2D 31 32 39 46 32

43 34 35 42 36 34 32 00 00)

// ..$DBAA0495-2F6A-458A-A74A-129F2 C45B642

} // end of class IScriptableCar

Importing COM Interface Hierarchies

A very standard technique in COM is to build new interface definitions based
on existing interfaces (this is also a common design pattern within the .NET
universe). When programmers make use of this approach, they are in effect
“versioning” an interface. Despite the usefulness of this technique, Visual Basic 6.0
does not allow you to follow this pattern, given that VB 6.0 does not support any
form of inheritance. Therefore, assume that you have a new ATL COM server
(ATLVersionedInterfaceServer) that defines the following interface hierarchy:

interface IFoo : IUnknown

{

[helpstring("method A")] HRESULT A();

};

interface IFoo2 : IFoo

{

[helpstring("method B")] HRESULT B();

};

interface IFoo3 : IFoo2

{

[helpstring("method C")] HRESULT C();

};

.NET-to-COM Interoperability—The Basics

373

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 373

Each of these interfaces is implemented by a single coclass named
(of course) Foo:

// The Foo coclass supports each versioned interface.

coclass Foo

{

[default] interface IFoo;

interface IFoo2;

interface IFoo3;

};

When tlbimp.exe reads the underlying COM type information, it applies a
very simple rule: When building a managed interface, derived interfaces support
the members of their base interfaces. For example, the managed version of
IFoo3 supports methods C(), B(), and A(). Likewise, the managed version of IFoo2
supports methods B() and A(). If you create an interop assembly for this ATL server
and load it into ILDasm.exe, you find what appears in Figure 7-11.

Figure 7-11. Imported COM interface hierarchies

Chapter 7

374

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 374

CODE The ATLVersionedInterfaceServer application is included under
the Chapter 7 subdirectory.

COM Interface Members to .NET Method
Conversion Rules

A COM interface may contain any number of methods or the syntactic sugar you
know as COM properties (recall that a COM property always maps to a pair of
hidden functions). When an unmanaged member (that is, methods and proper-
ties) is mapped into a .NET equivalent, things are mostly what you would expect.

Consider the transformation of COM interface methods. Recall that COM
interface methods return a standard HRESULT to signal the success or failure of
the method invocation. When converting a COM method, the underlying
HRESULT is hidden by the RCW. As you may be aware, there are many (many)
predefined COM HRESULTs that are used to document the reason for a failure.
Later in this text, when you examine COM/.NET error handling, you see how to
handle failed HRESULT values within a managed client. For the time being,
assume the world is a happy place, and all COM methods return S_OK.

COM properties, however, deserve special mention. Assume that you have
created the following property (using VB 6.0):

' A simple COM property

' supported by the VB 6.0 PropClass coclass.

Private mName As String

Public Property Get Name() As String

Name = mName

End Property

Public Property Let Name(ByVal rhs As String)

mName = rhs

End Property

Under the hood, the VB 6.0 compiler generates the following IDL:

interface _PropClass : IDispatch

{

[id(0x68030000), propget]

HRESULT Name([out, retval] BSTR*);

[id(0x68030000), propput]

HRESULT Name([in] BSTR*);

};

.NET-to-COM Interoperability—The Basics

375

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 375

Once you create an interop assembly, you are able to see (using ILDasm.exe)
that [propput] methods are mapped to a hidden method named set_X(), whereas
[propget] methods are mapped to a hidden get_X() method. In addition, the prop-
erty itself is preserved by name. Check out Figure 7-12.

Figure 7-12. Mapping COM properties

The underlying IL for the get_X() and set_X() methods is quite interesting:

.method public hidebysig newslot specialname virtual abstract

instance string marshal(bstr)

get_Name() runtime managed internalcall

{

…

} // end of method _PropClass::get_Name

.method public hidebysig newslot specialname virtual abstract

instance void set_Name([in] string marshal(bstr) A_1)

runtime managed internalcall

{

…

} // end of method _PropClass::set_Name

Chapter 7

376

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 376

Note that each get_X() and set_X() member is marked using the [internalcall]
directive that marks a call to a method implemented within the common language
runtime itself. Translated into English, this simply means that [internalcall]
methods are not typically called directly by a managed client. This begs the ques-
tion of how these members are triggered. The answer can be found within the IL
describing the managed Name property:

.property string Name()

{

…

.get instance string Project1._PropClass::get_Name()

.set instance void Project1._PropClass::set_Name(string)

} // end of property _PropClass::Name

As you can see, the Name property maintains the name of the [internalcall]
member to “hit” based on the calling syntax. The [.get instance] directive is used to
document the correct accessor method while [.set instance] marks the correspon-
ding mutator. Given this, ponder the following C# client code:

// C# COM property manipulation.

PropClassClass c = new PropClassClass();

// Triggers Project1._PropClass::set_Name(string).

c.Name = "Fred"

// Triggers .get instance string Project1._PropClass::get_Name().

Console.WriteLine(c.Name);

So, as you can see, mapping methods and properties to managed equivalents
isn’t so bad. To spice things up a bit, let’s check out parameterized members.

COM Method Parameters to .NET Method Parameters
Conversion Rules

As you may recall from the first section of this text, COM parameters take attrib-
utes to document the direction of travel between coclass and client. When you
create IDL definitions by hand, you have direct control over when parameters
receive which attributes. However, when using Visual Basic 6.0, these IDL attrib-
utes are assigned behind the scenes when you use the ByVal and ByRef keywords.

While the managed definition of COM IDL parameters is not documented
within the interop assembly’s metadata, these IDL attributes do configure the
calling conventions used by the managed client. C# clients make use of the ref and

.NET-to-COM Interoperability—The Basics

377

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 377

out keywords, while VB .NET clients use the familiar ByRef and ByVal keywords.
For example, if you have the following IDL method definition:

// Some interface method.

HRESULT SomeMethod([in] int theIn,

[out] int* theOut,

[in, out] int* theInOut,

[out, retval] int* theReturnValue);

Which has been implemented in an ATL coclass as follows:
STDMETHODIMP CFoo::SomeMethod(int theIn,

int *theOut,

int *theInOut,

int *theReturnValue)

{

// Fill [out] and change [in, out].

*theOut = 100;

*theInOut = 666;

*theReturnValue = 777;

return S_OK;

}

A C# client would call the member using the out and ref keywords:

FooClass theObj = new FooClass();

int x; // No need to assign output parameters before use.

int y = 10;

int answer = theObj.SomeMethod(10, out x, ref y);

Console.WriteLine("X = {0}, Y = {1}, Answer = {2}", x, y, answer);

The results are seen in Figure 7-13.

Figure 7-13. Interacting with COM parameters

It is also important to recall that the System.Runtime.InteropServices name-
space defines a set of managed attributes that can be used to control how .NET
parameters should be exposed to COM (the subject of a later chapter). Table 7-15
illustrates the relationship between these key players:

Chapter 7

378

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 378

Table 7-15. Parameter Conversions

COM IDL VB 6.0/VB C# Calling System.Runtime.InteropServices
Parameter .NET Keyword Convention Attribute
Attribute

[in] ByVal No language-specific InAttribute

keyword

[out] n/a C# out keyword OutAttribute

[in, out] ByRef C# ref keyword No managed attribute; simply

supply the InAttribute and

OutAttribute types on the same

parameter.

[out, retval] Standard VB IDL [out, retval] No managed attribute; simply

6.0 Function parameters are define a function return value.

return value mapped as a physical

return value from the

function call.

VB 6.0 Parameter Conversions—An Annoying Aside

Visual Basic 6.0 is perhaps the only modern language in use that defaults parame-
ters as being passed by reference rather than by value (in contrast, VB .NET defaults
to by value parameter passing). For the sake of argument, if you define the
previous Name property as follows:

' Note the lack of ByVal in the

' Property Let…

Private mName As String

Public Property Get Name() As String

Name = mName

End Property

Public Property Let Name(rhs As String)

mName = rhs

End Property

the underlying IDL would represent this COM interface as the following (note the
presence of the [in, out] IDL attributes):

interface _PropClass : IDispatch

{

[id(0x68030000), propget]

HRESULT Name([out, retval] BSTR*);

.NET-to-COM Interoperability—The Basics

379

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 379

[id(0x68030000), propput]

HRESULT Name([in, out] BSTR*);

};

While this does not seem too problematic, recall that managed clients must
call a COM method by adhering to the same directional attributes. For example,
although you might assume you could manipulate the Name property in C# as
follows:

// This is the way the property should work…

PropClass p = new PropClass();

p.Name = "Hello";

Console.WriteLine("Name is: {0}", p.Name);

you will be issued some rather frustrating compiler errors such as these:

"C:\Apress Books\InteropBook\junk\ConsoleApplication2\

Class1.cs(25): Property, indexer,

or event 'Name' is not supported by the language;

try directly calling accessor methods

'Project1._PropClass.get_Name()' or 'Project1._PropClass.set_Name(ref string)'

The reason has to do with the fact that the VB 6.0 property definition has
implicitly made use of the ByRef keyword during the construction of the [propput]
method. This forces the C# client to directly call the hidden get_Name() and
set_Name() methods:

// Yuck…

PropClass p = new PropClass();

string name = "Hello";

p.set_Name(ref name);

Console.WriteLine("Name is: {0}", p.get_Name());

If you make use of the ByVal keyword as follows:

' One more time, using ByVal.

Public Property Let Name(ByVal rhs As String)

mName = rhs

End Property

you are able to call the property as expected. As an interesting corollary, under-
stand that when a property has been correctly configured to make use of the ByVal
keyword, the hidden get_X() and set_X() methods are unavailable. If you attempt
to reference them within the client’s code base, you are issued the following
compiler error:

C:\Apress Books\InteropBook\junk\ConsoleApplication2\Class1.cs(28):

'Project1._PropClass.Name.set': cannot explicitly call operator or accessor

Chapter 7

380

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 380

The annoying aspect of this behavior is the fact that you are likely to find
many COM servers (written in VB 6.0) that make use of the default ByRef param-
eter attribute (most likely by accident). Unless you are willing to crack open the
code base and apply the ByVal attribute, you may need to trigger the underlying
get_X() and set_X() members to interact with the VB 6.0 COM property.

Handling Optional and Default Parameters

COM IDL supports the definition of parameters which are attributed by the
[optional] and [defaultvalue] keywords. The semantics of these keywords are just
as you would hope. Optional arguments may be omitted by the caller, and
optional arguments marked with the [defaultvalue] keyword will make use of a
hard-coded value if the item in question is omitted by the caller.

For the most part, optional/default parameters are only realized in the VB 6.0
COM language mapping and are not guaranteed to be honored by other COM-
aware programming languages. Given that the current COM server under exami-
nation does not have members which support these IDL constructs, assume
that you have a brand new VB 6.0 COM server which defines a single coclass
(CoOptParams) that populates its [default] interface as so:

Public Function AddTwoOrThreeNumbers(ByVal x As Integer, _

ByVal y As Integer, _

Optional ByVal z As Integer) As Integer

Dim ans As Integer

ans = x + y

' Did they send the optional param?

If Not IsMissing(x) Then

ans = ans + z

End If

AddTwoOrThreeNumbers = ans

End Function

Public Function AddWithDefaults(Optional ByVal x As Integer = 2, _

Optional ByVal y As Integer = 2) As Integer

' No need to check if args

' are missing, as we always

' have 2+2.

AddWithDefaults = x + y

End Function

.NET-to-COM Interoperability—The Basics

381

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 381

The resulting IDL is as so:

interface _CoOptParams : IDispatch {

[id(0x60030000)]

HRESULT AddTwoOrThreeNumbers(

[in] short x,

[in] short y,

[in, optional] short z,

[out, retval] short*);

[id(0x60030001)]

HRESULT AddWithDefaults(

[in, optional, defaultvalue(2)] short x,

[in, optional, defaultvalue(2)] short y,

[out, retval] short*);

};

Now, just as the [optional] and [defaultvalue] keywords are not guaranteed to
be honored in every COM-aware programming language, these IDL keywords are
not guaranteed to usable in every .NET-aware programming language. While it is
true that the Common Type System (CTS) does describe how these programming
constructs can be represented in terms of IL and .NET metadata, optional and
default parameters are not CLS compliant! As you might expect, VB .NET does
allow for the use of optional and default arguments, however C# does not. Given
this fact, if you generate an interop assembly for a COM server which makes use of
these IDL keywords, the manner in which you need to programming against
theses COM atoms will depend on your choice of managed language.

Assume you have created an interop assembly for the VbOptParamsServer.
The generated metadata for the AddTwoOrThreeNumbers() method would look
like so (note the [opt] metadata keyword):

.method public hidebysig newslot virtual abstract

instance int16 AddTwoOrThreeNumbers([in] int16 x,

[in] int16 y, [in][opt] int16 z)

runtime managed internalcall

{

.custom instance void[mscorlib]System.Runtime.InteropServices.

DispIdAttribute::.ctor(int32) = (01 00 00 00 03 60 00 00)

//`..

} // end of method _CoOptParams::AddTwoOrThreeNumbers

As for the AddWithDefaults() method, notice that the default values of each
parameter are hard-coded interop assembly (via the .param tag).

.method public hidebysig newslot virtual abstract

instance int16 AddWithDefaults([in][opt] int16 x,

[in][opt] int16 y) runtime managed internalcall

Chapter 7

382

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 382

{

.custom instance void [mscorlib]System.Runtime.InteropServices.

DispIdAttribute::.ctor(int32) = (01 00 01 00 03 60 00 00)

//`..

.param [1] = int16(0x0002)

.param [2] = int16(0x0002)

} // end of method _CoOptParams::AddWithDefaults

Now, if you were to make use of the CoOptParams COM type using VB .NET,
things would look much like a classic VB 6.0 client. Thus, we could write the
following:

Imports VbOptParamsServer

Module Module1

Sub Main()

Dim c As New CoOptParamsClass()

Dim i As Integer

' work with optional params.

i = c.AddTwoOrThreeNumbers(20, 20)

Console.WriteLine("20 + 20 is {0}", i)

i = c.AddTwoOrThreeNumbers(10, 20, 40)

Console.WriteLine("10 + 20 + 40 is {0}", i)

' Work with default params.

i = c.AddWithDefaults()

Console.WriteLine("2 + 2 is {0}", i)

i = c.AddWithDefaults(3)

Console.WriteLine("3 + 2 is {0}", i)

i = c.AddWithDefaults(4, 2)

Console.WriteLine("4 + 2 is {0}", i)

End Sub

End Module

As you can see, VB .NET clients are happy to honor the [defaultvalue] and
[optional] IDL keywords. However, if you had a C# client which exercised the exact
same coclass, you would not be able to work with any of the previous logic other
than the following:

static void Main(string[] args)

{

CoOptParamsClass c = new CoOptParamsClass();

int i;

.NET-to-COM Interoperability—The Basics

383

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 383

// Must specify all args in C#.

i = c.AddTwoOrThreeNumbers(10, 20, 40);

Console.WriteLine("10 + 20 + 40 is {0}", i);

// Can’t use defaults in C#.

i = c.AddWithDefaults(4, 2);

Console.WriteLine("4 + 2 is {0}", i);

}

As you can plainly see, C# demands that all optional parameters are
accounted for, therefore, all default values are lost. This can be a bit of a bother for
the C# developer, especially if the COM server being programmed against makes
substantial use of either of these IDL keywords.

The System.Type.Missing Read-Only Field

The last thing to be aware of when programming against the [optional] and
[defaultvalue] IDL keywords has to do with the VARIANT type (discussed in greater
detail in Chapter 8). Technically speaking, if a C# client attempts to call a COM
method which takes an optional VARIANT, they are required to supply an empty
System.Object (given that VARIANTs map into System.Object types). Assume we
have the following VB 6.0 method definition:

' Remember! C# will always ignore default values,

' VARIANT or not.

Public Sub UseThisOptionalThing(ByVal msg As String, _

Optional ByVal x As Variant = "Again")

MsgBox msg, , "The message"

' Show the thing.

If Not IsMissing(x) Then

MsgBox x, , "Optional Variant is:"

End If

End Sub

When a C# client wishes to call a method taking optional VARIANTs, it is still
responsible for passing an argument (even though it has been marked as
[optional]). However if it were to send in an new instance of System.Object as the
second parameter like so:

// Optional VARIANT? Nope…

object objMissing = new object();

// Displays "Hello" and then "System.Object"

c.UseThisOptionalThing("Hello", objMissing);

Chapter 7

384

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 384

you would find that the allocated System.Object is indeed passed to the method as
a valid argument. Given this, you will trigger two message boxes, the second of
which displays "System.Object". When you want to indicate that you wish to pass
in ‘nothing’ as the optional VARIANT parameter, make use of the Type.Missing
field like so:

// Optional VARIANTs? Yes!

object objMissing = Type.Missing;

// Only displays "Hello"

c.UseThisOptionalThing("Hello", objMissing);

With this syntax, the call will only trigger one message box that displays
"Hello". Again, do note that in both cases the [defaultvalue] IDL keyword is
ignored.

As you might expect, VB .NET clients can forgo the Type.Missing syntax and
simply omit the optional VARIANT parameter just as if it were an optional simple
data type (strings, integers, and what not).

CODE The VbOptParamsServer, VbNetOptParamsClient and
CSharpOptParamClient programs are located under the Chapter 7
subdirectory.

COM Coclass Conversion

As you have seen, tlbimp.exe generates two creatable types for each IDL coclass
definition: the “-Class” suffixed type and the default interface class type. Obvi-
ously, each type must somehow document the interface(s) that it implements. Not
surprisingly, the underlying IL makes use of the [implements] directive. For
example, here is the (abbreviated) IL definition for the ComCarClass type:

.class public auto ansi import ComCarClass

extends [mscorlib]System.Object

implements Intertech.RawComCarLib.ICar,

Intertech.RawComCarLib.ComCar,

Intertech.RawComCarLib.IRadio

{

// ClassInterfaceAttribute…

// GuidAttribute…

// TypeLibTypeAttribute…

} // end of class ComCarClass

.NET-to-COM Interoperability—The Basics

385

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 385

Notice that the obvious interfaces, ICar and IRadio, are present and accounted
for. However, also notice that the default interface class type interface ComCar is
also listed as an implemented interface (explained shortly).

Within the body of the managed class definition are three .NET attributes:
ClassInterfaceAttribute, GuidAttirbute, and TypeLibTypeAttribute. The
GuidAttribute value maps to the GUID of the IDL [coclass] definition. As seen
earlier in this chapter, the ClassInterfaceAttribute and TypeLibTypeAttribute
types contain the ComInterfaceType value (of the [default] interface) and the
TYPEFLAGS for the coclass.

As for the IL definition for the ComCar entity, you find the following:

.class interface public abstract auto ansi import ComCar

implements Intertech.RawComCarLib.ICar

{

// GuidAttribute…

// CoClassAttribute…

} // end of class ComCar

Notice that the default interface class types maintain the GUID of the coclass
that marks them as a [default] interface via the CoClassAttribute. If you check out
the complete listing, you find that the CoClassAttribute also marks the friendly
name of the associated coclass:

.class interface public abstract auto ansi import ComCar

implements Intertech.RawComCarLib.ICar

{

.custom instance void

[mscorlib]System.Runtime.InteropServices.CoClassAttribute::

.ctor(class[mscorlib]System.Type) =

(01 00 22 49 6E 74 65 72 74 65 63 68 2E 52 61 77

43 6F 6D 43 61 72 4C 69 62 2E 43 6F 6D 43 61 72

43 6C 61 73 73 00 00)

// .."Intertech.RawComCarLib.ComCarClass..

…

}

As you might expect, the value of the GuidAttribute is identical to that of the
related COM interface definition (IComCar in this case). Given these insights, it
should be clear how the following managed code is permissible:

// Really creates the ComCarType

// and returns a reference to the

// [default] interface.

ComCar c = new ComCar();

Chapter 7

386

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 386

Mapping [noncreatable] and [appobject] Coclasses

As you recall from Chapter 4, a COM coclass may be defined as [noncreatable],
which prevents the COM type from being created directly by the calling client
(a common technique used when building object models). For example:

[uuid(752545ED-C4F7-42FB-92A8-F8BF32A61E2F),

helpstring("NoCreate Class"), noncreatable]

coclass NoCreate

{

[default] interface INoCreate;

};

When tlbimp.exe encounters such a COM type, the generated wrapper
supports a private default constructor. This should make sense, given that the type
was never intentionally created. Therefore, the following is illegal:

// Can’t create [noncreatable] types!

NoCreate wontWork = new NoCreate(); // Error!

Also seen in Chapter 4, coclasses may be marked using the [appobject] IDL
attribute. When an unmanaged COM wants to make use of an application, it is
able to call members of its default interface without needing to directly create an
instance of the class type. However, when tlbimp.exe encounters [appobject]-
configured COM classes, this attribute is effectively ignored. Managed clients are
required to make instances of [appobject] types before calling type members.

One possible workaround to this problem is to create a managed wrapper
that exposes the members of the [appobject] coclass through the use of static
members. Furthermore, to ensure that the contained coclass is created automati-
cally, you are able to “new” the type using a static constructor. To illustrate, recall
that you defined the GlobalObject type in Chapter 4 as follows:

interface IGlobalObject : IUnknown

{

[helpstring("method SomeMethod")] HRESULT SomeMethod();

};

[

uuid(138B91B9-C70A-49C3-9768-C5202B50E708),

helpstring("GlobalObject Class"), appobject

]

coclass GlobalObject

{

[default] interface IGlobalObject;

};

.NET-to-COM Interoperability—The Basics

387

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 387

If you have a C# application that has set a reference to the defining COM
server, you would be able to build the following class, which simulates the IDL
[appobject] attribute:

public class ManagedGlobalObjectClass

{

private static GlobalObjectClass theCOMAppObject;

static ManagedGlobalObjectClass()

{ theCOMAppObject = new GlobalObjectClass();}

public static void SomeMethod()

{ theCOMAppObject.SomeMethod();}

}

With this shim class, the C# application can make use of the underlying
[appobject] as follows:

// Make use of the [appobject] wrapper.

ManagedGlobalObjectClass.SomeMethod();

So, is this a hack? You bet! However, given that tlbimp.exe ignores [appobject]
attributed coclasses, if you wish to preserve the semantics of this IDL attribute in
terms of managed code, this is about as close as you can get.

Cataloging COM DISPIDs

Cataloging COM DISPIDs might seem to be a slightly out-of-context topic at this
point in the text, but hold tight. As you know, when a COM interface wants to be
discovered and exercised at runtime, it must be configured as a [dual] or raw
dispinterface. In addition, each interface member is marked with a token (termed
a DISPID) that uniquely identifies a given member within the coclass implemen-
tation. The RawComCar.dll COM server defines the following [dual] interface:

[uuid(DBAA0495-2F6A-458a-A74A-129F2C45B642), dual, object]

interface IScriptableCar : IDispatch

{

[id(1), propput] HRESULT Speed([in] long currSp);

[id(1), propget] HRESULT Speed([out, retval] long* currSp);

[id(2)] HRESULT CrankTunes();

};

Regardless of the fact that COM DISPIDs are recorded on a per interface level,
managed equivalents embed a member’s DISPID within the definition of the
generated “-Class” type. The managed IL definition of the ScripableCarClass type
documents the underlying DISPID of each member of the scriptable COM inter-
face. Consider the IL behind the CrankTunes() member:

Chapter 7

388

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 388

.method public hidebysig newslot virtual

instance void CrankTunes() runtime managed internalcall

{

.custom instance void[mscorlib]

System.Runtime.InteropServices.DispIdAttribute::

.ctor(int32) =(01 00 02 00 00 00 00 00)

.override Intertech.RawComCarLib.IScriptableCar::CrankTunes

} // end of method ScriptableCarClass::CrankTunes

As you see later in this chapter, when you make use of .NET late-binding to
activate a managed COM wrapper, the embedded DISPID value is obtained under
the hood to invoke the correct member of the dispinterface.

Additional Coclass to .NET Class Infrastructure

In addition to listing the set of interfaces supported by a given COM type, the
tlbimp.exe utility also (a) creates a default constructor for each coclass and (b)
derives each coclass from System.Object. Looking at the underlining IL, you find
the following [.extends] directive for each “-Class” type:

.class public auto ansi import ComCarClass

extends [mscorlib]System.Object

implements Intertech.RawComCarLib.ICar,

Intertech.RawComCarLib.ComCar,

Intertech.RawComCarLib.IRadio

{

…

} // end of class ComCarClass

As all COM wrappers derive from System.Object, you are able to call any of the
virtual members. For example:

// Trigger inherited System.Object members.

ComCarClass theCar = new ComCarClass();

ComCarClass otherCar = new ComCarClass();

Console.WriteLine("ToString: {0}", theCar.ToString());

Console.WriteLine("Hash: {0}", theCar.GetHashCode().ToString());

Console.WriteLine("theCar = otherCar? : {0} ", theCar.Equals(otherCar).ToString());

Type t = theCar.GetType();

Console.WriteLine(t.Assembly.FullName);

Although I assume the semantics of the virtual Object members are no
surprise to you at this point, Table 7-16 documents how these members are real-
ized with regard to RCWs.

.NET-to-COM Interoperability—The Basics

389

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 389

Table 7-16. Inherited System.Object Members

Inherited Member Meaning in COM
of System.Object

ToString() When applied to a COM type, ToString() returns the fully

qualified name.

GetHashCode() As expected, this member returns a hash code for the COM type.

Equals() Compares two .NET COM wrappers using value-based

semantics.

GetType() Returns a System.Type object that fully describes the underlying

COM type.

You examine details of the Type information you can obtain from a RCW
wrapper type later in this text. At this point, however, you should feel comfortable
understanding how COM coclasses are translated into corresponding .NET types.

Extending COM Types

Classic COM types were unable to be extended using classic is-a inheritance.
However, when you have created an interop assembly based on a given COM
server, the managed client is able to build new .NET class types that are based on
existing COM coclasses. Given the seamless mappings provided by the RCW, it
should be clear that when you derive a new .NET class from an existing “-Class”
type, you are able to override any supported interface member as well as trigger the
base class implementation. To illustrate, assume the following C# class definition:

// Derive a new .NET type from the

// managed ComCarClass.

class DotNetCar : ComCarClass

{

// Override the COM interface method!

public override void CrankTunes()

{

Console.WriteLine("It's .NET from here baby!");

// Call base class impl.

base.CrankTunes();

}

}

Chapter 7

390

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 390

Here, you have a new .NET class type that derives from the managed
ComCarClass type. As you have seen, ComCarClass implements the ICar and
IRadio (and the generated ComCar) interfaces. Thus, DotNetCar is free to override
the CurrentSpeed(), SpeedUp(), and CrankTunes() methods as necessary (in addi-
tion to the virtual members of System.Object). Furthermore, if the derived method
wishes to trigger the base class implementation, simply use the correct language-
specific keyword (base in C#, MyBase in VB .NET, the scope resolution operator in
managed C++, and so on).

When you combine the ability to derive .NET types from COM wrappers as
well as implement (and extend!) unmanaged interfaces on .NET types, you are
able to achieve an extremely high level of interoperability. By way of simple math,
consider the fact that classic COM was realistically supported by four core
languages (VB 6.0, C++, Delphi, and J++) and the current state of .NET supports
over 30 managed languages under development: Java classes deriving from C++
classes, APL.NET classes implementing interfaces defined in Delphi, PL1.NET
classes extending VB 6.0 classes, and so on.

COM Enum Conversion

COM enums are simple entities. They exist to map programming constants to
numerical values. The RawComCar.dll type does not define any custom IDL
enumerations, so turn your attention to the AtlComCar.dll server created in
Chapter 3. Recall the following IDL definition:

typedef enum RADIOTYPE

{

EIGHT_TRACK, CD,

AM_RADIO, FM_RADIO

} RADIOTYPE;

When COM IDL enums are mapped into managed equivalents, the managed
type derives from System.Enum. Given this fact, you are able to investigate the
underlying type information of a COM enum using any of the static members of
System.Enum. For example:

// Exercise the enum!

RADIOTYPE rt = RADIOTYPE.AM_RADIO;

string[] names = Enum.GetNames(rt.GetType());

foreach(string s in names)

{

Console.WriteLine("Name: {0}", s);

}

.NET-to-COM Interoperability—The Basics

391

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 391

Cool! At this point, you have dug into the details of converting COM type
libraries, coclasses, interfaces, members, parameters, and enumerations into
managed equivalents. This information will serve as a firm foundation for more
advanced issues that you see in the remainder of this text. Next, let’s examine the
options you have to deploy an interop assembly.

Deploying Interop Assemblies

When you build interop assemblies using VS .NET, you typically receive a private
assembly. As you recall from Chapter 5, private assemblies typically do not have a
strong name and are certainly not placed into the GAC. When managed clients are
using a private interop assembly to communicate with a classic COM server, they
are free to make use of an application configuration file to instruct the .NET
runtime where to probe during the discovery process. For example, if you create a
subdirectory named InteropAsms under the application directory of a given client,
you could build the following *.config file:

<configuration>

<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<probing privatePath="InteropAsms"/>

</assemblyBinding>

</runtime>

</configuration>

But what if you wish to place a given interop assembly into the GAC to allow
any number of managed clients to have access to the wrapped COM types? Given
what you already know about shared assemblies (see Chapter 5), you are correct to
assume that you will need to generate a *.snk file using the sn.exe utility. When you
wish to bind this file into the interop assembly, you must make use of the
tlbimp.exe utility and specify the /keyfile: flag. At this point, the interop assembly
may be placed into the GAC.

As a simple illustration, assume you have created a brand-new VB 6.0 COM
server (LameVbComServer) that contains a single coclass named Hello. Here is the
[default] public interface:

Public Sub SayHello()

MsgBox "Hi there"

End Sub

Next, assume that you have generated a new *.snk file (named theKey.snk)
using sn.exe. To build a strongly named interop assembly, you would issue the
following command:

C:\ >tlbimp LameVbComServer.dll /out: SharedLameServer.dll /keyfile: thekey.snk

Chapter 7

392

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 392

If you check out the manifest of the SharedLameServer.dll, you will find that
the binary has been configured with a [.publickey] and can thus be installed into
the GAC (Figure 7-14).

Figure 7-14. A shared interop assembly

At this point, you are able to build any number of managed clients that make
use of this shared assembly.

Creating a Primary Interop Assembly

As you have seen, tlbimp.exe allows you to build an interop assembly from any
registered COM server. This is typically a good thing. However, assume for a
moment that you are in the business of building COM class libraries for purchase
by external vendors. Ideally, these vendors trust your work, your company, and
(most important) your code. Now assume that you wish to create an “official”
interop assembly for each of your legacy COM libraries for use by your client base.
While you could simply run tlbimp.exe and ship the .NET binary, you may wish to
place your mark on the assembly using the /primary flag.

The /primary flag is used to produce what is known as a primary interop
assembly for a specified COM type library. When you apply this flag, metadata is
added to the interop assembly indicating that the publisher of the COM type
library is identical to the publisher of the interop assembly. In this way, you are
able to differentiate the official publisher’s assembly from any other assemblies
that are created from the type library using tlbimp.exe.

.NET-to-COM Interoperability—The Basics

393

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 393

Creating a primary interop assembly can be useful for a number of reasons.
Perhaps the most practical reason for building an interop assembly is to reduce
the possible cluttering of numerous interop assemblies generated from the same
COM server. For example, it is possible that numerous developers, departments,
and system administrators may each create a distinct interop assembly for a single
COM server using tlbimp.exe. However, if you as the component vendor were to
ship a primary interop assembly, this strongly named assembly could simply be
placed in the GAC of a particular production machine at the client site.

Also, you may wish to alter the metadata contained within the interop
assembly to make your types blend in more transparently within a managed envi-
ronment (this topic will be examined in Chapter 12). Given these scenarios, it
should be obvious that you should only use the /primary flag if you are indeed the
publisher of the type library of the COM library that is being converted.

When you are interested in creating a primary interop assembly, you are
required to sign the primary interop assembly with a strong name. Thus, if you
want to rework the previous SharedLameServer.dll as a primary interop assembly,
you could specify the following command:

tlbimp LameVbComServer.dll

/out: PrimarySharedLameServer.dll

/keyfile: thekey.snk /Primary

If you now check the manifest of the PrimarySharedLameServer.dll, you find
that the PrimaryInteropAssemblyAttribute type is now documented in the mani-
fest in addition to the ImportedFromTypeLibAttribute and GuidAttribute types:

.assembly PrimarySharedLameServer

{

…ImportedFromTypeLibAttribute

… GuidAttribute

.custom instance void

[mscorlib]System.Runtime.InteropServices.

PrimaryInteropAssemblyAttribute::.ctor

(int32, int32) = (01 00 01 00 00 00 00 00 00 00 00 00)

.publickey = (00 24 00 00 04 80 00 00 94 00 00 00 06 02 00 00

// .$..

00 24 00 00 52 53 41 31 00 04 00 00 01 00 01 00 //

.$..RSA1........

91 8F AE D3 2F 1B E6 D5 A8 24 27 46 99 71 67 2C //

..../....$'F.qg,

0C 23 C0 BD 3D 32 C2 B6 09 35 32 20 A1 DE 86 38 // .#..=2...52

...8

26 56 BB DF B2 71 CA CE 0C 88 56 CD F8 DB 5F C8 //

&V...q....V..._.

Chapter 7

394

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 394

4E 2E 7A 64 0B A6 0F 10 FA 91 83 48 5C 08 F2 98 //

N.zd.......H\...

BB C1 9B 62 AE ED 54 22 BA 47 30 B1 CC 4F 2A 1A //

...b..T".G0..O*.

A3 73 A1 DA E3 F3 41 C5 72 5B CB 63 AF 2A 03 8B //

.s....A.r[.c.*..

02 02 21 77 7E 8C F8 99 08 61 BF B5 82 98 5A 99 //

..!w~....a....Z.

DE 46 84 2B EA 2E 44 43 02 0B E9 60 AD 33 B0 C8) //

.F.+..DC...`.3..

.hash algorithm 0x00008004

.ver 1:0:0:0

}

Once this .NET interop assembly has been tagged with the
PrimaryInteropAssembly attribute, the client is able to set references to this
binary as usual (using the .NET tab of the Add Reference dialog box). However, as
an optional step, primary interop assemblies can be further configured on a given
machine to ease the development process. As you will see beginning in Chapter
10, the .NET SDK ships with a tool named regasm.exe. Typically, this tool is used to
configure a .NET assembly to be accessible from a classic COM client. In addition
to this functionality, this same tool can be used to “register” a primary interop
assembly. To see the end result, assume you have entered the following command:

Regasm PrimarySharedLameServer.dll

Once you register a primary interop assembly, the system registry is updated
with a value under HKCR\TypeLib\{<your LIBID>}, which records a value that
documents the fully qualified name of your assembly (Figure 7-15).

Figure 7-15. Registered primary interop assemblies are cataloged under
HKCR\TypeLib.

.NET-to-COM Interoperability—The Basics

395

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 395

Because the primary interop assembly is cataloged in the system registry,
when tools such as Visual Studio .NET are told to add a reference to a given .NET
interop assembly, they will automatically consult the registry to see if there is a
valid primary interop assembly to use. If this is the case, VS .NET will not generate
a new interop assembly. Assuming the primary interop assembly has been
installed into the GAC, clients can rest assured that they are interacting with the
“official” interop binary.

Reflecting on Interop Assembly Attributes

As you have seen over the course of this chapter, when an interop assembly is
generated using tlbimp.exe, the assembly’s metadata is colored by numerous
members of the System.Runtime.InteropServices namespace. Given that these
attributes are nothing more than standard .NET types, you can make use of reflec-
tion services to scrape out their values at runtime.

For example, assume you wish to load an interop assembly from the
GAC and determine if it has been configured as a primary interop assembly.
In addition, what if you wish to extract the values of the GuidAttribute and
ImportedFromTypeLibAttribute type? The following code does the trick:

static void Main(string[] args)

{

// Load the assembly from the GAC and see if it is

// a primary interop assembly.

string strongName = "PrimarySharedLameServer,";

strongName += @"PublicKeyToken=47ae2f12896460f7,

Version=1.0.0.0";

// Load from GAC.

Assembly asm = Assembly.LoadWithPartialName(strongName);

object[] atts = asm.GetCustomAttributes(true);

// Dump out manifest metadata.

foreach(object o in atts)

{

if(o is ImportedFromTypeLibAttribute)

{

Console.WriteLine("Library Name: {0}",

((ImportedFromTypeLibAttribute)o).Value);

}

if(o is GuidAttribute)

{

Console.WriteLine("LIBID: {0}",

((GuidAttribute)o).Value);

}

if(o is PrimaryInteropAssemblyAttribute)

{

Chapter 7

396

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 396

Console.WriteLine

("This is a primary interop assembly!");

Console.WriteLine("COM Major {0}\nCOM Minor {1}",

((PrimaryInteropAssemblyAttribute)o).MajorVersion,

((PrimaryInteropAssemblyAttribute)o).MinorVersion);

}

}

}

Of course, you can also make use of .NET reflection services to read out attrib-
utes for a managed interface, class, method, or parameter. For example, if you
wish to read metadata that describes the TYPEFLAGS value (see Chapter 4) and
CLSID for the HelloClass type, the process would appear as follows:

// Get attributes for HelloClass type.

Type t = asm.GetType("PrimarySharedLameServer.HelloClass");

object[] moreAtts = t.GetCustomAttributes(true);

foreach(object o in moreAtts)

{

// Get TYPEFLAGS for HelloClass.

if(o is TypeLibTypeAttribute)

{

Console.WriteLine("TYPEFLAGS: " +

((TypeLibTypeAttribute)o).Value);

}

if(o is GuidAttribute)

{

Console.WriteLine("CLSID: " +

((GuidAttribute)o).Value);

}

}

And just for good measure, read out the attributes that describe the SayHello()
method (the DISPID in this case):

// Get attributes for SayHello method.

object[] evenMoreAtts = mi.GetCustomAttributes(true);

Console.WriteLine("\n***** SayHello metadata *****\n");

foreach(object o in evenMoreAtts)

{

if(o is DispIdAttribute)

{

Console.WriteLine("DISPID of SayHello: {0}",

((DispIdAttribute)o).Value);

}

}

The final output can be seen in Figure 7-16.

.NET-to-COM Interoperability—The Basics

397

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 397

Figure 7-16. Reflecting on interop assembly metadata

Obtaining Type Information for a COM Wrapper Type

Needless to say, all managed COM wrappers can return type information using the
inherited System.Object.GetType() method. To illustrate, ponder the following
code:

// Get type information for HelloClass.

Console.WriteLine("***** HelloClass type info *****\n");

Type helloTypeInfo = Type.GetType("PrimarySharedLameServer.HelloClass");

Console.WriteLine("Base type {0}", t.BaseType);

Console.WriteLine("GUID {0}", t.GUID);

Console.WriteLine("COM Object? {0}", t.IsCOMObject);

Console.WriteLine("Defining Namespace {0}", t.Namespace);

Of course, you can invoke any member of the Type class (see Chapter 6 for
further details). Figure 7-17 shows the output of the previous code block.

Figure 7-17. Reading type information for a COM wrapper

Chapter 7

398

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 398

The Role of System.__ComObject

Take a closer look at Figure 7-17. As you can see, the base class of the
HelloClass wrapper is a hidden, inaccessible, and undocumented type named
System.__ComObject. This class is the direct base class of any COM interop
wrapper type. The formal definition is as follows:

public class __ComObject : MarshalByRefObject

{

public virtual System.Runtime.Remoting.ObjRef

CreateObjRef(Type requestedType);

public virtual bool Equals(object obj);

public virtual int GetHashCode();

public virtual object GetLifetimeService();

public Type GetType();

public virtual object InitializeLifetimeService();

public virtual string ToString();

}

The key role of __ComObject is to ensure that all COM types are marshaled
across process boundaries using by reference passing semantics (thus the deriva-
tion from MarshalByRefObject). In addition to this aspect, __ComObject overrides
the virtual members of System.Object to behave appropriately for a COM wrapper
type. Again, for the most part you can forget about the fact that COM wrapper
types derive from __ComObject and simply assume the logical parent type is
System.Object.

CODE The LameVbComServer and InteropAsmAttrReader applications
are located under the Chapter 7 subdirectory.

Interacting with Well-Known COM Servers

As mentioned at the opening of this chapter, the process of accessing custom
COM servers from managed code is identical to the process of interacting with
well-known COM types. Thus, to wrap up this chapter, let’s check out the process
of making use of an existing (and quite well-known) COM object library: Microsoft
Active Data Objects (classic ADO). ADO is a COM object model that allows
programmers to connect to a wide variety of database management systems using
a small handful of coclasses. Although this is not the place to drill through the full
details of ADO, I can most certainly address the process of using this COM server
from managed code. If you wish to follow along, create a new C# Windows Forms
application and set a reference (via the COM tab of the Add References dialog box)
to classic ADO (Figure 7-18).

.NET-to-COM Interoperability—The Basics

399

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 399

Figure 7-18. Accessing ADO from a managed application

Assume you have placed a Windows Forms DataGrid type on the main Form
using the design-time editor. The goal is to open a connection to your local
machine and read out the records from the Authors table of the Pubs database.
As you may already know, the ADO Connection type is used to represent a given
session with a given DBMS, while the ADO Recordset is used to contain the results
of a given SQL query. To read back all of the values in the Authors table, you could
begin with the following logic (contained within the Form’s Load event handler):

private void mainForm_Load(object sender, System.EventArgs e)

{

// First make use of an ADO Connection type.

ConnectionClass cn = new ConnectionClass();

cn.Open(

"Provider=SQLOLEDB.1;data source=.;initial catalog=pubs;",

"sa", "", -1);

// Now make use of an ADO Recordset.

RecordsetClass rs = new RecordsetClass();

rs.Open("Authors", cn, CursorTypeEnum.adOpenKeyset,

LockTypeEnum.adLockOptimistic, -1);

}

Assuming the previous code has executed without error, you now have a
Recordset filled with all of the entries of the Authors table. At this point, you can
make use of the Recordset’s Fields collection to iterate over each entry. Ideally, you

Chapter 7

400

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 400

would like to bind directly this Recordset to Windows Forms DataGrid type using
the DataSouce property:

// Sorry, nice try through!

theDataGrid.DataSouce = rs;

As you can tell from the code comment, this is not permitted. Even though a
.NET DataGrid type does not know how to bind directly to an ADO Recordset, it is
equipped to bind to an ADO.NET System.Data.DataTable type. The trick, there-
fore, is to build a DataTable type that is constructed using the records contained in
the ADO Recordset. The following logic will do the trick:

private void mainForm_Load(object sender, System.EventArgs e)

{

// Same ADO logic as before…

// Using the recordset, construct a DataTable

// which will be bound to the DataGrid widget.

DataTable theTable = new DataTable();

// Fill in column names.

for(int i = 0; i < rs.Fields.Count; i++)

theTable.Columns.Add(new DataColumn(

rs.Fields[i].Name, typeof(string)));

// Fill in rows.

while(!rs.EOF)

{

DataRow currRow;

currRow = theTable.NewRow();

for(int i = 0; i < rs.Fields.Count; i++)

currRow[i] = rs.Fields[i].Value.ToString();

theTable.Rows.Add(currRow);

rs.MoveNext();

}

// Now bind to the DataGrid.

theDataGrid.DataSource = theTable;

// Close up ADO.

rs.Close();

cn.Close();

}

Once you have filled the DataTable type with the data contained within the
classic ADO Recordset, you are able to see the data grid shown in Figure 7-19 upon
running the application.

.NET-to-COM Interoperability—The Basics

401

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 401

Figure 7-19. Interacting with msado15.dll using managed code

CODE The CSharpUsingClassicADO application is located under the
Chapter 7 subdirectory.

Summary

This chapter presented the core .NET-to-COM interoperability issues you are
likely to encounter on a day-to-day basis. The RCW is a .NET proxy class that is
responsible for mapping .NET data types into COM IDL, returning values from a
COM method invocation, and concealing a number of low-level COM interfaces
from view. In a nutshell, the RCW exists to fool a managed client into thinking it is
communicating with a standard .NET type rather than a legacy COM type.

As you have seen, the tlbimp.exe utility is the key to creating an interop
assembly based on COM type information. While using tlbimp.exe in the raw is
critical in some circumstances (building a primary interop assembly, configuring
a shared assembly, and so forth), VS .NET automates the process using the
Add Reference dialog box. Regardless of the tool you use to build an interop
assembly, the resulting binary will contain numerous attributes defined in the
System.Runtime.InteropServices namespace to document the information found
in the original COM type library.

Now that you have a solid basis, Chapter 8 drills into further details of the
.NET-to-COM communication process.

Chapter 7

402

*0112_Ch07_CMP2.qxp 3/22/02 3:26 PM Page 402

CHAPTER 8

.NET-to-COM
Interoperability—
Intermediate Topics

In the previous chapter you examined the core aspects of COM-to-.NET type
conversions (data types, parameters, interfaces, coclasses, and whatnot). This
chapter builds upon your current foundation by examining how a number of
more exotic COM patterns are realized in terms of managed code. In addition to
addressing the topics of handling COM VARIANTs, structures, and SAFEARRAYs,
you also learn how to interact with custom COM collections, HRESULTs, and COM
error objects. I wrap up this chapter by examining how COM connection points
are mapped into the .NET delegate architecture and address the issue of debug-
ging COM servers within Visual Studio .NET. If you like, consider this chapter a
potpourri of useful .NET-to-COM interoperability tidbits.

Handling the COM VARIANT

The COM VARIANT data type is one of the most useful (and most hated)
constructs of classic COM. The VARIANT structure is useful in that it is able to
assume the identity of any [oleautomation]-compliant IDL type, which may be
reassigned after the initial declaration. VARIANTs are hated for much the same
reason, given that these dynamic transformations take time. Nevertheless, you are
bound to run into a coclass that makes use of this type, and you would do well to
understand how it maps into terms of .NET.

As you recall from Chapter 2, the VARIANT structure maintains a field (vt) that
identifies the underlying [oleautomation] data type as well as a union repre-
senting the values of each possibility (bstrVal, lVal, and so forth). In VB 6.0 these
details are hidden from view using the intrinsic Variant data type:

' vt field and corresponding value field set automatically.

Dim v as Variant

v = "I am a BSTR"

v = True

v = 43.444

Set v = New SomeCoClass
403

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 403

In raw C++, you are forced to establish this information manually:

// Make a VARIANT a la C++.

VARIANT v;

VariantInit(&v);

v.vt = VT_BSTR;

v.bstrVal = SysAllocString(L"I am also a BSTR");

Under .NET, a COM VARIANT can be generically represented as a
System.Object data type. However, if you make use of a strongly typed data type
(System.String, System.Byte, and so on), the RCW will set the vt and value fields
automatically (much like the behavior of VB 6.0). Table 8-1 documents the rela-
tionship between intrinsic .NET types and the underlying VARIANT VT_XXX flag.

Table 8-1 .NET Data Types Used to Set the vt Field of COM VARIANTs

Type Assigned to System.Object Variable Raw COM VARIANT VT_XXX Flag
(Assigned to the vt Field)

Null object reference. VT_EMPTY

System.DBNull VT_NULL

ErrorWrapper VT_ERROR

System.Reflection.Missing VT_ERROR

DispatchWrapper VT_DISPATCH

UnknownWrapper VT_UNKNOWN

CurrencyWrapper VT_CY

System.Boolean VT_BOOL

System.SByte VT_I1

System.Byte VT_UI1

System.Int16 VT_I2

System.UInt16 VT_UI2

System.Int32 VT_I4

System.UInt32 VT_UI4

System.Int64 VT_I8

System.UInt64 VT_UI8

System.Single VT_R4

System.Double VT_R8

System.Decimal VT_DECIMAL

System.DateTime VT_DATE

System.String VT_BSTR

System.IntPtr VT_INT

System.UIntPtr VT_UINT

System.Array VT_ARRAY

Chapter 8

404

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 404

Do understand that when you create and manipulate a System.Object data
type exclusively using managed code, the object variable type does not contain
VARIANT-centric information. The correct VARIANT flag is set only by the
RCW when marshaling System.Object variables between managed and
unmanaged code.

Building a VARIANT-Centric COM Server

To illustrate the interplay between the .NET System.Object type and the COM
VARIANT, assume you have created a VB 6.0 COM DLL named VbVariantServer.
This COM server contains a single coclass (VariantObj) that defines the following
initial method (note that the VB line-feed constant, vbLf, maps into the C# “\n”
string token):

' This function takes a VARIANT and returns

' a string describing the underlying structure.

Public Function CheckThisVariant(ByVal v As Variant) As String

Dim s As String

s = "Type name: " + TypeName(v) + vbLf + _

"Value: " + CStr(VarType(v))

CheckThisVariant = s

End Function

The role of CheckThisVariant() is to return a string that documents the name
of an incoming VARIANT data type. As you might guess, the VB 6.0 TypeName()
function checks the underlying VT_XXX flag on your behalf and maps the numer-
ical value to a textual equivalent (for example, VT_BSTR becomes “String”). Also
note that CheckThisVariant() embeds the numerical value of the VT_XXX flag as
part of the return value using the VB 6.0 VarType() method.

Another common use of the VARIANT is to simulate overloaded methods in
COM. As you know, managed languages such as C# and VB .NET (as well as most
modern day OO languages) allow class types to define numerous versions of a
single method, as long as the number or type of parameters is unique for each
version. Classic COM, however, does not support overloaded members on inter-
face types. To circumvent this limitation, it is possible to create a single function
that takes some set of VARIANT data types. Given that a VARIANT can contain any
[oleautomation]-compatible data type, you have effectively provided a way for the
caller to pass in varying data types! This being said, let’s add another member to
the default interface of VariantObj:

.NET-to-COM Interoperability—Intermediate Topics

405

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 405

' Add two VARIANTs (if they are the same type and

' are not interfaces, structs, arrays, or data access objects).

Public Function AddTheseVariants(ByVal v1 As Variant, _

ByVal v2 As Variant) As Variant

Dim answer As Variant

If (VarType(v1) = VarType(v2) _

And (VarType(v1) <> vbObject _

And VarType(v1) <> vbUserDefinedType _

And VarType(v1) <> vbDataObject _

And IsArray(v1) = False) Then

answer = v1 + v2

Else

answer = "Bad data!"

End If

AddTheseVariants = answer

End Function

AddTheseVariants() does just what it says. Given two identical variant types
(thus the initial VarType() logic), as long as the underlying VARIANT type is not an
interface reference, COM structure, or SAFEARRAY, you return the summation of
the types. Although you certainly could retrofit this function to handle adding
these sorts of COM types (provided it made sense to do so), here you will focus on
returning the sum of more generic data points (numerical and string data).

Once you compile this VB COM server, you can use oleview.exe to examine the
generated COM type information. The IDL definition is as you would expect:

interface _VariantObj : IDispatch

{

[id(0x60030000)]

HRESULT CheckThisVariant([in] VARIANT v,

[out, retval] BSTR*);

[id(0x60030001)]

HRESULT AddTheseVariants([in] VARIANT v1,

[in] VARIANT v2, [out, retval] VARIANT*);

};

CODE The VbVariantServer project is included under the Chapter 8
subdirectory.

Chapter 8

406

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 406

Exercising COM VARIANTs from Managed Code

Say you have created a new C# console application and have set a reference to the
VbVariantServer.dll COM server. If you open the integrated object browser and
view the definitions of the managed members, you will indeed see that each COM
VARIANT has been mapped into a System.Object (Figure 8-1).

Figure 8-1. COM VARIANTs map to System.Object

First, let’s exercise the CheckThisVariant() method. Given that everything
“is-a” object under the .NET architecture, you are free to pass in intrinsic C# data
types, the equivalent base type alias, or a direct System.Object. For example:

using System;

using VbVariantServer;

namespace CSharpVariantClient

{

class VariantClient

{

[STAThread]

static void Main(string[] args)

{

// Fun with VARIANTs.

VariantObjClass varObj = new VariantObjClass();

// Make use of implicit data types.

Console.WriteLine("{0}\n",

varObj.CheckThisVariant("Hello")); // VT_BSTR

Console.WriteLine("{0}\n",

varObj.CheckThisVariant(20)); // VT_I4

Console.WriteLine("{0}\n",

.NET-to-COM Interoperability—Intermediate Topics

407

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 407

varObj.CheckThisVariant(999999)); // VT_I4

Console.WriteLine("{0}\n",

varObj.CheckThisVariant(true)); // VT_BOOL

Console.WriteLine("{0}\n",

varObj.CheckThisVariant(9.876)); // VT_R8

int[] theStuff = {12,22,33};

// VT_ARRAY | VT_I4

Console.WriteLine("{0}\n",

varObj.CheckThisVariant(theStuff));

// Make use of base class types.

System.Int32 myInt32 = 500;

Console.WriteLine("{0}\n",

varObj.CheckThisVariant(myInt32)); // VT_I4

// Of course, you can use explicit

// System.Object types as well.

object theObj = "Some string data"; // VT_BSTR

Console.WriteLine("{0}\n",

varObj.CheckThisVariant(theObj));

}

}

The bulk of this code makes use of implicit data types (meaning 20 rather
than an explicit int data type). Given that raw numerical values always map to
System.Int32 and floating-point numbers always map to System.Double, you are
free to cast the raw data as required. For example, to force the underlying VT_XXX
flag to be set to VT_I2 you could write:

// Cast if necessary...

Console.WriteLine("{0}\n",

varObj.CheckThisVariant((byte)5)); // VT_I2

The process of calling AddTheseVariants() is more or less identical. Note in the
following code block that I am attempting to pass in two managed arrays (which
are mapped into a COM SAFEARRAY) to AddTheseVariants(). Recall that the
implementation of this method explicitly tests for the VT_ARRAY bit flag, and if
found, returns a textual error message.

Chapter 8

408

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 408

// Add some variants.

Console.WriteLine("Summation: {0}",

varObj.AddTheseVariants("Hello", "There"));

Console.WriteLine("Summation: {0}",

varObj.AddTheseVariants(4, 4));

Console.WriteLine("Summation: {0}",

varObj.AddTheseVariants(54.33, 98.3));

// Remember your truth tables!

// True + False = False (-1).

Console.WriteLine("Summation: {0}",

varObj.AddTheseVariants(false, true));

// This will not be processed by the coclass!

// (theStuff is an array of ints declared previously…)

Console.WriteLine("Summation: {0}",

varObj.AddTheseVariants(theStuff, theStuff));

The VARIANT Wrappers

The System.Runtime.InteropServices namespace defines four types used to
handle VARIANTs that are not explicitly represented by managed code
(VT_ERROR, VT_DISPATCH, VT_UNKNOWN, and VT_CY). ErrorWrapper,
DispatchWrapper, UnknownWrapper, and CurrencyWrapper allow you to control
how a managed type should be marshaled via System.Object. You will learn how to
pass IUnknown- and IDispatch-derived types in Chapter 9. However, by way of
example, assume you wish to pass an unmanaged type as a COM CURRENCY
type. Given that the .NET libraries do not support this type, you are free to use
CurrencyWrapper as follows (recall that under .NET, the Currency type has been
replaced with System.Decimal):

// Pass a value as a VARIANT of type VT_CURRENCY.

Console.WriteLine("{0}\n",

varObj.CheckThisVariant(new CurrencyWrapper(new Decimal(75.25))));

.NET-to-COM Interoperability—Intermediate Topics

409

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 409

The output of your C# console application can be seen in Figure 8-2.

Figure 8-2. Interacting with VariantObj

CODE The CSharpVariantClient project is included under the Chapter 8
directory.

Handling COM SafeArrays

COM interfaces can most certainly contain parameters that represent an array of
types. As you have already seen in Chapter 4, the ideal manner to represent arrays

Chapter 8

410

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 410

in COM is using the SAFEARRAY structure (as opposed to C-style arrays). Recall
that a COM SAFEARRAY is a self-describing type that includes not only the under-
lying data, but also other important bits of information such as the upper and
lower bounds of each dimension.

As you also have seen in Chapter 4, working with a COM SAFEARRAY using
C++ is a bit on the verbose side. Therefore, let’s say you have created a new ActiveX
DLL workspace (VbSafeArrayServer) using Visual Basic 6.0 that contains a single
coclass named SafeArrayObj. The default interface (_SafeArrayObj) defines the
following array-centric members:

' This method receives an array of Strings.

Public Sub SendMeAnArrayOfStrings(strs() As String)

Dim upperBound As Integer

upperBound = UBound(strs)

Dim strStats As String

' +1 to account for zero.

strStats = "You gave me " & (upperBound + 1) _

& " Strings" & vbLf

Dim i As Integer

For i = 0 To upperBound

strStats = strStats + "-> " & strs(i) & vbLf

Next

MsgBox strStats, , "Client supplied strings"

End Sub

' This method returns an array of 10 Integers.

Public Function GiveMeAnArrayOfInts() As Integer()

Dim intArray(9) As Integer

Dim i As Integer

For i = 0 To 9

intArray(i) = i * 100

Next

GiveMeAnArrayOfInts = intArray

End Function

As you can see, these first two methods simply receive and return arrays of
varying types (Strings and Integers). To make things a bit more interesting, let’s
also assume that this same project defines an additional coclass named TestOb-
ject. Here is the formal definition of the TestObject class:

.NET-to-COM Interoperability—Intermediate Topics

411

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 411

' The simple TestObject.cls definition.

Private strData As String

Public Property Let StringData(ByVal s As String)

strData = s

End Property

Public Property Get StringData() As String

StringData = strData

End Property

Now, let’s add two new methods to the _SafeArrayObj interface that make use
of this type:

' This method returns an array of VARIANTS,

' one of which is a _TestObject interface.

Public Function GiveMeAnArrayOfVariants() As Variant()

Dim variantArray(4) As Variant

variantArray(0) = "String data"

variantArray(1) = True

variantArray(2) = 23.4

Set variantArray(3) = New TestObject

variantArray(3).StringData = "Hey buddy! You found me!"

variantArray(4) = 8

GiveMeAnArrayOfVariants = variantArray

End Function

' This method returns an array of _TestObject interfaces.

Public Function GiveMeAnArrayOfCoClasses() As TestObject()

Dim objArray(4) As TestObject

Set objArray(0) = New TestObject

Set objArray(1) = New TestObject

Set objArray(2) = New TestObject

Set objArray(3) = New TestObject

Set objArray(4) = New TestObject

' Set state of each object.

objArray(0).StringData = "Hello"

objArray(1).StringData = "there"

objArray(2).StringData = "from"

objArray(3).StringData = "VB"

objArray(4).StringData = "6.0!"

GiveMeAnArrayOfCoClasses = objArray

End Function

Chapter 8

412

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 412

Once you compile this COM server, you will be able to view the following IDL
definition (using oleview.exe, of course):

// IDL definition of the _SafeArrayObj interface.

interface _SafeArrayObj : IDispatch

{

[id(0x60030000)] HRESULT

SendMeAnArrayOfStrings([in, out]SAFEARRAY(BSTR)* strs);

[id(0x60030001)] HRESULT

GiveMeAnArrayOfInts([out, retval]SAFEARRAY(short)*);

[id(0x60030002)] HRESULT

GiveMeAnArrayOfVariants([out, retval]SAFEARRAY(VARIANT)*);

[id(0x60030003)] HRESULT

GiveMeAnArrayOfCoClasses([out, retval]SAFEARRAY(_TestObject*)*);

};

You can see here that VB 6.0 always represents arrays of types as a COM
SAFEARRAY, which you recall is defined in IDL using the SAFEARRAY(<type>)
syntax.

CODE The VbSafeArray project is located under the COM Servers\
VBArrayServer subdirectory.

Exercising COM SAFEARRAYs from Managed Code

If you create a new C# console application (CSharpSafeArrayClient) and set a
reference to VbSafeArrayServer.dll, you will find that each of the SAFEARRAY types
(parameters and return values) have been mapped to a System.Array reference
(Figure 8-3).

It is important to note that the .NET System.Array class defines a number of
instance-level and class-level members that make the process of sorting,
reversing, and altering array data painfully simple (in stark contrast to the dozens
of C++ SAFEARRAY API functions). Table 8-2 lists some of the more interesting
members of System.Array.

.NET-to-COM Interoperability—Intermediate Topics

413

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 413

Figure 8-3. COM SAFEARRAYs map to System.Array

Table 8-2. A (Very) Partial List of the Members of System.Array

Select Member Meaning in Life
of System.Array

Array.Clear() This static member cleans out the contents of the array.

Array.CreateInstance() This static member creates a new instance of System.Array.

Array.Reverse() This static member reverses the items in the array.

Array.Sort() This static member sorts items alphabetically or

numerically (based on data type). If the array contains

object-implementing IComparable, the type is sorted

according the defined semantics.

GetLength() These members return the length of the array.

Length

GetLowerBound() As you would expect, these members return the bounds of

GetUpperBound() the array.

GetValue() These members get or set a value in the array.

SetValue()

When you wish to pass an array into an unmanaged COM object, you may use
one of two approaches. First, you may create a new instance of System.Array using

Chapter 8

414

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 414

the static CreateInstance() method and populate the type using the instance level
SetValue() method:

static void Main(string[] args)

{

// Interact with the SAFEARRAY functions.

SafeArrayObjClass saObj = new SafeArrayObjClass();

// Send in strings (take one).

Array strData = Array.CreateInstance(typeof(string), 4);

strData.SetValue("Hello", 0);

strData.SetValue("there", 1);

strData.SetValue("from", 2);

strData.SetValue("C#!", 3);

saObj.SendMeAnArrayOfStrings(ref strData);

…

}

Although this is a valid approach, you are more likely to make use of the array
syntax of your language of choice. Do note, however, that COM methods requiring
a SAFEARRAY expect to be passed in a strongly typed System.Array, not the
language-specific shorthand. This being said, ponder the following functionally
equivalent code:

// Send in strings (take two).

Console.WriteLine("Calling SafeArrayObjClass.SendMeAnArrayOfStrings()");

string[] theStringData = {"Hello", "there", "from", "C#!"};

Array temp = theStringData;

saObj.SendMeAnArrayOfStrings(ref temp);

Here, you begin by creating a managed string array using the familiar C# []
syntax. The critical step is to assign this array to a System.Array object variable
before passing it into the interop assembly for transformation. If you attempt to
write either of the following:

// Bad! Compile time errors.

string[] moreStrs = {"too", "bad", "this", "bombs..."};

saObj.SendMeAnArrayOfStrings(ref moreStrs);

saObj.SendMeAnArrayOfStrings(ref (System.Array)moreStrs);

you will be presented with a handful of compile time errors. However, when you
send in a System.Array type, you are presented with the appropriate message box
(Figure 8-4).

.NET-to-COM Interoperability—Intermediate Topics

415

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 415

Figure 8-4. SendMeAnArryOfStrings() output

Receiving SAFEARRAYs

Recall that the unmanaged SafeArrayObj coclass defined a set of methods
that return an array to the caller. On the simple end of the spectrum, you have
GiveMeAnArrayOfInts(). Once you obtain the System.Array from the interop
assembly, you are free to call any members of the managed System.Array type to
manipulate the contents. For example, the following code results in the output
shown in Figure 8-5.

// Get the ints from the coclass.

Array theInts = saObj.GiveMeAnArrayOfInts();

for(int i = 0; i < theInts.Length; i++)

Console.WriteLine("Int data {0} is {1}", i,

theInts.GetValue(i));

// Reverse elements.

Console.WriteLine("Reversed Int array!\n");

Array.Reverse(theInts);

for(int i = 0; i < theInts.Length; i++)

Console.WriteLine("Int data {0} is {1}", i,

theInts.GetValue(i));

// Sort elements.

Console.WriteLine("Sorted Int array!");

Array.Sort(theInts);

for(int i = 0; i < theInts.Length; i++)

Console.WriteLine("Int data {0} is {1}", i,

theInts.GetValue(i));

Chapter 8

416

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 416

Figure 8-5. Manipulating the System.Array

Calling GiveMeAnArrayOfCoClasses() is also quite simple. Recall that this
function returns a set of _TestObject interfaces. Because the interfaces are
contained within a System.Array type, accessing the StringData property requires
an explicit cast as shown here:

// Get array of _TestObject interfaces!

Array theTestobjects = saObj.GiveMeAnArrayOfCoClasses();

for(int i = 0; i < theTestobjects.Length; i++)

Console.WriteLine("Test object {0}'s string data: {1}", i,

((TestObjectClass)theTestobjects.GetValue(i)).StringData);

And finally you have GiveMeAnArrayOfVariants(). This method is the most
interesting of the lot, given that the managed client is responsible for filtering
through the System.Array in order to determine exactly what is contained in the

.NET-to-COM Interoperability—Intermediate Topics

417

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 417

array of objects. If you find that the current element is a _TestObject interface, you
will trigger the StringData property to extract out the textual data. As you may
recall from Chapter 5, RTTI support under the .NET Framework is realized using
System.Type. Ponder the following (Figure 8-6 shows the final output):

// Get the VARIANTs.

Array theVariants = saObj.GiveMeAnArrayOfVariants();

for(int i = 0; i < theVariants.Length; i++)

{

Console.WriteLine("VARIANT number {0}'s data: {1}", i,

theVariants.GetValue(i));

// Do we have a _TestObject interface?

if(theVariants.GetValue(i).GetType() ==

typeof(VBSafeArrayServer.TestObjectClass))

Console.WriteLine(" -> Data of object is {0}",

((TestObjectClass)theVariants.GetValue(i)).StringData);

}

Figure 8-6. Manipulating SAFEARRAYs of COM interfaces and COM VARIANTs

CODE The CSharpSafeArray project is included under the Chapter 8
directory.

Chapter 8

418

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 418

Handling C-Style Arrays

In a perfect world, all COM objects would make exclusive use of the SAFEARRAY,
given that it is the one array type that can be understood by all COM language
mappings. However, C and C++ COM programmers may occasionally make use of
traditional C-style arrays as an alternative. In a nutshell, COM IDL allow you to
define three core C-style arrays:

• Fixed-length arrays

• Varying arrays

• Conformant arrays

To illustrate each possibility, you need to make use of ATL (as VB 6.0 arrays are
always expressed as COM SAFEARRAYs). Assume you have a Simple Object that
supports the following interface:

interface ICoCStyleArrayObject : IUnknown

{

// Fixed arrays define a constant capacity.

HRESULT MethodWithFixedArray([in] int myArrayOfInts[10]);

// Varying arrays allow the developer

// to pass in a chuck of an array.

HRESULT MethodWithVaryingArray

([in, length_is(len)] int myArrayOfInts[1000],

[in] long len);

// Conformant arrays can have varying

// capacities, which are identified

// using the [size_is()] IDL keyword.

HRESULT MethodWithConformantArray

([in, size_is(cnt)] int* myInts, [in] long cnt);

};

If you were to run this COM server through tlbimp.exe, you would find that
each of the IDL C-style-centric keywords (size_is(), length_is(), and so on) are
completely ignored. Thus, as far as the .NET is concerned, COM methods that
make use of varying or conformant arrays are exposed as methods that employ

.NET-to-COM Interoperability—Intermediate Topics

419

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 419

vanilla-flavored fixed arrays. Furthermore, in the case of conformant arrays, the
parameter attributed with the [size_is()] IDL attribute is represented as a
System.IntPtr.

Given these facts, consider the .NET metadata that describes the
MethodWithFixedArray() method:

.method public hidebysig newslot virtual abstract

instance void MethodWithFixedArray([in] int32[]

marshal([10]) myArrayOfInts)

runtime managed internalcall

{

} // end of method ICoCStyleArrayObject::MethodWithFixedArray

As you can see, the method is adorned with the MarshalAsAttribute,
which preserves the maximum upper limit of the IDL definition.
The .NET metadata descriptions of the MethodWithVaryingArray()
and MethodWithConformantArray() methods are as follows:

.method public hidebysig newslot virtual abstract

instance void MethodWithVaryingArray([in] native

int myArrayOfInts,

[in] int32 len) runtime managed internalcall

{

} // end of method ICoCStyleArrayObject::MethodWithVaryingArray

.method public hidebysig newslot virtual abstract

instance void MethodWithConformantArray([in] int32& myInts,

[in] int32 cnt) runtime managed internalcall

{

} // end of method ICoCStyleArrayObject::MethodWithConformantArray

Handling COM Param Arrays

The final array-centric topic I will address is the transformation of COM “param-
eter arrays.” As you may know, COM IDL provides the [vararg] attribute, which is
used to mark a parameter that can be represented by varying number of argu-
ments. No, that was not a typo. The IDL [vararg] keyword allows you to pass in a
varying number of arguments that are logically grouped as a single entity. To illus-
trate, assume that you have created the following VB 6.0 method definition
(supported by some class type):

Chapter 8

420

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 420

' This method can take any number of items,

' of various types.

Public Sub Foo(ParamArray items() As Variant)

' Do stuff with the array.

End Sub

The generated IDL is defined as follows:

interface _ParamArrayClass : IDispatch {

[id(0x60030000), vararg]

HRESULT Foo([in, out] SAFEARRAY(VARIANT)* items);

};

If you were to build an interop assembly for this VB 6.0 COM server, you would
find that the .NET metadata description of Foo() preserves the [vararg] IDL
attribute using the ParamArrayAttribute type:

.method public hidebysig newslot virtual abstract

instance void Foo([in][out] object[]&

marshal(safearray variant) items) runtime managed internalcall

{

.custom instance void

[mscorlib]System.Runtime.InteropServices.DispIdAttribute::

.ctor(int32) = (01 00 00 00 03 60 00 00)

.param [1]

.custom instance void

[mscorlib]System.ParamArrayAttribute::.ctor() = (01 00 00 00)

} // end of method _ParamArrayClass::Foo

When this interop assembly is used from C#, the Foo() method is realized
using the intrinsic params keyword. VB .NET clients would make use of the
familiar ParamArray keyword (just as with Visual Basic 6.0). Understand that the
use of the System.ParamArrayAttribute type is not CLS compliant. Therefore, if a
given COM server is used in a .NET language that does not honor its usage, the
method is not invokible.

Handling COM Structures

Back in Chapter 3, you created a COM interface method (using ATL) that operated
on a COM structure (see the WidgetServer project). The DrawALine() method was
defined to take two MYPOINT structures by reference (a requirement for passing
structures).

.NET-to-COM Interoperability—Intermediate Topics

421

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 421

typedef struct

{

long xPos;

long yPos;

}MYPOINT;

interface IDraw : IUnknown

{

[helpstring("method DrawALine")]

HRESULT DrawALine([in, out] MYPOINT* p1,

[in, out] MYPOINT* p2);

};

When tlbimp.exe encounters an unmanaged COM structure, it maps the type
into a managed value type (of the same name). Recall that .NET value types derive
from the System.ValueType base class, which can be verified in C# as follows:

// Declare a COM MYPOINT structure.

MYPOINT pt1;

pt1.xPos = 100;

pt1.yPos = 100;

// Validate base class (System.ValueType).

MessageBox.Show(pt1.GetType().BaseType.ToString());

Given what you already know about parameter transformations (see Chapter 7),
you are correct in assuming that a managed client will need to pass the managed
MYPOINT structure using the C# ref keyword. For example, if you set a reference
to the WidgetServer.dll, you will find the mapping shown in Figure 8-7.

Figure 8-7. Mapping COM structures of System.ValueTypes

Chapter 8

422

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 422

Calling DrawALine() is straightforward:

private void btnDrawLine_Click(object sender, System.EventArgs e)

{

MYPOINT pt1;

MYPOINT pt2;

pt1.xPos = 100;

pt1.yPos = 100;

pt2.xPos = 400;

pt2.yPos = 400;

DrawerClass draw = new DrawerClass();

draw.DrawALine(ref pt1, ref pt2);

}

Building a VB 6.0 Structure Server

To further illustrate the process of managed clients manipulating COM structures,
imagine you have created a new VB 6.0 project named VBStructsServer. The
[default] interface of the VBStructObject coclass defines the following members:

Option Explicit

' A simple COM structure.

Public Type WidgetStruct

ID As Integer

stringName As String

End Type

' This method returns an array of COM structures to the

' caller.

Public Function UseThisArrayOfStructs() As WidgetStruct()

Dim structs(2) As WidgetStruct

structs(0).ID = 1

structs(0).stringName = "Fred"

structs(1).ID = 2

structs(1).stringName = "Mary"

structs(2).ID = 3

structs(2).stringName = "Billy"

UseThisArrayOfStructs = structs

End Function

' This method changes the values of an incoming structure.

Public Sub ChangeThisStruct(w As WidgetStruct)

w.ID = 99

w.stringName = "FooFoo"

End Sub

.NET-to-COM Interoperability—Intermediate Topics

423

*0112_Ch08_CMP4.qxp 3/25/02 1:20 PM Page 423

Obviously, UseThisArrayOfStructs() revisits the notion of COM SAFEARRAYs.
If you examine the underlying IDL for this member, you will find the following
COM type information:

struct tagWidgetStruct

{

[helpstring("ID")] short ID;

[helpstring("stringName")] BSTR stringName;

} WidgetStruct;

interface _VBStructObject : IDispatch

{

[id(0x60030000)]

HRESULT

UseThisArrayOfStructs([out, retval]

SAFEARRAY(WidgetStruct)*);

[id(0x60030001)]

HRESULT ChangeThisStruct([in, out] WidgetStruct* w);

};

CODE The VbStructServer is located under the COM Servers\
VBStructsServer directory.

Exercising COM Structures from Managed Code

For a change of pace, let’s build a Windows Forms application to manipulate the
_VBStructObject interface (and if you wish, the ATL WidgetServer.dll). The UI
(Figure 8-8) will allow the user to obtain the array of structures that are displayed
inside the Form’s ListBox type. In addition, the Change a Struct button will be used
to display a WidgetServer structure before and after calling ChangeThisStruct().

Figure 8-8. The Windows Forms GUI

Chapter 8

424

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 424

As you would expect, the majority of the code is found behind the
Button Click event handler. Here is the relevant code:

private void btnGetArrayOfStructs_Click(object sender, System.EventArgs e)

{

// Get the SAFEARRAY from the COM object.

VBStructObjectClass c = new VBStructObjectClass();

Array s = c.UseThisArrayOfStructs();

// Loop over each member in the array

// and scrape out the structure data.

foreach(WidgetStruct ws in s)

{

string str = String.Format("Number: {0} Name: {1}",

ws.ID.ToString(),

ws.stringName);

// Plop into Form's listbox.

lstStructs.Items.Add(str);

}

}

private void btnChangeStruct_Click(object sender,

System.EventArgs e)

{

// Make and show a WidgetStruct.

WidgetStruct w;

w.ID = 9;

w.stringName = "Fred";

string str = String.Format("Number: {0} Name: {1}",

w.ID.ToString(), w.stringName);

MessageBox.Show(str, "WidgetStruct as created");

// Now pass it in.

VBStructObjectClass c = new VBStructObjectClass();

c.ChangeThisStruct(ref w);

// Check out the new values.

str = String.Format("Number: {0} Name: {1}",

w.ID.ToString(), w.stringName);

MessageBox.Show(str, "After call");

}

.NET-to-COM Interoperability—Intermediate Topics

425

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 425

CODE The CSharpComStructClient application is located under the
Chapter 8 directory.

Handling COM Collections

A very common pattern in COM is that of a custom collection. COM collection
objects are simply coclasses that contain references to other (somehow related)
coclasses. To illustrate the collection pattern, you will create the collection shown
in Figure 8-9.

Figure 8-9. A COM collection

If you wish to follow along, fire up VB 6.0 and create a new ActiveX DLL named
VbCollectionServer and change the name of your initial class to CoCar. The CoCar
coclass defines a small set of private data members (which should be looking very
familiar by this point) that are accessible using standard COM properties (one of
which will be designed as read only). Also, CoCar defines a custom creation
method (as VB 6.0 does not support parameterized constructors). Here is the
complete code:

Chapter 8

426

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 426

' The CoCar

Option Explicit

' Private data.

Private mColor As String

Private mMake As String

Private mPetName As String

Private mCarID As Integer

' Custom creation method.

Public Sub Create(ByVal Color As String, ByVal Make As String, _

ByVal PetName As String, ByVal id As Integer)

mColor = Color

mPetName = PetName

mMake = Make

mCarID = id

End Sub

' CoCar supports the following COM properties.

Public Property Let Color(ByVal s As String)

mColor = s

End Property

Public Property Get Color() As String

Color = mColor

End Property

Public Property Let Make(ByVal s As String)

mMake = s

End Property

Public Property Get Make() As String

Make = mMake

End Property

Public Property Let PetName(ByVal s As String)

mPetName = s

End Property

Public Property Get PetName() As String

PetName = mPetName

End Property

' Read only (set using Create()).

Public Property Get CarID() As Integer

CarID = mCarID

End Property

.NET-to-COM Interoperability—Intermediate Topics

427

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 427

A common approach used when building COM collections is to explicitly
prevent inner classes from being directly created by the caller. The idea behind
this tactic is to force the user to obtain interface references of the inner types from
the container (and only the container). As you learned in Chapter 4, the IDL
[noncreatable] keyword can be used for this very purpose. The problem is that
with VB 6.0 you are unable to directly edit the underlying COM type information.
You can, however, instruct VB 6.0 to add the [noncreatable] keyword by setting a
coclass’ Instancing property to PublicNotCreatable (Figure 8-10).

Figure 8-10. Preventing a VB COM Type from being directly created

If you examine the generated IDL (after compiling the server), you will find
the following definition of CoCar (as an interesting side note, oleview.exe will not
let you expand the VbCollectionServer.CoCar node, given that this type is now not
creatable!):

[uuid(44D7497B-D086-4BB0-AE79-5F9C0A9DD259),

version(1.0), noncreatable]

coclass CoCar {

[default] interface _CoCar;

};

Now that you have created the inner CoCar, you need to build the containing
coclass. Insert a new VB 6.0 class type named CarCollection. To allow the outside
world to interact with the internal set, programmers populate the [default] inter-
face of the containing object with a well-known set of members (Table 8-3).

Chapter 8

428

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 428

Table 8-3. Typical Members of a COM Collection

COM Collection Member Meaning in Life

Add() The collection’s Add method allows the user to insert a new

coclass into the COM collection.

Remove() Obviously, this member allows the outside world to remove an

item from the collection.

Item() This member is much like a C# indexer method in that it

allows access to a particular item in the collection.

Count This member returns the number of items in the collection.

_NewEnum() This hidden member is typically not directly called by the

COM client, but rather internally by VB 6.0 when using the For

Each iteration syntax. Under the hood, this method returns the

standard IEnumVARIANT interface.

Of course, you are not required to name your container’s members identically
to the items listed in Table 8-3. Thus, if you would rather name your insertion
method AddThisNewCarToTheCollection(), you are free to do so. The semantics of
these members, however, should be identical.

If you were building a custom COM collection using ATL, you might make use
of an STL vector to hold the inner interface references. Under the VB 6.0 model,
you have a less syntactically strenuous option: the intrinsic Collection class. The
VB 6.0 Collection type is a predefined type that supports the Add(), Remove(),
Count, Item(), and _NewEnum() members.

However, the raw Collection type allows you to insert any possible item into
the collection! When you wish to restrict exactly what can be inserted (or removed)
from the coclass, you will want to build a strongly typed collection that leverages
the functionality of the Collection type. The first step, therefore, is to add a private
Collection member variable to the CarCollection type and fill it with some initial
data points:

' The CarCollection.

Option Explicit

Private mCarColl As Collection

Private Sub Class_Initialize()

Set mCarColl = New Collection

' Add some initial cars to the collection.

AddCar "Red", "Viper", "Fred", 1

AddCar "Yellow", "SlugBug", "Pippy", 2

.NET-to-COM Interoperability—Intermediate Topics

429

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 429

AddCar "Black", "BMW", "Buddha", 3

AddCar "Gold", "Colt", "Goldy", 4

AddCar "Pink", "Caravan", "Illness", 5

End Sub

Your insertion method, AddCar(), allows the user to send in the individual
data points that constitute a new CoCar. Following convention, once AddCar() has
inserted the new object, you return its reference to the caller:

Public Function AddCar(ByVal Color As String,

ByVal Make As String, _

ByVal PetName As String, ByVal id As Integer) As CoCar

' Make a new car and add it to the collection.

Dim c As CoCar

Set c = New CoCar

c.Create Color, Make, PetName, id

mCarColl.Add c

Set AddCar = c

End Function

The indexer method, GetCar(), is a stylized version of Item() that is imple-
mented as follows:

Public Function GetCar(ByVal index As Integer) As CoCar

' Get a car from collection.

Set GetCar = mCarColl.Item(index)

End Function

The variation of Count() is a no-brainer. Simply ask the private Collection for
its current number of items:

Public Function NumberOfCars() As Integer

' Return number of cars.

NumberOfCars = mCarColl.Count()

End Function

The removal method is also very straightforward:

Public Sub RemoveCar(ByVal index As Integer)

' Remove a car.

mCarColl.Remove (index)

End Sub

Chapter 8

430

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 430

The implementation of RemoveCar() could be much more extravagant. You
could, for example, allow the user to pass in the ID of the car he or she is inter-
ested in obtaining, and search for the correct member in the Collection. If you
were to design the CarCollection in this manner, you would do better to make use
of the VB 6.0 Dictionary type rather than the Collection entity. For the purposes of
this example, the current implementation will do just fine.

Last but not least, you have the hidden _NewEnum() method. As noted, the
COM client does not directly call this method. However, under the hood, Visual
Basic will invoke this member whenever the client makes use of the For . . . Each
syntax. Good enough, but what exactly does _NewEnum() do? In a nutshell, this
method returns an IUnknown interface to the client (VB in this case) that will use
it to query the type for its IEnumVARIANT interface. This standard interface
(defined in oaidl.idl) allows a client to interact with the contained items using four
members:

// IEnumVARIANT interface.

interface IEnumVARIANT : IUnknown

{

// This method returns a set of VARIANTs.

HRESULT Next([in] ULONG celt,

[out, size_is(celt),

length_is(*pCeltFetched)] VARIANT* rgVar,

[out] ULONG * pCeltFetched);

// This method skips over some number of items.

HRESULT Skip([in] ULONG celt);

// Set the internal pointer back to the beginning.

HRESULT Reset();

// Allows a client to obtain a carbon copy of the

// current enumerator.

HRESULT Clone([out] IEnumVARIANT ** ppEnum);

}

C++ programmers who build COM classes in the raw (or using ATL) may be
aware of the mythical IEnumXXXX interface. This enumeration interface offers a
design pattern by which a collection object allows access to a set of internal items.
These internal items may be anything at all: a set of integers, VARIANTs, BSTRs, or
even the interfaces of custom coclasses.

However, rather than allowing each and every developer to define the
members that provide access to the contained types, the COM specification offers

.NET-to-COM Interoperability—Intermediate Topics

431

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 431

the fictional IEnumXXXX interface. This interface is not literally defined in a given
type library. Rather, IEnumXXXX is a recommended pattern to follow when
building the container object. Simply replace “XXXX” with the type of inner
item you are allowing access to (for example, IEnumVARIANT, IEnumFrogs,
IEnumURLs, and so forth). Because a VB 6.0 Collection type can hold anything at
all, it stands to reason that its enumerator interface is IEnumVARIANT. With this
brief backgrounder out of the way, here is the implementation of the _NewEnum()
member (recall that the [] notation allows you to call hidden members):

' Required to support For Each iteration.

Public Function NewEnum() As IUnknown

Set NewEnum = mCarColl.[_NewEnum]

End Function

Now, when you make use of the For . . . Each syntax, VB does not invoke
_NewEnum() by name, but rather by indirectly invoking the member via it’s
DISPID. Note for example that the CarCollection’s _NewEnum() member is named
simply NewEnum() (without the underscore). In fact, you could have called this
method GiveMeIEnumVARIANT(). To associate your method (whatever its name)
with the correct DISPID, you will need to use the Procedure Attributes dialog box
(located under the Tools menu of the VB 6.0 IDE). What is the magic number you
ask? It’s –4 (note the Procedure ID edit box seen in Figure 8-11). While you’re at it,
mark this member as hidden (via the check box).

Figure 8-11. Setting the correct DISPID

Chapter 8

432

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 432

If you are interested, the value –4 maps to a predefined const named
DISPID_NEWENUM (found in oaild.idl).

// DISPID reserved for the standard "NewEnum" method.

const DISPID DISPID_NEWENUM = -4;

Once you compile your VB server, you will see that the correct hexadecimal
value of –4 has been added to your NewEnum() method:

interface _CarCollection : IDispatch

{

[id(0x60030000)]

HRESULT AddCar([in] BSTR Color,

[in] BSTR Make, [in] BSTR PetName,

[in] short id, [out, retval] _CoCar**);

[id(0x60030001)]

HRESULT GetCar([in] short index,

[out, retval] _CoCar**);

[id(0x60030002)]

HRESULT NumberOfCars([out, retval] short*);

[id(0x60030003)]

HRESULT RemoveCar([in] short index);

// 0xfffffffc = DISPID_NEWENUM (-4)

[id(0xfffffffc), hidden]

HRESULT NewEnum([out, retval] IUnknown**);

};

With this, your VB 6.0 COM collection is complete! Now let’s see how to
manipulate it using managed code.

CODE The VbCollectionServer is located under the Chapter 8
subdirectory.

Exercising the COM Collection from Managed Code

Now you’ll take your COM collection out for a spin via a new C# console applica-
tion (CSharpComCollectionClient). First off, the application object defines a static

.NET-to-COM Interoperability—Intermediate Topics

433

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 433

method named PrintCarCollection() that will iterate over each item in the collec-
tion and dump out the contents:

namespace CSharpComCollectionClient

{

class COMCollectionUser

{

static void PrintCarCollection(CarCollection coll)

{

// DISPID_NEWENUM triggered here!

foreach(CoCarClass car in coll)

{

Console.WriteLine(@"ID: {0} Make: {1}

Color: {2} PetName: {3}",

car.CarID, car.Make, car.Color, car.PetName);

}

}

[STAThread]

static void Main(string[] args)

{

}

}

}

As you can see from the code comment, just like the VB 6.0 For Each syntax,
the C# foreach keyword demands that the type being traversed support an
enumeration mechanism. Recall that your CarCollection coclass defined a hidden
method with the DISPID of –4. When the tlbimp.exe utility finds this value, it will
automatically build in support for the System.Collections.IEnumerable interface:

// A COM class that defines a member with DISPID –4

// will support this interface.

public interface System.Collections.IEnumerable

{

System.Collections.IEnumerator GetEnumerator();

}

This interface simply returns another interface to the caller (IEnumerator),
which allows the type’s internal sub objects to be iterated over.
System.Collection.IEnumerator is defined as follows:

// A managed variation of the COM IEnumXXXX interface.

public interface System.Collections.IEnumerator

{

object Current { get; }

bool MoveNext();

void Reset();

}

Chapter 8

434

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 434

If you check out the managed type using the IDE’s integrated Object Browser
(Figure 8-12), you’ll see the CarCollectionClass does indeed support IEnumerable
(which again provides access to IEnumerator).

Figure 8-12. Supporting DISPID_NEWENUM results in the implementation of the
IEnumerable interface.

If you did not assign DISPID_NEWENUM to a given member of the COM
collection, the generated class type would not support IEnumerable. Rather, you
are presented with the following compile time error:

foreach statement cannot operate on variables of type

'VbCollectionServer.CarCollection' because

'VbCollectionServer.CarCollection' does not contain a definition

for 'GetEnumerator', or it is inaccessible

Now, to illustrate interaction with the CarCollectionClass type, ponder the
following updated Main() method that calls AddCar(), RemoveCar(), and GetCar():

static void Main(string[] args)

{

// Make the COM collection.

CarCollectionClass carColl = new CarCollectionClass();

Console.WriteLine("Number of cars in initial collection: {0}",

carColl.NumberOfCars());

// Iterate over initial collection.

PrintCarCollection(carColl);

.NET-to-COM Interoperability—Intermediate Topics

435

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 435

// Add a car.

CoCar newCar = carColl.AddCar("White", "Jetta", "Chucky", 55);

Console.WriteLine("\nCollection after adding a car.");

PrintCarCollection(carColl);

// Now remove the first 3 cars.

Console.WriteLine("\nCollection after removing first 3 cars:");

carColl.RemoveCar(1);

carColl.RemoveCar(2);

carColl.RemoveCar(3);

PrintCarCollection(carColl);

// Get first CoCar in collection.

CoCar carOne = carColl.GetCar(1);

Console.WriteLine("\nFirst Car has ID: {0}", carOne.CarID);

}

If you have a background in C++ COM development, note that if you obtain
the IEnumerator interface from an imported COM collection, you are in effect
interacting with the coclass’ IEnumVARIANT. For example:

// Now using raw enumerator.

IEnumerator itfEnum = carColl.GetEnumerator();

itfEnum.Reset();

itfEnum.MoveNext();

CoCarClass c = (CoCarClass)itfEnum.Current;

Console.WriteLine("ID: {0} Make: {1} Color: {2} PetName: {3}",

c.CarID, c.Make, c.Color, c.PetName);

Figure 8-13 illustrates the complete output.

Figure 8-13. Interacting with the COM enumerator

Chapter 8

436

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 436

CODE The CSharpComCollectionClient is located under the Chapter 8
subdirectory.

A Brief Review of COM Connection Points (COM Events)

Now that you have examined the COM collection pattern (and the role of COM
enumeration interfaces), let me turn your attention to the consumption of
COM events from a managed environment. However, before you build a sample COM
event server, let’s take some time to briefly review the core concepts of the connec-
tion point architecture. In classic COM, the ability for one object to send events to
another object requires four key ingredients:

• A connection point container

• A connectable object (or possibly a set of them) maintained by the
container

• An outbound interface (aka source interface) defined in the server’s type
library

• The client’s implementation of the source interface (aka client-side sink).

Understanding IConnectionPointContainer

The first piece of the puzzle is the connection point container. To be honest, this is
just a fancy name for a collection coclass that implements the standard COM
interface named (surprise, surprise) IConnectionPointContainer. The role of
IConnectionPointContainer is to allow the client to investigate the set of
connectable objects it is maintaining. A connectable object is a COM class that
understands how to send a predefined set of events (more details in a moment).
The official definition of this standard COM interface can be found inside ocild.idl:

// Implemented by the connection point container.

interface IConnectionPointContainer : IUnknown

{

// Allows client to enumerate over the inner objects.

HRESULT EnumConnectionPoints(

[out] IEnumConnectionPoints ** ppEnum);

// Allows the client to ask for a connection point by name.

HRESULT FindConnectionPoint([in] REFIID riid,

[out] IConnectionPoint ** ppCP);

}

.NET-to-COM Interoperability—Intermediate Topics

437

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 437

The first way a client may obtain an internal connection point is to call
EnumConnectionPoints(), which returns a standard COM enumeration interface
named IEnumConnectionPoints. Using IEnumConnectionPoints, the client
can iterate over each of the contained subobjects in the same manner as
IEnumVARIANT. The second (and more common) approach is to ask for a
specific connectable object by name using FindConnectionPoint(), which
allows a client to ask for a specific connection point by name.

Understanding IConnectionPoint

Regardless of which technique the client uses to view the container’s inner objects,
the end result is a reference to the connectable object’s IConnectionPoint inter-
face. In fact, by definition, a connectable object is a coclass that implements the
members of IConnectionPoint. This interface defines a set of methods that allows
the external client to connect and disconnect from the connectable object (among
other chores). IConnectionPoint is also defined within ocidl.idl as follows:

// Internal connectable objects must implement IConnectionPoint.

interface IConnectionPoint : IUnknown

{

// Get the GUID of the outbound interface

// this object makes calls upon.

HRESULT GetConnectionInterface([out] IID * pIID);

// Get pointer back to the container.

HRESULT GetConnectionPointContainer(

[out] IConnectionPointContainer ** ppCPC);

// Allows external client to hook into this connectable object.

HRESULT Advise([in] IUnknown * pUnkSink,

[out] DWORD * pdwCookie);

// Allows external client to detach

// from this connectable object.

HRESULT Unadvise([in] DWORD dwCookie);

// Allows client to determine all other

// connections to this connectable

// object.

HRESULT EnumConnections([out] IEnumConnections ** ppEnum);

}

Of all the methods of IConnectionPoint, Advise() and Unadvise() are by far the
most interesting. Using these methods, an external client is able to inform the
connection point object that it is interested in receiving incoming events by

Chapter 8

438

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 438

passing in a reference to the client-side sink (represented as an IUnknown*) via
the Advise() method. The connectable object holds onto each client-side sink
reference and makes calls on each sink when a given event occurs. As you might
assume, each connectable object maintains an array of IUnknown* interfaces that
represent a given connected client. Unadvise(), on the other hand, allows the
client to terminate the connection by passing back the connection cookie received
as an output parameter from the Advise() method.

Understanding the Outbound Interface

Next you have the entity known as the outbound interface. A given connectable
object is only able to make calls against a particular set of methods. Formally
speaking, this set of methods is known as an outbound interface, which is defined
in IDL using the [source] keyword. [source] interfaces are defined in the server’s
type information but implemented by the client in a given sink object. Also under-
stand that outbound interfaces are defined as dispinterfaces (by convention) to
ensure that late-bound clients (such as a Web browser) can intercept the incoming
events. Here is a simple IDL definition of an outbound interface:

library MYEVENTSERVERLib

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

// Event interfaces are defined in the server’s IDL,

// but implemented by the client. The underscore is a

// convention that marks the interface as hidden.

[uuid(17B8B6D5-887C-46B4-9B4D-554954863CD8)]

dispinterface _ICoEventObjectEvents

{

properties:

methods:

[id(1), helpstring("method TheEvent")] HRESULT TheEvent();

};

[uuid(F94E0935-7DE1-46CC-9E3C-BFDE8998A80B)]

coclass CoEventObject

{

[default] interface ICoEventObject;

[default, source] dispinterface _ICoEventObjectEvents;

};

};

.NET-to-COM Interoperability—Intermediate Topics

439

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 439

Although it is possible that a COM server may define multiple source inter-
faces (and therefore multiple connection points), 99.9 percent of all connection
point containers define a single connectable object and a single [default, source]
interface that defines all the events for a given container.

All Together Now ...

To be sure, the connection point architecture is a bit on the complex side. To help
solidify the role of each entity, let’s see a concrete example. Figure 8-14 illustrates
yet another CoCar, this time containing two connectable objects. EngineCP is a
COM type that only knows how to communicate with a sink that implements
_EngineEvents. RadioCP is another connectable object that only knows how to
communicate with a sink implementing the members of _RadioEvents. Recall that
the IDL definition of outbound [source] interface is located within the server’s
type library but implemented by a given client-side sink.

Figure 8-14. The complexity that is COM connection points

Chapter 8

440

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 440

Building a Connectable COM Type

To be sure, if you were to build a connectable coclass using raw C++ and IDL, you
would have quite a chore ahead of you. To keep things focused on interoperability
issues (rather than on the gory details of constructing connectable objects),
you will once again make use of Visual Basic 6.0. The VBComEventsServer.dll
defines a single coclass named CoCar. This COM type is able to send out two
events to a connected client (based on the value of its current rate of speed).
The beautiful thing about defining and sending events using VB 6.0 is that the
IConnectionPointContainer and IConnectionPoint interfaces are implemented
behind the scenes automatically. All you are required to do is this:

• Define the events using the Event keyword.

• Fire the event (under the correct conditions) using the RaiseEvent keyword.

Here, then, is this iteration of the CoCar type (CoCar.cls):

Option Explicit

' Class constant.

Const MAXSPEED = 200

' Simple state data.

Private mCurrSpeed As Integer

' The CoCar can send two events.

Public Event AboutToBlow()

Public Event Exploded()

' The sole member of the [default] interface.

Public Function SpeedUp() As Integer

mCurrSpeed = mCurrSpeed + 10

If (MAXSPEED - mCurrSpeed) = 10 Then

RaiseEvent AboutToBlow

End If

If mCurrSpeed >= MAXSPEED Then

RaiseEvent Exploded

End If

' Return current speed

SpeedUp = mCurrSpeed

End Function

.NET-to-COM Interoperability—Intermediate Topics

441

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 441

Once you compile this server, examine the set of supported interfaces using
oleview.exe. As you can see, VB has indeed supplied the necessary infrastructure
(Figure 8-15).

Figure 8-15. VB 6.0 coclasses automatically support COM event atoms.

If you examine the generated COM type information, you will find that a
single [default, source] interface has been defined and populated with each event
you declared using the VB 6.0 Event keyword (note that by convention, [source]
interfaces are typically defined as dispinterfaces to allow late-bound clients to
receive the outgoing events):

[uuid(C2112F74-9C98-435E-8304-7735421F3C23),

version(1.0), hidden, nonextensible]

dispinterface __CoCar {

properties:

methods:

[id(0x00000001)]

void AboutToBlow();

[id(0x00000002)]

void Exploded();

};

CODE The VBComEventServer project is included under the Chapter 8
subdirectory.

Chapter 8

442

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 442

A Brief Review of .NET Delegates

As you might expect, COM connection points are mapped into terms of the .NET
delegate architecture. By way of a quick review, recall that a delegate is a type that
represents a pointer to some function, much like a traditional C-style callback (see
Chapter 1). The key difference, however, is that a .NET delegate is a class that
derives from System.MulticastDelegate.

This base class defines a number of members that maintain core information
about the method(s) it is responsible for invoking. Using the inherited Combine()
and Remove() methods, the delegate type adds or removes function pointers to
the internal linked list it is maintaining.

Because a delegate is indeed a class type, it can be directly created and manip-
ulated, like any class type you may pass in, as a constructor argument you pass in
the name of the method that will be invoked. For example, ponder the following
code (note the similarity to the PInvoke callback example described in Chapter 1):

namespace SimpleCSharpDelegate

{

// This delegate knows how to call

// methods that take no arguments and returns nothing.

public delegate void DoneAddingDelegate();

class Adder

{

public int Add(int x, int y)

{ return x + y; }

// The delegate target.

// (Note this method matches the calling conventions of the

// DoneAddingDelegate delegate).

public void AddingComplete()

{

Console.WriteLine("The adder is done...");

}

[STAThread]

static void Main(string[] args)

{

// Create an adder.

Adder a = new Adder();

// Assign a method to the delegate.

DoneAddingDelegate del =

new DoneAddingDelegate(a.AddingComplete);

.NET-to-COM Interoperability—Intermediate Topics

443

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 443

Console.WriteLine("Delegate target: {0}",

del.Target.ToString());

Console.WriteLine("Delegate method name: {0}",

del.Method.Name);

// Trigger the method maintained by the delegate.

Console.WriteLine("Sum of 10 and 10 is: {0}",

a.Add(10, 10));

del.DynamicInvoke(null);

}

}

}

Here, the DoneAddingDelegate delegate has been defined to invoke methods
that take no arguments and return nothing. Notice that when you create the dele-
gate (within the Main() method), you are passing in the name of a function to call
(which, of course, matches the calling conventions of the DoneAddingDelegate
delegate).

After you print some basic stats about the delegate (via the inherited Target
and Method properties), you invoke the member using DynamicInvoke(). The
output can be seen in Figure 8-16.

Figure 8-16. The DoneAddingDelegate type in action

If you view the generated assembly using ILDasm.exe, you will find
that the delegate keyword does indeed expand to a class deriving from
System.MulticastDelegate (Figure 8-17).

CODE The SimpleCSharpDelegate application is included under the
Chapter 8 directory.

Chapter 8

444

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 444

Figure 8-17. Delegates derive from System.MulticastDelegate.

A Brief Review of .NET Events

Although .NET delegates can be used as independent agents, it is more
common to leverage delegates to create custom events. A C# event is defined
using the following syntax (assume you have already defined a delegate named
NameOfDelegate):

// C# Event declaration.

public event NameOfDelegate NameOfEvent;

As you can see, an event is simply a named class member that knows how to
communicate with a set of methods matching the corresponding delegate. Once a
class type has defined some number of events, you are able to assign delegate
targets using the convenient += syntax; likewise, if you wish to remove a member
from the list maintained by the delegate, you may make use of the –= syntax. And
finally, when you want the class to fire the event (thereby calling each method
contained within the delegate), simply call the event by name. To showcase the
.NET event architecture, here is a new C# console application that retrofits the
previous SimpleCSharpDelegate application to make use of a custom event.

.NET-to-COM Interoperability—Intermediate Topics

445

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 445

namespace SimpleCSharpEvent

{

// The delegate.

public delegate void DoneAddingEventHandler();

class Adder

{

// The event.

public event DoneAddingEventHandler DoneAdding;

// Method which fires the event.

public int Add(int x, int y)

{

// Fire event.

DoneAdding();

return x + y;

}

// The event sink.

public void AddingComplete()

{

Console.WriteLine("The adder is done...");

}

[STAThread]

static void Main(string[] args)

{

// Create an adder.

Adder a = new Adder();

// Assign a method to the event.

a.DoneAdding +=

new DoneAddingEventHandler(a.AddingComplete);

// Trigger the event.

Console.WriteLine("Sum of 10 and 10 is: {0}",

a.Add(10, 10));

}

}

}

Although the output is identical to the previous delegate, the underlying
metadata is quite unique (Figure 8-18).

Chapter 8

446

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 446

Figure 8-18. The underbelly of .NET events

Notice that the Adder class type now defines two additional members,
add_DoneAdding() and remove_DoneAdding(). These members are called behind
the scenes when you make use of the += and –= operators. The crux of their useful-
ness is to hide the raw delegate manipulation from view. For example, if you check
out the IL for add_DoneAdding(), you will find that System.Delegate::Combine() is
called on your behalf:

method public hidebysig specialname instance void

add_DoneAdding(class

SimpleCSharpDelegate.DoneAddingEventHandler 'value')

cil managed synchronized

{

…

IL_0008: call class [mscorlib]System.Delegate

[mscorlib]System.Delegate::Combine(class

[mscorlib]System.Delegate,

class [mscorlib]System.Delegate)

…

}

.NET-to-COM Interoperability—Intermediate Topics

447

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 447

Likewise, remove_DoneAdding() will call System.Delegate.Remove():

.method public hidebysig specialname instance void

remove_DoneAdding(class SimpleCSharpDelegate.

DoneAddingEventHandler 'value') cil managed synchronized

{

…

IL_0008: call class [mscorlib]System.Delegate

[mscorlib]System.Delegate::Remove(class

[mscorlib]System.Delegate,

class [mscorlib]System.Delegate)

…

}

The last point of interest is to check out the IL of the DoneAdding event itself
(identified by the green triangle that indicates a class type within ILDasm.exe).
The [.addon] and [.removeon] directives are used to hook into the hidden delegate
members:

event SimpleCSharpDelegate.DoneAddingEventHandler DoneAdding

{

.addon instance void SimpleCSharpDelegate.Adder::add_DoneAdding

(class SimpleCSharpDelegate.DoneAddingEventHandler)

.removeon instance void

SimpleCSharpDelegate.Adder::remove_DoneAdding

(class SimpleCSharpDelegate.DoneAddingEventHandler)

}

CODE The SimpleCSharpEvent project is included under the Chapter 8
directory.

Examining the Interop Assembly

Now that you have seen how to work with .NET delegates and events in and of
themselves, you should have no problem intercepting COM events. When you
generate an interop assembly for a COM server making use of the connection
point architecture, tlbimp.exe will generate a number of additional types beyond
the XXXClass, [default] interface class type, and managed interface. Check out
Figure 8-19.

Chapter 8

448

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 448

Figure 8-19. Event-centric generated types

Table 8-4 documents the meaning of each member of the
interop.vbcomeventserver.dll assembly (note that the XXX_EventProvider and
XXX_SinkHelper types are private to the interop assembly and not directly usable
from a managed client).

Table 8-4. Generated Event-Centric Types

Generated Type Meaning in Life

CoCarClass, CoCar, _CoCar As you would expect, the interop assembly

contains managed class and interface types (as

described in Chapter 6).

__CoCar Tlbimp.exe generates a managed inbound

interface for each [source] interface. Typically

this interface can be ignored; however, you can

make use of it to manually build a managed

event sink.

__CoCar_Event Tlbimp.exe also generates a managed

outbound interface for each [source] interface.

Again, this member can typically be ignored.

__CoCar_AboutToBlowEventHandler Tlbimp.exe generates a managed delegate for

__CoCar_ExplodedEventHandler each method defined in the COM [source]

interface.

.NET-to-COM Interoperability—Intermediate Topics

449

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 449

Table 8-4. Generated Event-Centric Types (continued)

Generated Type Meaning in Life

__CoCar_EventProvider This internal class type is used by the RCW to

map COM connection points to .NET

delegates.

__CoCar_SinkHelper This internal class implements the members of

the outbound interface and functions as a

default client side sink object.

Although quite a few types are generated by the tlbimp.exe utility, understand
that the only items you are likely to make direct use of are the managed delegates.
Furthermore, two of the types (__XXXX_EventProvider and __XXXX_SinkHelper)
are declared as internal types, and are therefore not accessible from outside of the
interop assembly. In a nutshell, the RCW uses these two types internally to map
COM connection points to the correct .NET delegate. For example, if you were to
peek inside the underlying IL for these types, you would find that the
__CoCar_EventProvider type maintains a System.Collections.ArrayList type to
hold onto the client-side sinks. Again, given that you are unable to directly use
these types, I’ll focus exclusively on the remaining members.

Examining the Generated Delegates

The most critical members generated by tlbimp.exe are the managed delegates.
Recall that the VB 6.0 [default, source] interface defines two event members:

dispinterface __CoCar {

properties:

methods:

[id(0x00000001)] void AboutToBlow();

[id(0x00000002)] void Exploded();

};

This results in the following .NET delegates:

public sealed delegate __CoCar_AboutToBlowEventHandler

: System.MulticastDelegate

{…}

public sealed delegate __CoCar_ExplodedEventHandler

: System.MulticastDelegate

{…}

The name given to each .NET delegate is based on a very specific pattern:

<NameOfTheSourceInterface>_<NameOfTheEvent>EventHandler

Chapter 8

450

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 450

Thus, if you had a [source] interface named MyEvents that defined a single
method called TheEvent, the generated delegate would be named
MyEvents_TheEventEventHandler. As you will see in just a moment, these gener-
ated delegates are used just like any .NET delegate type.

Examining the Generated __CoCar
and __CoCar_Event Interfaces

When tlbimp.exe encounters a [source] interface in the COM server’s type infor-
mation, it will automatically generate two managed interfaces. The first interface
defines each member as an inbound interface. In this example, the __CoCar
defines the AboutToBlow() and Exploded() members as shown in Figure 8-20.

Figure 8-20. The generated __CoCar interface

The generated __CoCar_Event interface defines the same members as an
outbound interface (that is, an interface defining the AboutToBlow() and
Exploded() events). As you can see from Figure 8-21, the __CoCar_Event interface
also defines the related add_XXX() and remove_XXX() members.

.NET-to-COM Interoperability—Intermediate Topics

451

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 451

Figure 8-21. The generated __CoCar_Event

In reality, you can safely ignore both of these types when you are interacting
with COM connection points. However, if you wish to build a custom .NET class
type that supports the same events defined in a given COM [source] interface, you
would be able to do so. Also, if you wish to build a strongly typed sink, feel free.

For example, say you wish to build a client-side sink object. If you wish to
clearly identify this sink as a target for the _CoCar event source, you could imple-
ment the __CoCar interface as follows:

// A C# event sink.

class CSharpEventSink : __CoCar

{

public void AboutToBlow()

{ Console.WriteLine("->Dude! Slow down!");}

public void Exploded()

{Console.WriteLine("->You're toast...");}

}

You are not required to implement the generated managed [source] interface.
However, you are free to build a .NET sink using any valid .NET syntactic
constructs (a class defining static members, a class that does not implement the
managed [source] interface, and so forth).

Chapter 8

452

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 452

As far as the __CoCar_Event interface is concerned, this type simply supports
each event in terms of managed code. As you may know, .NET interfaces can
define any number of properties, methods, and events. Thus, if you wish to build a
.NET class type that supports the same events as the COM CoCar, you would
be able to inherit support for the AboutToBlow and Exploded events as
demonstrated here:

// This .NET class supports the same events

// as defined in the COM type information

// for the VB CoCar.

class ExampleDotNetEventType : __CoCar_Event

{

// Inherited events from the __CoCar_Event interface.

public event __CoCar_AboutToBlowEventHandler AboutToBlow;

public event __CoCar_ExplodedEventHandler Exploded;

public void FireTheEvents()

{

…

}

}

So the bottom line is that tlbimp.exe generates two .NET interface definitions
to allow you to build custom .NET types that either (a) support the methods of a
given [source] interface or (b) support the same events of a given [source] inter-
face. As noted, unless you wish to build custom types that mimic existing
COM event objects (or strongly typed sinks), you can safely ignore these
generated types.

Examining the Managed CoClass

Like any interop assembly, tlbimp.exe will define a managed class type for each
coclass. Check out the following type definition:

.class public auto ansi import CoCarClass

extends [mscorlib]System.Object

implements VBComEventsServer._CoCar,

VBComEventsServer.CoCar,

VBComEventsServer.__CoCar_Event

{

…

}

.NET-to-COM Interoperability—Intermediate Topics

453

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 453

As you can see, CoCarClass implements the __CoCar_Event interface, and
therefore supports the AboutToBlow and Exploded events. To handle the firing of
these events, you will find the type also supports a unique add_XXX() and
remove_XXX() method for each event (Figure 8-22).

Figure 8-22. The generated class type supports events of the [source] interface.

And as you would expect, each event definition will make use of the [.addon]
and [.removeon] directives to map the events to the correct delegate method (just
like in the previous SimpleCSharpEvent application). For example:

.event VBComEventsServer.__CoCar_AboutToBlowEventHandler AboutToBlow

{

.addon instance void

VBComEventsServer.CoCarClass::add_AboutToBlow(class

VBComEventsServer.__CoCar_AboutToBlowEventHandler)

.removeon instance void

VBComEventsServer.CoCarClass::remove_AboutToBlow(class

VBComEventsServer.__CoCar_AboutToBlowEventHandler)

}

Chapter 8

454

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 454

Receiving the COM Events (C#)

Now that you have checked out the core generated types, you are in the position to
build a C# application that intercepts the incoming COM events. Assume you have
a new C# console application (CSharpComEventClient) and have set a reference to
VbComEventServer.dll. The process is identical to intercepting a native .NET event:

using System;

using VBComEventsServer;

namespace CSharpComEventClient

{

// Helper sink class.

class CSharpEventSink

{

public static void AboutToDie()

{ Console.WriteLine("->Dude! Slow down!");}

public static void Exploded()

{Console.WriteLine("->You're toast...");}

}

class CSharpEventClient

{

[STAThread]

static void Main(string[] args)

{

// First, create the CoCar.

CoCarClass car = new CoCarClass();

// Now hook the events to the correct sink method.

car.AboutToBlow += new

__CoCar_AboutToBlowEventHandler(

CSharpEventSink.AboutToDie);

car.Exploded += new

__CoCar_ExplodedEventHandler(

CSharpEventSink.Exploded);

// Finally, work the car and trigger the events.

for(int i = 0; i < 20; i++)

Console.WriteLine("Current speed: {0}",

car.SpeedUp());

}

}

}

.NET-to-COM Interoperability—Intermediate Topics

455

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 455

Notice that your sink object has not implemented the generated
__CoCar_Event interface (as this is optional). Figure 8-23 shows the output.

Figure 8-23. Managed output

As you can see, the complexity of COM connection points is completely
hidden from view. Given that tlbimp.exe has already generated the correct dele-
gates based on the [source] interfaces found in the COM type library, all you are
required to do is provide a target for the delegate and associate it to the coclass’
events.

CODE The CSharpComEventClient project is included under the
Chapter 8 directory.

Receiving the COM Events (VB .NET)

Although VB .NET developers are also able to make direct use of .NET delegates,
the language does simplify the process by supplying the WithEvents (which should
be very familiar to VB 6.0 developers) and Handles keywords. To illustrate, here is a
VB .NET client making use of VbComEventServer.dll.

Chapter 8

456

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 456

Imports VBComEventsServer

Module Module1

' We want the events...

Public WithEvents car As New CoCarClass()

Sub Main()

' Speed things up.

Dim i As Integer

For i = 0 To 19

Console.WriteLine("Current speed: {0}", car.SpeedUp())

Next

End Sub

' Sinks.

Public Sub car_AboutToBlow() Handles car.AboutToBlow

Console.WriteLine("Dude! Slow down!")

End Sub

Public Sub car_Exploded() Handles car.Exploded

Console.WriteLine("You're toast...")

End Sub

End Module

Here, the VB .NET client application declares a CoCarClass type WithEvents.
This keyword takes care of creating the correct delegates on your behalf. The
Handles keyword is the VB .NET analogy of the “myType.Event +=” syntax.

CODE The VbNetComEventClient project is included under the Chapter
8 directory.

Handling COM Types with Multiple [source] Interfaces

When you create event-centric coclasses using VB 6.0, you are always confined to
working with a single [default, source] interface. Of course, this fact means that
your connection point container maintains a single connection point. The truth of
the matter is, even though the connection point architecture allows a container to
support numerous connection points, few developers make use of this feature.
The reason is simple: Most client applications (such Microsoft IE and VB 6.0) are
only able to receive events from the [default, source] interface. In fact, under
classic COM, the only language that is sophisticated enough to interact with addi-
tional connection points is C++.

.NET-to-COM Interoperability—Intermediate Topics

457

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 457

However, let’s assume that you have a legacy ATL type that does indeed define
multiple event sources. The IDL might look something like this:

library ATLMULTIPLESOUCEINTERFACESSERVERLib

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

[uuid(B972F07E-D620-4A76-BEA9-2C3B02D5214A)]

dispinterface _DefaultEventSet

{

properties:

methods:

[id(1), helpstring("method FirstEvent")]

HRESULT FirstEvent();

};

[uuid(86B73A3E-83CF-49ee-A7DE-CCE2EBFCEB62)]

dispinterface _ExtraEventSet

{

properties:

methods:

[id(1), helpstring("method SecondEvent")]

HRESULT SecondEvent();

};

[uuid(A628B861-5CD4-4EEA-87B1-ABCB7942EF4D)]

coclass ComplexCPContainer

{

[default] interface IComplexCPContainer;

[default, source] dispinterface _DefaultEventSet;

[source] dispinterface _ExtraEventSet;

};

};

As you may recall from the previous chapter, when a COM class implements
multiple interfaces, the tlbimp.exe utility creates a .NET class type that is a union
of each interface member. In the same exact way, if you import a COM class type
that supports multiple [source] interfaces, tlbimp.exe will simply define the class
type to support the events of each [source] interface (and generate a the necessary
delegate). Figure 8-24 shows the truth of the matter via the IDE’s object browser.

Chapter 8

458

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 458

Figure 8-24. Multiple [source] interfaces are bound to a single class.

Handling COM Error Objects

And now on to the next topic of this chapter: bugs. In a perfect world, software
would perform without failure. Networks would always be online, memory would
exist without bounds, and data points would never exceed their limits. Of course,
this is fantasyland. To deal with the unknown, classic COM provides two very
specific mechanisms to report error information to the caller: HRESULTs and error
objects.

First and foremost, every COM interface method is required to return an
HRESULT value that informs the client if the current method invocation
succeeded or failed. The COM APIs define numerous well-known HRESULTs that
describe the result in question. The most beloved of all HRESULTs is S_OK, which
provides the client with the proverbial thumbs up (that is, the method succeeded
without error). The most generic form of a failed HRESULT is E_FAIL. Between the
range of S_OK and E_FAIL are dozens (if not hundreds) of predefined HRESULTs
(many of which are defined in winerror.h) that you can make use of in your
custom applications. For example, consider the following ATL coclass method
implementation:

STDMETHODIMP CAtlComClass::SomeMethod()

{

// Assume DoSomeWork() is a method returning a Boolean.

if(DoSomeWork())

return S_OK;

else

return E_FAIL;

}

.NET-to-COM Interoperability—Intermediate Topics

459

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 459

Although COM HRESULTs can help the calling code base understand the
basics of what (if anything) failed, it is often more helpful to return additional
details to the caller. When you wish to return more verbose error information from
a COM coclass, you will need to create, define, and send a COM error object. By
definition, a COM error object is a type that implements two standard interfaces:
IErrorInfo and ICreateErrorInfo. Basically, these two interfaces are used to
describe the nature of the error as well as read this information programmatically
(in other words, they are accessor and mutator interfaces). Here are the official
IDL definitions for each (see oaidl.idl):

// Used by the coclass to document the error.

interface ICreateErrorInfo: IUnknown

{

HRESULT SetGUID([in] REFGUID rguid);

HRESULT SetSource([in] LPOLESTR szSource);

HRESULT SetDescription([in] LPOLESTR szDescription);

HRESULT SetHelpFile([in] LPOLESTR szHelpFile);

HRESULT SetHelpContext([in] DWORD dwHelpContext);

}

// Used by the client to obtain the details of the error.

interface IErrorInfo: IUnknown

{

HRESULT GetGUID([out] GUID * pGUID);

HRESULT GetSource([out] BSTR * pBstrSource);

HRESULT GetDescription([out] BSTR * pBstrDescription);

HRESULT GetHelpFile([out] BSTR * pBstrHelpFile);

HRESULT GetHelpContext([out] DWORD * pdwHelpContext);

}

As you can see, these interfaces allow you to document numerous details
beyond a single HRESULT. Table 8-5 outlines the supported functionality.

Table 8-5. Aspects of the COM Error Object

Aspect of COM Meaning in Life
Error Object

SetGuid() Provides a way to identify the GUID of the interface that caused
GetGuid() the error

SetSource() Provides a way to identify the source of the error (typically the
GetSource() ProgID of the server)

SetDescription() Allows you to create a custom textual message that documents the
GetDescription() error (for example, ”Sorry, server is down,” ”You don’t have access

rights to this method,” “Go away, I’m busy,” and so on)

SetHelpFile() Allows you to use a COM error object to point the caller to a
GetHelpFile() specific help file
SetHelpContext()
GetHelpContext()

Chapter 8

460

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 460

Manipulating COM Error Objects in COM

Different COM language mappings have different ways to create a COM
error object. If you were to use the raw COM APIs, you could simply call
CreateErrorInfo() and make use of the returned ICreateErrorInfo interface:

// Creating a COM error object

// via the COM API.

ICreateErrorInfo *pCreateErrorInfo;

HRESULT hr;

hr = CreateErrorInfo(&pCreateErrorInfo);

pCreateErrorInfo ->SetDescription(L" Houston, we have a problem…");

…

Throwing the error back to the client is a job for the SetErrorInfo() COM
library function. Recall that the IErrorInfo interface is what the client needs to
extract the details of the error object, thus you must first obtain said interface:

// Now throw it back to the client.

…

IErrorInfo* pErrorInfo;

PCreateErrorInfo->QueryInterface(IID_IErrorInfo,

(void**)&pErrorInfo);

SetErrorInfo(NULL, pErrorInfo);

…

The ATL framework hides the details of directly working with ICreateErrorInfo
by supplying a set of overloaded Error() members defined by CComCoClass. As
you would expect, the parameters you send into a given Error() method will be
shuffled into the respective methods of ICreateErrorInfo. Furthermore, the Error()
methods will automatically throw the error before exiting. Thus, in ATL the
previous logic could be simplified as follows:

// Creating a COM error object via ATL.

Error("Houston, we have a problem…");

Visual Basic 6.0 takes a similar approach by supplying the intrinsic
Err object. This object implements the ICreateErrorInfo and IErrorInfo interfaces.
Therefore, this single object can be used to create a COM error as well as extract
the information.

' Creating and sending COM error via VB 6.0

' (using an arbitrary error ID).

Public Sub BadDeal()

Err.Raise 6666, " Houston, we have a problem..."

End Sub

.NET-to-COM Interoperability—Intermediate Topics

461

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 461

The Role of ISupportErrorInfo

Before you learn how managed code processes COM error objects (as well
as raw HRESULTs), you have one final error-centric interface to contend with:
ISupportErrorInfo.

// This interface is implemented by the coclass

// and allows the client to verify that the error

// they are looking at came from the interface

// that triggered the error.

interface ISupportErrorInfo: IUnknown

{

HRESULT InterfaceSupportsErrorInfo([in] REFIID riid);

}

The role of ISupportErrorInfo is to allow the client to verify that the current
error object it is investigating has indeed come from the correct interface. Imple-
menting this interface’s sole method is done automatically using ATL (and VB 6.0),
but it can be done using raw C++ as follows (note that you are the one in charge of
determining which interfaces of your coclass return rich error information):

STDMETHODIMP CTheBrokenObject::InterfaceSupportsErrorInfo(

REFIID riid)

{

static const IID* arr[] =

{&IID_ITheBrokenObject};

for (int i=0; i < sizeof(arr) / sizeof(arr[0]); i++)

{

if (InlineIsEqualGUID(*arr[i],riid))

return S_OK;

}

return S_FALSE;

}

Building a Simple ATL Error Server

For the sake of discussion, assume you have created a new in-proc COM
server using ATL and inserted a single coclass (TheBrokenObject) that has
explicitly added support for the ISupportErrorInfo interface (Figure 8-25).
This option will add ISupportErrorInfo to your class’ inheritance chain
and update the COM_MAP, as well as provide a default implementation of
ISupportErrorInfo.InterfaceSupportsErrorInfo().

Chapter 8

462

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 462

Figure 8-25. Supporting ISupportErrorInfo using ATL

This ATL coclass defines two painfully simple methods, which as luck would
have it always fail. First you have ReturnFailedHRESULT(), which returns a stan-
dard COM HRESULT informing the caller that this entity is not a COM collection:

STDMETHODIMP CTheBrokenObject::ReturnFailedHRESULT()

{

// Return a failed HRESULT.

// DISP_E_NOTACOLLECTION is a standard HR which

// informs the caller that a given item is

// not a COM collection.

// Of course, returning this HR is semantically

// out of whack for this method, but it is

// more interesting than a simple E_FAIL.

return DISP_E_NOTACOLLECTION;

}

Of course returning DISP_E_NOTACOLLECTION is a bit of a stretch for your
current ATL coclass; however, it is a bit more interesting than a vanilla-flavored
E_FAIL. DISP_E_NOTACOLLECTION is defined in winerror.h as follows (take note
of the textual description):

// MessageId: DISP_E_NOTACOLLECTION

// MessageText:

// Does not support a collection.

#define DISP_E_NOTACOLLECTION

.NET-to-COM Interoperability—Intermediate Topics

463

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 463

ReturnComErrorObject() will make use of the inherited Error() method to
return a custom description of the current failure (albeit not a very helpful
description):

STDMETHODIMP CTheBrokenObject::ReturnComErrorObject()

{

// The ATL Error() methods (defined in CComCoClass)

// hide the gory details of building a COM error object.

Error("This is a realllllly bad error");

return E_FAIL;

}

That’s all you need for the current example. Go ahead and compile the server.

CODE The AtlComErrorServer project is included under the Chapter 8
subdirectory.

The .NET Error Handling Mechanism

Managed objects do not make use of HRESULTs or COM error objects. Rather, the
.NET platform makes use of a tried-and-true error handling technique known as
structured exception handling (SEH). Although a given managed language (C#, VB
.NET, MC++, and so forth) may have a unique syntax to represent SEH, all
managed languages make use of the following concepts:

• A class type that represents a given exception. Under .NET, all exceptions
derive from a common parent class (System.Exception).

• A “try” block that marks a set of code, which may trigger an exception.

• A “catch” block (or possibly multiple catch blocks) that will handle a specific
exception.

• An optional “finally” block that always executes, regardless of error.

Chapter 8

464

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 464

In terms of C#, typical SEH logic might look like the following:

try

{

// Code that may cause an exception.

}

catch (Exception ex)

{

// Handle this exception.

}

finally

{

// This code will always execute.

}

Notice that the catch block specifies the generic System.Exception type.
Because this class is the base class for all .NET exceptions, your catch block can
handle any possible error generated by the try block. Of course, the .NET base
class libraries define numerous derived exceptions that can be used in place of a
generic System.Exception.

In any case, once an error has been trapped by a given catch block, what sort
of information can you obtain? Table 8-6 documents some of the interesting
members of System.Exception.

Table 8-6. Select Members of System.Exception

Member of System.Exception Meaning in Life

HelpLink Gets or sets a link to the help file associated with

this exception

InnerException Gets the Exception instance that caused the

current exception

Message Gets a message that describes the current

exception

Source Gets or sets the name of the application or the

object that causes the error

StackTrace Gets a string representation of the frames on the

call stack at the time the current exception was

thrown

TargetSite Gets the method that throws the current exception

.NET-to-COM Interoperability—Intermediate Topics

465

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 465

The COMException Type

The System.Runtime.InteropServices namespace defines a derived exception type
used to trap COM error information sent to the managed client by the RCW.
COMException is responsible for exposing the data found in a given COM error
object using the familiar .NET SEH mechanism. Table 8-7 illustrates how informa-
tion exposed via IErrorInfo is mapped to the members of
System.Runtime.InteropServices.COMException.

Table 8-7. Mapping IErrorInfo to a Managed COMException

Member of COMException Source of Information from COM

ErrorCode HRESULT returned from call.

HelpLink If IErrorInfo.HelpContext is nonzero, the string is formed by

concatenating IErrorInfo.GetHelpFile and "#" and

IErrorInfo.GetHelpContext. Otherwise the string is returned

from IErrorInfo.GetHelpFile.

InnerException Always null.

Message String returned from IErrorInfo.GetDescription().

Source String returned from IErrorInfo.GetSource().

StackTrace The stack trace.

TargetSite The name of the method that returned the failing HRESULT.

Handling COM Error Information from Managed Code

Now that you have an understanding of how COM error information is mapped
into the COMException type, the following client-side code should be straight-
forward:

using System;

using ATLCOMERRORSERVERLib;

using System.Runtime.InteropServices;

namespace CSharpComErrorClient

{

class ComErrorClient

{

Chapter 8

466

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 466

// Helper function.

static void ReportCOMError(COMException e)

{

Console.WriteLine("*********************");

Console.WriteLine("Raw HRESULT: {0}", e.ErrorCode);

Console.WriteLine("Message: {0}", e.Message);

Console.WriteLine("Source of error: {0}", e.Source);

Console.WriteLine("Method Name: {0}", e.TargetSite);

Console.WriteLine("**********************\n");

}

[STAThread]

static void Main(string[] args)

{

// Create the ATL coclass.

TheBrokenObjectClass b = new TheBrokenObjectClass();

// Trigger the errors.

try

{

b.ReturnFailedHRESULT();

}

catch(COMException comEx)

{

ReportCOMError(comEx);

}

try

{

b.ReturnComErrorObject();

}

catch(COMException comEx)

{

ReportCOMError(comEx);

}

}

}

}

Simply put, this client-side code triggers each error and catches the
COMException returned by the RCW. The ReportCOMError() helper function
prints out the statistics held by the COM error object. Figure 8-26 shows
the output.

.NET-to-COM Interoperability—Intermediate Topics

467

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 467

Figure 8-26. Processing COM errors from managed code

CODE The CSharpComErrorClient project can be found under the
Chapter 8 subdirectory.

Debugging COM Servers Using VS .NET

The final topic of this chapter has to do with the process of debugging a COM
server that is used from a managed environment. It is no secret that Visual Studio
.NET has a fantastic integrated debugging engine. However, it may not be as well
known that the IDE supports a special mode termed mixed mode debugging.
Specifically, this mode allows you to step into the code base of a classic COM
server from a managed environment. Although this feature is disabled by default
(given the performance penalty that you inherit), you are able to activate it by
bringing up the Property page for your managed project, selecting the Debugging
node under the Configuration Properties folder, and enabling the option Enable
Unmanaged Debugging.

Assuming this is done, the next mandatory step is to ensure that the COM
server in question has an accompanying *.pdb file. If the COM server was devel-
oped using ATL (or C++ in general), you will receive a *.pdb file by default.
However, if the COM server was created in VB 6.0, you will need to explicitly
request this file by checking the Create Symbolic Debug Info option located under
the Compile tab of the Project Properties dialog box.

For the sake of illustration, assume you wish to debug the VbVariantServer.dll
COM server created at the beginning of this chapter. First, request the *.pdb file
(Figure 8-27) and recompile the project.

Chapter 8

468

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 468

Figure 8-27. Generating a *.pdb file for a VB 6.0 COM server

As long as the C# client project has enabled mixed-mode debugging, simply
set a break point at the desired location (Figure 8-28).

Figure 8-28. Preparing to step into the VB 6.0 COM server

If you begin a debug session (and twiddle your thumbs for just a bit), you are
able to step into this line of code, and lo and behold, you are now in the guts of the
VB 6.0 CheckThisVariant() method (Figure 8-29).

.NET-to-COM Interoperability—Intermediate Topics

469

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 469

Figure 8-29. Behold, the power of mixed-mode debugging.

Sweet! So, at this point you have drilled into the key .NET-to-COM interop
issues you are likely to encounter on a day-to-day basis. The next chapter will
examine a number of advanced topics you may need to make occasional use of.
After this point, I switch gears and examine the topic of COM-to-.NET interop.

Summary

This chapter has drilled deeper into .NET-to-COM interoperability issues by exam-
ining how a number of familiar COM patterns are mapped into managed code.
You began by examining how a System.Object data type can be used to represent
COM VARIANTs. As you have seen, you are able to indirectly set the underlying
VT_XXX flag by making use of a specific managed type.

Next, you learned how COM SAFEARRAYs map into managed System.Array
types and during the process learned how to handle manipulating arrays of native
data types, COM interfaces, and COM VARIANTs. The remainder of this chapter
examined how to interact with COM collections, COM connection points, and
COM error objects. In all of these cases, the RCW takes care of hiding the
underbelly of the COM infrastructure and exposes these atoms as simple
.NET equivalents.

Great! Having completed this chapter, you are now ready to import your
favorite COM type libraries (classic ADO, SQL DMO, DirectX, or what have you)
and make use of the contained types. The next chapter completes my discussion
of .NET-to-COM communications by addressing some advanced topics such
as handling custom IDL attributes and building custom type library importer
utilities.

Chapter 8

470

*0112_Ch08_CMP4.qxp 3/25/02 1:21 PM Page 470

CHAPTER 9

.NET-to-COM
Interoperability—
Advanced Topics

This chapter wraps up your examination of building managed applications that
make use of legacy COM types. Here, you will find a handful of advanced .NET to
COM interoperability topics, which (to be sure) you may not have to contend with
on a daily basis. Nevertheless, in these pages you come to learn how a COM
coclass can implement .NET interfaces to achieve type compatibility with other
like-minded .NET types. For example, you see how to implement the IComparable
interface to allow a COM class to be sorted when contained within a .NET
System.Collections.ArrayList type.

The next topic of this chapter illustrates how to import existing ActiveX
controls for use by managed Windows Forms applications. During the process,
you learn how to customize the generated ActiveX interop assembly to make up
for shortcomings in the conversion process. On a related note, this chapter also
demonstrates how to directly modify (and recompile) the contents of an interop
assembly to alter the contained metadata. This entails the topic of handling
[custom] IDL attributes from managed code. You wrap up by leaning how to
import COM type information at runtime using the TypeLibConverter class. Once
you have completed this chapter, you should have all the skills you need to
successfully make use of COM types from managed code.

Revisiting the Marshal Class

As you have already seen, when a managed application makes use of a classic
COM type, the low-level mechanics of AddRef(), Release(), and QueryInterface()
are completely hidden from view. This is a good thing, as the primary role of the
RCW is to hide such low-level details from view, allowing the .NET client to
interact with the COM type as one of its own. As you may recall from Chapter 1,
however, the Marshal type defines a small number of static members that allow
you to get a bit closer to the action (if you so choose). Before you see some select
examples, Table 9-1 reiterates the members in question.

471

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 471

Table 9-1. COM-Centric Members of the Marshal Type

General COM-Centric Member Meaning in Life
of the Marshal Type

AddRef() Increments the reference count on the specified

interface

BindToMoniker() Gets an interface pointer identified by the specified

moniker

GenerateGuidForType() Returns the GUID for the specified type, or

generates a GUID using the algorithm employed by

the Type Library Exporter (tlbexp.exe)

GenerateProgIdForType() Returns a ProgID for the specified type

GetActiveObject() Obtains a running instance of the specified object

from the Running Object Table (ROT)

GetComInterfaceForObject() Returns an IUnknown pointer representing the

specified interface for an object

GetIDispatchForObject() Returns an IDispatch interface from a managed

object

GetIUnknownForObject() Returns an IUnknown interface from a managed

object

GetObjectForNativeVariant() Converts a COM VARIANT to an object

GetObjectsForNativeVariants() Converts an array of COM VARIANTs to an array of

objects

GetNativeVariantForObject() Converts an object to a COM VARIANT

IsComObject() Indicates whether a specified object represents an

unmanaged COM object

IsTypeVisibleFromCom() Indicates whether a type is visible to COM clients

QueryInterface() Requests a pointer to a specified interface from an

existing interface

Release() Decrements the reference count on the specified

interface

ReleaseComObject() Decrements the reference count of the supplied

Runtime Callable Wrapper (RCW)

Chapter 9

472

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 472

Directly Interacting with IUnknown

One interesting use of the Marshal class is to directly obtain a pointer to any
coclass’ IUnknown interface. Of course, the .NET platform does not supply you
with a managed definition of this core COM interface; however, you are able to
represent this type using a generic System.IntPtr. To illustrate, assume you have
created a new C# console application and set a reference to the RawComCar.tlb
file created in Chapter 2. The following code illustrates how Marshal may be used
to directly trigger the member of IUnknown:

using System;

using Intertech.RawComCarLib;

using System.Runtime.InteropServices;

namespace LowLevelManagedClient

{

class DownAndDirtyClient

{

[STAThread]

static void Main(string[] args)

{

// Make a raw COM car.

ComCarClass c = new ComCarClass();

// See if this guy is a COM object...

Console.WriteLine("Am I a COM object? {0}",

Marshal.IsComObject(c).ToString());

// Get IUnknown of object.

IntPtr itfUnknownPtr =

Marshal.GetIUnknownForObject(c);

// Manually AddRef() and Release()

// using the IUnknown pointer.

for(int i = 0; i < 5; i++)

{

Console.WriteLine("AddReffing! Count: {0}",

Marshal.AddRef(itfUnknownPtr));

Console.WriteLine("Releasing! Count: {0}",

Marshal.Release(itfUnknownPtr));

}

// Manually call QueryInterface().

IntPtr itfRadioPtr;

Guid IIDRadio =

Marshal.GenerateGuidForType(typeof(IRadio));

.NET-to-COM Interoperability—Advanced Topics

473

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 473

Marshal.QueryInterface(itfUnknownPtr,

ref IIDRadio, out itfRadioPtr);

// Convert raw IntPtr to IRadio and

// manually crank tunes.

IRadio itfRadio =

(IRadio)Marshal.GetObjectForIUnknown(itfRadioPtr);

itfRadio.CrankTunes();

}

}

}

Here, you begin by creating a new RawComCar as usual. However, rather
than call members using the generated “-Class” type, you instead obtain the
type IUnknown interface using Marshal.GetIUnknownForObject(). Using the
returned System.IntPtr, you can then influence the coclass’ reference count using
Marshal.AddRef() and Marshal.Release(). To make things a bit more interesting,
notice the logic used to trigger the type’s QueryInterface() implementation. The
Marshal.QueryInterface() method requires the same three points of information
as the unmanaged definition, specifically, an interface used to make the call
(itfUnknownPtr), the IID, and a place to store the pointer. To obtain the IID of
IRadio, you make a call to Marshal.GenerateGuidForType(), which despite its
name returns the GUID of the type based on the referenced interop assembly.
Finally, once you have the IntPtr representing IRadio, you are able to obtain a
strongly typed equivalent (via Marshal.GetObjectForIUnknown()) and crank
some tunes.

Now, understand of course that the chances that you will need to drop down
to this level are extremely low. Nevertheless, it is enlightening to see how to
interact with these COM primitives from a managed environment.

Manually Destroying a COM Object

As discussed in Chapter 7, an RCW is in charge of caching references to a given
COM class. When the managed wrapper (ComCarClass in our case) is no longer
referenced by the client, the interfaces are released on the COM type as the
managed type is garbage collected. While this is all well and good, sometimes it is
useful to destroy a COM class at a time of your choosing, rather than waiting for
the .NET garbage collector to do so. The Marshal.ReleaseComObject() method can
be used to force the RCW to release all references held on the underlying coclass.
Once this has been done, the __ComObject-derived class is then unusable. If this
type is used after a call to Marshal.ReleaseComObject(), a NullReference exception
is thrown:

Chapter 9

474

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 474

// This releases ALL interfaces

// held by the RCW.

ComCarClass c2 = new ComCarClass();

Console.WriteLine("Ref Count after calling Marshal.ReleaseComObject(c2): {0}",

Marshal.ReleaseComObject(c2));

// This will throw an error.

try

{

c2.CrankTunes();

}

catch(NullReferenceException ex)

{

Console.WriteLine(ex.Message);

}

CODE The LowLevelManagedClient project is included under the
Chapter 9 subdirectory.

COM Coclasses Implementing .NET Interfaces

As you will see in Chapter 10, when you want to build a COM client that can make
use of the types contained within a .NET assembly, you need to generate the
appropriate COM type information using a tool named tlbexp.exe (Type Library
Exporter). Understand, however, that a select number of .NET assemblies (such as
mscorlib.dll) have already been converted into a corresponding COM type library
(i.e., mscorlib.tlb) for your convenience. Also understand that the designer of a
given .NET assembly always has the option of hiding a given type (or type
member) using the ComVisible attribute (also described in Chapter 10). Given
this, you need to be aware that a .NET-centric type library (such as mscorlib.tlb)
may not account for each and every type contained in the original assembly.

In any case, when a given assembly chooses to expose an item as “COM
visible,” COM programmers can make use of these types in a manner (more or
less) identical to that of a native COM entity. As you are most likely aware,
mscorlib.dll defines a large number of general interfaces (ICloneable,
IComparable, IDisposable, and whatnot) that allow a given .NET type to
support a specific behavior. In fact, most .NET assemblies contain some
number of interface definitions that are semantically related to the defining
namespace (for example, System.Data defines data-centric interfaces,
System.Windows.Forms defines GUI-centric interfaces, and so on).

.NET-to-COM Interoperability—Advanced Topics

475

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 475

Given the fact that a .NET assembly can be expressed in terms of COM type
information, one very interesting possibility is the act of implementing .NET inter-
faces on an unmanaged COM type to improve the integration of the coclass in a
managed environment. When a given COM type does implement .NET interfaces,
it is said to be type compatible with the native .NET types supporting the same
interface.

Building a Comparable COM Class

To illustrate the process of a building .NET type compatible COM class, let’s create
a simple example. The System.IComparable interface provides a standard manner
by which identical objects can be compared based on a specific point of reference.
The sole method of this interface, CompareTo(), takes a single parameter of type
System.Object (which therefore represents any possible .NET class or structure):

// This .NET interface allows an object to

// compare itself with other objects of its type.

public interface IComparable

{

int CompareTo(object obj);

}

When implementing this interface on a COM (or .NET) type, you need to
determine the data point that will serve as the point of comparison. For example,
if you were building a Car type, you might compare two Cars based on a numerical
ID. Two Person types might be compared based on their social security numbers
(and so on). Once you have identified the basis of the comparison, CompareTo()
should return 0 if the two values are identical, –1 if the current object is less than
the value of the incoming object, and +1 if the current object is greater than the
value of the incoming object.

To illustrate, assume you have created a brand-new VB 6.0 ActiveX DLL named
ComparableComObj, and you have set a reference to the Common Language
Runtime type library using the Project | References menu selection (Figure 9-1).

Now that you have access to mscorlib.tlb, the implementation of IComparable
for a trivial VB 6.0 Car class might look like this:

Option Explicit

Private mCarID As Integer

' The VB 6.0 Car class is

' comparable via its carID.

Implements IComparable

' Remember! System.Object is mapped into a COM VARIANT.

Private Function IComparable_CompareTo(ByVal obj As Variant) _

Chapter 9

476

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 476

As Long

If obj.GetCarID = Me.GetCarID Then

IComparable_CompareTo = 0

ElseIf obj.GetCarID < Me.GetCarID Then

IComparable_CompareTo = 1

Else

IComparable_CompareTo = -1

End If

End Function

' Yes, you could use a COM property here too…

Public Sub SetCarID(ByVal id As Integer)

mCarID = id

End Sub

Public Function GetCarID() As Integer

GetCarID = mCarID

End Function

Figure 9-1. A COM client referencing mscorlib.tlb

Here, the Car type has implemented IComparable using an internal numerical
identifier (mCarID) to represent the point of comparison. CompareTo() simply
tests the value of the incoming Car (expressed as a COM VARIANT) against its own
mCarID value and returns –1, 0, or +1 accordingly. Now that you have a COM class
that is type compatible with the .NET IComparable interface, you can take this
type out for a test drive.

.NET-to-COM Interoperability—Advanced Topics

477

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 477

CODE The ComparableComObj project is included under the Chapter 9
subdirectory.

Using the Comparable COM Object

Assume you have created a new C# Console application (ComparableComObjClient)
that has set a reference to the ComparableComObj.dll COM server (via the
Add References dialog). The Main() method begins by creating a new ArrayList
type to hold a group of COM cars that are each assigned a random ID using the
System.Random type. Once the ArrayList has been populated, you will print out
the ID of each Car. Here is the story thus far:

using System;

using ComparableComObj;

using System.Collections;

namespace ComparableComObjClient

{

class ComparableCarClient

{

[STAThread]

static void Main(string[] args)

{

// A collection of COM cars.

ArrayList carArray = new ArrayList();

// Create some comparable COM cars.

Random r = new Random();

for(int i = 0; i < 10; i++)

{

carArray.Add(new CarClass());

int newID = r.Next(50)+100;

((CarClass)(carArray[i])).SetCarID((short)newID);

}

// Print cars as is...

Console.WriteLine("***** The unordered COM cars *****");

for(int i = 0; i < carArray.Count; i++)

{

Console.WriteLine("Car #{0} has ID {1}", i,

((CarClass)(carArray[i])).GetCarID());

}

}

}

}

Chapter 9

478

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 478

Now, to interact with the IComparable interface, ask the ArrayList type to sort
its contents. As you may know, the Sort() method automatically calls CompareTo()
under the hood as it sorts the contained subobjects. Once you have sorted the
ArrayList, you will print out the contents again. If the COM Car’s implementation
of IComparable is correct, you should now see each Car ordered by numerical
value (which you do).

// Now sort the COM objects.

Console.WriteLine("***** The ordered COM cars *****");

carArray.Sort(); // IComparable obtained here!

// Print sorted cars...

for(int i = 0; i < carArray.Count; i++)

{

Console.WriteLine("Car #{0} has ID {1}", i,

((CarClass)(carArray[i])).GetCarID());

}

Figure 9-2 shows the result.

Figure 9-2. Sorting the COM types via IComparable

.NET-to-COM Interoperability—Advanced Topics

479

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 479

CODE The ComparableComObjClient application is included under the
Chapter 9 subdirectory.

Building a Cloneable COM Type

Let’s take a look at a second example of building .NET type compatible COM
objects. The goal here is to implement the .NET ICloneable interface on a VB 6.0
coclass named CoPoint. CoPoint supports a [default] interface that defines two
COM properties. The implementation of the ICloneable.Clone() method creates a
new CoPoint that is configured to look exactly like the object that was asked to
supply the copy. Assuming you have set a reference to mscorlib.tlb, here is the
complete code:

Option Explicit

Implements ICloneable

Private xPos As Integer

Private yPos As Integer

Public Property Let X(ByVal rhs As Integer)

xPos = rhs

End Property

Public Property Get X() As Integer

X = xPos

End Property

Public Property Let Y(ByVal rhs As Integer)

yPos = rhs

End Property

Public Property Get Y() As Integer

Y = yPos

End Property

Private Function ICloneable_Clone() As Variant

' Make a new point which

' is identical to 'me'

Dim newPt As CoPoint

Set newPt = new CoPoint

newPt.X = Me.X

newPt.Y = Me.Y

' Return (VB will automatically

' package as VARIANT)

Set ICloneable_Clone = newPt

End Function

Chapter 9

480

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 480

Recall that the ICloneable.Clone() method is formally defined in terms of
managed code as returning a System.Object. When the .NET metadata is trans-
formed into a COM type definition, this parameter is realized as a COM VARIANT.
The nice thing about using VB 6.0 (with regard to VARIANTs) is the fact that VB
takes charge of the process of building the raw VARAINT under the hood. Thus,
when you return the CoPoint type, the default interface is bundled into a COM
VARIANT on your behalf.

CODE The VbCloneableObjectServer project is located under the
Chapter 9 subdirectory.

Using the Cloneable COM Object

To test your coclass, let’s simply update the previous ComparableComObjClient
application to make use of the VB 6.0 CoPoint. Once you have set a reference to
the COM type information, update the Main() method with the following C# code:

// Test the clone!

CoPointClass p1 = new CoPointClass();

p1.X = 100;

p1.Y = 100;

Console.WriteLine("P1.x = {0} P1.x = {1}", p1.X, p1.Y);

// Make a clone.

CoPointClass p2 = (CoPointClass)p1.Clone();

// Also prints out 100, 100.

Console.WriteLine("P2.x = {0} P2.x = {1}", p2.X, p2.Y);

When you run this application, you will find that both CoPoints are config-
ured with X = 100, Y = 100. Given that a correctly designed clone should be a stand-
alone copy of the original type, if you change the value of p2.X, p1 is unaffected.

Building .NET Type Compatible
Coclasses Using ATL 3.0

Of course, any COM-aware programming language is able to build .NET type
compatible COM types. However, when you attempt to do so with ATL 3.0, there
are a few glitches to be aware of. Assume you were to implement ICloneable on an
ATL Simple Object named CoRectangle. First, you need to obtain the IDL descrip-
tion of this .NET type via the Implement Interface Wizard. To activate this tool,
simply right-click your CCoRectangle class via the Class View tab (Figure 9-3).

.NET-to-COM Interoperability—Advanced Topics

481

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 481

Figure 9-3. Implementing an interface

From the resulting dialog box, click the Add TypeLib button and locate the
Common Language Runtime Library (Figure 9-4).

Figure 9-4. Using mscorlib.tlb from C++

Chapter 9

482

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 482

Finally, once you click OK, locate the ICloneable interface (Figure 9-5).

Figure 9-5. Specifying support for ICloneable

Once you have finished, you will find that the CCoRectangle.h file has been
updated with a VC 6.0 #import statement that will be used to generate smart
pointers for each COM visible type found in mscorlib.tlb. However, if you compile
this application as is right now, you would be issued two errors and two warnings.
The reason is that the ATL 3.0 framework declares a global instance of the
CComModule helper class named _Module. Likewise, mscorlib.tlb defines a type
named _Module (which is the default interface of the System.Reflection.Module
class type). Thus, the compiler is terribly confused because it sees a _Module defi-
nition that is not in line with the ATL framework (no assigned GUID). The simplest
way to resolve this name clash is to modify the generated #import statement to
rename the _Module type of mscorlib.tlb to a unique definition:

#import "C:\WinNT\Microsoft.NET\Framework\v1.0.3705\mscorlib.tlb" \

raw_interfaces_only, raw_native_types, no_namespace, \

named_guids, rename("_Module", "_SystemReflectionModule")

Updating the COM IDL

Assuming you have provided a valid implementation of ICloneable, you should
tidy up the COM type information to advertise that your CoRectangle indeed
implements this .NET type. This must be done manually because the ATL

.NET-to-COM Interoperability—Advanced Topics

483

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 483

Implement Interface tool does not automatically do so. Here are the relevant IDL
updates:

library ATLCLONEABLECOMOBJECTLib

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

importlib

("C:\WinNT\Microsoft.NET\Framework\v1.0.3705\mscorlib.tlb");

[

uuid(DBBEFF2D-3490-4C72-A41E-8530977D3AF7),

helpstring("CoRectangle Class")

]

coclass CoRectangle

{

[default] interface IRectangle;

interface ICloneable;

};

};

Cool! At this point you have created some COM classes that are tightly inte-
grated with the .NET type system. Understand, of course, that a COM programmer
is able to implement similar .NET interfaces in an identical manner (should the
occasion arise). For example, you could implement IDisposable to allow your
COM types to be treated like a managed .NET class. Furthermore, if you have
created a .NET assembly that defines custom interfaces, the COM developer is
able to support these behaviors as well. Before that can be done, however, you
need to convert the defining .NET assembly to the equivalent COM type informa-
tion. Chapter 10 describes this process in detail, so just put this idea on the back
burner for now.

Guidelines for Building
.NET Type Compatible COM Classes

Now that you have seen the process of building a .NET type compatible coclass, it
is important to point out that just because you can implement .NET interfaces on
COM classes does not mean you always should. As you would expect, there are
some commonsense best practices that help guide the way. Key points to be aware
of are discussed in the next sections.

Chapter 9

484

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 484

Guideline #1:
Don’t Indirectly Implement the Same Interface Twice

First, understand that a given RCW automatically simulates a small handful of
.NET interfaces depending on the composition of the coclass. Specifically,

• IEnumerable will be supported for COM classes that support a member
with the DISPID of –4 (i.e., the DISPID_NEWENUM value used when
building COM collections).

• IExpando will be supported for coclasses implementing IDispatchEx.

• IReflect will be supported for objects implementing ITypeInfo.

Given that the RCW will simulate such interfaces without effort on your part,
it makes sense that you should never manually implement the same interface on a
given COM type. In fact, if you do, the interop assembly incorrectly implements
the same interface twice (causing massive chaos). The truth of the matter is, few
COM programmers directly implement IDispatchEx or ITypeInfo in the first place,
so this should not be too much of an issue. However, do make sure that when you
build a COM collection you don’t implement the .NET IEnumerable interface on
the same type.

Guideline #2:
Don’t Implement .NET Class Interfaces

The second commonsense guideline has to do with implementing autogenerated
“class interfaces.” As you will see in greater detail beginning with the next chapter,
when a .NET type is converted to a corresponding COM type definition, a class
may make use of a class interface to establish a [default] interface for the type.
Simply put, a class interface is the summation of each public member on the .NET
class (as well as each public member up the chain of inheritance). By convention,
class interfaces are always named _NameOfTheClass. For example, the class inter-
face of System.Object is _Object. MyCoolDotNetClass produces a class interface
named _MyCoolDotNetClass and so on.

Understand that you gain nothing if you implement an autogenerated class
interface on a given COM class because the .NET type system does not honor the
definition or use of class interfaces in the first place! If you implement a class
interface on a given COM type, it would not be type compatible with original .NET
type. By way of a simple example, assume that you have the following .NET class
definition:

.NET-to-COM Interoperability—Advanced Topics

485

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 485

using System;

using System.Runtime.InteropServices;

namespace MyClassInterfaceLibrary

{

[ClassInterface(ClassInterfaceType.AutoDual)]

public class DotNetClass

{

public DotNetClass(){}

public void Foo(){}

}

}

Without getting too bogged down in the details at this point, simply under-
stand that the ClassInterfaceAttribute type is used to instruct how to expose a
.NET class to COM. By specifying ClassInterfaceType.AutoDual, you are
instructing tlbexp.exe to expose this class type as a [dual] COM interface named
_DotNetClass. Once this assembly is converted into a related COM type library
(via tlbexp.exe), you find the following IDL definition:

interface _DotNetClass : IDispatch

{

// Inherited System.Object members removed for clarity…

HRESULT Foo();

};

…

coclass DotNetClass

{

[default] interface _DotNetClass;

interface _Object;

};

As you can see, the generated coclass supports the class interface
_DotNetClass as the [default], and therefore a VB 6.0 COM client could call
the Foo() method as follows:

' VB 6.0 calling Foo() on a .NET class.

Dim f as DotNetClass

Set f = New DotNetClass

f.Foo

Now, what if the same VB 6.0 application implemented this class interface
on a given COM type? It could be done given that _DotNetClass has been
published into the COM type information. Assume you have a coclass named
CoIWannaBeLikeYou, which is defined as follows (recall that VB 6.0 hides
underscore prefixes):

' Inherited System.Object members removed for clarity…

Option Explicit

Implements DotNetClass

Chapter 9

486

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 486

Private Sub DotNetClass_Foo()

' Stuff…

End Sub

Here’s the million-dollar question: “Could a managed client application treat
the original .NET DotNetClass type and the VB 6.0 CoIWannaBeLikeYou identi-
cally?” The answer is a resounding “No.” When a managed client creates the native
.NET type, it is working with a direct object reference (the class interface is nonex-
istent). When the managed client creates an instance of the COM class, it is
pointing to an interface named _DotNetClass. Thus, if the managed client defined
a method such as

public void WorkWithDotNetClass(DotNetClass x)

{ x.Foo();}

the two types could not be treated polymorphically, given that the _DotNetClass
interface is not the same as a DotNetClass object reference! The bottom line is that
class interfaces are only meaningful by an unmanaged COM client. If a coclass
implements a class interface, it is most certainly not type compatible with the
.NET class that produced it (so don’t bother to do so).

Guideline #3:
Take Care When Implementing Interface Hierarchies

Next, understand that if a COM class implements a .NET interface that has been
derived from a base interface, any reference to the base interface is lost during the
.NET to COM conversion process. Again, you will drill into the details of exposing
.NET types to COM in the next chapter. For the sake of argument, however,
assume you are building the following .NET interface hierarchy:

// A C# interface hierarchy.

public interface IBaseInterface

{

void MethodA();

}

public interface IDerivedInterface : IBaseInterface

{

void MethodB();

}

If a .NET class type wished to support the functionality of IDerivedInterface, it
would be responsible for implementing MethodA(), given that members in a base
interface are automatically inherited by the derived interface:

.NET-to-COM Interoperability—Advanced Topics

487

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 487

// Implementing derived interfaces

// entails supporting each member up

// the chain of inheritance.

public class Foo : IDerivedInterface

{

public Foo(){}

public void MethodB(){}

public void MethodA(){}

}

However, if these interfaces were published to a COM type library, you would
find that both are expressed as dual interfaces deriving from IDispatch. This is
because there is no way to instruct tlbexp.exe to make use of a custom interface
when defining a base interface. Thus:

// .NET interface hierarchies do not

// preserve base interface relationships when

// converted to COM IDL!

interface IBaseInterface : IDispatch {

[id(0x60020000)]

HRESULT MethodA();

};

interface IDerivedInterface : IDispatch {

[id(0x60020000)]

HRESULT MethodB();

};

Given this behavior, it would be possible to implement IDerivedInterface on a
COM type without accounting for the intended base functionality! This would, of
course, be a huge problem to a .NET client using the COM type. If the managed
client obtains a reference to IDerivedInterface, it assumes MethodA() is present
and accounted for:

// Assume this COM object has only

// implemented IDerivedInterface…

NotReallyTypeCompatibleObj ack =

new NotReallyTypeCompatibleObj();

ack.MethodA(); // Bomb!

When you attempt to build a .NET type compatible COM object that requires
the use of derived interfaces, you should always explicitly implement the inter-
faces up the chain of inheritance, as seen in the following VB 6.0 coclass definition:

Option Explicit

Implements IBaseInterface

Implements IDerivedInterface

Chapter 9

488

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 488

Private Sub IBaseInterface_MethodA()

' Something interesting…

End Sub

Private Sub IDerivedInterface_MethodB()

' Something even more interesting…

End Sub

If this is the case, the managed client is now able to interact with the base
members using an explicit IBaseInterface reference:

// Better.

TypeCompatibleObj better = new TypeCompatibleObj();

IBaseInterface theBase = (IBaseInterface)better;

theBase.MethodA();

Guideline #4:
VB 6.0 Has a Key Limitation (Imagine That . . .)

This final guideline is more of a heads-up than a true design consideration.
Visual Basic 6.0 has a rather annoying behavior when it comes to the act of imple-
menting interfaces: It is unable to implement interfaces that contain members
named using an underbar (for example, My_Method(), My_Other_Method(),
HereAreThreeUnderbars___(), and so on). Assume a COM interface defined in
IDL as follows:

interface IFoo : IDispatch

{

[id(1), helpstring("method Hello_There")]

HRESULT Hello_There();

};

If you implement the IFoo interface on a VB 6.0 coclass, you would not be able
to provide programming logic for Hello_There() given the presence of the dreaded
underbar (in fact, you couldn’t even compile).

While it might not be the case that you will ever build a COM method using
this rather old-fashioned naming convention, recall that when tlbimp.exe encoun-
ters a type that defines overloaded methods, it disambiguates each version using
an underbar (i.e., Method_1(), Method_2(), and so on). Given these facts, under-
stand that you cannot build a .NET type compatible COM class using VB 6.0 if the
interface in question defines overloaded members.

So, with these guidelines in mind, you should be able to build .NET type
compatible COM types if the need arises. Doing so can make your coclasses
appear a bit more “natural” from a managed client’s perspective, but make sure
you have good reason for doing so in the first place.

.NET-to-COM Interoperability—Advanced Topics

489

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 489

Consuming ActiveX Controls from Managed Code

Let’s shift gears now and check out how a managed Windows Forms application
can make use of legacy COM-based ActiveX controls. These COM types are just
like any other COM types in that they support some number of COM interfaces
(including the mandatory IUnknown). The key difference is the fact that many of
the interfaces supported by an ActiveX control are used exclusively for graphical
rendering and host interaction.

Building a fully functional ActiveX control is quite an art, given that you are
basically constructing a mini-window that supports any number of properties,
methods, and events (typically using a single [default] inbound interface and a
single [default] source interface). Rather than diving into the details of building a
production-level custom control, you will construct a trivial ActiveX control using
VB 6.0. Once you have created the COM type, you will import it into a C# Windows
Forms application (of course, the process of importing more exotic controls would
be identical).

Building an Example ActiveX Control

To begin, launch VB 6.0 and select a new ActiveX Control project workspace
named SimpleVb6AxCtrl. Your trivial control (named LameColorControl) provides
two properties (TheText and TheBackGroundColor) that allow the outside world
to configure the color used to render the control as well as a string to be displayed
in a Label object. The control also defines a single event (TextChanged) that will be
fired when the user calls the underlying put_TheText() method (recall that all
COM properties resolve to two hidden methods). Finally, the control’s surface
contains three Button objects that allow the user to select from three predefined
color values at runtime. Figure 9-6 shows the design time GUI.

Figure 9-6. The GUI of your ActiveX control

Chapter 9

490

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 490

The code behind the UserControl type is very straightforward (even for those
with no formal exposure to building ActiveX controls with VB 6.0). Here is the
complete listing:

' Private data.

Private mBkColor As OLE_COLOR

Private mText As String

' A single event

Public Event TextChanged()

' Public properties.

Public Property Get TheText() As String

TheText = mText

End Property

Public Property Let TheText(ByVal newText As String)

mText = newText

txtLabel = mText

RaiseEvent TextChanged ' Fire event!

End Property

Public Property Get BackGroundColor() As OLE_COLOR

BackColor = mBkColor

End Property

Public Property Let BackGroundColor(ByVal newColor As OLE_COLOR)

mBkColor = newColor

End Property

' Button click handlers.

Private Sub btnBlack_Click()

mBkColor = vbBlack

BackColor = mBkColor

End Sub

Private Sub btnGreen_Click()

mBkColor = vbGreen

BackColor = mBkColor

End Sub

Private Sub btnYellow_Click()

mBkColor = vbYellow

BackColor = mBkColor

End Sub

Private Sub UserControl_Initialize()

mBkColor = vbRed

BackColor = mBkColor

End Sub

.NET-to-COM Interoperability—Advanced Topics

491

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 491

Before you compile your ActiveX control, you will update the underlying IDL
with some [helpstring] attributes (this step is important later in this chapter). As
you are most likely aware, the [helpstring] attribute allows you to provide textual
documentation that describes how a given property is to be used. Under VB 6.0,
you are not able to directly edit the underlying IDL, but [helpstring] values can be
set by accessing the Tools | Procedure Attributes menu selection (be sure your
code window is the active window before you launch this tool). Figure 9-7 shows
the [helpstring] value for the BackGroundColor property (add a similar value for
the TheText property).

Figure 9-7. Applying IDL [helpstring]s in VB 6.0

Finally, to integrate the custom BackGroundColor property more fully into an
IDE’s Properties window, click the Advanced button and link this custom attribute
to the standard BackColor DISPID (Figure 9-8). Once you have done so, compile
your control and close the project workspace.

CODE The SimpleVb6AxControl project is included under the Chapter 9
subdirectory.

Chapter 9

492

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 492

Figure 9-8. Setting DISPID_BACKCOLOR in VB 6.0

Viewing the Generated IDL

Now, using oleview.exe, locate your control under the Control category and view
the underlying IDL. As you can see, each [helpstring] is documented in the COM
type information (also note that the BackGroundColor property has been assigned
the predefined DISPID, DISPID_BACKCOLOR, 0xfffffe0b, or –501), given your
Procedure ID setting:

[odl,

uuid(F4BB1CE2-2A68-4292-AE71-8895E6FD8A9A),

version(1.0), hidden, dual,

nonextensible, oleautomation]

interface _LameColorControl : IDispatch {

[id(0x68030000), propget,

helpstring(

"This sets the text which is to be displayed in the label.")]

HRESULT TheText([out, retval] BSTR*);

[id(0x68030000), propput,

helpstring(

"This sets the text which is to be displayed in the label.")]

HRESULT TheText([in, out] BSTR*);

.NET-to-COM Interoperability—Advanced Topics

493

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 493

[id(0xfffffe0b), propget,

helpstring(

"This lets you set the background color to any RGB value.")]

HRESULT BackGroundColor([out, retval] OLE_COLOR*);

[id(0xfffffe0b), propput,

helpstring(

"This lets you set the background color to any RGB value.")]

HRESULT BackGroundColor([in, out] OLE_COLOR*);

};

If you build a new VB 6.0 Standard EXE project workspace, you are able to set a
reference to your control type (using the Project | Components menu selection).
Once you place an instance of the ActiveX control onto the main Form, you will
find your help strings are visible through the Properties window. Also note that
you are able to select the value of the BackGroundColor property using the stan-
dard color selection drop-down list (given the assignment of this custom property
to DISPID_BACKCOLOR). Check out Figure 9-9.

So much for using your control from an unmanaged environment. Now it’s
time to turn your attention to consuming the ActiveX control from a managed
Windows Forms application.

Figure 9-9. DISPID_BACKCOLOR in action

Chapter 9

494

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 494

Options for Consuming ActiveX
Controls from Managed Code

Much like a traditional COM server, before a .NET application can make use of an
ActiveX control, the COM metadata must be converted into terms of .NET meta-
data. As you may suspect, you do have options:

• Make use of the Visual Studio .NET Customize Toolbox dialog box.

• Run the AxImp.exe command line utility.

You examine both options in turn the next several pages. Understand, of
course, that regardless of which option you choose, you end up with two new .NET
assemblies (explained shortly).

Consuming an ActiveX Control Using the VS .NET IDE

Assume you have created a brand-new C# Windows Forms application that wishes
to make use of the VB 6.0 LameColorControl (and who wouldn’t?). To do so, simply
right-click the Toolbox and select Customize Toolbox (Figure 9-10).

Figure 9-10. Referencing ActiveX controls from managed code begins here.

.NET-to-COM Interoperability—Advanced Topics

495

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 495

From the resulting dialog box, select the control you are interested in
(Figure 9-11).

Figure 9-11. All registered controls are listed under the COM Components tab.

Once you have selected the control, you will see its icon is now placed on the
Windows Forms tab of the Toolbox (Figure 9-12).

Figure 9-12. The LameColorControl icon

Chapter 9

496

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 496

Once you place an instance of this control onto the C# Form-derived type,
check out the Solution Explorer. You will find that you have been given references
to two new .NET assemblies (Figure 9-13).

Figure 9-13. Using an imported ActiveX control results in two new interop
assemblies.

You will check out the internals of these generated assemblies in just a
moment. However, the short answer is that the content of the interop assembly
(SimpleVb6AxCtrl) is as you would expect: It contains .NET metadata that was
constructed based on the original COM type library.

The other assembly (taking an “Ax-” prefix) is a helper assembly that wraps
the ActiveX control with various Windows Forms bells and whistles, to ensure
that the legacy ActiveX type can be treated identically to a native .NET Windows
Forms Control. Formally speaking, the “Ax-”-prefixed assembly generated for a
given ActiveX control is termed an ActiveX interop assembly.

Understand that the managed client must be able to locate and manipulate
both of these assemblies to correctly expose the ActiveX control type from a
managed environment. Given this, also understand that when you deploy the
.NET application, you need to ensure that each of these *.dlls is present and
accounted for.

In any case, at this point you are free to build a C# GUI that interacts with the
ActiveX type. Like a native Windows Forms Control, you are able to manipulate

.NET-to-COM Interoperability—Advanced Topics

497

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 497

the control’s properties and events using the IDE’s Properties window (VB .NET
applications are able to interact with the widget’s event using the code window).
Thus, if you design a simple UI that allows the user to input a text string, things
might shape up as shown in Figure 9-14.

Figure 9-14. The ActiveX control in action

As you can see, the process of interacting with legacy ActiveX controls from a
managed environment is quite straightforward. The code behind this C# Form is
simple enough, so much so that I do not bother to list it here. When you place a
LameColorControl onto the Form, you are able to interact with its properties,
methods, and events in an identical manner as any other Windows Forms control.

CODE The CSharpAxControlHost project is included under the
Chapter 9 subdirectory.

Examining the Generated Assemblies

Now that you have created a managed client, let’s check out the details of the two
generated assemblies. The interop assembly (interop.SimpleVb6AxCtrl.dll) is iden-
tical in purpose to any other interop assembly in that it simply contains .NET
metadata based on the original COM type information. If you check out the

Chapter 9

498

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 498

content of the generated interop assembly using ILDasm.exe, you find no big
surprises. For example, the LameColorControl coclass is still represented by the
LameColorControl, LameColorControlClass, and _LameColorControl types. The
interop assembly still contains the required event helper types, and the assembly
manifest is still composed based on the information found in the COM type
library statement.

The additional generated assembly is unique. The role of the ActiveX interop
assembly (AxInterop.SimpleVb6AxCtrl.dll) is to expose the raw ActiveX control as a
true blue Windows Forms Control equivalent. This is accomplished by deriving the
raw ActiveX control from the System.Windows.Forms.AxHost base class. The
reason for deriving the COM type from AxHost is simple: Windows Forms can only
host Windows Forms controls (classes ultimately deriving from
System.Windows.Forms.Control).

The AxHost .NET class type defines a large number of properties that mimic
the corresponding standard ActiveX members (such as BackColor and Text) as well
as a number of additional properties and methods that allow the ActiveX type to
behave like a native .NET control. In this way, the .NET host is able to provide a
symmetrical treatment of COM-based and .NET-based GUI widgets.

Given this definition of the AxHost base class, ponder the following .NET
metadata for the derived type (AxLameColorControl):

.class public auto ansi beforefieldinit AxLameColorControl

extends [System.Windows.Forms]System.Windows.Forms.AxHost

{

.custom instance void[System]System.ComponentModel.

DesignTimeVisibleAttribute::.ctor(bool) = (01 00 01 00 00)

.custom instance void[System]System.ComponentModel.

DefaultEventAttribute::.ctor(string)

= (01 00 10 54 65 78 74 43 68 61 6E 67 65 64 45 76 //

...TextChangedEv

65 6E 74 00 00) // ent..

.custom instance void[System.Windows.Forms]System.Windows.

Forms.AxHost/ClsidAttribute::.ctor(string) =

(01 00 26 7B 62 66 65 62 62 35 35 30 2D 37 33 33

// ..&{bfebb550-733

65 2D 34 32 62 65 2D 38 62 65 35 2D 38 65 30 39

// e-42be-8be5-8e09

33 64 32 35 39 38 34 65 7D 00 00)

// 3d25984e}..

} // end of class AxLameColorControl

As you can see, the derived type is the same name as the initial ActiveX
control, with an “Ax” prefix. In fact, when you place an instance of the

.NET-to-COM Interoperability—Advanced Topics

499

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 499

ActiveX control onto the design time Form, you are in fact creating a member
variable of the AxHost-derived type, not the raw ActiveX type:

public class mainForm: System.Windows.Forms.Form

{

private System.Windows.Forms.TextBox txtMessage;

private System.Windows.Forms.Button btnSetCtrlText;

private AxSimpleVb6AxCtrl.AxLameColorControl axLameColorControl1;

…

}

As you might suspect, the AxHost-derived type is populated with the public
properties, methods, and events of the original COM type (Figure 9-15).

Figure 9-15. The “Ax-”-prefixed class supports all members of the raw COM type.

Finally, understand that the ActiveX interop assembly and the literal interop
assembly are quite intertwined. This should make sense, given that the ActiveX
interop assembly needs to read the metadata of the related COM server. If you
examine the manifest of axinterop.simplevb6axctrl.dll, you find a specific
[.assembly extern] tag that identifies its dependency on
interop.simplevb6axctrl.dll:

.assembly extern Interop.SimpleVb6AxCtrl

{

.ver 1:0:0:0

}

Chapter 9

500

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 500

Now that you have a better idea of the role of each generated assembly, let’s
take a tour of the process of generating these binaries at the command line using
AxImp.exe (and see why you might wish to do so).

Importing ActiveX Controls Using AxImp.exe

In addition to making use of the VS .NET IDE, you are able to generate the neces-
sary .NET assemblies manually using the AxImp.exe utility. Like other command
line tools, AxImp.exe does support a small set of optional arguments, most of
which allow you to assign a strong name to the output assemblies. Additionally,
AxImp.exe provides a very interesting flag named /source. As you might guess, this
flag makes use of System.CodeDOM to generate the code on the fly (see Chapter 6):

aximp simplevb6axctrl.ocx /source

Just like VS .NET, AxImp.exe generates a traditional interop assembly as well as
the assembly containing the AxHost-derived type. When the /source flag is speci-
fied, you also receive a C# code file that defines the types within the “Ax-”-prefixed
assembly (to date, there is no way to specify VB .NET source code). If you opened
this file, you would indeed find that the generated AxLameColorControl class type
derives from AxHost and has been attributed with various Windows Forms–centric
attributes that qualify how this widget should be viewed at design time.

The constructor of the AxHost-derived type also passes the CLSID of the
registered ActiveX control up to its base class, to create the COM type via
CoCreateInstance(). Finally, note that the AxHost-derived type maintains a
member variable named “ocx” that represents the [default] interface of the COM
type. The overridden AttachInterfaces() function assigned this variable using the
base class GetOcx() method. Here is the story thus far:

[System.Windows.Forms.AxHost.ClsidAttribute

("{bfebb550-733e-42be-8be5-8e093d25984e}")]

[System.ComponentModel.DesignTimeVisibleAttribute(true)]

[System.ComponentModel.DefaultEvent("TextChangedEvent")]

public class AxLameColorControl : System.Windows.Forms.AxHost

{

private SimpleVb6AxCtrl._LameColorControl ocx;

…

public AxLameColorControl() :

base("bfebb550-733e-42be-8be5-8e093d25984e") {}

…

protected override void AttachInterfaces()

{

try {

this.ocx =

.NET-to-COM Interoperability—Advanced Topics

501

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 501

((SimpleVb6AxCtrl._LameColorControl)(this.GetOcx()));

}

catch (System.Exception) {}

}

}

The C# source code file also defines each member of the original
ActiveX type in terms of managed code. Once a member has been checked for
possible runtime exceptions, the wrapper methods make use of the valid “ocx”
member variable (which, you recall, points to the [default] interface of the COM
type) to call the correct COM member. In the following code block for the custom
BackGroundColor property, notice that the DispIdAttribute has been assigned the
correct value of DISPID_BACKCOLOR (–501) to ensure that you are able to set this
value using the VS .NET design time Properties window (even better, note that the
raw OLE_COLOR variable has been mapped into a System.Drawing.Color type):

[System.ComponentModel.DesignerSerializationVisibility

(System.ComponentModel.DesignerSerializationVisibility.Hidden)]

[System.Runtime.InteropServices.DispIdAttribute(-501)]

[System.Runtime.InteropServices.ComAliasNameAttribute(

"System.UInt32")]

public virtual System.Drawing.Color BackGroundColor

{

get

{

if ((this.ocx == null)) {

throw new InvalidActiveXStateException("BackGroundColor",

System.Windows.Forms.AxHost.ActiveXInvokeKind.PropertyGet);

}

return GetColorFromOleColor(

((System.UInt32)(this.ocx.BackGroundColor)));

}

set

{

if ((this.ocx == null)) {

throw new InvalidActiveXStateException("BackGroundColor",

System.Windows.Forms.AxHost.ActiveXInvokeKind.PropertySet);

}

this.ocx.BackGroundColor = (

(System.UInt32)(GetOleColorFromColor(value)));

}

}

The code behind the TheText property is more or less identical. The remaining
code found in this autogenerated C# code file establishes the logic that maps any
incoming COM events into terms of managed code.

Chapter 9

502

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 502

CODE The AxSimpleVb6AxCtrl.cs code file is located under the
Chapter 9 subdirectory.

Limitations of the AxImp.exe Utility

In most cases, the COM-to-.NET utilities that ship with the .NET SDK (tlbimp.exe
and AxImp.exe) do a fine job of converting COM type information into terms of
.NET metadata. However, both tools completely ignore two rather useful IDL
attributes:

• IDL [helpstring] annotations

• Custom IDL attributes

For example, if you host the LameColorControl on a Windows Form and select
this widget at design time, you would find the [helpstring] values you assigned to
the ActiveX control do not appear in the VS .NET IDE (Figure 9-16).

Figure 9-16. Hmm . . . the [helpstring] values are absent.

.NET-to-COM Interoperability—Advanced Topics

503

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 503

It is unfortunate that AxImp.exe fails to account for IDL [helpstring] values,
given that the .NET class libraries do supply a managed class that is roughly analo-
gous: System.ComponentModel.DescriptionAttribute. This type, which is specifi-
cally designed to represent a textual description for a given member of a Windows
Forms Control, is the attribute read by the VS .NET Properties window to display
the helpful string message.

Modifying the Code for the AxHost-Derived Type

If you want to ensure that imported ActiveX controls are able to display their orig-
inal IDL [helpstring] values within the VS .NET IDE, your tasks are as follows:

• Edit the generated C# source code file to support any number of
DescriptionAttribute types.

• Compile the *.cs file back into an ActiveX interop assembly.

• Distribute the updated assembly with the Windows Forms client applica-
tion.

To illustrate the process, let’s update the C# source code file generated by
AxImp.exe to support three new DescriptionAttributes types and observe the
result. First and foremost, understand that you are only able to directly edit the
underlying C# source code if you obtain the file using the /source flag of the
AxImp.exe command line utility. Assuming you have generated the C# file, create a
new C# code library project workspace with the same name as the ActiveX interop
assembly (in this case, AxInterop.SimpleVb6AxCtrl, as shown in Figure 9-17).

Next, copy the contents of the generated C# ActiveX interop code file to the
clipboard and paste it into the project’s initial class file. The edits you are inter-
ested in making are to update each property and event definition with the
DescriptionAttributes type. The constructor of this type takes a simple string
that is read at design time by the Properties window.

public class AxLameColorControl : System.Windows.Forms.AxHost

{

…

[System.ComponentModel.Description

("This sets the text which is to be displayed in the label.")]

public virtual string TheText {…}

[System.ComponentModel.Description

("This lets you set the background color to any RGB value.")]

public virtual System.Drawing.Color BackGroundColor {…}

Chapter 9

504

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 504

[System.ComponentModel.Description

("This Event is fired when the text is changed (duh!).")]

public event System.EventHandler TextChangedEvent;

…

}

Figure 9-17. A new Class Library to hold the source of the ActiveX interop assembly

At this point, the ActiveX interop assembly project can be recompiled. If you
now build a new C# Windows Forms application and set a reference to this specific
interop assembly (rather than the original COM server, which would generate a
new interop assembly), you will find that when you select this type from the
design time template and view the Properties window, the helpful text messages
are pleasingly present (Figure 9-18).

.NET-to-COM Interoperability—Advanced Topics

505

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 505

Figure 9-18. .NET-style [helpstrings]

One Final Modification

Although you have now successfully recreated the IDL [helpstrings] using the
DescriptionAttribute type, you may wish to perform a final tweak of the raw C#
source code file. The CategoryAttribute allows you to specify a category name to
be used by the VS .NET IDE when it displays the names of each property (or event)
in the Properties window. Specifically speaking, CategoryAttribute allows you to
assign your properties and events to any of the categories in Table 9-2.

Table 9-2. Possible Categories for Control Members

Possible Category Meaning in Life
Action Properties regarding available actions

Appearance Properties affecting how an entity appears

Behavior Properties affecting how an entity acts

Data Properties concerning data

Design Properties that are available only at design time

DragDrop Properties about drag-and-drop operations

Focus Properties pertaining to focus

Format Properties affecting format

Key Properties affecting the keyboard

Layout Properties concerning layout

Mouse Properties pertaining to the mouse

WindowStyle Properties affecting the window style of top-level forms

Chapter 9

506

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 506

If these predefined categories don’t fit the bill, you are also free to craft one
more to your liking. For example, let’s say you want to ensure that when the prop-
erties of the LameColorControl are viewed by category, each of them appears
under a heading named “Lame Stuff.” You could do so by updating the C# code as
follows:

public class AxLameColorControl : System.Windows.Forms.AxHost

{

…

[System.ComponentModel.Description

("This sets the text which is to be displayed in the label."),

System.ComponentModel.Category("Lame Stuff")]

public virtual string TheText

{…}

[System.ComponentModel.Description

("This lets you set the background color to any RGB value."),

System.ComponentModel.Category("Lame Stuff")]

public virtual System.Drawing.Color BackGroundColor

{…}

[System.ComponentModel.Description

("This Event is fired when the text is changed (duh!)."),

System.ComponentModel.Category("Lame Stuff")]

public event System.EventHandler TextChangedEvent;

…

}

The result of this final modification is seen when a new Windows Forms
application selects the LameColorControl and examines the Properties window
(Figure 9-19).

The act of editing the C# code behind an arbitrary ActiveX assembly simply for
the sake of doing so is not required. However, assume you are in the business of
building (and selling) ActiveX controls. If you wish to generate a primary interop
assembly (see Chapter 7) for your client base, taking this time to simulate COM
[helpstring] values gives your final product a more polished look and feel.

That wraps up your formal investigation of making use of legacy ActiveX
controls from managed code. At this point, you should have a solid understanding
of the default conversion process and understand how you are able to modify the
metadata contained within an ActiveX interop assembly using the generated C#
source code.

.NET-to-COM Interoperability—Advanced Topics

507

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 507

Figure 9-19. Assigning the control’s members to a custom category

Manually Modifying Interop Assemblies

Another fairly advanced topic is the manual modification of previously generated
interop assemblies. Not the source code, mind you (as in the previous example),
but the raw .NET metadata. As you have seen during the last few chapters, the
tlbimp.exe utility does a fine job of mapping COM types (interfaces, coclasses,
enums, and structures) into terms of managed code. In fact, the conversion
process is so seamless that in many cases you are able to simply make use of the
Visual Studio. NET Add Reference dialog box and program against the generated
interop assembly without any further consideration. Recall, however, that both
AxImp.exe and tlbimp.exe ignore

• IDL [helpstring] annotations

• Custom IDL attributes

As previously illustrated, if the coclass in question is an ActiveX control, you
can specify the /source flag to AxImp.exe to obtain the C# source code. Once you
make your custom modifications, you can recompile and distribute the ActiveX
interop assembly and make everything right with the world.

Tlbimp.exe does not supply a similar flag. If you want to simulate [helpstring]
information in an interop assembly produced from a server containing a more
traditional COM coclass (i.e., not an ActiveX control), you need to disassemble the
binary and modify the metadata by hand. Similarly, if you wish to account for any

Chapter 9

508

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 508

orphaned custom IDL attributes, editing the interop assembly is your most direct
option. Before you decide to re-create IDL [helpstring] and [custom] attributes,
be aware that the VS .NET IDE only displays DescriptionAttribute values for
GUI-based .NET types. Thus, even if you crack open an interop assembly and
insert the correct metadata to mimic [helpstring] data (as well as [custom] IDL
attributes), you need to build a custom tool that can read this information (using
.NET reflection services).

In addition to accounting for [helpstring] and [custom] IDL attributes, there
could be other reasons you want to edit the contents of an interop assembly. For
example, you may wish to alter how a C-style array is exposed to a .NET client, add
information that instructs the runtime to make use of a custom marshaler when
transforming COM types to .NET types (and vice versa), or manually insert
DISPIDs for a COM server that does not natively define them. In a nutshell, as long
as you stay within the syntax constraints of .NET metadata, you are able to update
an interop assembly in any way you see fit.

Again, understand that if the original COM server made use of [oleautoma-
tion]-compliant data types, the chances are extremely good that you will never
need to alter the generated interop assembly in the first place. Nevertheless, let’s
check out the process firsthand (just for the sake of knowledge). If you are inter-
ested in examples beyond the one shown here, check out online Help (do a search
for the topic “Customizing Runtime Callable Wrappers”). Once you understand
the example presented in this chapter, you will have no problem making other
modifications to an interop assembly.

Building an Example COM Server

To illustrate the process of manually editing an interop assembly, assume that you
have created a COM server (usingATL) named AtlHelpCustomAttsServer that
defines a single coclass, implementing a single interface, which supports a single
method. Being a kindhearted COM programmer, you also took the time to docu-
ment the coclass using a [helpstring] attribute. Furthermore, being a COM
programmer under a deadline, you added a custom ToDo attribute (as seen in
Chapter 4). Here is the IDL under discussion:

import "oaidl.idl";

import "ocidl.idl";

[object,

uuid(EC7C1641-4031-45EA-8B61-7AAAD04A0BA7),

dual, pointer_default(unique)]

interface IAdd : IDispatch

{

[id(1)]

HRESULT Add([in] int x, [in] int y,

.NET-to-COM Interoperability—Advanced Topics

509

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 509

[out, retval] int* answer);

};

[uuid(85CE5F31-AAD7-4C43-93F4-12841414C822),

version(1.0)]

library ATLHELPCUSTOMATTSSERVERLib

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

[uuid(4C3DB474-61BF-49BF-979B-68A5FB53E43B),

helpstring("This class adds two numbers"),

custom(1403B3A5-38FE-4ba9-94E2-54577F712E7A,

"ToDo: Add subtraction functionality...")]

coclass AtlAdder

{

[default] interface IAdd;

};

};

CODE The AtlHelpCustomAttsServer project is included under the
Chapter 9 subdirectory.

Understanding the Interop Editing Process

Before you go and modify the interop assembly for the HelpfulAtlServer.dll COM
server, you need to get your bearings and understand the general steps involved in
manually editing a .NET assembly. The first obvious step is to have access to the
interop assembly that was generated from a valid COM type library. To do so, you
may manually run the tlbimp.exe utility or make use of VS .NET.

Once you have the interop assembly at your disposal, your next task is to
disassemble its contents to obtain an *.il (Intermediate Language) file that
contains the assembly’s metadata descriptions. As you might have guessed,
ildasm.exe provides an option to dump the contents of a loaded assembly to file
(you will see this shortly).

Armed with this *.il file, you are now able to manually update the contents
using whichever text editor suits your fancy. Of course, this step in the process
does demand that you are aware of the basic syntax of IL and .NET metadata
descriptions. The good news is that interop assemblies actually contain very little
(if any) actual IL code. The only time in which you are likely to encounter IL of any

Chapter 9

510

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 510

notable length is if the interop assembly has mapped COM connections into
terms of .NET delegates. Beyond this specific case, most interop assemblies
contain nothing by metadata, which is quite easy on the eyes.

Last but not least, after you have applied any edits to the *.il file, you need to
recompile the code into a valid interop assembly using the ilasm.exe utility (Inter-
mediate Language assembler) and distribute the modified assembly. To solidify
the sequences of events, ponder Figure 9-20.

Figure 9-20. The flow of the IL editing process

Generating the Initial Interop Assembly

Now that you see the big picture (and hopefully have some idea when this tech-
nique is helpful), let’s walk through each step and update the interop assembly for
the AtlHelpCustomAttsServer.dll COM server to simulate the [helpstring] and
[custom] IDL attributes that were ignored by tlbimp.exe. The journey begins by
creating the interop assembly to be modified:

tlbimp AtlHelpCustomAttsServer.dll /out: interop.AtlHelpCustomAttsServer.dll

CODE The original interop.AtlHelpCustomAttsServer.dll
interop assembly can be found under the
\Initial interop.AtlHelpCustomAttsServer directory.

.NET-to-COM Interoperability—Advanced Topics

511

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 511

Obtaining the *.il File for
interop.HelpfulATLServer.dll

As mentioned, ILDasm.exe supports a special command that allows you to dump
the contents of a given .NET assembly into an *.il file. Assuming you have loaded
the interop.AtlHelpCustomAttsServer.dll assembly into ildasm.exe, select the
File | Dump menu option (Figure 9-21).

Figure 9-21. Dumping the assembly contents to a file

This will launch a (rather odd-shaped) dialog box that allows you to configure
how the underlying *.il file is to be written to file (the default settings are fine for
your current purposes). When you click OK, you are asked for the location to save
the file via a standard File Save dialog box. Once you save your *.il file to a conven-
ient location, you will find that two files have been generated (Figure 9-22).

Figure 9-22. Dumping an assembly to a file results in two new files.

Chapter 9

512

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 512

When you dump an interop assembly to a file, you will always receive (in addi-
tion to the *.il file) a Win32 *.res file that contains general file-centric information
obtained from the original type library. If you open this file using Visual Studio
.NET, you find the information that appears in Figure 9-23.

Figure 9-23. The *.res file

Understand that this is not the information you are attempting to edit. You do,
however, need to specify this file as a command line parameter to ilasm.exe (using
the /resource flag) when recompiling your *.il back into a valid interop assembly.

CODE The original *.il and *.res files are located under the
\Initial interop.AtlHelpCustomAttsServer\IL Code subdirectory.

.NET-to-COM Interoperability—Advanced Topics

513

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 513

Viewing the Original IL/Metadata Definitions

Before you augment the IL code to take into account the orphaned IDL
[helpstring] and [custom] attributes, let’s check out the unaltered IL dump.
The very first section of the IL file documents any required external .NET
assemblies (interop assemblies always need to reference mscorlib.dll) as well as
an [.assembly] statement that is constructed based on the metadata of the COM
type information.

Recall that tlbimp.exe makes use of the ImportedFromTypeLibAttribute and
GuidAttribute types to document the LIBID of the COM type library used to
generate the interop assembly. Given your understanding of .NET assemblies, this
initial section of the *.il file should ring a bell! You are basically looking at the raw
manifest definition:

.assembly extern mscorlib

{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89) // .z\V.4..

.ver 1:0:3300:0

}

.assembly interop.HelpfulATLServer

{

.custom instance void[mscorlib]System.Runtime.

InteropServices.ImportedFromTypeLibAttribute::.ctor(string) =

(01 00 13 48 45 4C 50 46 55 4C 41 54 4C 53 45 52 // ...HELPFULATLSER

56 45 52 4C 69 62 00 00) // VERLib..

.custom instance void[mscorlib]System.Runtime.

InteropServices.GuidAttribute::.ctor(string) =

(01 00 24 65 63 36 33 65 36 39 30 2D 61 33 38 35

// ..$ec63e690- a385

2D 34 31 66 39 2D 39 61 30 39 2D 35 34 36 39 65

// -41f9-9a09-5469e

66 36 63 32 64 38 62 00 00)

// f6c2d8b..

.hash algorithm 0x00008004

.ver 1:0:0:0

}

.module HELPFULATLSERVERLib.dll

// MVID: {DC7BFAF6-CAC1-478F-87C1-BA4F3D6E0616}

.imagebase 0x00400000

.subsystem 0x00000003

.file alignment 512

.corflags 0x00000001

After the manifest definition, you have a section termed the class structure
declaration. Here you find the skeletal prototype of each .NET type in the
assembly, devoid of any members. Given that the COM type information for the
HelpfulATLServer.dll defined two COM types (the IAdd interface and AtlAdder

Chapter 9

514

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 514

coclass) you end up with three .NET type declarations (recall that tlbimp.exe
always creates a “-Class”-suffixed type that represents a union of all interface
members). In the following IL metadata, note that the [.namespace] tag is used
to document the .NET namespace, while [.class] is a generic way to define any
.NET type:

// ==== CLASS STRUCTURE DECLARATION ====

//

.namespace interop.HelpfulATLServer

{

.class public auto ansi import AtlAdderClass

extends [mscorlib]System.Object

implements interop.HelpfulATLServer.IAdd,

interop.HelpfulATLServer.AtlAdder

{} // end of class AtlAdderClass

.class interface public abstract auto ansi import AtlAdder

implements interop.HelpfulATLServer.IAdd

{} // end of class AtlAdder

.class interface public abstract auto ansi import IAdd

{} // end of class IAdd

} // end of namespace interop.HelpfulATLServer

After the structural definition of each type, the remaining metadata defini-
tions document the members of each type. First and foremost, you have the
members of the AtlAdderClass type:

.namespace interop.HelpfulATLServer

{

.class public auto ansi import AtlAdderClass

extends [mscorlib]System.Object

implements interop.HelpfulATLServer.IAdd,

interop.HelpfulATLServer.AtlAdder

{

.custom instance void[mscorlib]System.Runtime.

InteropServices.GuidAttribute::.ctor(string) =

(01 00 24 33 43 37 42 44 35 42 46 2D 32 44 39 45

// ..$3C7BD5BF-2D9E

2D 34 39 36 30 2D 41 39 37 45 2D 36 35 44 42 35

// -4960-A97E-65DB5

45 42 38 45 32 34 39 00 00) // EB8E249..

.custom instance void[mscorlib]System.Runtime.

InteropServices.ClassInterfaceAttribute::

.ctor(int16) = (01 00 00 00 00 00)

.custom instance void[mscorlib]System.Runtime.

InteropServices.TypeLibTypeAttribute::

.NET-to-COM Interoperability—Advanced Topics

515

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 515

.ctor(int16) = (01 00 02 00 00 00)

.method public specialname rtspecialname

instance void .ctor() runtime managed internalcall

{} // end of method AtlAdderClass::.ctor

.method public hidebysig newslot virtual

instance int32 Add([in] int32 numb1,

[in] int32 numb2) runtime managed internalcall

{

.override interop.HelpfulATLServer.IAdd::Add

} // end of method AtlAdderClass::Add

} // end of class AtlAdderClass

Notice how the members of the AtlAdderClass type do not contain any literal
IL instructions, but rather various bits of metadata that describe characteristics of
the related COM type. The AtlAdder class (which as you recall only supports
members of the [default] interface) looks quite similar:

.class interface public abstract auto ansi import AtlAdder

implements interop.HelpfulATLServer.IAdd

{

.custom instance void[mscorlib]System.Runtime.

InteropServices.GuidAttribute::.ctor(string) =

(01 00 24 35 30 36 41 35 43 42 31 2D 31 44 30 44

// ..$506A5CB1-1D0D

2D 34 41 41 32 2D 38 31 43 45 2D 41 41 37 46 39

// -4AA2-81CE-AA7F9

39 32 38 31 30 42 42 00 00)

// 92810BB..

.custom instance void[mscorlib]System.Runtime.

InteropServices.CoClassAttribute::.ctor(class [mscorlib]System.Type) =

(01 00 26 69 6E 74 65 72 6F 70 2E 48 65 6C 70 66

// ..&interop.Helpf

75 6C 41 54 4C 53 65 72 76 65 72 2E 41 74 6C 41

// ulATLServer.AtlA

64 64 65 72 43 6C 61 73 73 00 00)

// dderClass..

} // end of class AtlAdder

Finally, you have the metadata description of the members of the
IAdd interface:

.class interface public abstract auto ansi import IAdd

{

.custom instance void[mscorlib]System.Runtime.

InteropServices.TypeLibTypeAttribute::.ctor(int16) =

(01 00 00 01 00 00)

.custom instance void[mscorlib]System.Runtime.

InteropServices.GuidAttribute::.ctor(string) =

Chapter 9

516

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 516

(01 00 24 35 30 36 41 35 43 42 31 2D 31 44 30 44

// ..$506A5CB1-1D0D

2D 34 41 41 32 2D 38 31 43 45 2D 41 41 37 46 39

// -4AA2-81CE-AA7F9

39 32 38 31 30 42 42 00 00)

// 92810BB..

.custom instance void[mscorlib]System.Runtime.

InteropServices.InterfaceTypeAttribute::

.ctor(int16) = (01 00 01 00 00 00)

.method public hidebysig newslot virtual abstract

instance int32 Add([in] int32 numb1,

[in] int32 numb2) runtime managed internalcall

{}

} // end of method IAdd::Add

Now that you have seen what is contained within your interop assembly, you
are just about ready to hack away. But first, a few words about how .NET attributes
are represented in terms of raw metadata.

Dissecting the Layout of Attribute Metadata

Recall that all custom .NET attributes derive from the System.Attribute base class.
By default, a .NET attribute can be applied to any aspect of a C# code file using the
bracket notation (much like COM IDL). Also recall that a given .NET attribute is
able to restrict its usage by being defined with the AttributeUsageAttribute type
and the related AttributeTargets enumeration. However, when a .NET attribute is
defined in terms of raw IL metadata (regardless of what it is attributing), it will
always have the following format (attribute-specific values are seen inside bold
curly brackets):

.custom instance void {fully qualified name}::

.ctor({ctor data type}) = ({ctor args})

For example, in Chapter 7 you created the following C# custom attribute:

// The custom attribute.

[AttributeUsage(AttributeTargets.Class |

AttributeTargets.Interface |

AttributeTargets.Enum |

AttributeTargets.Struct)]

public class ToDoAttribute : System.Attribute

{

private string toDoComment;

.NET-to-COM Interoperability—Advanced Topics

517

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 517

public ToDoAttribute(string comment)

{ toDoComment = comment;}

public string Comment

{get {return toDoComment;}}

}

The ToDoAttribute type was attributed to the following enum:

[ToDo("This enum stinks!")]

public enum TheEnum

If you check out the IL metadata for TheEnum using ILDasm.exe, you find the
following description:

.class public auto ansi sealed TheEnum

extends [mscorlib]System.Enum

{

.custom instance void ComplexTypeLibrary.ToDoAttribute::.ctor(string) =

(01 00 11 54 68 69 73 20 65 6E 75 6D 20 73 74 69

// ...This enum sti

6E 6B 73 21 00 00) // nks!..

} // end of class TheEnum

As you can see, the string passed into the constructor of the ToDoAttribute
(“This enum stinks!”) is represented by its hexadecimal equivalent. However, the
value you are viewing (01 00 11 54 68 69 73 20 65 6E 75 6D 20 73 74 69 6E 6B 73 21
00 00) contains a bit more information than the literal string tokens. Specifically
speaking, the value can be parsed into three basic segments. First, all .NET attrib-
utes begin with 01. The next four bytes (in this case 00 11) mark the size of the data
that follows. The data itself can be arbitrarily long, depending on what exactly was
passed into the constructor of the custom attribute type. Here, the hexadecimal of
your string is realized as the following:

54 68 69 73 20 65 6E 75 6D 20 73 74 69 6E 6B 73 21

T h i s e n u m s t i n k s !

Finally, every custom attribute ends with 4 bytes that mark the number of
named properties supported by the attribute. Given that ToDoAttribute does not
contain such information, the value 00 00 is present and accounted for.

So (you may be asking), what does this have to do with the process of
updating an interop assembly to describe orphaned IDL attributes? Everything! If
you wish to insert custom .NET metadata that qualifies a given IDL [helpstring],
you need to insert metadata that describes a DescriptionAttribute type. This alone
is not a problem, but as you can guess, it would be a tremendous drag to build the
hexadecimal representation of “This class adds two numbers.” While you could
manually calculate the correct value, you will do well (and save time) to simply

Chapter 9

518

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 518

build a temporary .NET assembly that sends in the correct string to the
constructor of the DescriptionAttribute type and grabs the correct hex via
ILDasm.exe.

Building a “Scratch” Assembly

To illustrate, let’s create a scratch assembly named ScratchAssembly to generate
the hex values of the correct textual data on your behalf. Obviously, it really makes
no difference what the names of these temporary types are (and they most
certainly don’t have to do anything). All you need is a set of .NET classes that make
use of the DescriptionAttribute type for each string you are interested in
obtaining:

using System;

using System.ComponentModel;

namespace TempHelpStringAsm

{

[DescriptionAttribute("This class adds two numbers")]

public class AtlAdderClass{}

}

Once you compile and open this assembly with ildasm.exe, you are able to
find the correct hexadecimal values for each string. For example:

.class public auto ansi beforefieldinit AtlAdderClass

extends [mscorlib]System.Object

{

.custom instance void [System]System.ComponentModel.DescriptionAttribute

::.ctor(string) =

(01 00 1B 54 68 69 73 20 63 6C 61 73 73 20 61 64

// ...This class ad

64 73 20 74 77 6F 20 6E 75 6D 62 65 72 73 00 00)

// ds two numbers..

} // end of class AtlAdderClass

Creating a .NET [custom] Wrapper

At this point, you have the correct hex values for the two strings you are
attempting to insert into the interop assembly. If you were simply annotating the
metadata with the DescriptionAttribute class, you would be ready to update the
*.il and move on. However, recall that one of your tasks was to account for the
[custom] IDL attribute. Although the .NET class libraries do not have a type that
directly mimics the IDL [custom] attribute, nothing is preventing you from rolling

.NET-to-COM Interoperability—Advanced Topics

519

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 519

your own. Recall that a [custom] IDL attribute is represented by a GUID/BSTR
pair. If you build a custom .NET attribute that mimics the IDL [custom] attribute,
you could add the following information to the scratch assembly:

using System;

using System.ComponentModel;

namespace ScratchAssembly

{

// Generate correct metadata for the .NET version of "ToDo".

[IDLCustomAttribute("1403B3A5-38FE-4ba9-94E2-54577F712E7A",

"ToDo: Add subtraction functionality...")]

public class CustomAttString{}

[DescriptionAttribute("This class adds two numbers")]

public class AtlAdderClass{}

// This is a class type which is a .NET

// representation of the IDL [custom] attribute.

public class IDLCustomAttribute : Attribute

{

public string theGuidName;

public string theStringValue;

public IDLCustomAttribute(string g, string s)

{

theGuidName = g;

theStringValue = s;

}

}

}

Now, if you dump the contents of this scratch assembly to an *.il file using
ILDasm.exe (which will be important in an upcoming step), you will be happy to
see that this type has been expressed in terms of .NET metadata:

.class public auto ansi beforefieldinit IDLCustomAttribute

extends [mscorlib]System.Attribute

{

} // end of class IDLCustomAttribute

…

.class public auto ansi beforefieldinit IDLCustomAttribute

extends [mscorlib]System.Attribute

{

.field public valuetype [mscorlib]System.Guid theGuidName

.field public string theStringValue

Chapter 9

520

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 520

.method private hidebysig specialname rtspecialname

instance void .ctor(valuetype [mscorlib]System.Guid g,

string s) cil managed

{

// Code size 21 (0x15)

.maxstack 2

IL_0000: ldarg.0

IL_0001: call instance void [mscorlib]System.Attribute::.ctor()

IL_0006: ldarg.0

IL_0007: ldarg.1

IL_0008: stfld valuetype [mscorlib]System.Guid

ScratchAssembly.IDLCustomAttribute::theGuidName

IL_000d: ldarg.0

IL_000e: ldarg.2

IL_000f: stfld string ScratchAssembly.IDLCustomAttribute::theStringValue

IL_0014: ret

} // end of method IDLCustomAttribute::.ctor

} // end of class IDLCustomAttribute

Given that you applied the IDLCustomAttribute type to a scratch class, you
have the definition you need to update the interop assembly:

.custom instance void ScratchAssembly.IDLCustomAttribute::.ctor(string,

string) = (01 00 24 31 34 30 33 42 33 41 35 2D 33 38 46 45

// ..$1403B3A5-38FE

2D 34 62 61 39 2D 39 34 45 32 2D 35 34 35 37 37

// -4ba9-94E2-54577

46 37 31 32 45 37 41 26 54 6F 44 6F 3A 20 41 64

// F712E7A&ToDo: Ad

64 20 73 75 62 74 72 61 63 74 69 6F 6E 20 66 75

// d subtraction fu

6E 63 74 69 6F 6E 61 6C 69 74 79 2E 2E 2E 00 00)

// nctionality.....

Understand that you need to copy all of this information into the *.il file of the
initial interop assembly, given that you are attempting to insert a new type defini-
tion into the interop assembly.

CODE The ScratchAssembly project (and related *.il file) is included
under the Chapter 9 subdirectory.

.NET-to-COM Interoperability—Advanced Topics

521

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 521

Updating the Interop Assembly

Now that you have the correct hex values for each string and an IL description of
the IDLCustomAttribute type, you are finally ready to edit the metadata of the IL
initial interop assembly. First, add back the [helpstring] for the related coclass.
Understand that you must account for a reference to the external system.dll
assembly, given that it contains the definition of DescriptionAttribute:

.assembly extern mscorlib

{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89) // .z\V.4..

.ver 1:0:3300:0

}

// ****** Need to add this to get DescriptionAttribute! ******

.assembly extern System

{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89) // .z\V.4..

.ver 1:0:3300:0

}

…

.class public auto ansi import AtlAdderClass

extends [mscorlib]System.Object

implements interop.AtlHelpCustomAttsServer.IAdd,

interop.AtlHelpCustomAttsServer.AtlAdder

{

…

// ******Added this. ******

.custom instance void [System]System.ComponentModel.

DescriptionAttribute::.ctor(string) =

(01 00 1B 54 68 69 73 20 63 6C 61 73 73 20 61 64

// ...This class ad

64 73 20 74 77 6F 20 6E 75 6D 62 65 72 73 00 00)

// ds two numbers..

…

} // end of class AtlAdderClass

Here, you simply added the metadata description of the DescriptionAttribute
to the AtlAdderClass type by copying the code from the *.il file of the scratch
assembly. To account for the orphaned [custom] IDL attribute, you begin by
defining the IDLCustomAttribute type in the class structure declaration section:

// ==== CLASS STRUCTURE DECLARATION ====

//

.namespace interop.AtlHelpCustomAttsServer

{

.class public auto ansi import AtlAdderClass

Chapter 9

522

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 522

extends [mscorlib]System.Object

implements interop.AtlHelpCustomAttsServer.IAdd,

interop.AtlHelpCustomAttsServer.AtlAdder

{

} // end of class AtlAdderClass

…

// ****** Added this. ******

.class public auto ansi beforefieldinit IDLCustomAttribute

extends [mscorlib]System.Attribute

{

} // end of class IDLCustomAttribute

} // end of namespace interop.AtlHelpCustomAttsServer

In the member definition section, you define the implementation of
IDLCustomAttribute (which again, you simply copy from the *.il file of the scratch
assembly). Do be aware, however, that you need to change the fully qualified
ScratchAssembly.IDLCustomAttribute to
interop.AtlHelpCustomAttsServer.IDLCustomAttribute, given that you are copying
the definition from the ScratchAsembly namespace!

// ====CLASS MEMBERS DECLARATION ====

.namespace interop.AtlHelpCustomAttsServer

{

…

// ****** Added this. ******

.class public auto ansi beforefieldinit IDLCustomAttribute

extends [mscorlib]System.Attribute

{

.field public string theGuidName

.field public string theStringValue

.method public hidebysig specialname rtspecialname

instance void .ctor(string g,

string s) cil managed

{

// Code size 21 (0x15)

.maxstack 2

IL_0000: ldarg.0

IL_0001: call instance void

[mscorlib]System.Attribute::.ctor()

IL_0006: ldarg.0

IL_0007: ldarg.1

IL_0008: stfld string

interop.AtlHelpCustomAttsServer.IDLCustomAttribute::theGuidName

IL_000d: ldarg.0

IL_000e: ldarg.2

IL_000f: stfld string

interop.AtlHelpCustomAttsServer.IDLCustomAttribute::theStringValue

.NET-to-COM Interoperability—Advanced Topics

523

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 523

IL_0014: ret

} // end of method IDLCustomAttribute::.ctor

} // end of class IDLCustomAttribute

} // end of namespace interop.AtlHelpCustomAttsServer

And finally, now that you have the metadata description of the
IDLCustomAttribute type, inside the HelpfulATLServer.il file you can apply
the attribute to the AtlAdderClass definition:

.class public auto ansi import AtlAdderClass

extends [mscorlib]System.Object

implements interop.AtlHelpCustomAttsServer.IAdd,

interop.AtlHelpCustomAttsServer.AtlAdder

{

…

// Added this.

.custom instance void[System]

System.ComponentModel.DescriptionAttribute::.ctor(string) =

(01 00 1B 54 68 69 73 20 63 6C 61 73 73 20 61 64 // ...This class ad

64 73 20 74 77 6F 20 6E 75 6D 62 65 72 73 00 00) // ds two numbers..

.custom instance void

interop.AtlHelpCustomAttsServer.IDLCustomAttribute

::.ctor(string,

string) = (01 00 24 31 34 30 33 42 33 41 35 2D 33 38 46 45 // ..$1403B3A5-38FE

2D 34 62 61 39 2D 39 34 45 32 2D 35 34 35 37 37

// -4ba9-94E2-54577

46 37 31 32 45 37 41 26 54 6F 44 6F 3A 20 41 64

// F712E7A&ToDo: Ad

64 20 73 75 62 74 72 61 63 74 69 6F 6E 20 66 75

// d subtraction fu

6E 63 74 69 6F 6E 61 6C 69 74 79 2E 2E 2E 00 00)

// nctionality.....

…

} // end of class AtlAdderClass

Whew! That was interesting, huh? At this point you are ready to recompile the
IL code into an interop assembly.

Recompiling the IL

Ilasm.exe is the tool that compiles raw IL code into a .NET assembly. While this
tool contains numerous command line parameters, all that is required for this
example is to specify the name of the input files. Recall that when an interop
assembly is disassembled, ildasm.exe generates a *.res file that can be referenced

Chapter 9

524

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 524

using the /resource flag. Because ilasm.exe names the assembly based on the
name of the *.il file, you should make appropriate use of the /output flag.
ilasm /dll /output:interop.AtlHelpCustomAttsServer.dll HelpfulATLServer.il

/resource:HelpfulATLServer.res

Now, if you going through the bother of manually editing the metadata in an
interop assembly, the chances are good that you are indeed a component vendor
who is attempting to produce a primary interop assembly. If this is the case,
understand that ilasm.exe also supports a /keyfile flag to allow you to pass in the
*.snk file. You don’t need to do so for the example here, but the parameter to
ilasm.exe would look like this:

ilasm /dll /output:interop.AtlHelpCustomAttsServer.dll HelpfulATLServer.il

/resource:HelpfulATLServer.res /keyfile:theKey.snk

In any case, as long as all your ducks are in a row, you can now open the modi-
fied interop assembly using ildasm.exe and find the IDLCustomAttribute has been
accounted for (Figure 9-24) and applied to the AtlAdderClass (Figure 9-25).

Figure 9-24. The custom System.Attribute-derived type

.NET-to-COM Interoperability—Advanced Topics

525

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 525

Figure 9-25. Applying the custom System.Attribute-derived type

CODE The modified assembly is located under the
\ New interop.AtlHelpCustomAttsServer subdirectory.

Building the Managed Client

So, just to make sure you understand the big picture of what you have been inves-
tigating, let’s do a small walk-through. You began by building a simple ATL server
that contains IDL definitions for a [helpstring] and [custom] attribute. As you
learned, tlbimp.exe ignores both values, and therefore you edited the interop
assembly in such a way that the .NET equivalents were present and accounted for.
During the process, you built a scratch assembly that contained IL metadata defi-
nitions for your custom .NET attribute as well as the hexadecimal equivalents of
the string data.

So, did it work? Ponder the following C# console application and see for your-
self (of course, this client wants to set a reference to the new interop assembly you
edited, not the original interop assembly). The output can be seen in Figure 9-26.

using System;

using interop.AtlHelpCustomAttsServer;

using System.ComponentModel;

using System.Reflection;

Chapter 9

526

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 526

namespace CustomInteropAsmClient

{

class TheClient

{

[STAThread]

static void Main(string[] args)

{

// Trigger functionality.

AtlAdderClass c = new AtlAdderClass();

Console.WriteLine("10 + 10 is {0}", c.Add(10, 10));

// Get all the custom atts.

object[] theAtts =

c.GetType().GetCustomAttributes(false);

// Which attribute do we have?

foreach(object o in theAtts)

{

if(o is DescriptionAttribute)

Console.WriteLine("Helpstring: {0}",

((DescriptionAttribute)o).Description);

if(o is IDLCustomAttribute)

{

Console.WriteLine("Guid: {0}",

((IDLCustomAttribute)o).theGuidName);

Console.WriteLine("Value: {0}",

((IDLCustomAttribute)o).theStringValue);

}

}

}

}

}

Figure 9-26. Reading the manually inserted .NET metadata

.NET-to-COM Interoperability—Advanced Topics

527

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 527

Sweet. As you can see, it is entirely possible (although somewhat clumsy) to
edit an interop assembly to account for details tlbimp.exe may have ignored. Now
that you have walked through a complete example of how to do so, you should be
able to modify interop assemblies as you see fit.

CODE The CustomInteropAsmClient project is located under the
Chapter 9 subdirectory.

Building a Custom Type Library Importer Utility

The final topic regarding .NET-to-COM interoperability is that of programmatically
converting a COM type library into a .NET assembly using the TypeLibConverter
class type defined within the System.Runtime.InteropServices namespace. Before
you dive into the details, let me just say that you are never required to build
custom utilities that dynamically generate a .NET interop assembly from a COM
type library. To be honest, most of the time you will simply make use of the Add
Reference dialog box of Visual Studio .NET. As far as working with the raw
tlbimp.exe utility, you will typically opt for this choice when you (as a
component vendor) wish to generate a primary interop assembly for your
client base. However, as you may suspect, both of these tools make use of the
TypeLibConverter class type. Given this, it is very illuminating to take a low-level
look at the work being done on your behalf.

Building a custom type library importer may come in handy when you wish to
customize exactly how an interop assembly is named, versioned, or deployed. For
example, you may wish to ensure that each interop assembly created by your
company has an accompanying log file that lists the name of each imported COM
type. This (as well as any other possible customization) could be achieved through
a custom COM-to-.NET conversion utility. As you might imagine, a customized
type library importer could be as simple or as complex as necessary. The tool
in question could be a Windows-, console-, or Web-based application. To
keep focused on the raw conversion process (rather than the additional
complexities of GUI-based development), you build a console application
(named MyTypeLibImporter) that illustrates the key points of interest.

Understanding the TypeLibConverter Class

The .NET platform provides the
System.Runtime.InteropServices.TypeLibConverter type for those times when you
need to customize the type library importing process. As you see later in this book,

Chapter 9

528

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 528

this very same class can be used to convert a .NET assembly into COM type infor-
mation (for .NET-to-COM interoperability). As you can see from the formal C#
definition, this type (despite its powerful features) supplies only a handful of
members:

public sealed class TypeLibConverter : object, ITypeLibConverter

{

public TypeLibConverter();

// Build COM type library based on .NET assembly.

public virtual object ConvertAssemblyToTypeLib(Assembly assembly,

string strTypeLibName, TypeLibExporterFlags flags,

ITypeLibExporterNotifySink notifySink);

// Two ways to build a .NET assembly based on COM type lib.

public virtual AssemblyBuilder ConvertTypeLibToAssembly(

object typeLib,

string asmFileName, TypeLibImporterFlags flags,

ITypeLibImporterNotifySink notifySink, byte[] publicKey,

StrongNameKeyPair keyPair,

string asmNamespace, Version asmVersion);

public virtual AssemblyBuilder ConvertTypeLibToAssembly(

object typeLib, string asmFileName,

int flags, ITypeLibImporterNotifySink notifySink,

byte[] publicKey, StrongNameKeyPair keyPair,

bool unsafeInterfaces);

// Used to see if a primary interop assembly is already

// registered for a given COM type library.

public virtual bool GetPrimaryInteropAssembly(Guid g,

int major, int minor, int lcid, ref String asmName,

ref String asmCodeBase);

public virtual bool Equals(object obj);

public virtual int GetHashCode();

public Type GetType();

public virtual string ToString();

}

Notice that this type implements the ITypeLibConverter interface (also
defined in the System.Runtime.InteropServices namespace). If you check out this
interface using wincv.exe, you see that it defines the CovertAssemblyToTypeLib(),
ConvertTypeLibToAssembly(), and GetPrimaryInteropAssembly() members.

Given this, it is conceivable that you could build your own class type that
manually transforms entities across architectural boundaries, but why bother?

.NET-to-COM Interoperability—Advanced Topics

529

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 529

The fact that TypeLibConverter implements the ITypeLibConverter interface is
helpful if you build a custom type library importer using unmanaged code.
For example, a COM client could obtain the ITypeLibConverter interface via
COM-to-.NET interop and interact with the canned implementation of each
method. I leave that task for the interested reader.

Building the Main Shell

Now that you have been introduced to the functionality of the TypeLibConverter
class, you are in the position to begin building the MyTypeLibImporter applica-
tion. The basic flow of this application is as follows:

1. The user is prompted to specify the path to the COM type library to be
converted.

2. The *.tlb file is then loaded into memory via PInvoke.

3. Finally, the assembly is dynamically generated and saved to file.

First, you simply create the logic for prompting the user for the correct path to
the COM type information. To make things a bit more interesting, your application
supports a command line flag named -NOGUI, which instructs the program to
obtain the path of the COM type library at the command prompt. By default,
however, a Windows Forms OpenFileDialog type is displayed to allow the user to
quickly locate the correct file (and minimize the required number of keystrokes).

using System;

using System.Runtime.InteropServices;

using System.Reflection;

using System.Reflection.Emit; // For AssemblyBuilder.

using System.Windows.Forms;

namespace MyTypeLibImporter

{

class MyTlbImpApp

{

static void Main(string[] args)

{

// Check for -NOGUI switch.

bool usingGUI = true;

for(int i = 0; i < args.Length; i++)

{

if(args[i] == "-NOGUI")

usingGUI = false;

}

Chapter 9

530

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 530

// Gather user input.

string pathToComServer = "";

if(!usingGUI)

{

Console.WriteLine("Please enter path to COM type info.");

Console.WriteLine(@"Example: C:\Stuff\MyComServer.dll");

Console.Write("Path: ");

pathToComServer = Console.ReadLine();

}

else

{

Console.WriteLine("Pick a COM server...");

OpenFileDialog d = new OpenFileDialog();

if(d.ShowDialog() == DialogResult.OK)

pathToComServer = d.FileName;

}

// Show path to COM server.

Console.WriteLine("Path: {0}\n", pathToComServer);

Console.WriteLine("All done!");

}

}

}

If you run the application as is, you will find that you are able to obtain the
path to a given COM type library (which may, of course, be embedded within a
COM *.dll) via the command line or a Windows Forms open dialog box. The only
point of interest is the pathToComServer string type, which is local to the Main()
method. This value is used to load the COM type info into memory (speaking of
which . . .).

Programmatically Loading the COM Type Information

As you recall from Chapter 5, when a .NET application wants to load COM type
information programmatically, it requires PInvoke (given that there is no managed
equivalent to the LoadTypeLibEx() API). This COM library function, defined in
oleaut32.dll, will load (and optionally register) COM type information and return a
runtime representation of the *.tlb file via the ITypeLib interface.

The System.Runtime.InteropServices namespace does provide a managed
version of ITypeLib to make use of within a managed environment. However, the
related REGKIND enumeration must be re-created in terms of C# syntax, given
that you are not provided with a managed equivalent. This being said, here are the
code updates:

.NET-to-COM Interoperability—Advanced Topics

531

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 531

namespace MyTypeLibImporter

{

internal enum REGKIND

{

REGKIND_DEFAULT = 0,

REGKIND_REGISTER = 1,

REGKIND_NONE = 2

}

class MyTlbImpApp

{

// Need to leverage the LoadTypeLibEx() API

// to do our dirty work.

// Param 3: UCOMITypeLib is the .NET version of ITypeLib.

[DllImport("oleaut32.dll", CharSet = CharSet.Unicode)]

private static extern void LoadTypeLibEx(string strTypeLibName,

REGKIND regKind, out UCOMITypeLib TypeLib);

static void Main(string[] args)

{

// Same prompting logic as before…

// Load the COM type library using helper function.

UCOMITypeLib theTypeLib = LoadCOMTypeInfo(pathToComServer);

if(theTypeLib == null)

return;

}

}

}

The LoadCOMTypeInfo() helper function does the dirty work of loading the
type information and returning the UCOMITypeLib interface. In addition, this
helper method prints out some relevant stats about the library definition using
ITypeLib.GetDocumentation() (as seen in Chapter 5):

public static UCOMITypeLib LoadCOMTypeInfo(string pathToComServer)

{

// Load type information for COM server.

UCOMITypeLib typLib = null;

try

{

LoadTypeLibEx(pathToComServer,

REGKIND.REGKIND_NONE, out typLib);

string strName, strDoc, strHelpFile;

int helpCtx;

Console.WriteLine("COM Library Description:");

Chapter 9

532

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 532

typLib.GetDocumentation(-1, out strName,

out strDoc, out helpCtx, out strHelpFile);

Console.WriteLine("->Name: {0}", strName);

Console.WriteLine("->Doc: {0}", strDoc);

Console.WriteLine("->Help Context: {0}", helpCtx.ToString());

Console.WriteLine("->Help File: {0}", strHelpFile);

}

catch

{ Console.WriteLine("ugh...can't load COM type info!");}

return typLib;

}

At this point, you are able to load a COM type library and print out the
information contained in the formal library statement. For example, if you load
the WidgetServer.dll created in Chapter 5, you would find the output shown in
Figure 9-27.

Figure 9-27. Extracting [library] COM type information

Dissecting the
TypeLibConverter.ConvertTypeLibToAssembly() Method

The final task of your application is to perform the literal conversion of the
COM type library into a .NET assembly using the TypeLibConverter class. On the
surface, your task is quite simple: Call ConvertTypeLibToAssembly(). However,
the parameters of this method entail that you define an additional custom class
type that implements an interface named ITypeLibImporterNotifySink (defined in
a moment). Generically speaking, calling ConvertTypeLibToAssembly() breaks
down to the following:

.NET-to-COM Interoperability—Advanced Topics

533

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 533

// This method returns an AssemblyBuilder type

// which is used to save the assembly to file.

TypeLibConverter tlc = new TypeLibConverter();

AssemblyBuilder asmBuilder = tlc.ConvertTypeLibToAssembly(

(UCOMITypeLib)typLib, // ITypeLib interface.

"interop.MyAssembly.dll", // Name of assembly to be created.

TypeLibImporterFlags.SafeArrayAsSystemArray, // Flags.

sink, // ITypeLibImporterNotifySink compatible helper class.

null, // If you have a strong name: keyPair.PublicKey,

null, // If you have a strong name: keyPair

typeLibName, // Name of the .NET namespace.

new Version(1, 0, 0, 0)); // Version of the assembly.

Well, calling the method is simple enough, it’s specifying the parameters that
takes a little elbow grease. First, you need to pass in a valid ITypeLib interface that
points to the loaded COM type information, followed by the name of the assembly
that will be saved to file. The third parameter is any number of flags from the
TypeLibImporterFlags enumeration, the most common of which are defined in
Table 9-3.

Table 9-3. TypeLibImporterFlags

TypeLibImporterFlags Meaning in Life
Member Name

PrimaryInteropAssembly Generates a primary interop assembly. This option

demands that a valid keyfile (*.snk) must be specified.

SafeArrayAsSystemArray Imports all COM SAFEARRAYs and .NET System.Array

types.

The fourth parameter is the real point of interest, given that it represents
a custom class that will be called whenever the conversion process generates
an error (thus giving you a chance to generate report information) or when
the converter encounters a reference to another COM type library (via the
importlib() IDL keyword) within the current type library. When this occurs, the
ItypeLibImporterNotifySink-compatible helper object is required to generate an
additional assembly for the contained COM type library (more details in a
moment).

The final parameters to ConvertTypeLibToAssembly() allow you to specify the
namespace, an optional key file (if you happen to be building a strongly named
assembly, such as a primary interop assembly), as well as the version of the
assembly itself.

Chapter 9

534

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 534

Ideally, it would be nice if your custom type library importer application were
intelligent enough to generate the name and version information based on the
information contained in the COM type library. You inject such intelligence into
your tool in just a bit, but first let’s flesh out the code behind the helper sink object.

Building the Helper Sink

The ITypeLibImporterNotifySink interface defines two members that all sink
objects are therefore required to contend with:

public interface ITypeLibImporterNotifySink

{

void ReportEvent(ImporterEventKind eventKind,

int eventCode, string eventMsg);

Assembly ResolveRef(object typeLib);

}

The ReportEvent() method is called by the TypeLibConverter type when (and
if) it encounters any errors during the process of converting metadata. The
ImporterEventKind parameter is used to identify the type of error, and it can be
any of the values listed in Table 9-4.

Table 9-4. Members of the ImporterEventKind Enumeration

ImporterEventKind Meaning in Life
Member Name

ERROR_REFTOINVALIDTYPELIB This property is not supported in version 1.0 of the

.NET Framework; however, in the future it will

represent the converter encountered an invalid

type library.

NOTIF_CONVERTWARNING Event is invoked when a warning occurred during

conversion.

NOTIF_TYPECONVERTED Event is invoked when a type has been imported if

the /verbose flag is specified.

While ReportEvent() is helpful, the ResolveRef() method is critical. As you
are aware, COM type libraries can most certainly import additional type
libraries. In terms of IDL, this is expressed using the [importlib] attribute. When
TypeLibConverter is transforming the initial *.tlb file, it will call ResolveRef() to
obtain an Assembly based on the incoming object parameter. This parameter
(while typed as a System.Object) is in reality a reference to the UCOMITypeLib
interface that describes a nested *.tlb reference.

.NET-to-COM Interoperability—Advanced Topics

535

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 535

The implementation of your sink class can be painfully simple or painfully
complex, based on a number of design considerations. For example, do you want
your ResolveRef() method to take into consideration the use of primary interop
assemblies? Do you want to allow the returned Assembly reference to be assigned
a strong name? If so, how to do want to obtain the correct *.snk file? To keep things
simple, your implementation of ResolveRef() will not deal with primary interop
assemblies or strong names. In fact, your version of ResolveRef() simply passes the
incoming System.Object to a static helper method defined by the MyTlbLibApp
class:

internal class ImporterNotiferSink : ITypeLibImporterNotifySink

{

public void ReportEvent(ImporterEventKind eventKind,

int eventCode, string eventMsg)

{

// We don't really care which kind of error is

// sent. Just print out the information.

Console.WriteLine("Event reported: {0}", eventMsg);

}

public Assembly ResolveRef(object typeLib)

{

// Delegate to helper function.

Assembly nestedRef = Assembly.Load(

MyTlbImpApp.GenerateAssemblyFromTypeLib

((UCOMITypeLib)typeLib));

return nestedRef;

}

}

Implementing
MyTlbImpApp.GenerateAssemblyFromTypeLib()

The implementation of MyTlbImpApp.GenerateAssemblyFromTypeLib()
is quite straightforward. Note that you are building the name of the assembly
dynamically using Marshal.GetTypeLibName(). Notice too that the
ConvertTypeLibToAssembly() function allows you to pass in null for the version.
When you do so, the version will be based on the version of the type library’s
[version] attribute (typeLibMajor.typeLibMinor.0.0). Once the assembly is saved to
disk, you return the name of the dynamically created assembly (which will be
helpful for the ResolveRef() method of your sink type).

public static string GenerateAssemblyFromTypeLib(UCOMITypeLib typLib)

{

// Need a sink for the TypeLibConverter.

Chapter 9

536

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 536

ImporterNotiferSink sink = new ImporterNotiferSink();

TypeLibConverter tlc = new TypeLibConverter();

// Generate name of the assembly.

string typeLibName = Marshal.GetTypeLibName(typLib);

string asmName = "interop." + typeLibName + ".dll";

// Now make the assembly based on COM type information.

AssemblyBuilder asmBuilder = tlc.ConvertTypeLibToAssembly(

typLib,

asmName,

TypeLibImporterFlags.SafeArrayAsSystemArray,

sink,

null, // If you have a strong name: keyPair.PublicKey,

null, // If you have a strong name: keyPair

typeLibName, // Namespace name is same as file name.

null); // null = (typeLibMajor.typeLibMinor.0.0)

// Save the assembly in the app directory!

asmBuilder.Save(asmName);

// return name of assembly which was created.

return asmName;

}

And finally, you update Main() to call GenerateAssemblyFromTypeLib() after
obtaining the UCOMITypeLib interface.

static void Main(string[] args)

{

// Same prompting logic as before…

// Load the COM type library using helper function.

UCOMITypeLib theTypeLib = LoadCOMTypeInfo(pathToComServer);

if(theTypeLib == null)

return;

// Generate the assembly.

GenerateAssemblyFromTypeLib(theTypeLib);

}

So, there you have it. When you run the application, you will be greeted with a
Windows Forms open dialog box. Once you select a COM *.tlb file, the result is a
new interop assembly, which is placed in the same directory of the original COM
server. Figure 9-28 shows the output of importing the RawComCar server you
created in Chapter 3.

.NET-to-COM Interoperability—Advanced Topics

537

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 537

Figure 9-28. MyTypeLibImporter in action

CODE The MyTypeLibImporter project is included under the Chapter 9
subdirectory.

Summary

The point of this chapter has been to round out your understanding of using COM
types from managed code. As you have seen, COM types can make use of .NET
types if (and only if) the .NET assembly is expressed in terms of COM type infor-
mation. While this process is formalized beginning with Chapter 10, here you
looked at the process of implementing .NET interfaces on COM types to achieve
type compatibility with other like-minded .NET types.

The bulk of this chapter, however, looked at manually updating the metadata
contained within a .NET interop assembly. As you have seen, this technique can
be helpful when the type library importer tools (tlbimp.exe, aximp.exe) fail to
produce an interop assembly that fits your needs. In the examples, you explored
the process of inserting the .NET equivalents of IDL [helpstring] and [custom]
attributes. Finally, the chapter wrapped up with an examination of building a
customized type library importer utility using the TypeLibConverter type.

Now that you have drilled into the details of .NET-to-COM interoperability,
Chapter 10 begins to examine the opposite scenario: COM objects talking to
.NET types.

Chapter 9

538

*0112_Ch09_CMP3.qxp 3/25/02 1:30 PM Page 538

CHAPTER 10

COM-to-.NET
Interoperability—

The Basics

The previous three chapters drilled into the process of interacting with COM types
from .NET applications. This chapter begins to look at the inverse proposition:
COM applications making use of .NET types. Even though we developers may
wish to bid a fond farewell to classic COM and focus exclusively on .NET develop-
ment, chances are quite good that many of us will be forced to develop software
using both architectures for some time to come. As such, it is important to under-
stand how a COM type can make use of the functionality contained in a given
.NET assembly.

I begin by describing the core techniques used to expose .NET entities to the
COM runtime and come to terms with a number of basic design rules (such as
the class interface) and command line utilities used during the process. Along the
way, you will come to understand how to influence the generation of COM type
information using various .NET attributes, as well as understand the process of
updating the registry with the appropriate information. Once these basic building
blocks are out of the way, the conclusion of this chapter addresses the process of
interacting with .NET types from Visual Basic 6.0, C++, and VBScript COM clients.

The Role of the CCW

As you have seen during the previous three chapters, when a .NET client wishes to
communicate with a legacy COM type, a proxy known as a Runtime Callable
Wrapper (RCW) is used to transform .NET requests into terms of COM. In a very
similar manner, when a COM client wishes to communicate with a shiny new
.NET type, the runtime creates a different sort of proxy called a COM Callable
Wrapper (CCW). To understand the big picture, ponder Figure 10-1.

539

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 539

Figure 10-1. COM Clients communicate with .NET types using a CCW.

In contrast to the RCW, the CCW is in charge of making the COM client
(which of course may be a coclass in a *.dll as well as a traditional *.exe) believe it
is chatting with a “normal” COM type. As you can see from Figure 10-1, a single
CCW is shared among multiple COM clients for a given .NET type. In addition to
acting as a proxy for some number of COM clients, the CCW performs the
following critical tasks:

• The CCW transforms COM data types into .NET equivalents.

• The CCW provides canned implementation of standard COM interfaces.

• The CCW simulates COM reference counting and type coercion for the
.NET type.

All in all, the CCW exists to seamlessly marshal COM requests to an existing
.NET type. To begin to understand the process, let’s check out how intrinsic data
types are transformed between architectural boundaries.

The CCW: Mapping .NET Data Types
into COM IDL Data Types

Given your work in the previous chapters, you should be well aware how a partic-
ular .NET data type translates into COM (for example, System.String to BSTR,
System.Object to VARIANT, and so forth). When translating COM IDL data types
into .NET system types, the CCW simply reverses the process (for example, BSTR
to System.String, VARIANT to System.Object, and so forth). Although you have
already investigated the conversions of intrinsic data type in Chapter 6, Table 10-1
reiterates the specifics for your convenience.

Chapter 10

540

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 540

Table 10-1. Default .NET-to-COM IDL Data Type Conversions

Managed .NET Data Type COM IDL Data Type

System.Int32 bool, bool *

System.SByte char, char *

small, small *

System.Int16 short, short *

System.Int32 long, long *

int, int *

System.Int64 hyper, hyper *

System.Byte unsigned char, unsigned char *, byte, byte *

System.UInt16 wchar_t, wchar_t *

unsigned short, unsigned short *

System.UInt32 unsigned long, unsigned long *

unsigned int, unsigned int *

System.UInt64 unsigned hyper

unsigned hyper *

System.Single float, float *

System.Double double, double *

System.Boolean VARIANT_BOOL

VARIANT_BOOL *

System.IntPtr void *, void **

System.Int16 or System.IntPtr HRESULT, HRESULT *

System.Int32 SCODE, SCODE *

System.String BSTR, BSTR *

System.String LPSTR or [string, …] char *

LPSTR *

System.String LPWSTR or [string, …] wchar_t *

LPWSTR *

System.Object VARIANT, VARIANT *

System.Decimal DECIMAL, DECIMAL *

CURRENCY, CURRENCY *

System.DateTime DATE, DATE *

COM-to-.NET Interoperability—The Basics

541

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 541

Table 10-1. Default .NET-to-COM IDL Data Type Conversions (continued)

Managed .NET Data Type COM IDL Data Type

System.Guid GUID, GUID *

System.Object IUnknown *, IUnknown **

System.Object IDispatch *, IDispatch **

type[] (that is, a managed array SAFEARRAY(type)

deriving from System.Array) SAFEARRAY(type) *

As you may have inferred from the title of Table 10-1, the CCW is prewired to
transform a specific .NET type to a specific COM type using a default mapping.
However, as you will see in Chapter 12, the MarshalAs attribute can be used to
alter these default .NET-to-COM data mappings.

The CCW: Simulating Implemented COM Interfaces

The next major duty of the CCW is to simulate the implementation of core COM
interfaces. To fool the COM client into believing that the CCW proxy is a true blue
COM object, the CCW always implements the interfaces listed in Table 10-2.

Table 10-2. COM Interfaces That Are Always Simulated by the CCW

Interface Exposed Meaning in Life
by the CCW

IDispatch The CCW supplies an implementation of IDispatch to allow

COM-style late binding.

ISupportErrorInfo All .NET exceptions are exposed as COM error objects (detailed

IErrorInfo in Chapter 8), and therefore the CCW provides a default

implementation of ISupportErrorInfo and expresses the .NET

exception as a COM type implementing IErrorInfo.

IProvideClassInfo Enables COM clients to gain access to the ITypeInfo interface

describing a managed class.

ITypeInfo As you learned in Chapter 4, ITypeInfo allows a COM client to

discover the type’s type information at runtime. The CCW

returns the ITypeInfo interface to allow COM-style RTTI.

IUnknown Of course, IUnknown is implemented by the CCW to allow the

COM client to reference count and query the .NET type in the

rules consistent with the COM specification.

Chapter 10

542

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 542

In addition to these key COM interfaces, a given CCW may (or may not)
implement various other standard COM interfaces, based on the composition of
the .NET type. As you will see over the course of the next few chapters, .NET devel-
opers can apply various attributes (defined in the System.Runtime.InteropServices
namespace) to their types to instruct the CCW to simulate the interfaces shown in
Table 10-3.

Table 10-3. COM Interfaces That May Be Simulated by the CCW

Possible Interface Meaning in Life
Exposed by the CCW

The .NET type’s “class interface” As you will see in just a bit, .NET

types can define a class interface that

exports the public members of a

.NET class as a [default] COM

interface.

IConnectionPoint .NET delegates (and the related

IConnectionPointContainer events) are exposed as COM

connection points, therefore the

CCW will simulate the required COM

event interfaces.

IDispatchEx Classic COM defines an interface

named IDispatchEx, which allows a

client to manipulate a coclass’

dispinterface at runtime. Under .NET

this same behavior is supported by

an interface named IExpando. If the

.NET type supports IExpando, it will

be exposed to a COM client as

IDispatchEx.

IEnumVARIANT Any .NET type that implements

IEnumerable (for example, a .NET

collection object) will expose its

contents to COM via IEnumVARIANT

(see Chapter 8).

The CCW: Simulating COM Identity

The final major task of the CCW is to simulate COM reference counting and type
coercion for the .NET class. Simply put, this facility of the CCW ensures that the
COM client is able to directly call AddRef(), Release(), and QueryInterface() against
the underlying .NET type (regardless of the fact that a .NET class could care less
about these methods).

COM-to-.NET Interoperability—The Basics

543

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 543

Unlike the .NET type wrapped by the CCW, the CCW uses reference counting
in traditional COM fashion. Thus, when the reference count on the CCW reaches
zero, it releases its reference on the managed object and self-destructs. If the
managed object has no remaining references, it is reclaimed during the next
garbage-collection cycle. At that point, the GC will call the object’s overridden
System.Object.Finalize() method (if the type has chosen to override said method).

To illustrate, assume you have created a .NET type that has been correctly
configured to interact with the COM runtime (which you will of course learn to do
during this chapter). A VB 6.0 client is able to interact with this type just as with
any native COM type (you will examine various COM clients in detail later in this
chapter):

Public Sub SomeVb6Function()

' Assume you have set a reference to

' the correct type library…

Dim netObj as MyDotNetObject

' VB queries for default interface

' which addrefs the object.

Set netObj = New MyDotNetObject

netObj.DoThis

' Get other interface from type.

Dim itfOtherInterface as IOtherInterface

' VB queries for other interface

' (which addrefs the object again).

Set itfOtherInterface = netObj

itfOtherInterface.ToThat

' Release() called when references drop

' out of scope, which destroys the CCW.

' .NET object is then GC-ed.

End Sub

Core Requirements for COM-to-.NET Communications

Now that you have a feel for the role of the CCW, you need to understand the basic
steps used to expose .NET types to COM. When you wish to configure a .NET
assembly to be accessible by the COM runtime, you have two major tasks ahead of
you (in addition to the process of building the assembly itself):

• Generate a COM type library that describes the types within the .NET
assembly in terms of COM IDL.

Chapter 10

544

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 544

• Update the system registry with the information needed to fool the COM
runtime.

Generating COM Type Definitions

The need for the first task should be rather self-explanatory. You are already
well aware that COM type libraries are the key to allowing various COM-aware
languages to interact with types contained in a distinct binary. However, as you are
also well aware, .NET metadata has no syntactic relationship to COM IDL! What
you need is a tool that reads .NET metadata and writes the information into a
corresponding *.tlb file. Once this has been accomplished, a COM client can
reference the *.tlb file to program against the .NET entities using early binding
(technically speaking, if you only wish to communicate with a .NET type using
late binding, you don’t require a type library). The .NET SDK provides a number
of options for generating COM type information based on a .NET assembly:

• The tlbexp.exe command line utility

• The regasm.exe command line utility

• Programmatically using the TypeLibConverter type

• The regsvcs.exe command line utility

This chapter concerns itself with the first two options, given that the
regsvcs.exe utility is typically only used when you wish to install a .NET code
library into a specific COM+ application (you get a chance to examine COM+
interoperability in Chapter 13). The process of building a custom .NET-to-COM
metadata converter via TypeLibConverter is discussed in Chapter 12.

As you can guess, a number of transformations must occur to expose .NET
types as COM types. The vast majority of this chapter documents these specific
conversion rules; however, for the time being simply make a mental note that you
need to have access to a *.tlb file in order to interact with .NET types using early
binding.

Registering the .NET Assembly with COM

The reason for the second task should be clear based on the information
presented in Chapter 2. As you recall, the COM runtime makes considerable use
of the system registry to locate, load, and marshal COM types. However, .NET
assemblies are not registered in the system registry (which presents an obvious

COM-to-.NET Interoperability—The Basics

545

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 545

problem). As you will see, .NET developers make use of regasm.exe for this very
reason (more details to come).

One thing to be aware of from the outset is that when you wish to expose .NET
types to COM, you will be forced to contend with command line utilities. At the
time of this writing, the core COM development environments (such as VB 6.0 and
Visual C++) do not support an integrated wizard that will automatically generate
COM type information and configure the system registry. Doing so is not terribly
difficult, however, and future versions of these products may support such func-
tionality. In fact, once you have completed the next three chapters, you may be
inspired to build your own IDE snap-in utility that does this very thing!

Using the tlbexp.exe Utility

Now that you have the big picture in mind, you can begin checking out one very
helpful utility. The Type Library Exporter utility (tlbexp.exe) is a command line tool
that generates a COM type library (*.tlb) based on a .NET assembly (in contrast
with the tlbimp.exe utility, which creates an interop assembly based on a COM
type library). You may be surprised to learn that this tool has very little by way of
command line flags, given that you programmatically control the resulting type
library using a number of .NET attributes. In fact, the command line flags recog-
nized by tlbexp.exe are for the most part useless (unless you want to see a display
of the generally useless flags using the /help flag). Therefore, all you need to do to
run the tool is specify the name of the .NET assembly you wish to convert into a
COM type library:

tlbexp.exe myDotNetAssembly.dll

Actually, you may be interested in two of the flags. The /names flag allows you
to specify a *.txt file that contains a set of strings used to indicate how to capitalize
the names of the COM types (by default, the COM types are capitalized exactly as
defined in the .NET metadata). I will assume that you are happy with the capital-
ization dictated by the .NET type definitions, so check online Help if you require
further information on the /names directive.

The /out flag is a bit more useful, as it allows you to control the name of the
resulting *.tlb file. If you do not make use of the /out flag, the name of the *.tlb file
will be identical to the name of the assembly (for example, myDotNetAssembly.dll
results in myDotNetAssembly.tlb). To change this default behavior, run tlbexe.exe
as follows:

tlbexp.exe myDotNetAssembly.dll /out:typeInfoForMyAsm.tlb

Chapter 10

546

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 546

Here, you are passing in the .NET assembly (myDotNetAssembly.dll) to
receive typeInfoForMyAsm.tlb as output. In any case, the end result of running
tlbexp.exe is a *.tlb file that contains binary IDL definitions for the assembly’s type
metadata. Just like any *.tlb file, this entity can be referenced from a COM client to
view the internal types. Of course, you are not quite ready to activate these types,
given that you have not yet configured the system registry to recognize the .NET
assembly. You will see how to do so in just a bit. For the time being, however, let’s
address some basic .NET-to-COM design principles.

General Guidelines for Building COM-Aware .NET Types

The COM and .NET architectures are wildly different beasts. Under .NET, you are
free to build class types that derive from other types and support some number of
parameterized constructors, overloaded methods, static members, and whatnot.
Many of these programming constructs are simply not supported under classic
COM. Thus, when you are building a .NET assembly that you wish to expose to a
COM client, you need to take greater care (and forethought) when designing the
contained types.

Before you pound out some more elaborate C# code, let’s drill into the base-
line rules that you should make use of all the time. If you wish to follow along,
create a brand-new C# code library named MySimpleDotNetServer. As you read
over the remainder of this chapter, I assume you will run the .NET assemblies
through tlbexp.exe and check the underlying IDL using oleview.exe without
further prompting.

Establishing Type Visibility

First and foremost, if a managed type (class, interface, enum, or structure)
is to be accessed by COM, it must be defined as a public entity. If a given name-
space contains type definitions that are declared as internal (realized as “Friend”
under VB .NET), these entities will not be published to the COM type library.
For example, ponder the following namespace definition of the
MySimpleDotNetServer.dll assembly:

namespace MySimpleDotNetServer

{

// This will be placed in the *.tlb file.

public class Foo{}

// This will NOT be placed in the *.tlb file.

internal interface IBar{}

}

COM-to-.NET Interoperability—The Basics

547

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 547

Establishing Type Member Visibility

Closely related to this rule is the other (rather obvious) rule that members of a
.NET type (fields, properties, methods, and events) must be declared as public if
they are to be published in the COM type library. Thus, if the Foo class seen
previously defines the following set of members:

public class Foo

{

// These will be published.

public void A(){}

public int B(int x){ return x++;}

// These will not.

private void HelperFunction(){}

protected void HelperFunctionForDerivedTypes(){}

}

the only members that will be published to the COM *.tlb file are the A() and B()
methods (as they are public). Do note that protected members (as well as private
members) are not placed into the COM type library definition (ever).

Controlling Type and Member Visibility
Using the ComVisible Attribute

Now, what if you have a set of type members that needs to be declared as public
for a .NET client, but should be hidden from view from a given COM client?
Furthermore, what if you have a number of public types that need to be hidden
from the lurking eye of a COM client? Obviously, it would be a huge bother if you
were required to define members as private or types as internal to accomplish this
task (as the .NET clients would be unable to make use of them!). Luckily for you,
the System.Runtime.InteropServices namespace defines an attribute that explic-
itly controls COM visibility.

Recall that by default all public types and public type members are visible by
COM. When you need to restrict the visibility of a public type or public members
of a public type, apply the ComVisibleAttribute as follows:

namespace MySimpleDotNetServer

{

public class Foo

{

// This will be published.

public void A(){}

Chapter 10

548

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 548

// This will NOT be published.

[ComVisible(false)]

public int B(int x){ return x++;}

// These will never be published.

private void HelperFunction(){}

protected void HelperFunctionForDerivedTypes(){}

}

// This will not be placed in the *.tlb file,

// but is visible to other .NET assemblies.

[ComVisible(false)]

public interface IBar{}

}

Understand that the ComVisibleAttribute type is ultimately used to instruct
tools such as tlbexp.exe how you would like to expose .NET types to a COM type
library. This means that if a given .NET type was been formally declared as public
(despite the fact that the author of the type marked it as COM invisible), it would
be possible to build a unique .NET assembly that exposes the invisible member to
COM via standard containment/delegation. However, when you as a COM devel-
oper reference a *.tlb file describing a .NET assembly, you should assume that the
.NET entities that are exposed are there for a reason. Typically, .NET entities that
are COM invisible are marked as such given that they don’t translate well into
terms of COM in the first place. That being said, if a .NET type (or member) was
not published to a COM *.tlb file, don’t use it.

Translating Constructors and C#-Style Destructors

Now that you have a namespace that defines a small set of .NET types (of varying
visibility), you can drill into some specific details of building the class itself. First
and foremost, .NET class types exposed to COM must support a public default
constructor. In fact, even if a .NET type has been declared as COM visible, a COM
client cannot activate it if the type lacks a default class constructor.

Recall that a .NET class type will always receive a freebie default constructor.
However, as soon as the class type does define additional constructors, the default
is silently removed (and must be reinserted if you wish to support it). Because the
Foo class does not define any custom constructors, the type automatically
supports a default constructor and may be activated by COM. However, you are
also permitted to explicitly define the no argument constructor as well (and you
must redefine it if your class supports additional custom constructors):

COM-to-.NET Interoperability—The Basics

549

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 549

public class Foo

{

// Creatable COM visible types must

// support a default constructor.

public Foo(){}

public void A(){}

[ComVisible(false)]

public int B(int x){ return x++;}

private void HelperFunction(){}

protected void HelperFunctionForDerivedTypes(){}

}

Understand that it is sometimes useful (if not mandatory) to define a
COM-visible class type that does not support a default constructor. For example,
say you wish to build a managed version of the VB 6.0 CarCollection constructed
in Chapter 7. If you want to ensure that the contained Car types are not directly
creatable from a COM client, simply define a private default constructor (or add
custom constructors and don’t bother to resupply the default). Defining a class
type with a private constructor is in effect the .NET equivalent of the VB 6.0
approach of assigning the PublicNotCreatable value to the Instancing property.
For example, the following C# class definition:

public class Foo

{

// Visible, but not directly creatable.

private Foo(){}

…

}

results in the following (partial) COM type definition:

[uuid(CE6BCA78-808F-3C00-AA67-BE19EEC2BF37),

noncreatable, …]

coclass Foo

{

…

};

Now, what if you have a custom C# class type that defines a set of over-
loaded constructors? Given that classic COM does not activate COM types using
constructor syntax, it should stand to reason that constructors of any sort will not
be published to the generated COM type library. The same holds true for C#-style
destructors (the VB .NET equivalent of overriding the Finalize() method). Recall
that System.Object.Finalize() is a protected method, and like any protected
member, it will not be placed into a COM type library.

Because COM clients never interact with COM types using OO-based
constructors or destructors in the first place, it should make perfect sense that

Chapter 10

550

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 550

these entities will never end up in a COM type library. Rather, when a C++ client
calls CoCreateInstance() (or New via VB 6.0), the CCW will automatically trigger
the default constructor of the .NET type. Likewise, when the COM client releases
all references to the CCW, the .NET type is a candidate for .NET garbage collection.

Translating Abstract Base Classes

Closely related to the previous design consideration is the fact that abstract base
classes should never be published to a COM type library. By default, if you declare
a COM-visible abstract class, the IDL definition will identify it as a [noncreatable]
entity. However, given that abstract types should never be creatable in any
programming architecture, you should explicitly set the ComVisible attribute to
false for each abstract type:

// Abstract types should not be listed in a COM type library!

[ComVisible(false)]

public abstract class TheAbstractBaseClass

{

public TheAbstractBaseClass(){}

…

}

Translating Overridable Members

Abstract base classes tend to define some number of virtual (or abstract) members
in order to provide a polymorphic interface for the derived types. By way of a
simple review, recall the following:

• Overridable members define a default implementation of the method in
question that may be overridden by the derived type.

• Abstract members do not define a default implementation whatsoever.
Abstract base classes define abstract members to enforce the polymorphic
interface on all derived types.

Of course, classic COM does not allow any form of “is-a” relations. The
obvious question, therefore, is what the IDL code will look like if you expose a
derived type to COM. To illustrate, assume the following C# parent/child class
dependency:

[ComVisible(false)]

public abstract class TheParentClass

{

public abstract void YouMustDealWithThis();

COM-to-.NET Interoperability—The Basics

551

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 551

public virtual void YouCanChangeThis()

{ MessageBox.Show("Default impl of YouCanChangeThis()");}

}

[ClassInterface(ClassInterfaceType.AutoDual)] // Defined soon.

public class DerivedClass : TheParentClass

{

public override void YouMustDealWithThis()

{ MessageBox.Show("Fine...happy now?");}

public override void YouCanChangeThis()

{

MessageBox.Show("I added this functionality!");

base.YouCanChangeThis();

}

}

From a managed C# client, you can simply leverage the inherited functionality
(as well as conform to the polymorphic demands of your parent class) as follows:

// Simple C# client.

DerivedClass dc = new DerivedClass();

dc.YouCanChangeThis();

dc.YouMustDealWithThis();

As you would assume, when the managed client calls YouCanChangeThis(),
two message boxes are displayed on the screen because you explicitly trigger your
parent’s functionality via the C# base keyword.

Now assume you have run the MySimpleDotNetServer.dll assembly through
the tlbexp.exe utility. When you open the resulting *.tlb file using oleview.exe, you
will find the following definition of the DerivedClass interface:

interface _DerivedClass : IDispatch

{

[id(00000000), propget,

custom({54FC8F55-38DE-4703-9C4E-250351302B1C}, "1")]

HRESULT ToString([out, retval] BSTR* pRetVal);

[id(0x60020001)]

HRESULT Equals([in] VARIANT obj,

[out, retval] VARIANT_BOOL* pRetVal);

[id(0x60020002)]

HRESULT GetHashCode([out, retval] long* pRetVal);

[id(0x60020003)]

HRESULT GetType([out, retval] _Type** pRetVal);

[id(0x60020004)]

HRESULT YouMustDealWithThis();

[id(0x60020005)]

HRESULT YouCanChangeThis();

};

Chapter 10

552

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 552

As you can see, the members of a derived type are expressed in terms of COM
IDL as a union of all abstract and virtual members of the parent classes. For
example, given that TheParentClass defines an abstract and virtual member, the
_DerivedType interface accounts for each function. However, also note that
the _DerivedType interface contains definitions for the overridable members of
System.Object! This should make sense, because the .NET DerivedType derives
from TheParentClass, which in turn derives from System.Object.

Inheriting Public Members

The union of inherited methods flows up the chain of inheritance as far as
possible. Thus, if the most derived class has five base classes, every virtual
and abstract member will be placed into the COM interface definition. The
same holds true for a simple public member of a base class type. For example, if
TheParentClass defines a set of concrete COM-visible public members as follows:

[ComVisible(false)]

public abstract class TheParentClass

{

[ComVisible(false)]

public abstract void YouMustDealWithThis();

public virtual void YouCanChangeThis()

{ MessageBox.Show("Default impl of YouCanChangeThis()");}

// Basic inheritable members.

public void A(){}

public void B(){}

public void C(){}

public void D(){}

}

the IDL of the _DerivedClass interface will support direct access to each public
member (cool, huh?):

interface _DerivedClass : IDispatch

{

…

[id(0x60020005)]

HRESULT A();

[id(0x60020006)]

HRESULT B();

[id(0x60020007)]

HRESULT C();

[id(0x60020008)]

HRESULT D();

};

COM-to-.NET Interoperability—The Basics

553

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 553

So to recap, any public member (abstract, virtual, or concrete) defined in a
.NET base class will be accessible to the generated COM coclass definition.
Although this is not quite a pure “is-a” relationship, it does honor the semantics of
a base and derived type.

Translating Static and Constant Members

Finally, if a given class type contains static (Shared in VB .NET) or constant
members, they will not be published to the COM type information (regardless of
the assigned visibility). Thus, the following members are not accessible by a COM
client:

// Static data / static methods are not reachable from COM.

[ComVisible(true)]

public class Foo

{

…

// Not published to the generated type library.

public static int fooObjCounter = 0;

public static int GetNumbOfFooObjs()

{ return fooObjCounter;}

// Also not published to the generated type library.

public const double PI = 3.14;

}

So much for learning what cannot be expressed in terms of COM. Next up,
let’s examine some basic .NET-to-COM conversion rules.

Critical .NET-to-COM Conversion Details

Assume you have created a new C# class type that defines a .NET property, field
set, and various methods taking input, output, and reference parameters (recall
that public entities are COM visible automatically):

[ClassInterface(ClassInterfaceType.AutoDual)] // Defined soon.

public class BasicTypeMembers

{

private string mStrValue;

// .NET Property.

public string StringValue

{

get{return mStrValue;}

set{mStrValue = value;}

}

Chapter 10

554

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 554

// .NET Fields.

public int mIntField;

public bool mBooleanField;

// .NET Methods.

public void A(){}

public int B(int x){return x++;}

public void C(ref int x){x++;}

public void D(out int x){x = 1000;}

}

Now, run this updated assembly through the tlbexp.exe utility and let’s check
out the results.

Converting Method Signatures

All parameters in COM must be defined using the [in], [out], [in, out], or [out,
retval] IDL keywords. Under C# .NET, these same semantics are expressed using
the ref and out keywords (input parameters are the assumed directory of travel).
Based on the initial chapters of this text, which dove into the specifics of the COM
and .NET types, the following mappings should not raise any eyebrows:

// Based on: public void A(){}

[id(0x60020006)]

HRESULT A();

// Based on: public int B(int x){return x++;}

[id(0x60020007)]

HRESULT B([in] long x, [out, retval] long* pRetVal);

// Based on: public void C(ref int x){x++;}

[id(0x60020008)]

HRESULT C([in, out] long* x);

// Based on: public void D(out int x){x = 1000;}

[id(0x60020009)]

HRESULT D([out] long* x);

A few points of interest. First of all, realize that by default all .NET methods
will map to IDL methods that return the mandatory HRESULT. Furthermore, if the
.NET method returns void (the equivalent of a VB subroutine), the IDL method
signature will not support an [out, retval] parameter. Just to be sure that the rela-
tionship between IDL, C#, and VB .NET parameter modifiers are fixed in your
mind, Table 10-4 provides a handy summary.

COM-to-.NET Interoperability—The Basics

555

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 555

Table 10-4. Parameter Modifier Decoder

C# Parameter Modifier Visual Basic .NET IDL Attribute
Parameter Modifier Parameter Modifier

Input parameters ByVal (default) [in]

(no C#-specific keyword)

ref ByRef [in/out]

out No equivalent [out]

The InAttribute and OutAttribute Types

It is worth noting that the System.Runtime.InteropServices namespace defines
two managed types that can be used to explicitly control how a .NET parameter is
mapped into an IDL method definition: InAttribute and OutAttribute. To illustrate,
if you rework the logic of methods B(), C(), and D(), you could write the following:

// Explicitly mark IDL [in].

public int B2([In]int x){return x++;}

// Explicitly mark IDL [in, out].

public void C2([In][Out]ref int x){x++;}

// Explicitly mark IDL [out].

public void D2([Out]out int x){x = 1000;}

Again, making use of the InAttribute and OutAttibute types is optional, given
that the C# out and ref keywords will automatically map to the appropriate IDL.
However, if ever you wish to expose a method to COM in a manner that is different
from the way it is expressed to .NET, you are able to do so using these two
managed attributes.

Converting .NET Properties
.NET property syntax maps perfectly into the property syntax of COM. Thus, for
each read/write .NET property, you will find a [propput] and [propget] IDL
method definition. When you expose a read-only (or write-only) .NET property to
COM, the related [propput] and [propget] member will be removed as required.
Given the previous StringValue property, you will find the following IDL definition:

// Based on: get{return mStrValue;}

[id(0x60020004), propget]

HRESULT StringValue([out, retval] BSTR* pRetVal);

// Based on: set{mStrValue = value;}

[id(0x60020004), propput]

HRESULT StringValue([in] BSTR pRetVal);

Chapter 10

556

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 556

Converting .NET Fields

Classic COM does not support class-level public data points, given that all
communications must flow through a valid interface reference. Thus, if you have a
.NET type that defines a set of public fields, it stands to reason that tlbexp.exe will
generate a corresponding IDL property definition as follows:

// Based on: public int mIntField;

[id(0x6002000a), propget]

HRESULT mIntField([out, retval] long* pRetVal);

[id(0x6002000a), propput]

HRESULT mIntField([in] long pRetVal);

// Based on: public bool mBooleanField;

[id(0x6002000c), propget]

HRESULT mBooleanField([out, retval] VARIANT_BOOL* pRetVal);

[id(0x6002000c), propput]

HRESULT mBooleanField([in] VARIANT_BOOL pRetVal);

So, at this point you have learned how to configure the visibility of .NET types
and .NET members as well as a number of basic conversion details (constructors,
parameters, properties, and fields). Now that you understand the basic rules of
building .NET class types that are COM visible, you can formally tackle the topic of
the class interface.

CODE The MySimpleDotNetServer project is included under the
MySimpleDotNetServer Chapter 10 subdirectory.

Understanding the Class Interface

As you are well aware, .NET class types are never required to support interfaces of
any kind. This poses a problem for the COM client, because COM demands all
communications take place using an interface reference. Now, as you have seen in
numerous places in this text, VB 6.0 attempts to simplify the process of creating
and accessing COM types by defining a [default] interface for each coclass. The
rule is simple: If a VB 6.0 *.cls file defines a public member, it is published to the
[default] interface automatically.

When exposing a .NET type to COM, you can take a similar approach. The
ClassInterfaceAttribute type (defined in the System.Runtime.InteropServices
namespace) is an attribute that you apply at the class level to define how COM-
visible class members should be configured in the generated COM type library.

COM-to-.NET Interoperability—The Basics

557

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 557

As you may recall, a COM interface can be defined as an IUnknown-derived
(that is, custom) interface, a [dual] interface, or a raw dispinterface (whose
members are only accessible via IDispatch). Although the ClassInterfaceAttribute
type does not allow you to specify class interfaces deriving directly from
IUnknown, you are able to specify [dual] and dispinterfaces using the closely
related ClassInterfaceType enumeration:

// This enum is used in conjunction

// with the ClassInterface attribute.

public enum ClassInterfaceType

{

AutoDispatch,

AutoDual,

None

}

Table 10-5 documents the meaning of each member of the ClassInterfaceType
enumeration.

Table 10-5. The ClassInterfaceType Enumeration

ClassInterfaceType Member Meaning in Life

AutoDispatch This is the default setting for ClassInterfaceAttribute

and is used to indicate that the public members of a

class are only accessible using IDispatch. To preserve

the requirements of COM versioning, tlbexp.exe will not

assign specific DISPIDs to the public members, to

prevent client applications from caching the

dispinterface members.

AutoDual Indicates that public members are placed in a dual

interface and can thus be accessed from late-bound and

early-bound clients. In this case, DISPIDs are assigned

by tlbexp.exe.

None Indicates that the .NET class does not support a class

interface. If you do not explicitly define and implement

interfaces for the .NET type, the members will only be

reachable using COM-style late binding.

Chapter 10

558

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 558

Establishing a .NET Class Interface

To illustrate the use of these values, let’s say you have a new C# code library
(named DotNetMathServer) that defines the following class type:

using System;

using System.Runtime.InteropServices;

namespace DotNetMathServer

{

public class DotNetCalc

{

public DotNetCalc(){}

public int Add(int x, int y)

{ return x + y;}

public int Subtract(int x, int y)

{ return x - y;}

}

}

If you run this type through the tlbexp.exe utility as is, you will find that you
have been provided with an empty [default] dual interface:

[odl, uuid(BDD31E6C-07D6-33E8-AC86-BC3A23C91544),

hidden, dual, oleautomation,

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

" DotNetMathServer.DotNetCalc")]

interface _DotNetCalc : IDispatch

{

};

[…]

coclass DotNetCalc

{

[default] interface _DotNetCalc;

interface _Object;

};

Recall that by default tlbexp.exe will always generate an AutoDispatch
class interface unless you say otherwise. In fact, if you explicitly assign the
ClassInterface attribute the value of ClassInterfaceType.AutoDispatch, you will
find an identical IDL definition, as shown in this example:

[ClassInterface(ClassInterfaceType.AutoDispatch)]

public class DotNetCalc

{…}

COM-to-.NET Interoperability—The Basics

559

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 559

When a .NET class is defined without the ClassInterface attribute or using the
ClassInterfaceType.AutoDispatch value, the COM client is forced to access the
members using late binding exclusively. Also note that the resulting COM type
information does not catalog the DISPIDs of the members of the dispinterface.
The reason for this seemingly odd behavior will be examined in the “The Case
Against the Class Interface” section.

Now assume you want to establish the ClassInterface attribute as
ClassInterfaceType.AutoDual:

[ClassInterface(ClassInterfaceType.AutoDual)]

public class DotNetCalc

{…}

You would now find that the generated class interface is populated with the
custom Add() and Subtract() methods, as well as the public members inherited
from your base class, System.Object:

[odl, uuid(524EBD3B-334E-3E04-AA82-998BDEA7F2FB),

hidden, dual, nonextensible, oleautomation,

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

" DotNetMathServer.DotNetCalc")]

interface _DotNetCalc : IDispatch

{

[id(00000000), propget,

custom({54FC8F55-38DE-4703-9C4E-250351302B1C}, "1")]

HRESULT ToString([out, retval] BSTR* pRetVal);

[id(0x60020001)]

HRESULT Equals([in] VARIANT obj,

[out, retval] VARIANT_BOOL* pRetVal);

[id(0x60020002)]

HRESULT GetHashCode([out, retval] long* pRetVal);

[id(0x60020003)]

HRESULT GetType([out, retval] _Type** pRetVal);

[id(0x60020004)]

HRESULT Add([in] long x, [in] long y,

[out, retval] long* pRetVal);

[id(0x60020005)]

HRESULT Subtract([in] long x, [in] long y,

[out, retval] long* pRetVal);

};

Finally, you have ClassInterfaceType.None, which results in a coclass defini-
tion that does not support a class interface of any type. As a result, your coclass
definition supports the generated _Object interface, which again defines the
inherited members of System.Object. Do note, however, that when you specify

Chapter 10

560

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 560

ClassInterfaceType.None, _Object is marked as the [default] interface of the type!
This would, of course, be quite confusing to a COM client, given that they would
not expect to trigger this .NET-centric behavior off the cuff. Later you will see how
to combine ClassInterfaceType.None with strongly typed .NET interfaces to gain a
more usable COM coclass. Nevertheless, here is the end result of the story so far:

// The result of ClassInterfaceType.None.

coclass DotNetCalc

{

[default] interface _Object;

};

The Custom IDL Attribute:
{0F21F359-AB84-41E8-9A78-36D110E6D2F9}

If you’ve carefully read the generated COM type information for the various .NET
class interfaces, you no doubt noticed that each variation supports a custom IDL
attribute with the name {0F21F359-AB84-41E8-9A78-36D110E6D2F9} (see
Chapter 4 for coverage of custom IDL attributes). The predefined .NET attribute is
used to document the ProgID of the COM type that defines the interface in ques-
tion. In fact, when tlbexp.exe generates any COM type (coclass, interface, enum, or
structure), the IDL definition will always make use of {0F21F359-AB84-41E8-9A78-
36D110E6D2F9}. For example:

[…custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

" DotNetMathServer.DotNetCalc")]

interface _DotNetCalc : IDispatch

{};

Understand that this custom attribute is completely ignored by COM clients,
unless you explicitly build a COM solution that is on the lookout for this
name/value pair. Furthermore, the .NET runtime ignores the custom IDL attribute
as well. This begs the following obvious question: What good is an attribute that is
ignored by both architectures?

The truth of the matter is, if you were to build a COM IDL file by hand and
explicitly make use of this custom IDL attribute, the tlbimp.exe (reread: Type
Library Importer) utility will create a .NET type with the specified name. Thus, if
you were to define the following COM IDL definition:

[…custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"TheNameSpaceIWant.TheClassIWant")]

coclass CoFoo

{};

COM-to-.NET Interoperability—The Basics

561

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 561

you would find the following definition in the generated interop assembly:

namespace TheNameSpaceIWant

{

public class TheClassIWant{…}

}

To be honest, you will seldom need to instruct tlbimp.exe to generate a name
that is unique from the COM type definition in this manner. Nevertheless, this
custom IDL attribute does allow you to do so. In most situations, this IDL annota-
tion is basically ignored.

Understanding the _Object Interface

Another aspect of the assembly-to-type library conversion process you may have
noticed is the definition of a specific interface named _Object. As you certainly
know, all .NET types ultimately derive from the mighty System.Object. When
tlbexp.exe encounters a type that derives from a given base class, it will automati-
cally create a new COM interface that is the summation of all COM-visible
members defined in the parent class. Given that the DotNetCalc type implicitly
derives from System.Object, you are offered a COM interface that defines the
equivalent functionality. Table 10-6 lists the IDL definitions of each inherited
member.

Table 10-6. Members of the _Object Interface

_Object Interface Member Name Meaning in Life

HRESULT ToString([out, retval] BSTR* pRetVal); Maps to the .NET type’s

implementation of ToString() to a

default COM property (read-only) of

the same name

HRESULT Equals([in] VARIANT obj, Maps to the .NET type’s

[out, retval] VARIANT_BOOL* pRetVal); implementation of Equals()

HRESULT GetHashCode([out, retval] Maps to the .NET type’s

long* pRetVal); implementation of GetHashCode()

HRESULT GetType([out, retval] _Type** pRetVal); Maps to the .NET type’s

implementation of GetType()

Chapter 10

562

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 562

Exactly how a generated coclass supports the members of _Object will depend
on how you configured the type’s class interface, specifically:

• The AutoDual option will expose the members of the _Object interface as
part of the generated class interface.

• An AutoDispatch class interface (the default) or a class interface defined as
None will expose the members of _Object as members of the generated
dispinterface.

Transforming System.Object.ToString()

While the transformation of Object.GetType(), Object.Equals(), and
Object.GetHashCode() into terms of COM IDL is quite straightforward, the
handling of Object.ToString() requires a second look. By default, when tlbexp.exe
accounts for the ToString() method, it will expose this member as a read-only
COM property:

// System.Object.ToString() is exposed as a COM property.

[id(00000000), propget,

custom({54FC8F55-38DE-4703-9C4E-250351302B1C}, "1")]

HRESULT ToString([out, retval] BSTR* pRetVal);

Note that the DISPID of the ToString() property is zero, which marks this
member as the default property of the coclass. Given this, a VB 6.0 COM client
may display the state data of a .NET type as follows:

' ToString() is the default property, thus…

MsgBox myDotNetObject

' Which is the same as…

MsgBox myDotNetObject.ToString

Also note that the ToString() property has been assigned with yet another
[custom] IDL attribute named 54FC8F55-38DE-4703-9C4E-250351302B1C. This is
used to ensure that if this COM *.tlb file is reimported into terms of .NET meta-
data, ToString() is correctly configured back into the expected method definition.

You will see examples of accessing the members of _Object a bit later in this
chapter. For the time being, I’ll turn your attention to why you would typically not
wish to define a class interface in the first place.

The Case Against Class Interfaces

Although the concept of a class interface makes the process of exposing public
class members to a COM client very simple, this approach is not without its draw-
backs. In fact, the official word on the streets (according to the online documenta-
tion) is that you should avoid defining a class interface on your .NET types and

COM-to-.NET Interoperability—The Basics

563

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 563

make explicit use of ClassInterface.None. In place of a class interface, you are
encouraged to make use of strongly typed custom interfaces.

So, why is the class interface considered evil? The reason has to do with the
dreaded type versioning problem. Under COM, the general rule used during inter-
face development is that once an interface has been placed into production code,
its definition should never, ever change. If you somehow alter a COM interface
after it has been deployed (for example, add a method, remove a method, or
change the signature of a method), you run the risk of breaking existing clients
(not to mention the polymorphic nature of COM itself).

Given that a .NET class type does not necessarily need to adhere to this strict
versioning scheme, AutoDual class interfaces may quickly become out of sync
with the underlying .NET type. Furthermore, as an AutoDispatch interface
demands late binding, COM clients are bound to be unhappy. Given these reali-
ties, the recommended pattern is as follows:

// Class interface? Just say no…

[ClassInterface(ClassInterfaceType.None)]

public class DotNetCalc {…}

Exposing Custom .NET Interfaces to COM

To illustrate the benefits of making use of explicit interfaces (as opposed to class
interfaces), let’s rework the logic of the current DotNetCalc type to implement an
interface named IBasicMath. Before you do, however, you need to come to terms
with the InterfaceType attribute.

When defining a .NET interface that needs to be exposed to COM, you should
always qualify the type by applying the InterfaceTypeAttribute type, which is used
in conjunction with the ComInterfaceType enumeration. As you would guess, the
ComInterfaceType attribute is used to control whether the interface is recorded in
the type library as IUnknown derived (which is not possible using a class inter-
face), a dual interface, or a raw dispinterface (Table 10-7).

Table 10-7. ComInterfaceType Values

ComInterfaceType Member Name Description

InterfaceIsDual Indicates the interface needs to be exposed to COM

as a dual interface

InterfaceIsIDispatch Indicates an interface needs to be exposed to COM

as a dispinterface

InterfaceIsIUnknown Indicates an interface needs to be exposed to COM

as an IUnknown-derived interface, as opposed to a

dispinterface or a dual interface

Chapter 10

564

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 564

For example, if you wish to expose IBasicMath as an IUnknown-derived inter-
face, you could write the following .NET interface definition:

// A strongly typed interface for use by COM.

[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]

public interface IBasicMath

{

int Add(int x, int y);

int Subtract(int x, int y);

}

This results in the following IDL:

[odl,uuid(30C6D943-D332-3E24-90DC-589A8579E33B),

version(1.0), oleautomation,

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

" DotNetMathServer.IBasicMath")]

interface IBasicMath : IUnknown

{

HRESULT _stdcall Add([in] long x, [in] long y,

[out, retval] long* pRetVal);

HRESULT _stdcall Subtract([in] long x, [in] long y,

[out, retval] long* pRetVal);

};

When you specify ComInterfaceType.InterfaceIsIUnknown, the IDL interface
definition is automatically configured with the [oleautomation] attribute. This is a
very good thing, given that the IBasicMath interface is now ready to be marshaled
using the universal marshaler (oleaut32.dll) rather than a custom stub/proxy DLL.
Although it is possible to specify an alternative stub/proxy DLL to marshal your
interfaces (as shown later in this chapter), there really is no reason to do so.

If you make use of ComInterfaceType.InterfaceIsDual when defining
IBasicMath, you will find tlbexp.exe generates a [dual] interface with
autogenerated DISPIDs:

[odl, uuid(30C6D943-D332-3E24-90DC-589A8579E33B),

version(1.0), dual, oleautomation,

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"DotNetMathServer.IBasicMath")]

interface IBasicMath : IDispatch

{

[id(0x60020000)]

HRESULT Add([in] long x, [in] long y,

[out, retval] long* pRetVal);

[id(0x60020001)]

HRESULT Subtract([in] long x, [in] long y,

[out, retval] long* pRetVal);

};

COM-to-.NET Interoperability—The Basics

565

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 565

And obviously, ComInterfaceType.InterfaceIsIDispatch generates a raw
dispinterface:

[uuid(30C6D943-D332-3E24-90DC-589A8579E33B),

version(1.0),

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"DotNetMathServer.IBasicMath")]

dispinterface IBasicMath

{

properties:

methods:

[id(0x60020000)]

long Add([in] long x, [in] long y);

[id(0x60020001)]

long Subtract([in] long x, [in] long y);

};

Controlling IID and DISPID Generation

As you know, the runtime automatically assigns unique DISPIDs to a given
member at runtime. Also, the tlbexp.exe utility automatically assigns GUIDs to
each .NET type (as seen in the COM type library). If you wish to make use of fixed,
unchangeable IID and DISPID values, you are free to apply the GuidAttribute and
DispIdAttribute types as follows (of course, DISPIDs will be ignored if you make
use of them with an interface defined as ComInterfaceType.InterfaceIsIUnknown):

// An even stronger typed interface for use by COM.

[InterfaceType(ComInterfaceType.InterfaceIsDual)]

[Guid("B3D938A2-0B47-469f-BECE-DBD35008EAD8")]

public interface IBasicMath

{

[DispId(1)] int Add(int x, int y);

[DispId(2)] int Subtract(int x, int y);

}

Note the resulting IDL definition:

[uuid(B3D938A2-0B47-469F-BECE-DBD35008EAD8)…]

interface IBasicMath : IDispatch

{

[id(0x00000001)]

HRESULT Add(…);

[id(0x00000002)]

HRESULT Subtract(…);

};

Chapter 10

566

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 566

Implementing Explicit Interfaces

Now that you have fully defined the IBasicMath interface, you are ready to imple-
ment it on a given C# class type:

// This class does NOT support a class interface.

[ClassInterface(ClassInterfaceType.None)]

public class DotNetCalcWithInterface : IBasicMath

{

public DotNetCalcWithInterface(){}

public int Add(int x, int y)

{return x + y;}

public int Subtract(int x, int y)

{return x - y;}

}

As you would expect, you are also able to implement an explicit COM-visible
interface using explicit interface implementation. Recall that this would force the
.NET client to interact with the members of IBasicMath from an interface refer-
ence exclusively.

Controlling the Generated ProgID

Before moving on to the task of registering and accessing your .NET assemblies,
you have a few additional basic points of interest to contend with. The first is
altering the generated COM ProgID. By default, tlbexp.exe automatically generates
a ProgID for each .NET class type found in the input assembly using the following
naming convention:

<NamespaceName.ClassName>

Thus, given a namespace named MyDotNetAssembly and a COM-visible class
type named MyClass, the resulting ProgID is MyDotNetAssembly.MyClass. Most of
the time, this default naming convention will fit the bill. However, if you wish to
programmatically control the ProgID for a given class type, you may apply the
ProgIdAttribute:

// Customizing the generated ProgId.

[ClassInterface(ClassInterfaceType.None)]

[ProgId("COM2NetExample.DotNetCalcWithInterface")]

public class DotNetCalcWithInterface : IBasicMath

{

…

}

COM-to-.NET Interoperability—The Basics

567

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 567

Although you have no need to alter the ProgID value for this current example,
specifying a custom ProgID for a class type can be more useful than you might
first suspect. As you may already know, a ProgID has a limit of 39 characters.
If you have a class type defined in a nested namespace (for example,
IntertechInc.AndrewsNamespace.CurrentProject.TheClassIAmBuilding),
you may have a ProgId that exceeds this limit. In this case, making use of the
ProgIdAttribute type will be a necessary fix.

Controlling the COM Library Definition

Another basic point of interest is that you are able to (optionally) control the name
of the generated type library statement. When the tlbexp.exe utility is building the
COM library statement, it does so using the following translation rules:

• The LIBID is generated based on the friendly name of the assembly and
(optional) [.publickeytoken]. If the assembly is not strongly named
(and therefore does not have a [.publickeytoken] value), the LIBID is
randomly generated.

• The [version] is based on the <major>.<minor> values of an assemblies
version.

• The [helpstring] of the library is based on the AssemblyDescription value
(if any).

As you would expect, you are able to alter this information using a number of
assembly-level attributes found in the System.Runtime.InteropServices name-
space. Thus, if you apply the following assembly-level attributes (typically within
the assemblyinfo.* file):

// Assume your assemblyinfo.cs file defines the following.

[assembly: AssemblyDescription("C# Math Library")]

[assembly: AssemblyVersion("9.2.0.0")]

[assembly: Guid("B33D5B5E-7D33-4d86-85C4-FD62D270DADF")]

you will find the following library statement:

[

uuid(B33D5B5E-7D33-4D86-85C4-FD62D270DADF),

version(9.2),

helpstring("C# Math Library")

]

library DotNetMathServer

{…}

Chapter 10

568

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 568

Of course, you really don’t need to version your COM type library in this
manner, so I’ll assume you simply set the AssemblyVersion attribute to 1.0.0.0.

Handling Overloaded Methods

Another point of interest at this stage of the game is how a COM client is able to
handle overloaded members of a .NET type. Recall that when a type “overloads”
members, it defines a set of members of the same exact name, each of which
differ by the number of (or type of) parameters. For example, assume that the
DotNetCalc type defines an overloaded version of the Add() method:

[ClassInterface(ClassInterfaceType.AutoDual)]

[Guid("46933500-E958-48e2-89DA-018A12A43881")]

public class DotNetCalc

{

public DotNetCalc(){}

public int Add(int x, int y)

{return x + y;}

public double Add(double x, double y)

{return x + y;}

public int Subtract(int x, int y)

{return x - y;}

}

Now, as you are well aware, classic COM does not allow developers to build
interfaces that support overloaded members. Therefore, when tlbexp.exe encoun-
ters a type with various versions of a single method, it employs a clever hack.
Observe:

interface _DotNetCalc : IDispatch {

…

[id(0x60020004)]

HRESULT Add([in] long x, [in] long y,

[out, retval] long* pRetVal);

[id(0x60020005),

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9}, "Add")]

HRESULT Add_2([in] double x, [in] double y,

[out, retval] double* pRetVal);

…

};

As you can see, the first version of the overloaded method (which takes two
integers) is named as expected. Subsequent versions, however, add a numerical
suffix to the method name (Add_2). If DotNetCalc defined four versions of Add(),
you would indeed see Add_3() and Add_4() as well. It is important to point out that
tlbexp.exe will add these numerical suffixes based on the order of the members in

COM-to-.NET Interoperability—The Basics

569

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 569

the original .NET class definition. This behavior can lead to long-term versioning
problems.

Assume, for example, that you have added yet another overloaded Add()
method to the DotNetClac class, and you have chosen to do so directly in between
the initial versions:

public class DotNetCalc

{

public DotNetCalc(){}

public int Add(int x, int y)

{return x + y;}

public long Add(long x, long y)

{return x + y;}

public double Add(double x, double y)

{return x + y;}

public int Subtract(int x, int y)

{return x - y;}

}

If you do not regenerate the related *.tlb file for DotNetCalc, the COM client
suddenly has incorrect type definitions! In this case, what was previously called
Add_2() has now been renamed as Add_3(). To be as safe as possible, you may wish
to make all overloaded members COM invisible and expose uniquely named
members in their place (for example, AddInts(), AddFloats(), and AddDoubles()).

Although this numerical suffixing may not seem like the most elegant solu-
tion, it’s really all that can be done. COM does not allow overloaded members, so
tlbexp.exe is forced to generate unique names for each variation of the Add()
method.

Importing mscorlib.tlb

The final point I need to address before moving on to using your .NET calculator
from COM is to ponder the meaning of the following always-present IDL import:

[

uuid(B33D5B5E-7D33-4D86-85C4-FD62D270DADF),

version(1.0),

helpstring("C# Math Library")

]

library DotNetMathServer

{

// TLib : Common Language Runtime Library :

//{BED7F4EA-1A96-11D2-8F08-00A0C9A6186D}

importlib("mscorlib.tlb");

…

}

Chapter 10

570

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 570

All type libraries that are generated from a .NET assembly will contain an IDL
importlib() directive to ensure that the core .NET type definitions are included
with your custom types. You have already seen a need for this in the COM version
of the System.Object.GetType() method. Given that this method returns a
System.Type, it stands to reason that the Type class needs to be defined in terms of
COM IDL. As seen previously in Chapter 9, given that the types defined within
mscorlib.dll are expressed in COM-centric terms, you are indeed able to build
COM applications that make use of critical .NET types! For example, you could
build a VB 6.0 application that makes use of System.String,
System.Collections.ArrayList, System.IO.FileInfo, or any other entity defined in the
vast number of namespaces contained within mscorlib.dll. To see the big picture,
consider Figure 10-2.

Figure 10-2. Mscorlib.dll presented in terms of classic COM

COM-to-.NET Interoperability—The Basics

571

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 571

You will make use of mscorlib.tlb a bit later in this chapter when you build
your COM clients. While it is enticing to envision building COM applications that
leverage .NET types, understand that many key .NET assemblies (such as
System.Xml.dll) have been configured entirely as COM invisible.

That wraps up the initial examination of expressing a .NET type in terms of
COM IDL. In the next chapter you learn how to expose more elaborate .NET
patterns to an interested COM client (delegates, class hierarchies, and whatnot).
To wrap up this chapter, however, let’s examine how to register and deploy the
COM-aware .NET assembly and build a number of clients that make use of the
DotNetMathServer.

CODE The DotNetMathServer project is included under the Chapter 10
subdirectory.

Using the regasm.exe Utility

Although tlbexp.exe is a great tool for building a *.tlb file based on a .NET
assembly, type information alone is not enough to satisfy the COM runtime envi-
ronment. As you learned in Chapter 2, COM demands that a COM server is
correctly cataloged in the system registry. The obvious problem, however, is that
.NET assemblies are not registered in the registry whatsoever! Nevertheless, the
classic COM runtime expects to find the following core information:

• The ProgIDs of each type in the binary

• The CLSIDs, LIBIDs, and IIDs of all types in the binary

• An InprocServer32 or LocalServer32 directory that documents the location
of the binary to be loaded

In addition, the runtime may consult the registry to discover AppIDs, CATIDs,
and other COM goo. So, the million-dollar question is, how can you “register” an
assembly for use by COM? The regasm.exe (register assembly) command line
utility is a tool that updates a machine’s registry with the information required by
classic COM based on a .NET assembly. First, regard the core command line flags
presented in Table 10-8.

Chapter 10

572

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 572

Table 10-8. Key Flags of regasm.exe

regasm.exe Command Line Flag Meaning in Life

/codebase As you will see during your examination of

deploying .NET assemblies for use by COM,

assemblies are typically placed in the GAC.

However, if you would rather not do so, this flag

adds a CodeBase entry in the registry to map an

assembly to an arbitrary directory location.

/regfile [:regFile] Generates the specified .reg file for the assembly,

which contains the necessary registry entries.

Specifying this option does not change the registry.

You cannot use this option with the /u or /tlb

options.

/tlb [:typeLibFile] Generates a type library from the specified

assembly containing definitions of the accessible

types defined within the assembly. The /tlb file also

registers the type library in question.

/unregister or /u Unregisters the creatable classes from the system

registry.

The first flag of direct interest is /tlb. Using regasm.exe, you are able to
generate a standalone *.tlb file for a given assembly in addition to installing the
correct information in the system registry. Given this factoid, you are correct in
assuming that the tlbexp.exe utility is not mandatory when exposing a .NET type
to COM. If you would rather make use of a single tool to (a) generate COM type
information and (b) register the assembly with COM, you can enter the following
command:

regasm simpledotnetserver.dll /tlb

As you would hope, the generated simpledotnetserver.tlb file contains the
same IDL definitions as you’d get using the tlbexp.exe utility. If you wish to remove
the inserted registry information, simply use the /u flag:

regasm simpledotnetserver.dll /u

Another very helpful command line flag is /regfile. Recall from Chapter 2 that
a *.reg file can be used to install COM registry information on a given machine via
a simple double-click. When you specify the /regfile flag, you are instructing
regasm.exe to generate a *.reg file that contains all the necessary information for a

COM-to-.NET Interoperability—The Basics

573

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 573

given .NET assembly. Also understand that specifying the /regfile flag will not
update the current registry! This option simply spits out a new file in the applica-
tion directory (Figure 10-3).

Figure 10-3. The generated *.reg file

Finally, you have the /codebase flag. Recall from Chapter 5 that it is possible
to place a .NET assembly at an arbitrary location on your machine (or some
other connected machine) by specifying a codebase element in the application
configuration file. In the same light, if you make use of the /codebase flag, the
InprocServer32 directory is updated with a CodeBase value that points to
the location of the registered .NET assembly. Although this can be helpful
during the development phase, .NET assemblies that are to be used by COM
clients are typically deployed to the GAC. Given this, I’ll ignore the use of the
/codebase flag and allow you to check it out at your leisure.

Examining the Updated Entries

Let’s check out the generated registration entries entered by the regasm.exe
utility (of course, this same information is contained within the *.reg file). Recall
that the DotNetMathServer.dll assembly contains two class types (DotNetCalc
and DotNetCalcWithInterface) as well as a single interface named IBasicMath.
To keep things simple, you will trace the generated entries for DotNetCalc,
given that the registration information will be identical (modulo GUIDs) for
DotNetCalcWithInterface.

Chapter 10

574

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 574

The ProgID Entry

First of all, regasm.exe has entered the correct ProgID for DotNetCalc, which may
be found directly under HKCR (Figure 10-4).

Figure 10-4. The ProgID

Like any COM ProgID, the generated listing will contain a \CLSID subdirec-
tory that maps to the CLSID of the coclass. As mentioned, if you adorn your .NET
classes with the GuidAttribute type, you are able to specify a hard-coded GUID
value. If not, regasm.exe/tlbexp.exe generates one automatically.

To generate a CLSID, tlbexp.exe/regasm.exe obtains a hash code using the
fully qualified name of the .NET class as well as the identity (version, friendly
name, and the public key value) of the assembly in which it resides. In this way, if
two different .NET assemblies define a class of the exact same name, they will be
recorded as two different CLSIDs (which is a good thing).

The HKCR\CLSID Entry

The next stop on your journey is to check out the generated information
contained under the HKEY_CLASSES_ROOT\CLSID\<your GUID> subdirectory
(Figure 10-5).

COM-to-.NET Interoperability—The Basics

575

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 575

Figure 10-5. The necessary CLSID information

Although you can’t see each critical bit of information from the previous
screen shot, rest assured (and validate for yourself) that the various subdirectories
have been populated based on the following registration script:

[HKEY_CLASSES_ROOT\DotNetMathServer.DotNetCalc\CLSID]

@="{4B7337EA-0CE9-3083-9004-BDB366D9051C}"

[HKEY_CLASSES_ROOT\CLSID\

{4B7337EA-0CE9-3083-9004-BDB366D9051C}]

@="DotNetMathServer.DotNetCalc"

[HKEY_CLASSES_ROOT\CLSID\

{4B7337EA-0CE9-3083-9004-BDB366D9051C}\InprocServer32]

@="C:\WINDOWS\System32\mscoree.dll"

"ThreadingModel"="Both"

"Class"="DotNetMathServer.DotNetCalc"

"Assembly"="DotNetMathServer, Version=9.2.0.0, Culture=neutral,

PublicKeyToken=3a7bb5f335af01f2"

"RuntimeVersion"="v1.0.3617"

[HKEY_CLASSES_ROOT\CLSID\{4B7337EA-0CE9-3083-9004-BDB366D9051C}\ProgId]

@="DotNetMathServer.DotNetCalc"

[HKEY_CLASSES_ROOT\CLSID\

{4B7337EA-0CE9-3083-9004-BDB366D9051C}\

Implemented Categories\{62C8FE65-4EBB-45E7-B440-6E39B2CDBF29}]

Beyond the expected ProgID subdirectory, the most interesting aspect of the
.NET assembly registration process is discovered by examining the value listed
under the InProcServer32 subdirectory. Recall from Chapter 2 that the COM

Chapter 10

576

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 576

runtime will examine the contained value to locate the requested COM DLL.
However, when a .NET assembly is registered, the (Default) value is, in fact,
mscoree.dll (Figure 10-6).

Figure 10-6. A coclass’ InProcServer32 value points to the .NET runtime engine.

As you may suspect, when a COM client attempts to load a .NET type via the
generated type information, the COM runtime ends up loading the .NET runtime!
Also notice that each creatable type is registered with a Class value that docu-
ments the fully qualified name of the type within the .NET assembly. This value is
passed (automatically) into mscoree.dll to specify the name of the type it is to
create for the COM client. At this point, the same search heuristics described in
Chapter 5 take over the show. Therefore, if the .NET assembly is located in the
same folder as the COM client (aka a private assembly), the search is finished. As
you will see in the next section, however, .NET assemblies that are COM aware are
typically deployed as a shared assembly and tend to be located in the GAC.

Enlisting .NET Types into a Specific COM Category

The last point of interest regarding the registered values under
HKCR\CLSID\<your guid> is a specific COM category of the value {62C8FE65-
4EBB-45E7-B440-6E39B2CDBF29}. As you may know, classic COM allows devel-
opers to assign a given COM class to a particular numerical category (termed a
CATID). CATIDs can be discovered at runtime by a given COM client to discover all
coclasses that belong to a specific CATID.

This can be very helpful when you are attempting to group similar COM
objects into a well-known category. For example, assume you are building a C++
COM client that needs to place the names of all COM classes belonging to the
CATID {40FC6ED4-2438-11CF-A3DB-080036F12502}. This CATID is used to mark
your old friend the ActiveX Control. In fact, if you open up the oleview.exe utility

COM-to-.NET Interoperability—The Basics

577

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 577

and examine the Grouped by Component Category folder, you will find all
members belonging to the Control CATID (Figure 10-7).

Figure 10-7. A well-known COM CATID

With the advent of .NET, Microsoft created a new CATID ({62C8FE65-4EBB-
45E7-B440-6E39B2CDBF29}) that identifies all .NET class types that have been
exposed to COM. As you have just seen, when you make use of regasm.exe, your
.NET classes are automatically enlisted in this COM category. Thus, if you view the
.NET Category folder, you will find your .NET math types (Figure 10-8).

Figure 10-8. The regasm.exe utility assigns your .NET types to the .NET Category.

Chapter 10

578

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 578

One question you may have at this point is, where exactly are these
CATIDs logged in the system registry in the first place? The answer: in the
HKCR\Component Categories (Figure 10-9).

Figure 10-9. HKCR\Component Categories

Finally, in addition to the registration information I have just presented,
regasm.exe also documents the version of the .NET runtime that the .NET
assembly was compiled against (via the RuntimeVersion value) as well as the
friendly name, version, cultural information, and public key token of the assembly
itself for each class type.

Registering the Exposed Interfaces

Under classic COM, when you intend a given interface to be accessed across a
process boundary (such as one *.exe using an object in another *.exe), that inter-
face must be explicitly registered in the system registry under
HKCR\Interfaces\<your guid>. The ProxyStubClsid32 subdirectory contains a
value that identifies the CLSID of the object that understands how to marshal your
interfaces between apartment, process, or machine boundaries. Using this CLSID
value, the COM runtime is able to locate the correct stub/proxy *.dll to build a
bridge between the two interested parties.

Although C++ developers are always able to build custom stub and proxy *.dlls
using various midl.exe-generated files, they are seldom in the position of
absolutely having to do so. The reason is that the COM runtime supplies a default
stub and proxy *.dll (oleaut32.dll) that goes by the friendly name “the universal
marshaler.” Using your registered COM type information, the universal marshaler
is able to build stub and proxies on the fly as long as each exposed type is
[oleautomation] compliant.

The regasm.exe utility takes the lead of Visual Basic 6.0 and automatically
configures each exposed interface (including class interfaces) to make use of the

COM-to-.NET Interoperability—The Basics

579

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 579

universal marshaler. Thus, if you locate the GUID for IBasicMath under
HKCR\Interfaces (Figure 10-10), you will find that the
ProxyStubClsid32 subdirectory contains the CLSID of the universal marshaler
({00020420-0000-0000-C000-000000000046}).

Figure 10-10. Custom .NET interfaces are registered to make use of universal
marshaling.

As mentioned, if your .NET class types define a class interface (as was done for
the DotNetCalc type), the autogenerated interface (_DotNetCalc) is also registered
to make use of the universal marshaler (Figure 10-11).

Figure 10-11. Class interfaces are also registered to make use of universal
marshaling.

If you follow the bouncing ball and look up
{00020420-0000-0000-C000-000000000046} under HKCR\CLSID, you will
indeed find that both IBasicMath and _DotNetCalc are marshaled via
oleaut32.dll (Figure 10-12).

Chapter 10

580

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 580

Figure 10-12. The universal marshaler

When generating a GUID for a given COM-visible interface,
tlbexp.exe/regasm.exe will again construct a hash value, this time based on the
type’s fully qualified name in addition to the signature (but not the name) of each
member of the interface. In this way, if you add or (heaven forbid) remove a
member from an interface, this will result in a new IID. Again, to take full control
over GUID generation for your interfaces, apply the GuidAttribute type to each
exposed .NET type.

One final point to be very aware of is that if you were to shutter (reorder) the
members of a COM-visible interface, the previous *.tlb file will now be hopelessly
out of order. Given this, treat COM-visible interfaces with the same care you would
give to an IDL interface definition (and don’t reorder the members).

Specifying an Alternative Stub and Proxy DLL

As you may suspect, it is possible to configure your exposed COM-visible inter-
faces to make use of an alternative stub/proxy *.dll. Now, let me reiterate that the
only reason that a programmer may choose to build and distribute a custom
stub/proxy *.dll is if the COM interfaces to be marshaled expose data types that
cannot be represented by a COM VARIANT (such as fixed array of C-style unions,
char* style strings, and other C-isms).

If you are in the unfortunate position of exposing a non–[oleautomation]-
compliant COM interface from a managed .NET application (which should
seldom if ever be the case), you can apply the AutomationProxyAttribute type to
prevent your interfaces from being automatically configured to point to
oleaut32.dll:

// This attribute can also be applied at the

// assembly level to deny all interfaces

// access to the universal marshaler.

[AutomationProxy(false)]

public interface IDontUseTheUniversalMarshaler{…}

COM-to-.NET Interoperability—The Basics

581

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 581

If you enable this behavior, you of course need to specify the CLSID of the
custom marshaler type and register things accordingly (via regsvr32.exe or
programmatically). I will make the assumption that you are just fine with lever-
aging oleaut32.dll to marshal your .NET interfaces between application bound-
aries, and that you will check out online Help for further details if you so choose.

Registering the COM Type Library

The final registration entry you need to examine is the information used to
describe the *.tlb file itself. Recall from Chapter 3 that HKCR\TypeLib\<your guid>
holds the version, locale, and physical location of your *.tlb file. Thus, if you hunt
down the GUID of your *.tlb (which you hard coded using an assembly-level
GuidAttribute type), you will see the registered COM type library shown in
Figure 10-13.

Figure 10-13. The registered COM type library

Do remember that the only way to ensure that your *.tlb file is registered is to
specify the /tlb flag using regasm.exe (tlbexp.exe will not do so).

Of course, when you expose a .NET assembly to classic COM, you are now
playing by the rules of COM. Thus, if you rename or relocate your generated *.tlb
file, you need to register the COM type information using regasm.exe.

Deploying the .NET Assembly

At this point, the DotNetMathServer.dll has been expressed in terms of COM type
information and registered with COM. You now have one final task before you are
able to build a set of COM clients. As you have seen, the value assigned to
HKCR\CLSID\{<guid>}\InProcServer32 is not the name of the .NET assembly, but
mscoree.dll. When a COM client activates a registered .NET type, the following
steps occur:

Chapter 10

582

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 582

1. The COM runtime resolves the CLSID of the type.

2. The COM runtime reads the value listed under \InProcServer32
(mscoree.dll).

3. The value specified by the Class listing is passed into mscoree.dll.

4. The .NET runtime then searches for the assembly as expected (see
Chapter 4).

Given the flow of events, you should be aware that the .NET assembly could
be deployed as a private assembly (in which case it will need to be located in the
application directory), as a shared assembly (in which case it will need to be
strongly named and placed in the GAC), or at an arbitrary location via a specified
codebase. Note that once the .NET runtime takes over, it will make use of its own
brand of assembly resolution heuristics. Thus, if you wish to make use of XML
configuration files, you are free to do so.

The truth is that the most common way to deploy a COM-aware .NET
assembly is to assign it a strong name and install it in the GAC. Given this, let’s
assume you have a valid *.snk file and have placed the DotNetMathServer.dll into
the GAC (Figure 10-14).

Figure 10-14. .NET assemblies used by COM are typically deployed as shared
binaries.

COM-to-.NET Interoperability—The Basics

583

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 583

Leveraging the Visual Studio .NET IDE

At this point in the chapter, you have seen how to make use of two key command
line tools (tlbexp.exe and regasm.exe) that you must employ when exposing a
.NET assembly to COM clients. While running regasm.exe (typically using the /tlb
flag) is not that difficult, do be aware that Visual Studio .NET provides some IDE
support that will run regasm.exe automatically.

If you activate the Properties window for your current project and select the
Configuration Properties | Build node from the tree view, you will find an option
named Register for COM Interop (which is disabled by default). If you enable this
setting, each time you build the .NET code library, regasm.exe is run automatically
with the following set of flags:

regasm.exe yourDotNetAsm.dll / tlb /codebase

One potential problem with the support offered by VS .NET is the /codebase
flag cannot be omitted. As mentioned earlier in this chapter, this flag will add a
CodeBase value under the InprocServer32 subdirectory for each class type that
will point to the arbitrary location of your .NET *.dll. The good news is, if you later
place this assembly into the GAC (as you should), mscoree.dll will continue to
probe for the assembly even if the value specified by the /codebase flag is out of
sync. Given this, it is safe to regard the CodeBase value as a “hint” to the runtime
where it should begin its search (rather than an indisputable fact).

In any case, if you are building a .NET assembly that you intend to be used by
classic COM clients, this IDE setting can help reduce the number of manual steps
you must perform during the development cycle.

Building a Visual Basic 6.0 COM Client

To see the consumption of a .NET type from a COM client, begin with Visual Basic
6.0. Assume you have a new Standard EXE application. The first task is to set a
reference to the COM *.tlb file created a la regasm.exe (recall you specified
a unique description for your IDL library, as seen in Figure 10-15).

Chapter 10

584

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 584

Figure 10-15. Referencing your .NET assembly via VB 6.0

The UI of the main form will simply allow the user to add two numbers
(Figure 10-16).

Figure 10-16. The simple GUI

COM-to-.NET Interoperability—The Basics

585

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 585

The code behind this form is identical to the process of accessing a traditional
COM type, courtesy of the CCW:

Option Explicit

Private c As DotNetCalc

Private Sub btnAdd_Click()

txtAnswer.Text = c.Add(txtNumb1.Text, txtNumb2.Text)

End Sub

Private Sub btnSub_Click()

txtAnswer.Text = c.Subtract(txtNumb1.Text, txtNumb2.Text)

End Sub

Private Sub Form_Load()

Set c = New DotNetCalc

End Sub

Of course, if you wish to add two VB 6.0 Doubles, you would be able to call the
generated Add_2() method (as suggested in Figure 10-17).

Figure 10-17. The overloaded Add() method and friends

Interacting with Mscorlib.tlb

Recall that all generated COM *.tlb files will have an importlib() statement that
references the COM type information describing mscorlib.dll. A COM client (such
as VB 6.0) is therefore able to interact with predefined .NET types. If you wish to do
so from a VB 6.0 COM client, your first step is to set a reference to the preregistered
Common Language Runtime Library COM type information (Figure 10-18).

Chapter 10

586

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 586

Figure 10-18. Referencing mscorlib.tlb

Now that you have an unmanaged definition of the System.Type class, let’s
trigger some of the inherited members of System.Object. Assume your VB 6.0 form
has an additional Button widget that performs the following logic:

Private Sub btnObj_Click()

' Call ToString property / GetHashCode()

MsgBox c.ToString, , "ToString() says..."

Dim s As String

Dim t As mscorlib.Type

Set t = c.GetType()

MsgBox c.GetHashCode(), , "GetHashCode() says..."

' Get some stats about the DotNetCalc.

s = "Is this a COM object? : " & t.IsCOMObject & vbLf

s = s + "Assembly stats? : " & t.Assembly.FullName & vbLf

s = s + "Is this a Class? : " & t.IsClass & vbLf

s = s + "Base type? : " & t.BaseType.FullName & vbLf

s = s + "Abstract class? : " & t.IsAbstract & vbLf & vbLf

' List all methods of the DotNetCalc class.

Dim mi() As MethodInfo

mi = t.GetMethods_2()

Dim i As Integer

For i = 0 To UBound(mi)

s = s + "Method " & i & ": " & mi(i).Name & vbLf

Next

MsgBox s, , "Select info ala System.Type"

End Sub

COM-to-.NET Interoperability—The Basics

587

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 587

The final message box can been seen in Figure 10-19.

Figure 10-19. Accessing System.Type from a COM client

This logic echoes the same managed reflection logic discussed in Chapter 5.
Notice, for example, that you are able to obtain an array of MethodInfo types that
can be interrogated by a given COM client. Also note that you are able to investi-
gate the details of the .NET assembly that contains the native DotNetCalc class
type.

Understand that you are able to access ToString() and GetHashCode() directly
from an instance of DotNetCalc because you defined an AutoDual class interface.
If you define an empty class interface (ClassInterfaceType.None) or a raw dispin-
terface (ClassInterfaceType.AutoDispatch), you will need to explicitly query for
_Object (represented in VB 6.0 as an mscorlib.Object data type).

' Using the explicit DotNetCalcWithInterface type.

Private Sub btnSolid_Click()

Dim objItf As mscorlib.Object

Dim c As DotNetCalcWithInterface

Set c = New DotNetCalcWithInterface

MsgBox c.Add(100, 43), , "Adding 100 + 43"

' Get _Object.

Set objItf = c

MsgBox objItf.ToString(), , "My fully qualified name..."

End Sub

On a final VB 6.0–centric note, understand that if you were to deploy a given
.NET assembly as a private assembly for use by a given VB 6.0 COM client, the
incorrect way to do so is to place the *.dll in the directory of the current VB project.

Chapter 10

588

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 588

If you do so and run the application, you will receive a load type exception. The
reason is that during development, VB 6.0 considers the active application direc-
tory to be the directory containing VB6.exe! You could circumvent this problem by
compiling the VB client and running the compiled application from the Windows
Explorer. However, it will be far simpler to place the .NET type into the GAC.

CODE The Vb6DotNetMathClient application can be found under the
Chapter 10 subdirectory.

Building a C++ COM Client

When you wish to access a .NET type from a C++ COM client, you need to under-
stand that the tlbexp.exe and regasm.exe command line utilities do not trigger the
classic COM midl.exe compiler. Therefore, you are not provided with an *_i.c or *.h
file that describes the .NET types in terms of C++. Therefore, your only option is to
either (a) copy the IDL from oleview.exe and run the midl.exe compiler directly
(yuck) or (b) make use of the Visual C++ #import directive (see Chapter 3). This
being said, consider the following C++ COM client that is making use of the
DotNetCalcWithInterface type:

#include "stdafx.h"

#include <iostream.h>

// For ATL conversion macros.

#include <atlbase.h>

#include <atlconv.h>

// Adjust your paths accordingly!

#import "C:\WinNT\Microsoft.NET\Framework\v1.0.3617\mscorlib.tlb" \

no_namespace named_guids

#import "C:\ DotNetMathServer.tlb" \

no_namespace named_guids

int main(int argc, char* argv[])

{

CoInitialize(NULL);

USES_CONVERSION;

IBasicMathPtr pBM(__uuidof(DotNetCalcWithInterface));

cout << "50 + 50 is: " << pBM->Add(50, 50) << endl;

COM-to-.NET Interoperability—The Basics

589

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 589

// Use _Object interface.

_ObjectPtr ptrObj = pBM;

cout << "ToString vlaue: " << W2A(ptrObj->ToString) << endl;

cout << "Hash vlaue: " << ptrObj->GetHashCode() << endl;

_TypePtr ptrType = ptrObj->GetType();

cout << "Base Type of _Object: "

<< W2A(ptrType->BaseType->FullName) << endl;

pBM = NULL;

ptrType = NULL;

ptrObj = NULL;

CoUninitialize();

return 0;

}

The output can be seen in Figure 10-20.

Figure 10-20. Accessing a .NET assembly from a C++ COM client

CODE The CppDotNetClient application can be found under the
Chapter 10 subdirectory.

Building a VBScript COM Client

As you may recall, the CCW will simulate the IDispatch interface to allow the COM
client to interact with the type using late binding. Although you could quite easily
call the VB 6.0 CreateObject() function or query for IID_IDispatch from C++, let’s
check out how to access the DotNetCalc type using VBScript. Assume you have
created a new *.htm file and authored the following VBScript code:

Chapter 10

590

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 590

<HTML>

<HEAD>

<TITLE>HTML code making use of .NET!</TITLE>

</HEAD>

<BODY>

<!-- A bit of late binding -->

<SCRIPT language = VBScript>

dim calcObj

Set calcObj = CreateObject("DotNetMathServer.DotNetCalc")

MsgBox calcObj.Add(10, 10)

MsgBox calcObj.Subtract(50, 900)

MsgBox calcObj.Add_2(20.3, 44.9)

</Script>

</BODY>

</HTML>

If you open this HTML file from IE, you will first be presented with the
dreaded “safe for scripting” error dialog box. To mark your .NET assemblies safe
for scripting, you would need to add the correct registration entries to the system
registry. Chapter 12 examines the process of interacting with the registration of a
.NET assembly. However, once you dismiss the warning dialog box, three message
boxes pop up displaying the results of your scripting logic.

CODE The DotNetCalcScriptClient.htm file is located under the
VBScript Client subdirectory.

Summary

When you wish to build a .NET assembly that will be accessed by a classic COM
client, you have two major options. On the simple end of the spectrum, you just
expose all public members as a class interface and walk away. However, on the
other end of the spectrum, you need to take the preferred approach and adorn
your .NET types with various interop-centric attributes (Guid, Dispid, ComVisible,
and so on).

As you have seen, once your .NET assembly has been constructed with the
appropriate .NET attributes, you are required to generate COM type information
(using tlbexp.exe or regasm.exe) as well as register the assembly for use by COM.
As far as deployment of the assembly, you will find that installing the .NET binary
into the GAC is the simplest option.

COM-to-.NET Interoperability—The Basics

591

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 591

Finally, when building COM clients using your language of choice (VB 6.0,
C++, VBScript), the process will look identical to that of accessing and manipu-
lating a native COM coclass. As an interesting byproduct, also recall that
mscorlib.dll (as well as other core .NET assemblies) already have a corresponding
*.tlb that you are able to leverage from a COM client.

So then! At this point you should feel comfortable with the process of building
.NET types that are COM aware. The next chapter builds on your foundation by
examining how to expose .NET events and collections to COM clients (as well as
additional advanced COM-to-.NET interop details).

Chapter 10

592

*0112_Ch10_CMP2.qxp 3/23/02 8:53 AM Page 592

CHAPTER 11

COM-to-.NET
Interoperability—
Intermediate Topics

In the previous chapter you were presented with the key tidbits of information
required to expose a .NET type to COM. In this chapter, you build on these
basics and examine how to expose .NET enumerations and custom UDTs
(System.ValueTypes) to unmanaged COM clients. As well, this chapter examines
how more elaborate .NET patterns, such as delegates, collections, and custom
exceptions, are mapped into terms of classic COM. You wrap up by examining
further details of exposing .NET interfaces and interface hierarchies to unman-
aged COM clients.

Do note that many of these examples make use of the dreaded “class inter-
face” to expose the COM-visible members of a .NET class to a COM client. The
reason is simply to minimize the length of the code samples and focus squarely on
the .COM-to-.NET translation at hand.

Converting .NET Enums to COM Enums

The previous chapter illustrated how .NET class types and stand-alone .NET inter-
face types are mapped into terms of classic COM. As you recall from Chapter 6, the
.NET type system also supports custom enumerations, structures, and delegates
in addition to classes and interfaces. Given this, your initial task in this chapter is
to check out how .NET enumerations map into COM IDL. Assume you have a new
C# class library (DotNetEnumServer) that defines a custom enumeration that is
manipulated by an appropriate class type:

593

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 593

namespace DotNetEnumServer

{

public enum CarMake

{BMW, Dodge, Saab, VW, Yugo}

[ClassInterface(ClassInterfaceType.AutoDual)]

[Guid("F64F79EA-DF4C-48d3-97AF-534A7F197EDD")]

public class Car

{

public Car(){}

private CarMake mCarMake = CarMake.BMW;

public CarMake CarMake

{

get{return mCarMake;}

set{mCarMake = value;}

}

}

}

When you run this .NET assembly through the regasm.exe (specifying the
/tlb flag) or tlbexp.exe utility, you find that .NET enums map quite naturally to
COM IDL:

typedef [uuid(FE6915B0-B42D-346C-BCE4-12EBE64D29A0), version(1.0),

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"DotNetEnumServer.CarMake")]

enum {

CarMake_BMW = 0,

CarMake_Dodge = 1,

CarMake_Saab = 2,

CarMake_VW = 3,

CarMake_Yugo = 4

} CarMake;

Notice that the naming convention used to specify the IDL enumeration
entails prefixing the name of the .NET enumeration (CarMake_) to each discrete
value (Yugo). Also notice how each member of the CarMake enumeration has
been assigned a default numerical value (zero-based). Under .NET, you have the
option to assign alternative numerical values to each individual field (if you do
not, .NET field values also begin at zero and follow an n+1 incrementation):

public enum CarMake

{

BMW = 10, Dodge = 20,

Saab = 30, VW = 40,

Yugo = 0

}

Chapter 11

594

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 594

If you examine the resulting COM IDL, you find that the custom values of each
field have been accounted for:

enum {

CarMake_BMW = 10,

CarMake_Dodge = 20,

CarMake_Saab = 30,

CarMake_VW = 40,

CarMake_Yugo = 0

} CarMake;

Regardless of how you configure the numerical values of the enum’s members,
COM interface methods that make use of the enum type look identical to those of
a native COM enumeration. Consider the following (partial) class interface defini-
tion for the current Car type:

interface _Car : IDispatch {

…

[id(0x60020004), propget]

HRESULT CarMake([out, retval] CarMake* pRetVal);

[id(0x60020004), propput]

HRESULT CarMake([in] CarMake pRetVal);

};

Given this, a VB 6.0 COM client would be able to make use of this enumeration
as follows:

Private Sub btnUseEnum_Click()

' The Car type.

Dim c As Car

Set c = New Car

' Set and get the car make.

c.CarMake = CarMake_Yugo

MsgBox c.CarMake

' Make use of a CarMake variable.

Dim e As CarMake

e = CarMake_BMW

c.CarMake = e

MsgBox c.CarMake

End Sub

Altering the Underlying Field Storage

Recall that .NET enumerations allow you to specify an alternative storage type for
the contained values. By default, all .NET enumerations use a System.Int32 type.
If, however, you wish to specify System.Byte as the underlying storage, you are
able to write:

COM-to-.NET Interoperability—Intermediate Topics

595

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 595

public enum CarMake : byte

{

BMW = 10, Dodge = 20,

Saab = 30, VW = 40,

Yugo = 0

}

If you refresh the COM IDL, you see that the IDL definition of the CarMake
enum is identical to the previous definition. In fact, you will not find any trace of
the byte storage, as COM enumerations always use a 32-bit storage type (in fact, if
the underlying storage/values are set to a type larger than a System.Int32,
tlbexp.exe/regasm.exe issues a processing error).

However, if you now to look at the CarMake property of the Car class, you find
that the [in] and [out, retval] data types are no longer a strongly typed CarMake
enumeration, but rather (surprise, surprise) an unsigned char (the unmanaged
equivalent of System.Byte):

interface _Car : IDispatch {

…

[id(0x60020004), propget]

HRESULT CarMake([out, retval] unsigned char* pRetVal);

[id(0x60020004), propput]

HRESULT CarMake([in] unsigned char pRetVal);

};

Luckily, this does not demand a reconfiguration of the VB 6.0 client. Thus,
although the unsigned char has been mapped into a VB 6.0 Byte (Figure 11-1) you
are able to program against the Car.CarMake property in the same way.

Figure 11-1. Realizing the underlying enum type

Chapter 11

596

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 596

Leveraging System.Enum?

Recall that all .NET enumerations alias the System.Enum base class type. Using
various static members (such as Parse(), GetNames(), and so forth) managed
clients are able to extract relevant details of the underlying enumeration. In
addition, all .NET enumerations inherit the virtual members of System.Object.
For example, under .NET, you are able to extract the underlying name of an
enumeration type using ToString() as follows:

// C# client code.

CarMake m = CarMake.BMW;

Console.WriteLine("Make is: {0}", m.ToString());

However, as you have already learned from the previous chapter, static
members are never published to a COM type library. Furthermore, notice that the
virtual object-level members of System.Enum (such as ToString()) are not present
in the COM IDL because COM enumerations are represented as simple
name/value pairs. Thus, if you examine the DotNetEnumServer.dll from the
VB 6.0 Object Browser, you will find what you see in Figure 11-2.

Figure 11-2. .NET enumerations are mapped to COM as simple name/value pairs.

So, given that static members cannot be expressed into COM IDL, you have no
practical way to interact with the members of System.Enum from an unmanaged
COM client. However, you are able to send an unmanaged enum back to a .NET
type to leverage the managed functionality:

[ClassInterface(ClassInterfaceType.AutoDual)]

[Guid("F64F79EA-DF4C-48d3-97AF-534A7F197EDD")]

public class Car

{

COM-to-.NET Interoperability—Intermediate Topics

597

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 597

…

public void DisplayCarMake(CarMake car)

{

MessageBox.Show(car.ToString(), "This car is a:");

}

}

Given this new method, you are able to send in an unmanaged CarMake to
the DisplayCarMake() method, as the CCW automatically converts the raw IDL
enumeration into a type referring to System.Enum (Figure 11-3 shows a possible
output).

Figure 11-3. Identifying the COM enum

CODE The DotNetEnumServer and Vb6EnumClient projects are
included under the Chapter 11 subdirectory.

Converting .NET Structures to COM Structures

As you learned in Chapter 6, the .NET Framework makes a clear distinction
between value type (stack-based) and reference type (heap-based) entities. When
you wish to create a custom .NET value type, you make use of the C# struct or the
VB .NET Structure keyword. For example, assume you want to build a C# structure
that describes a simple (x, y) coordinate:

// .NET structures always derive from System.ValueType.

public struct MYPOINT

{

public int xPos;

public int yPos;

}

Chapter 11

598

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 598

As you may expect, the resulting IDL is as follows:

typedef [uuid(CBEFC9B8-7A1F-34FE-BBE8-EFFC9DE89F0C), version(1.0),

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9}, "DotNetStructServer.MYPOINT")

]

struct tagMYPOINT {

long xPos;

long yPos;

} MYPOINT;

Recall that under the .NET Framework, it is perfectly legal to define structures
that support any number of events, properties, and methods (as well as some
set of implemented interfaces). Understand, however, that when tlbexp.exe
encounters a System.ValueType-derived type, these members are stripped from
the IDL definition. Thus, if you update the POINT structure with the following
functionality:

public struct MYPOINT

{

// These are now private!

private int xPos;

private int yPos;

// Add some members to the MYPOINT struct.

public void SetPoint(int x, int y)

{ xPos = x; yPos = y;}

public void DisplayPoint()

{MessageBox.Show(String.Format("X: {0} Y: {1}", xPos, yPos));}

}

the SetPoint() and DisplayPoint() members would be completely absent from the
COM type definition. Furthermore, also understand that all structure field data
(public or private) will be exported to COM IDL as public members (as COM
structures do not support encapsulation services):

struct tagMYPOINT {

long xPos;

long yPos;

} MYPOINT;

At this point, you may assume that all COM clients are able to make use of this
structure in a manner identical to a native COM structure. Well, you are partially
correct. For example, if you load this type library into a new VB 6.0 project work-
space and check out the Object Browser (Figure 11-4) things appear to be going
well on the surface.

COM-to-.NET Interoperability—Intermediate Topics

599

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 599

Figure 11-4. .NET UDTs map directly to COM IDL structures.

But assume that the C# code library also defines a class with members that
manipulate the MYPOINT type:

[ClassInterface(ClassInterfaceType.AutoDual)]

public class StructUser

{

public StructUser(){}

// Pass in a MYPOINT.

public void DisplayPointInfo(MYPOINT pt)

{

pt.PrintPoint();

}

// Return a MYPOINT.

public MYPOINT PointFactory()

{

MYPOINT pt = new MYPOINT();

pt.SetPoint(100, 8);

return pt;

}

}

The IDL definition also seems to indicate that the MYPOINT structure is ready
for manipulation:

interface _StructUser : IDispatch {

…

[id(0x60020004)]

HRESULT DisplayPointInfo([in] MYPOINT pt);

[id(0x60020005)]

HRESULT PointFactory([out, retval] MYPOINT* pRetVal);

};

Chapter 11

600

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 600

Now, assume your VB 6.0 COM client wishes to obtain a new MYPOINT via the
PointFactory() member (in response to a given Button click):

Private Sub btnStructMe_Click()

Dim pt As MYPOINT

Dim o As StructUser

Set o = New StructUser

pt = o.PointFactory()

MsgBox "X: " & pt.xPos & " Y: " & pt.yPos, , "The MYPOINT is:"

End Sub

The good news is that you are indeed returned a new, properly configured
MYPOINT type, as shown in Figure 11-5.

Figure 11-5. Receiving a .NET structure

However, what if the VB 6.0 COM client wishes to send in a MYPOINT
structure to the managed DisplayPointInfo() method as follows:

Private Sub btnUseStruct_Click()

Dim pt As MYPOINT

pt.xPos = 99

pt.yPos = 8

Dim o As StructUser

Set o = New StructUser

o. DisplayPointInfo pt

End Sub

Sadly, during compilation VB 6.0 issues the error you see in Figure 11-6.

Figure 11-6. VB 6.0 does not allow structures to be passed by value.

COM-to-.NET Interoperability—Intermediate Topics

601

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 601

Given what you already know of COM IDL, this error should indicate that
tlbexp.exe has defined the MYPOINT parameter of the DisplayPointInfo() method
as an [in] parameter. Indeed this is the case:

// The MYPOINT was passed by value to

// the DisplayPointInfo() method.

HRESULT DisplayPointInfo([in] MYPOINT pt);

Understand right here and now that Visual Basic 6.0 has never been able
to handle passing user-defined types (aka structures) by value, and this
inconvenience has nothing to do with .NET-to-COM interoperability.

To rectify the problem, you are forced to return to the C# implementation
of DisplayPointInfo() and pass the MYPOINT by reference as follows:

// Pass by ref to attempt to appease VB 6.0.

public void DisplayPointInfo(ref MYPOINT pt)

{

pt.PrintPoint();

}

With this update, you are able to find the correct IDL definition of the
DisplayPointInfo() method:

// This looks better…

HRESULT DisplayPointInfo([in, out] MYPOINT* pt);

which will appease VB 6.0 just fine (as shown in Figure 11-7).

Figure 11-7. Passing a structure (by reference)

So then, here is the golden rule: When you build a .NET method that takes a
.NET structure type, it must be passed by reference if it is to be called by a VB 6.0
COM client. Again, this limitation of VB 6.0 was present long before the release of
.NET. As you might guess, C++ clients are not restricted by this limitation.

Chapter 11

602

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 602

Exposing a .NET Structure As an IDL Union

The final topic regarding exposing .NET structures to COM has to do with the
StructLayout attribute. Recall from Chapter 1 that a .NET structure can be
configured as LayoutKind.Auto, LayoutKind.Sequential, or LayoutKind.Explicit.
Typically, you do not need to adorn your .NET structures with the StructLayout
attribute in the first place, given that the marshaler will always translate a struc-
ture exactly as defined in the .NET type. It is interesting, however, to know that if
you define a .NET structure as LayoutKind.Explicit, it is possible to produce an
IDL union! The one caveat is that each member must have an offset of zero. For
example, the following C# structure:

[StructLayout(LayoutKind.Explicit)]

public struct MyUnion

{

[FieldOffset(0)] int a;

[FieldOffset(0)] int b;

}

maps to the following IDL definition:

typedef [uuid(4F617950-2D1D-3235-B1A2-79B40C310799), version(1.0),

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9}, "DotNetStructServer.MyUnion")

]

union tagMyUnion {

long a;

long b;

} MyUnion;

Understand that COM unions are not [oleautomation]-compliant, and thus
can really only be used by a C or C++ COM client. Given this, you seldom need to
expose a .NET structure as LayoutKind.Explicit (unless you know for sure the only
COM client that will ever use the exported is of the C[++] variety).
LayoutKind.Auto is never an acceptable way to configure a .NET structure exposed
to COM, given that the runtime reserves the right to reorder the discrete fields as it
sees fit (which would be an obvious problem for COM).

CODE The DotNetStructServer and VbStructClient projects are both
included under the Chapter 11 subdirectory.

COM-to-.NET Interoperability—Intermediate Topics

603

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 603

Converting .NET Delegates to COM Connection Points

.NET class types can support any number of events, which, as you recall, are
defined in conjunction with a particular delegate type. Assume that you have
created a C# class that defines and fires a single event as follows:

namespace DotNetEventServer

{

public class DotNetEventSender

{

public DotNetEventSender(){}

public delegate void MyEventTarget(string msg);

public event MyEventTarget TheEvent;

public void FireTheEvent()

{

TheEvent("Hello from the DotNetEventSender");

}

}

}

The question is, how can this class type expose the TheEvent event in terms of
COM connection points? To understand the solution to this dilemma, recall what a
COM client must do when it wants to link to a given COM event source:

• The COM client must implement the server’s event interface in a given sink
object.

• The COM client must be able to determine which event interface the
coclass can make calls on and pass the correct sink reference to the
connectable COM object.

Both of these requirements can be expressed in terms of COM IDL. Recall that
a COM event interface is typically defined in terms of IDL as a raw dispinterface.
In fact, if you want to ensure that VB 6.0 and scripting clients can intercept
incoming COM events, the event interface must be defined as a raw dispinterface
([dual] or IUnknown-derived interfaces will not be accessible by VB 6.0/script
clients). Also recall that the supporting coclass marks its support for an event
interface using the IDL [source] keyword. As you would guess, there are specific
attributes that can be applied to a .NET class type to correctly configure the
underlying IDL. In a nutshell, .NET programmers must perform two key steps
when they wish to expose .NET events as COM connection points:

• First, define a managed interface that represents the raw event
dispinterface.

Chapter 11

604

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 604

• Second, map the event interface to a given .NET class type using the
ComSourceInterfaces attribute type.

Creating the Event Interface

Creating the COM event interface is quite straightforward. Begin by building a
managed interface (using the ComInterfaceAttribute type) that defines the set of
methods that are to be implemented by the client-side sink. (In keeping with COM
naming conventions, I have defined the event interface to take a _D prefix, but this
is not mandatory.)

Also, be aware that you should always explicitly assign DISPIDs to each
member of the event interface (each of which must be greater than zero). The
reason again has to do with VB 6.0 compatibility. Given that a VB 6.0 COM client
may choose to handle a subset of event members (rather than all members), VB
6.0 must be able to identify the correct DISPID at runtime to invoke the correct
event handler. If you do not define explicit DISPIDs for each member of your
event interface, the VB 6.0 COM client must implement each and every member,
or else the VB runtime will return a failed HRESULT (DISP_E_UNKNOWNNAME)!
The short answer is, always provide unique DISPIDs for your event interfaces if
you expect them to be consumed correctly by a VB COM client. That being said,
here is your event interface:

// This is the name of the event interface to be

// implemented by the client-side sink.

[InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]

[Guid("3289316F-0B19-44f1-B33B-8673D6FAF057")]

public interface _DEventInterface

{

[DispId(1)] void TheEvent(string msg);

}

When the type library is generated using tlbexp.exe, you will find that your
managed interface is expressed in terms of COM IDL as follows:

[

uuid(3289316F-0B19-44F1-B33B-8673D6FAF057),

version(1.0),

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"DotNetEventServer._DEventInterface")]

dispinterface _DEventInterface

{

properties:

methods:

[id(0x60020000)]

void TheEvent([in] BSTR msg);

};

COM-to-.NET Interoperability—Intermediate Topics

605

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 605

Understand again that the purpose of defining this interface is to provide the
COM client with an interface to implement in a given client-side sink object.
Therefore, this interface never needs to be implemented by a .NET type. However,
you make use of this interface by name when you mark it as a [source] interface of
a given .NET type.

Specifying the Event Interfaces
(a la ComSourceInterfacesAttribute)
When you wish to mark a particular interface as a [source] interface for a given
.NET class, you make use of the ComSourceInterfaces attribute (yes, it is plural).
For example, if you wish to associate _DEventInterface as a [source] for the
DotNetEventSender, you can update the definition as follows (also note that you
have marked the managed delegate as COM-invisible, as the COM client could
care less about this type):

// The DotNetEventSender .NET class defines

// DEventInterface as the [default, source].

[ComSourceInterfaces(typeof(_DEventInterface))]

[ClassInterface(ClassInterfaceType.AutoDual)]

[Guid("24F279CB-D9BA-4ca4-95CD-2F2338443088")]

public class DotNetEventSender

{

public DotNetEventSender(){}

// No need to show this delegate to COM

[ComVisible(false)]

public delegate void MyEventTarget(string msg);

public event MyEventTarget TheEvent;

public void FireTheEvent()

{

TheEvent("Hello from the DotNetEventSender");

}

}

Do note that the ComSourceInterfaces attribute also supplies a constructor
that allows you to identify the name of the event interface as a string name. In any
case, given this update, you find the resulting IDL definition:

[

uuid(24F279CB-D9BA-4CA4-95CD-2F2338443088),

version(1.0),

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"DotNetEventServer.DotNetEventSender")

]

coclass DotNetEventSender {

[default] interface _DotNetEventSender;

interface _Object;

[default, source] dispinterface _DEventInterface;

};

Chapter 11

606

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 606

Establishing Multiple [source] Interfaces

As the name of the ComEventInterfaces attribute suggests, you are able to define
multiple [source] interfaces for a single .NET class type (just as you can in classic
COM). However, recall that this is seldom done, as the only COM-aware language
that is able to communicate the [source] interfaces beyond the [default, source] is
C++. Given this fact, you will tend to interact with the ComEventInterfaces
attribute as seen previously (by specifying the type of a single event interface).
Nevertheless, if you do need to expose multiple [source] interfaces from a single
.NET class type, you can specify up to five event interfaces using the following
overloaded constructor:

[InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]

[Guid("FEBB2E08-7F6D-415d-AD90-B8C4C03A7B4B")]

public interface _DEventInterfaceOne

{[DispId(1)] void EventA ();}

[InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]

[Guid("5941D9A2-1149-4daf-88EA-EB5B04B9B85B")]

public interface _DEventInterfaceTwo

{[DispId(1)] void EventB ();}

[InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]

[Guid("333E8C06-04AC-4677-8AE2-3AAEF2E046DC")]

public interface _DEventInterfaceThree

{[DispId(1)] void EventC ();}

[ComSourceInterfaces(typeof(_DEventInterfaceOne),

typeof(_DEventInterfaceTwo),

typeof(_DEventInterfaceThree))]

[ClassInterface(ClassInterfaceType.AutoDual)]

[Guid("58E48229-9FFF-42fb-B987-8096B27B6B19")]

public class DotNetMultiEventSourceClass

{

public DotNetMultiEventSourceClass(){}

[ComVisible(false)]

public delegate void MyEventTarget();

public event MyEventTarget EventA;

public event MyEventTarget EventB;

public event MyEventTarget EventC;

// Fire events in various methods...

}

COM-to-.NET Interoperability—Intermediate Topics

607

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 607

This would result in an unmanaged definition of each event interface, as well
as the following coclass statement (note that the first listed interface functions as
the [default] source interface):

[

uuid(58E48229-9FFF-42FB-B987-8096B27B6B19),

version(1.0),

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"DotNetEventServer.DotNetMultiEventSourceClass")

]

coclass DotNetMultiEventSourceClass {

[default] interface _DotNetMultiEventSourceClass;

interface _Object;

[default, source] dispinterface _DEventInterfaceOne;

[source] dispinterface _DEventInterfaceTwo;

[source] dispinterface _DEventInterfaceThree;

};

CODE The DotNetEventServer project is included under the Chapter 11
subdirectory.

Building a .NET Event Server Using VB .NET

Although I have chosen to make use of C# almost exclusively during the creation
of the example .NET code libraries, it is worth pointing out how to expose .NET
events from the VB .NET programming language. Reason? Using the Event and
RaiseEvent keywords, a VB .NET programmer is able to avoid the process of manu-
ally defining a managed delegate (and thus make the whole process of defining
class events a wee bit easier). That being said, here is the VB .NET equivalent of the
previous C# DotNetEventServer project:

Imports System.Runtime.InteropServices

' This is the name of the event interface to be generated.

<InterfaceType(ComInterfaceType.InterfaceIsIDispatch), _

Guid("68E53BB4-48F9-45cc-96C6-72033295E26A")> _

Public Interface _DEventInterface

<DispId(1)> Sub TheEvent(ByVal msg As String)

End Interface

Chapter 11

608

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 608

<ClassInterface(ClassInterfaceType.AutoDual), _

Guid("7D6A1F10-0224-4fbf-8C17-B7A4B707372A"), _

ComSourceInterfaces(GetType(_DEventInterface))> _

Public Class VbDotNetEventSender

Public Event TheEvent(ByVal msg As String)

Public Sub FireTheEvent()

RaiseEvent TheEvent("Hello from the DotNetEventSender")

End Sub

End Class

Notice that the VB .NET Event keyword automatically generates and associ-
ates a related delegate behind the curtains. Beyond this one simplification, the
process of applying the ComSourceInterfaces attribute is the same. And, of course,
the generated COM IDL definitions are identical to the IDL generated from the
previous C# code base.

CODE The VbDotNetEventServer project is included under the Chapter
11 subdirectory.

Building a Visual Basic 6.0 Event Client

When the runtime creates the related CCW for a .NET event source, it takes
care of the nasty details of mapping .NET delegates to COM connection points.
To prove the fact, if you deploy the DotNetEventServer as a shared assembly
and investigate the type using oleview.exe, you see that the CCW simulates the
IConnectionPointContainer interface automatically (Figure 11-8).

Figure 11-8. .NET delegates are mapped into COM connection points.

COM-to-.NET Interoperability—Intermediate Topics

609

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 609

Using IConnectionPointContainer, a C++ client is able to manually obtain a
given IConnectionPoint interface and call Advise() to pass in the sink object that
implements the correct [source] interface, and (eventually) receive the incoming
events. To keep things simple, let’s first build a VB 6.0 Standard EXE application
that handles the incoming event of the DotNetEventSouce type (VB will kindly
create the sink object on your behalf):

Option Explicit

Private WithEvents eventObj As DotNetEventSender

Private Sub btnDoIt_Click()

eventObj.FireTheEvent

End Sub

Private Sub eventObj_TheEvent(ByVal msg As String)

MsgBox msg, , "Message from event object"

End Sub

Private Sub Form_Load()

Set eventObj = New DotNetEventSender

End Sub

Not too much to say here. The VB 6.0 client, as always, begins the event-
handling process by declaring the type using the WithEvents keyword. At this
point, the IDE allows you to select the events from a given source using the drop-
down lists mounted atop the code window. Once you do, the event handler is
automatically written on your behalf (eventObj_TheEvent() in your case). Like
many VB COM endeavors, sinking with an event source is painfully simple (which
is a good thing). Next up, let’s see how to receive the incoming event notifications
from C++.

CODE The Vb6EventClient project is included under the Chapter 11
subdirectory.

Building a C++ Event Client

Building a C++ event client entails a lot of work (honest). The main reason is
because the C++ developer is in charge of manually building an event sink that
implements each and every member of the event interface (_DEventInterface).

Chapter 11

610

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 610

At first glance, you may wonder why this would be problematic, given that
_DEventInterface defines a single method:

[InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]

[Guid("3289316F-0B19-44f1-B33B-8673D6FAF057")]

public interface _DEventInterface

{

[DispId(1)]void TheEvent(string msg);

}

The key to the complexity is that most event interfaces are declared raw
dispinterfaces (thus the ComInterfaceType.InterfaceIsIDispatch interface configu-
ration), which means that the sink object is required to implement a grand total of
eight methods (that’s four from IDispatch, three from IUnknown, and [finally]
TheEvent() itself). Once the sink class has been created, the C++ developer is then
required to manually do the following:

• Query the type for IConnectionPointContainer (ICPC).

• Use the given ICPC interface to obtain the correct IConnectionPoint (ICP)
interface.

• Call Advise() on the given ICP interface, passing in a valid sink reference.

• Eventually call Unadvise() on the ICP interface to detach from the event
source.

While you can most certainly do such manual tasks by yourself, the chances
are quite good that you would rather make use of a C++ COM library (such as ATL)
to help with the mundane details. Given this assumption, let’s check out how to
build a simple C++ console application that makes use of various ATL helper
templates, types, and magic macros. Understand that this is not the place to dig
into each and every detail of the Active Template Library, so be sure to keep your
favorite reference manual close by if you require further details.

Building the Client-Side Sink

First up, you need to build the client-side sink object, which is in charge of imple-
menting the _DEventInterface event interface. Rather than contend with each
inherited member, you use the ATL helper template, IDispEventSimpleImpl<>,
and the related sink map (which simply routes the DISPID of a given event
method to a particular event handler). Also note that the constructor and
destructor of the sink object calls the inherited DispEventAdvise() and
DispEventUnadvise() methods to handle the connection to and disconnection

COM-to-.NET Interoperability—Intermediate Topics

611

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 611

from the event source. Sadly, the only real method of interest is OnTheEvent(),
which will be called by the .NET type when the custom TheEvent event is fired.
The rest of the sink is just the necessary grunge that is raw C++ COM.

// This mess describes the layout of the event handler,

// and is required by the ATL sink map.

_ATL_FUNC_INFO OnTheEventInfo =

{CC_STDCALL, VT_EMPTY, 1, {VT_BSTR}};

// The sink object implements the .NET _DEventInterface type.

class CEventSink : public IDispEventSimpleImpl<1, CEventSink,

&DIID__DEventInterface>

{

public:

BEGIN_SINK_MAP(CEventSink)

SINK_ENTRY_INFO(1, DIID__DEventInterface,

1, OnTheEvent, &OnTheEventInfo)

END_SINK_MAP()

void __stdcall OnTheEvent(BSTR msg)

{

USES_CONVERSION;

cout << "The message is: " << W2A(msg) << endl;

SysFreeString(msg);

}

// Set up advisory connection...

CEventSink(_DotNetEventSender* pObj)

{

pDotNetObject = pObj;

pDotNetObject->AddRef();

DispEventAdvise((IUnknown*)pDotNetObject);

}

// Detach from event source.

~CEventSink()

{

pDotNetObject->Release();

DispEventUnadvise((IUnknown*)pDotNetObject);

}

private:

_DotNetEventSender* pDotNetObject;

};

Now that you have the client-side event sink, the core logic is not too hard on
the eyes. Recall that when building a C++ COM client, you typically make use of

Chapter 11

612

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 612

the #import directive to obtain the required GUID constants. For a change of pace,
however, I have used the raw COM library (rather than the C++ smart pointers) to
(I hope) clarify what the C++ client is doing under the hood. That said, ponder the
following C++ COM to .NET main() function:

#include "stdafx.h"

#include <atlbase.h>

CComModule _Module; // Explained below…

#include <atlcom.h>

#include <iostream.h>

// ****Adjust import paths if needed!! **** //

// Note that the _Module type within mscorlib.tlb is renamed

// to _NETModule to avoid the ATL _Module variable.

#import "C:\WINDOWS\Microsoft.NET\Framework\v1.0.3617\mscorlib.tlb" \

no_namespace named_guids rename("_Module", "_NETModule")

#import "C:\ DotNetEventServer.tlb" \

no_namespace named_guids

int main(int argc, char* argv[])

{

USES_CONVERSION;

CoInitialize(NULL);

// Create the dot net class.

_DotNetEventSender *pDotNetEventSender = NULL;

CoCreateInstance(CLSID_DotNetEventSender, NULL, CLSCTX_SERVER,

IID__DotNetEventSender, (void**)&pDotNetEventSender);

// Make instance of the sink.

CEventSink theSink((_DotNetEventSender*)pDotNetEventSender);

// Trigger the event!!

pDotNetEventSender->FireTheEvent();

// COM clean up.

pDotNetEventSender->Release();

CoUninitialize();

return 0;

}

The main() function is straight C++ COM code. You begin by creating the
DotNetEventSender coclass (via CoCreateInstance()) and obtain a reference to
the [default] interface. Notice that when you create the sink object, you pass in
your reference to the [default] interface as a constructor parameter. As shown

COM-to-.NET Interoperability—Intermediate Topics

613

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 613

in the previous sink implementation logic, this pointer is passed into the
DispEventAdvise() method that automatically polls the object for
IConnectionPointContainer, obtains the correct IConnectionPoint interface, and
calls Advise() on your behalf.

The only other odd block of code is nestled within the myriad #includes. Note
that I have created a global instance of the ATL 3.0 helper class, CComModule,
which is named _Module. The reason for doing this is that the ATL framework
demands that every project making use of ATL types define a single instance of
CComModule that must be named _Module. Given this strict demand, the
renaming of the _Module type found in mscorlib.tlb to _NETModule can be found
in the second #import (if you are a VB 6.0 COM programmer, feel free to stop
laughing at any time . . .). Nevertheless, Figure 11-9 shows the result.

Figure 11-9. Receiving the .NET event from a C++ COM client

CODE The CppEventClient project is included under the Chapter 11
subdirectory.

Exposing Custom .NET Collections

Collections, in any architecture, are extremely helpful entities. When a
programmer creates a strongly typed collection, he or she typically makes use of
the containment/delegation model. The model is used to wrap and expose an
internal data structure that is responsible for holding the individual subitems.
Building such a container using C++/COM was a very painful and complex
process, as you were forced to contend with explicit IUnknown logic for each inner
item. Given this, many COM programmers made use of Visual Basic and the
intrinsic Collection or Dictionary types. Even with VB 6.0, however, some of the
COM grunge was exposed to the developer, such as the dreaded “set the method

Chapter 11

614

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 614

that returns the hidden IEnumVARIANT to DISPID –4” nonsense to ensure the
collection worked with VB’s For Each iteration.

Under .NET (regardless of your language of choice), the process of
building a custom collection is quite painless, given the types found in the
System.Collections namespace. To ensure that managed and unmanaged
languages can iterate over the contained subitems using For Each–like iteration
(foreach in C#, For Each in VB 6.0/VB .NET), programmers can simply implement
the System.Collections.IEnumerable interface. This interface defines a single
method (GetEnumerator()), which in fact returns IEnumerator to the caller.
Under the hood, the For Each syntaxes of the world call the members of
IEnumerator to pull over the internal types.

To ensure this method is recognized by VB 6.0’s For Each syntax, the IDL
definition of IEnumerable sets the DISPID of GetEnumerator() to the
mandatory –4 (0xfffffffc). Also note the .NET IEnumerable interface returned
from GetEnumerator() is represented as a COM IEnumVARIANT:

[

odl,

uuid(496B0ABE-CDEE-11D3-88E8-00902754C43A),

version(1.0), dual, oleautomation,

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"System.Collections.IEnumerable")

]

interface IEnumerable : IDispatch {

[id(0xfffffffc)]

HRESULT GetEnumerator([out, retval] IEnumVARIANT** pRetVal);

};

To illustrate the process of consuming a .NET custom collection from
an unmanaged COM client, assume you have a new C# code library named
DotNetCollection. As you would expect, you are going to build a custom
container that holds onto individual Car types:

[ClassInterface(ClassInterfaceType.AutoDual)]

[Guid("98B815E2-D3A8-455d-82EA-0D8F82D16CC8")]

public class Car

{

private string make;

private string color;

private string petName;

public Car(){}

public Car(string m, string c, string pn)

{ make = m; color = c; petName = pn;}

COM-to-.NET Interoperability—Intermediate Topics

615

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 615

public void SetCarState(string m, string c, string pn)

{ make = m; color = c; petName = pn;}

public string GetCarState()

{

return string.Format("Make: {0} Color: {1} PetName: {2}",

make, color, petName);

}

}

The container (CarCollection) uses a System.Collection.ArrayList type to hold
individual Cars. The public members of CarCollection provide a manner to insert,
remove, and obtain a given Car, as well as empty the internal ArrayList. Further-
more, CarCollection implements IEnumerable to ensure that the caller can use the
For Each–style traversal of the inner Car objects.

// This class implements IEnumerable.

[ClassInterface(ClassInterfaceType.AutoDual)]

[Guid("7802A4A0-9F7F-401a-B7A0-80B65DE2E107")]

public class CarCollection : IEnumerable

{

public CarCollection()

{

ar.Add(new Car("Ford", "Red", "Joe"));

ar.Add(new Car("BMW", "Silver", "Fred"));

ar.Add(new Car("Yugo", "Rust", "Clunker"));

}

// List of items.

private ArrayList ar = new ArrayList();

public IEnumerator GetEnumerator()

{return ar.GetEnumerator();}

public void AddCar(Car c)

{ar.Add(c);}

public void RemoveCar(int index)

{ar.RemoveAt(index);}

public void ClearCars()

{ar.Clear();}

}

Note that the constructor of the CarCollection automatically inserts three new
Car types into the container, just to give the COM client something to investigate.
Also notice how you can leverage the fact that the ArrayList type implements
IEnumerator and simply returns its canned support. Now, strongly name, compile,
register, and deploy this assembly into the GAC. Next up: a VB 6.0 client.

Chapter 11

616

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 616

CODE The DotNetCollection project can be found under the Chapter 11
subdirectory.

A VB 6.0 .NET Collection Client

Assuming you have a new Standard EXE project workspace (and have set a
reference to the COM type information describing the DotNetCollection types),
construct a simple GUI that allows the user to list each car in the collection as well
as add, remove, and clear the set of automobiles. Figure 11-10 shows one such UI.

Figure 11-10. The VB 6.0/.NET collection client GUI

Now, recall from the previous chapter that when a .NET type implements the
IEnumerable interface (and therefore returns access to IEnumerable), the CCW
simulates the COM equivalent, IEnumVARIANT. Although you do not see this
directly in the generated IDL, whenever a caller attempts to make use of For Each,
IEnumVARIANT is automatically requested by the COM runtime. The generated

COM-to-.NET Interoperability—Intermediate Topics

617

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 617

CCW intercepts this request and returns a simulated reference via the managed
IEnumerable interface. Thus, if the user clicks the List Cars button, you can
display the current list like this:

Option Explicit

Private coll As DotNetCollection.CarCollection

Private Sub Form_Load()

Set coll = New CarCollection

End Sub

Private Sub btnListCars_Click()

Dim s As String

Dim temp As Car

For Each temp In coll

s = s + temp.GetCarState() & vbLf

Next

MsgBox s, , "The Cars"

End Sub

Once you run the application, you are able to obtain the initial set of Car types
(Figure 11-11).

Figure 11-11. Iterating over the Car types

The code behind the remaining VB 6.0 Button types should be self-
explanatory:

' Insert a Car into the collection.

Private Sub btnAddCar_Click()

Dim c As New Car

c.SetCarState txtMake.Text, txtColor.Text, txtPetName.Text

coll.AddCar c

End Sub

' Clear out all cars.

Private Sub btnClearCars_Click()

coll.ClearCars

End Sub

Chapter 11

618

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 618

' Remove a specific Car.

Private Sub btnRemoveCar_Click()

On Error GoTo OOPS

coll.RemoveCar CInt(txtCarToRemove.Text)

Exit Sub

OOPS:

MsgBox Err.Description, , Err.Source

End Sub

CODE The Vb6CollectionClient project is included under the Chapter 11
subdirectory.

Exposing .NET Exceptions

If you were looking closely at the previous VB 6.0 client, you noticed that the
btnRemoveCar_Click() subroutine was making use of standard VB 6.0–style error
handling (ick) to trap any errors that might occur during the removal of a Car type.
This brings up the obvious question of how a .NET object is able to return error
information to the COM caller. As you learned previously in this text, COM error
objects allow COM parties to send and receive rich error information using a small
set of COM interfaces (ISupportErrorInfo, IcreateErrorInfo, and IErrorInfo). Under
.NET of course, these interfaces are seen as legacies, and in their place you have
strongly typed exception objects.

Recall that all .NET exceptions are indeed objects, which derive from the
System.Exception base class. And as you would expect, the CCW automatically
maps .NET exceptions in terms of COM error objects. For example, let’s return to
your existing DotNetCollection project and ponder the ArrayList.RemoveAt()
method that is triggered by CarCollection.RemoveCar():

public void RemoveCar(int index)

{ar.RemoveAt(index);}

As seen previously, the CarCollection type starts life with three internal
Car types. Now, what if the VB 6.0 client attempts to remove item number 777
from the container? The ArrayList.RemoveAt() method responds by throwing
an IndexOutOfRange exception to the caller, which is trapped by the VB 6.0
On Error Goto syntax. The result is seen in Figure 11-12.

COM-to-.NET Interoperability—Intermediate Topics

619

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 619

Figure 11-12. Trapping a .NET exception

As you can see, the IndexOutOfBounds exception thrown from
ArrayList.RemoveAt() contains a helpful text string (via
System.Exception.Message). This is mapped into IErrorInfo.GetDescription(),
which is expressed in terms of VB 6.0 as Err.Description (see Chapter 8 for a
complete mapping of System.Exception members to and from IErrorInfo
members).

Throwing Custom .NET Exceptions
Assume you want to equip the CarCollection.RemoveCar() method to throw out a
custom .NET exception, rather than using the prefabricated IndexOutOfRange
type. For example:

// Custom exceptions are of little
// use to COM, as they will be
// mapped into IErrorInfo equipped
// COM error object.
[ComVisible(false)]
public class BoneHeadUserException

: System.Exception
{

public override string Message
{

get { return "Hey bonehead, count your cars first!";}
}

}

public class CarCollection : IEnumerable
{

…
public void RemoveCar(int index)
{

try
{

ar.RemoveAt(index);
}
catch
{ throw new BoneHeadUserException();}

}
}

Chapter 11

620

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 620

Notice that you have explicitly prevented the custom COM exception from
being published into the COM type information, given that this is of little use to a
classic COM client. Beyond this one small design step, the remaining logic is
straightforward COM exception handling.

Now, when the CCW translates the custom exception into terms of COM, the
intrinsic VB 6.0 Err object is able to not only display the custom message, but also
to identify the DotNetCollection type as the sender of the error (rather than
mscorlib.dll). Check out Figure 11-13.

Figure 11-13. Trapping a custom .NET exception

Exercising Your DotNetCollection Assembly from C++

Just to keep the C++ folks out there happy, I’ll walk you through the process of
interacting with .NET exceptions and collections from the world of C++ COM.
Recall that when a .NET class type implements IEnumerable, the CCW simulates
support for the standard COM interface, IEnumVARIANT. Given that C++ does not
have a native “for each”–style iteration syntax, C++ programmers instead make
direct use of the following members:

// The classic COM enumerator interface

interface IEnumVARIANT : IUnknown

{

virtual HRESULT Next(unsigned long celt,

VARIANT FAR* rgvar,

unsigned long FAR* pceltFetched) = 0;

virtual HRESULT Skip(unsigned long celt) = 0;

virtual HRESULT Reset() = 0;

virtual HRESULT Clone(IEnumVARIANT FAR* FAR* ppenum) = 0;

};

The only member that requires special comment for your purposes is the
Next() method. Notice that the first and second parameters allow you to specify
the number of items in the VARIANT array. The strange thing about this method is
that it is totally possible for the COM client to request more contained items than
the container actually contains! For example, the DotNetCollection type begins
life by creating three internal Car types. If the client asks for the next 60 Cars, you
have an obvious problem. Thus enters the final parameter of

COM-to-.NET Interoperability—Intermediate Topics

621

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 621

IEnumVARIANT.Next(), pceltFetched, which holds the value of the number of
items actually returned.

So, how exactly does a COM client obtain the .NET type’s enumerator?
Well, contrary to what you may be thinking, you do not directly query for
IID_IEnumVARIANT, but instead call IEnumerable.GetEnumerator(). Rather
than returning a .NET-centric IEnumerator, the CCW transforms this type into
IEnumVARIANT automatically. Consider the following C++ COM client code:

#include <iostream.h>

// Adjust your paths accordingly...

#import "C:\WINDOWS\Microsoft.NET\Framework\v1.0.3617\mscorlib.tlb" \

no_namespace named_guids

#import "C:\Apress Books\InteropBook\Labs\Chapter

11\DotNetCollection\bin\Debug\DotNetCollection.tlb" \

no_namespace named_guids

int main(int argc, char* argv[])

{

CoInitialize(NULL);

// Create collection and get enumerator.

_CarCollectionPtr pColl(__uuidof(CarCollection));

IEnumVARIANTPtr pEnum;

pEnum = pColl->GetEnumerator();

// Ask for three cars.

VARIANT theCars[3];

ULONG numberReturned = 0;

pEnum->Next(3, theCars, &numberReturned);

cout << "You got back " << numberReturned << " cars." << endl;

// Print out each car.

for(ULONG i = 0; i < numberReturned; i++)

{

_CarPtr temp = theCars[i].punkVal;

cout << temp->GetCarState() << endl;

temp = NULL;

}

pColl = NULL;

CoUninitialize();

return 0;

}

Chapter 11

622

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 622

Here, you again make use of the generated smart pointers (via the #import
statement). Understand that from the _CarCollectionPtr type, you are able to call
any member of the CarCollection type (AddCar(), RemoveCar(), and whatnot). In
this example, you are simply calling GetEnumerator() and iterating over the
contained Car types.

As far as trapping .NET exceptions, the #import statement allows C++
programmers to handle COM error objects using the _com_error type in conjunc-
tion with standard try/catch exception handling. Given that _com_error is simply
a canned implementation of IErrorInfo, consider this type the C++ equivalent of
the VB 6.0 Err object. Thus:

// Trigger .NET exception and

// map to COM error object.

try

{

pColl->RemoveCar(888);

}

catch(_com_error &e)

{

cout << "Error from: " << e.Source() <<

endl << "Message: " << e.Description() << endl;

}

The output can be seen in Figure 11-14.

Figure 11-14. .NET collections (and exceptions) handled via C++ COM

CODE The CppCollectionClient project can be found under the Chapter
11 subdirectory.

COM-to-.NET Interoperability—Intermediate Topics

623

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 623

Converting .NET Interface with Multiple Base
Interfaces

Under classic COM, a given COM interface is required to have exactly one (and
only one) parent interface, which is often IUnknown itself. However, under .NET,
a given interface can be configured to derive from multiple base interfaces. This
ability gives us the power to describe very rich behaviors in an abstract manner. To
illustrate, assume you have created two stand-alone .NET interfaces that describe
a basic automobile as well as a more feature-rich four-wheeler:

[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]

[Guid("294D6CDE-25AE-4948-8D2E-CE8A39EAA781")]

public interface ICar

{

void Start();

void Stop();

}

[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]

[Guid("070E86D9-64AF-4f39-A640-2EE690478141")]

public interface ISportsCar

{

void TurboBoost();

}

Now, if you wish to define a new behavior that leverages each of these
behaviors, you are able (under .NET) to do the following:

[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]

[Guid("ABBF550F-DD00-4eb5-A031-AD74D41F0861")]

public interface IJamesBondCar : ICar, ISportsCar

{

void Fly();

void DiveUnderWater();

void DrillThroughMountain();

}

If you visualize the relationships of these three interfaces, you would see
something like what is shown in Figure 11-15.

Chapter 11

624

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 624

Figure 11-15. .NET interfaces can have multiple base interfaces.

Also assume that you have a given C# class type that implements
IJamesBondCar in some way (you really don’t care exactly how for this example):

[ClassInterface(ClassInterfaceType.AutoDual)]

[Guid("9776534F-55E7-419d-BE7D-36C993DF6ECF")]

public class SuperCar : IJamesBondCar

{

public SuperCar(){}

// Some impl...

public void Start(){}

public void Stop(){}

public void TurboBoost(){}

public void Fly(){}

public void DiveUnderWater(){}

public void DrillThroughMountain(){}

}

The question, of course, is how would the IJamesBondCar be represented in
terms of COM IDL? One might expect that tlbexp.exe would simply suck in the
methods of the members of each base interface to populate the members of
IJamesBondCar. Sadly, you find the following IDL:

// Ug! We are now derived from IUnknown

// and lost the members of ICar and ISportsCar!

interface IJamesBondCar : IUnknown {

HRESULT _stdcall Fly();

HRESULT _stdcall DiveUnderWater();

HRESULT _stdcall DrillThroughMountain();

};

COM-to-.NET Interoperability—Intermediate Topics

625

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 625

Ironically, the IDL definition of the SuperCar coclass correctly represents
the fact that the SuperCar supports the ICar, ISportsCar, and IJamesBondCar
interfaces:

coclass SuperCar {

[default] interface _SuperCar;

interface _Object;

interface IJamesBondCar;

interface ICar;

interface ISportsCar;

};

Clearly, however, tlbexp.exe shot for the lowest common denominator
(IUnknown) when defining the base class of IJamesBondCar. If you wish to ensure
that a .NET interface supports the members of each base interface, the most
straightforward approach is to explicitly re-list the inherited members in the
derived type. If you were to blindly retype the definitions exactly as shown, you
would effectively hide the base interface members! To prevent this from occurring,
you must explicitly mark the re-listed members as new to prevent the automatic
shadowing. For example:

[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]

[Guid("ABBF550F-DD00-4eb5-A031-AD74D41F0861")]

public interface IJamesBondCar : ICar, ISportsCar

{

// From ICar.

new void Start();

new void Stop();

// From ISportsCar

new void TurboBoost();

void Fly();

void DiveUnderWater();

void DrillThroughMountain();

}

If you refresh the COM IDL definitions, you would now find the following
correct unmanaged representation of this complex behavior:

interface IJamesBondCar : IUnknown {

HRESULT _stdcall Start();

HRESULT _stdcall Stop();

HRESULT _stdcall TurboBoost();

HRESULT _stdcall Fly();

HRESULT _stdcall DiveUnderWater();

HRESULT _stdcall DrillThroughMountain();

};

Chapter 11

626

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 626

A VB 6.0 COM client could now interact with all members of the supported
interfaces using a valid IJamesBondCar interface reference:

Dim c as SuperCar

Set c = New SuperCar

Dim ijbcItf as IJamesBondCar

Set ijbcItf = c

ijbcItf.Start

ijbcItf.TurboBoost

ijbcItf.DrillThroughMountain

As you would expect, each interface is also recognized as an individual entity
(Figure 11-16).

Figure 11-16. Simulating .NET interface inheritance

Converting .NET Interface Hierarchies

The previous iteration of the IJamesBondCar interface hierarchy employed the
technique of deriving a single interface from multiple base interfaces. Although
.NET supports this very helpful design pattern, most programmers tend to stick to
a traditional single-based design. For example, assume that you crafted the
IJamesBondCar type as shown in Figure 11-17.

COM-to-.NET Interoperability—Intermediate Topics

627

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 627

Figure 11-17. A more traditional interface hierarchy

This time, through, these three interfaces are arranged in a single inheritance
model, which can be represented by the following C# code:

[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
[Guid("294D6CDE-25AE-4948-8D2E-CE8A39EAA781")]
public interface ICar
{

void Start();
void Stop();

}

[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
[Guid("070E86D9-64AF-4f39-A640-2EE690478141")]
public interface ISportsCar : ICar
{

void TurboBoost();
}

[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
[Guid("ABBF550F-DD00-4eb5-A031-AD74D41F0861")]
public interface IJamesBondCar : ISportsCar
{

void Fly();
void DiveUnderWater();
void DrillThroughMountain();

}

Now, if you run this .NET assembly through tlbexp.exe (or regasm.exe), you
would find that, once again, the derived interfaces do not provide support for the
inherited members of the base interface(s):

[…]
interface ICar : IUnknown {

HRESULT _stdcall Start();
HRESULT _stdcall Stop();

};

Chapter 11

628

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 628

[…]

interface ISportsCar : IUnknown {

HRESULT _stdcall TurboBoost();

};

[…]

interface IJamesBondCar : IUnknown {

HRESULT _stdcall Fly();

HRESULT _stdcall DiveUnderWater();

HRESULT _stdcall DrillThroughMountain();

};

Now, when you consider how each interface was defined under .NET, you
made use of ComInterfaceType.InterfaceIsUnknown. It is important to recall that
this enumeration defines exactly three possible values—and only three possible
values. Given this fact, understand that the InterfaceTypeAttribute type does not
allow you to specify a custom .NET interface as the base interface type:

// Illegal .NET code!

// This will NOT work!

[InterfaceType(typeof(ICar))] // No! (Nice try though…)

[Guid("070E86D9-64AF-4f39-A640-2EE690478141")]

public interface ISportsCar : ICar

{

void TurboBoost();

}

The cold, hard fact is that assembly-to-type library conversion is able to create
interfaces that derive directly from IUnknown or IDispatch (i.e., a [dual] interface
or as a raw dispinterface). However, just as you did in the previous iteration of the
IJamesBondCar interface, you are able to explicitly re-list inherited members
using the new keyword. Thus:

[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]

[Guid("54E46D63-C1E7-4f62-9EE2-939B17394D9E")]

public interface ICar

{

void Start();

void Stop();

}

[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]

[Guid("C04D9BBE-AF00-473d-93E8-1F04E3AF197E")]

public interface ISportsCar : ICar

{

COM-to-.NET Interoperability—Intermediate Topics

629

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 629

// From ICar

new void Start();

new void Stop();

void TurboBoost();

}

[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]

[Guid("07482652-2B4F-40da-B8A1-CFA9AAB51D64")]

public interface IJamesBondCar : ISportsCar

{

// From ICar.

new void Start();

new void Stop();

// From ISportsCar

new void TurboBoost();

void Fly();

void DiveUnderWater();

void DrillThroughMountain();

}

This generates the IDL you expect. Again, the use of the new keyword when
defining a derived interface is not the ideal approach. Unfortunately, when you
wish to ensure that a COM interface definition explicitly inherits base members,
this is your only option.

CODE The DotNetInterfaceHierarchyServer project is included under
the Chapter 11 subdirectory.

Summary

At this point, you have seen how members of the .NET type system (classes, inter-
faces, enums, structures, and delegates) are mapped into terms of classic COM. As
you have seen, .NET enumerations translate almost directly into unmanaged IDL
equivalents. The same holds true for System.ValueType-derived .NET types (i.e.,
structures). Perhaps the most drastic conversion occurs when exposing a .NET
delegate into terms of COM connection points. When you wish to do so, you need
to define a managed version of a given source interface and mark its support by a
given .NET class type using the ComSourceInterfaces attribute. As for the

Chapter 11

630

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 630

remaining topics examined here (.NET collections and .NET exceptions),
remember that in a nutshell the .NET IEnumerable interface is mapped into a
COM IEnumVARIANT, while .NET exceptions are mapping into COM error
objects.

Given the materials presented in the last two chapters, you now have the skills
you need to make your .NET assemblies COM aware. The next chapter wraps up
your investigation of .NET-to-COM interoperability by examining a set of more
advanced topics, such as building custom .NET-to-COM conversion utilities and
COM-compatible .NET types.

COM-to-.NET Interoperability—Intermediate Topics

631

*0112_Ch11_CMP4.qxp 3/25/02 1:50 PM Page 631

CHAPTER 12

COM-to-.NET
Interoperability—
Advanced Topics

The point of this chapter is to round out your knowledge of exposing .NET types to
COM applications by examining a number of advanced techniques. The first
major topic is to examine how .NET types can implement COM interfaces to
achieve binary compatibility with other like-minded COM objects (a topic first
broached in Chapter 7). Closely related to this topic is the process of defining
COM types directly using managed code. Using this technique, it is possible to
build a binary-compatible .NET type that does not directly reference a related
interop assembly (and is therefore a bit more lightweight). As for the next major
topic, you examine the process of building a customized version of tlbexp.exe
while also addressing how to programmatically register interop assemblies at
runtime. Finally, you wrap up by taking a deeper look at the .NET runtime envi-
ronment and checking out how a COM client can be used to build a custom host
for .NET types. In addition to being a very interesting point of discussion, you will
see that a custom CLR host can simplify COM-to-.NET registration issues.

Changing Type Marshaling Using MarshalAsAttribute

Before digging into the real meat of this chapter, let’s examine yet another interop-
centric attribute. As you have seen, one nice thing about the tlbexp.exe utility is
that it will always ensure the generated type information is [oleautomation]
compatible. When you build COM interfaces that are indeed [oleautomation]
compatible, you are able to ensure that all COM-aware languages can interact
with the .NET type (as well as receive a free stub/proxy layer courtesy of the
universal marshaler). Typically, if you have created a COM interface that is not
[oleautomation] compatible, you have either (a) made a mistake, (b) are building a
COM server you only intend to use from C++, or (c) wish to define a custom stub
and proxy DLL for performance reasons.

633

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 633

Nevertheless, if you wish to create a managed method that is exposed
to COM as a non–oleautomation-compatible entity, you are able to apply the
MarshalAsAttribute type. The MarshalAs attribute can also be helpful when a
single .NET type has the ability to be represented by multiple COM types. For
example, a System.String could be marshaled to unmanaged code as a LPSTR,
LPWSTR, LPTSTR, or BSTR. While the default behavior (System.String to COM
BSTRs) is typically exactly what you want, the MarshalAsAttribute type can be
used to expose System.String in alternative formats.

This attribute may be applied to a method return type, type member, and a
particular member parameter. Applying this attribute is simple enough; however,
the argument that is specified as a constructor parameter (UnmanagedType) is a
.NET enumeration that defines a ton of possibilities. To fully understand the scope
of the MarshalAs attribute, let’s check out some core values of this marshal-centric
enumeration. First up, Table 12-1 documents the key values of UnmanagedType
that allow you to expose a System.String in various formats.

Table 12-1. String-Centric Values of UnmanagedType

String-Centric Meaning in Life
UnmanagedType
Member Name

AnsiBStr ANSI character string that is a length-prefixed single byte.

BStr Unicode character string that is a length-prefixed double byte.

LPStr A single-byte ANSI character string.

LPTStr A platform-dependent character string, ANSI on Windows 98,

Unicode on Windows NT. This value is only supported for Platform

Invoke, and not COM interop, because exporting a string of type

LPTStr is not supported.

LPWStr A double-byte Unicode character string.

To illustrate, assume you have a small set of .NET members that are defined
as follows:

[ClassInterface(ClassInterfaceType.AutoDual)]

public class MyMarshalAsClass

{

public MyMarshalAsClass(){}

// String marshaling.

public void ExposeAsLPStr

([MarshalAs(UnmanagedType.LPStr)]string s){}

public void ExposeAsLPWStr

([MarshalAs(UnmanagedType.LPWStr)]string s){}

}

Chapter 12

634

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 634

Once processed by tlbexp.exe, you find the following COM IDL:

interface _MyMarshalAsClass : IDispatch

{

[id(0x60020004)]

HRESULT ExposeAsLPStr([in] LPSTR s);

[id(0x60020005)]

HRESULT ExposeAsLPWStr([in] LPWSTR s);

};

Table 12-2 documents the key values of UnmanagedType that are used to
expose System.Object types as various flavors of COM types.

Table 12-2. System.Object-Centric Values of UnmanagedType

Object-Centric Meaning in Life
UnmanagedType Member Name

IDispatch A COM IDispatch pointer

IUnknown A COM IUnknown pointer

If you extend the MyMarshalAsClass type to support the following members:

// Object marshaling.

public void ExposeAsIUnk

([MarshalAs(UnmanagedType.IUnknown)]object o){}

public void ExposeAsIDisp

([MarshalAs(UnmanagedType.IDispatch)]object o){}

you find the following COM type information:

[id(0x60020006)]

HRESULT ExposeAsIUnk([in] IUnknown* o);

[id(0x60020007)]

HRESULT ExposeAsIDisp([in] IDispatch* o);

UnmanagedType also provides a number of values that are used to alter how a
.NET array is exposed to classic COM. Again, remember that by default, .NET
arrays are exposed as COM SAFEARRAY types, which is typically what you require.
For the sake of knowledge, however, Table 12-3 documents the key array-centric
member of UnmanagedType.

COM-to-.NET Interoperability—Advanced Topics

635

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 635

Table 12-3. Array-Centric Value of UnmanagedType

Array-Centric Meaning in Life
UnmanagedType Member Name

LPArray A C-style array

As you would guess, the following C# member definition:

// Array marshaling.

public void ExposeAsCArray

([MarshalAs(UnmanagedType.LPArray)]int[] myInts){}

results in the following IDL:

[id(0x60020008)]

HRESULT ExposeAsCArray([in] long* myInts);

Finally, UnmanagedType defines a number of members that allow you to
expose intrinsic .NET data types in various COM mappings. While many of these
values are used for generic whole numbers, floating-point numbers, and whatnot,
one item of interest is UnmanagedType.Currency. As you recall, the COM
CURRENCY type is not supported under .NET and has been replaced by
System.Decimal. Table 12-4 documents the key data-centric types.

Table 12-4. Data-Centric Values of UnmanagedType

Data Type–Centric Meaning in Life
UnmanagedType
Member Name

AsAny Dynamic type that determines the Type of an object at runtime

and marshals the object as that Type.

Bool 4-byte Boolean value (true != 0, false = 0).

Currency Used on a System.Decimal to marshal the decimal value as a

COM currency type instead of as a Decimal.

I1 1-byte signed integer.

I2 2-byte signed integer.

I4 4-byte signed integer.

I8 8-byte signed integer.

R4 4-byte floating-point number.

R8 8-byte floating-point number.

Chapter 12

636

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 636

Table 12-4. Data-Centric Values of UnmanagedType (continued)

Data Type–Centric Meaning in Life
UnmanagedType
Member Name

SysInt A platform-dependent signed integer. 4 bytes on 32-bit

Windows, 8 bytes on 64-bit Windows.

SysUInt Hardware natural-size unsigned integer.

U1 1-byte unsigned integer.

U2 2-byte unsigned integer.

U4 4-byte unsigned integer.

U8 8-byte unsigned integer.

VariantBool 2-byte OLE-defined Boolean value (true = -1, false = 0).

Again, the most useful of these data type-centric members of the Unman-
agedType enumeration is the UnmanagedType.Currency value, given that .NET no
longer supports the COM CURRENCY type. However, given that a System.Decimal
provides the same storage, you can apply MarshalAs as follows:

// Exposing Decimal and Currency.

public void ExposeAsCURRENCY

([MarshalAs(UnmanagedType.Currency)]Decimal d){}

This results in the following IDL:

[id(0x60020008)]

HRESULT ExposeAsCURRENCY([in] CURRENCY d);

So, now that you have seen the various ways that the MarshalAsAttribute type
can be configured, you may be wondering exactly when (or why) you may wish to
alter the default interop marshaler. In reality, you typically won’t need to alter the
default marshaling behavior. The only time it might be beneficial on a somewhat
regular basis is when you wish to expose .NET System.Objects as a specific COM
interface type (IUnknown or IDispatch) or expose a System.Decimal as a legacy
COM CURRENCY type.

CODE The MyMarshalAsLibrary project is included under the
Chapter 12 subdirectory.

COM-to-.NET Interoperability—Advanced Topics

637

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 637

.NET Types Implementing COM Interfaces

Recall from Chapter 9 that if a COM coclass implements a COM-visible .NET inter-
face, the coclass in question is able to achieve type compatibility with other like-
minded .NET objects. The converse of this scenario is also true: .NET types can
implement COM interfaces to achieve binary compatibility with other like-
minded COM types. When a .NET programmer chooses to account for COM inter-
faces in his or her type implementations, there are two possible choices:

• Implement a custom COM interface.

• Implement a standard COM interface.

As you recall from Chapter 2, although a COM interface always boils down to
the same physical form (a collection of pure virtual functions identified by a
GUID), standard interfaces are predefined types (published by Microsoft).
Furthermore, standard interfaces are already defined in terms of COM IDL, have a
predefined GUID, and are recorded in the system registry. Custom interfaces, on
the other hand, are authored by a COM developer during the course of a software
development cycle. In this case, the programmer is the one in charge of describing
the item in terms of COM IDL and registering the resulting type library (all of
which is done automatically when using VB 6.0). When a .NET type implements a
custom COM interface, the result is that a given COM client is able to interact with
the .NET type as if it were a coclass adhering to a specific binary format.

On the other hand, if a .NET type implements a standard interface (such as
IDispatch, IConnectionPointContainer, or ITypeInfo), it will be used as a
customized replacement for the equivalent interface implemented by the CCW. To
be sure, the chances that you will need to provide a customized implementation of
an interface supported by the CCW are slim to none. Given this likelihood, I focus
solely on the process of defining managed versions of custom COM interfaces.

Defining Custom COM Interfaces

Before you can examine how to implement custom COM interfaces on a .NET
type, you first need the IDL descriptions of the interfaces themselves. As you will
see later in this chapter, it is possible to build a binary-compatible .NET type
without a formal COM type description; however, for this example, assume you
have created an ATL in-proc COM server (AnotherAtlCarServer). This COM server
defines a coclass (CoTruck) by implementing two simple interfaces named

Chapter 12

638

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 638

IStartable and IStoppable. Here is the relevant IDL (if you need a refresher on
building COM servers with ATL, see Chapter 3):

[object,

uuid(7FE41805-124B-44AE-BEAE-C3491E35372B),

oleautomation,

helpstring("IStartable Interface"),

pointer_default(unique)]

interface IStartable : IUnknown

{ HRESULT Start(); };

[object,

uuid(B001A308-8D66-4d23-84A4-B67615646ABB),

oleautomation,

helpstring("IStartable Interface"),

pointer_default(unique)]

interface IStoppable : IUnknown

{ HRESULT Break();};

[uuid(7B69AEB6-F0B7-46BB-8AD4-1CACD1EA5AE9),

version(1.0),

helpstring("AnotherAtlCarServer 1.0 Type Library")]

library ANOTHERATLCARSERVERLib

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

[uuid(862C5338-8AD7-43A3-A9A7-F21B145D61D0),

helpstring("CoTruck Class")]

coclass CoTruck

{

[default] interface IStartable;

interface IStoppable;

};

};

The implementation of the CoTruck::Start() and CoTruck::Break() methods
simply triggers a Win32 MessageBox() API to inform the caller which object has
been told to do what:

STDMETHODIMP CCoTruck::Start()

{

MessageBox(NULL, "The truck as started.",

"CoTruck::Start() Says:", MB_OK);

return S_OK;

}

COM-to-.NET Interoperability—Advanced Topics

639

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 639

STDMETHODIMP CCoTruck::Break()

{

MessageBox(NULL, "The truck as stopped.",

"CoTruck::Start() Says:", MB_OK);

return S_OK;

}

That’s it. Go ahead and compile this ATL project to ensure that this COM
server is properly recorded in the system registry.

CODE The AnotherAtlCarServer project can be found under the
Chapter 12 subdirectory.

Building and Deploying the Interop Assembly

Now that you have a COM server defining a set of custom interfaces, you need to
transform the COM type information into terms of .NET metadata. Thus,
assuming you have a valid *.snk file, configure a strongly named interop assembly
using tlbimp.exe as follows:

tlbimp AnotherAtlCarServer.dll /out:interop.AnotherAtlCarServer.dll

/keyfile:theKey.snk

Finally, deploy this interop assembly into the GAC (Figure 12-1).

Figure 12-1. Another machine-wide interop assembly

Chapter 12

640

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 640

CODE The interop assembly for AnotherAltCarServer.dll is included
under the Chapter 12 subdirectory.

Building a Binary-Compatible C# Type

To illustrate building a binary-compatible .NET type, let’s create a new C# Code
Library that defines a simple class (DotNetLawnMower) that supports both inter-
faces. First, add a reference to interop.AnotherAtlCarServer.dll, and for simplicity,
configure this type to be exposed to COM as an AutoDual class interface:

namespace BinaryCompatibleDotNetTypeServer

{

// This .NET class supports two COM interfaces.

[ClassInterface(ClassInterfaceType.AutoDual)]

public class DotNetLawnMower: IStartable, IStoppable

{

public DotNetLawnMower(){}

}

}

Now that DotNetLawnMower has defined support for IStartable and
IStoppable, and you are obligated to flesh out the details of the Start() and Break()
methods. While you could manually type the definitions of each inherited
member, you do have a shortcut. The Visual Studio .NET IDE supports an
integrated wizard that automatically generates stub code for an implemented
interface. However, the manner in which you interact with this tool depends
on your language of choice. Here, in your C# project, you activate this tool by
right-clicking a supported interface using Class View (Figure 12-2).

Again, the implementation of each member is irrelevant for this example, so
just set a reference to System.Windows.Forms.dll and call MessageBox.Show() in
an appropriate manner:

public void Start()

{

MessageBox.Show("Lawn Mower starting..." ,

"DotNetLawnMower says:");

}

public void Break()

{

MessageBox.Show("Lawn Mower stopping..." ,

"DotNetLawnMower says:");

}

COM-to-.NET Interoperability—Advanced Topics

641

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 641

Figure 12-2. The C# IDE Implement Interface Wizard

Because this .NET class library is to be used by a classic COM client, you will
want to deploy this binary as a shared assembly. Thus, be sure to set the
assembly’s version (1.0.0.0 will do) and specify a valid *.snk file. Once you have
done so, deploy this assembly to the GAC.

CODE The BinaryCompatibleDotNetTypeServer project is included
under the Chapter 12 subdirectory.

Building a Binary-Compatible VB .NET Type

Any managed language has the ability to implement COM interfaces, provided
they have access to the interface descriptions. To further highlight the process,
assume you have a VB .NET Code Library that defines a type named UFO. The
UFO type is able to be started and stopped (presumably) and thus wishes to
implement the COM interfaces defined in the ATL server. Once you set a reference

Chapter 12

642

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 642

to the interop assembly and define support for each interface (via the Implements
keyword), the VB .NET IDE provides a simple shortcut to automatically build stubs
for each method. Simply select the name of the supported interface from the
left drop-down list and the name of the method from the right drop-down list
(Figure 12-3).

Figure 12-3. The VB .NET IDE Implement Interface Wizard

Here is the complete VB .NET definition of UFO, which also makes use of an
AutoDual class interface (again, be sure to assign a strong name to the assembly
and deploy this assembly to the GAC):

<ClassInterface(ClassInterfaceType.AutoDual)> _

Public Class UFO

Implements IStartable, IStoppable

Public Sub Start() _

Implements ANOTHERATLCARSERVERLib.IStartable.Start

MessageBox.Show("VB.NET UFO starting", "UFO says:")

End Sub

Public Sub Break() Implements ANOTHERATLCARSERVERLib.IStoppable.Break

MessageBox.Show("VB.NET UFO stopping", "UFO says:")

End Sub

End Class

CODE The BinaryCompatibleVbNetTypeServer project is included
under the Chapter 12 directory.

COM-to-.NET Interoperability—Advanced Topics

643

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 643

Registering the .NET Assemblies with COM

So, to recap the story thus far, at this point you have three objects (CoTruck,
LawnMower, and UFO). Each has been created in a specific language (C++, C#,
or VB .NET) using two different architectures (COM and .NET) that implement
the same two COM interfaces. Furthermore, the interop assembly for the
AnotherAtlCarServer.dll COM server and the strongly named .NET assemblies
have been deployed to the GAC. Like any COM-to-.NET interaction, however, you
must generate COM type information (and register the contents) for each native
.NET assembly using regasm.exe. Thus, from the command line, run regasm.exe
against both of your .NET assemblies. For example:

regasm BinaryCompatibleVbNetTypeServer.dll /tlb

Building a VB 6.0 COM Client

Now that each .NET assembly has been configured to be reachable by a COM
client, the final step of this example is to build an application that interacts with
each object in a binary-compatible manner. While you are free to use any COM-
aware programming language, I’ll make use of a VB 6.0 Standard EXE project that
interacts with each type. The big picture is illustrated in Figure 12-4.

Figure 12-4. Behold, the power of interface-based programming.

Chapter 12

644

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 644

The first step (of course) is to set a reference to each type library (Figure 12-5).

Figure 12-5. Referencing the COM type information

Just to keep things interesting, you will add one additional refinement to the
scenario suggested by Figure 12-4. Rather than declaring three Form-level
member variables of type UFO, LawnMower, and CoTruck, let’s make use of a VB
6.0 Collection type to contain each item (as this will better illustrate the interface-
based polymorphism of semantically gluing the types together). Thus, if the main
Form has two Button types that start and stop each item in the collection, you are
able to author the following VB 6.0 code:

Option Explicit

Private theObjs As Collection

' Loop through the collection

' and start everything using IStartable.

Private Sub btnStartObjs_Click()

Dim temp As IStartable

Dim i As Integer

For i = 0 To theObjs.Count - 1

Set temp = theObjs(i + 1)

temp.Start

Next

End Sub

COM-to-.NET Interoperability—Advanced Topics

645

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 645

' Loop through the collection and

' stop everything using IStoppable.

Private Sub btnStopObjs_Click()

Dim temp As IStoppable

Dim i As Integer

For i = 0 To theObjs.Count - 1

Set temp = theObjs(i + 1)

temp.Break

Next

End Sub

' Fill the collection with some

' binary compatible types.

Private Sub Form_Load()

Set theObjs = New Collection

theObjs.Add New CoTruck ' ATL type.

theObjs.Add New UFO ' VB .NET type.

theObjs.Add New DotNetLawnMower ' C# type

End Sub

Notice that you are able to communicate with each type using the custom
COM interfaces defined in the original ATL server (thus the binary compatibility
nature of the example). If you were to run the client application, you would see a
series of message boxes pop up as the types in the collection were manipulated.

CODE The Vb6COMCompatibleClient project is included under the
Chapter 12 subdirectory.

Defining COM Interfaces Using Managed Code

Although the previous example did indeed allow the .NET types to implement
existing COM interfaces, you had to jump through a few undesirable hoops during
the process. First, each .NET code library was required to obtain the type informa-
tion of IStoppable and IStartable via tlbimp.exe. This of course results in an
[.assembly extern] listing in each assembly manifest. Given this, each .NET
assembly now depends on the presence of the interop assembly on the target
machine. If the interop assembly is not present and accounted for, the .NET
consumer is unable to find the correct metadata and it becomes woefully binary-
incompatible with other like-minded COM types.

When you think about it, the C# LawnMower and VB .NET UFO types never
needed to directly interact with the CoTruck. All these projects required were the

Chapter 12

646

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 646

managed definitions of the raw COM interfaces. To simplify the process, you could
have defined IStartable and IStoppable (using managed code) directly within the
.NET assemblies. In this way, your .NET assemblies are no longer tied to an
interop assembly and are still binary compatible!

To illustrate, let’s see a simple example. Assume you have yet another C# Code
Library (ManagedComDefs) that contains a simple class named DvdPlayer. Given
that DVD players are also startable and stoppable, our goal is to achieve binary
compatibility with the CoTruck, UFO, and LawnMower types, without referencing
the interop.AnotherAltCarServer.dll assembly.

When you define COM interfaces directly within managed code, each and
every interface must be attributed with the ComImportAttribute, GuidAttribute,
and InterfaceTypeAttribute types. Therefore, all your managed interfaces look
something like the following:

// Some binary compatible COM interface

// defined in managed code.

[ComImport, Guid("<IID>"),

InterfaceType(ComInterfaceType.<type of COM interface>)]

public interface SomeBinaryCompatibleInterface

{ // Members…}

The ComImportAttribute type is simply used to identify this type as a COM
entity when exposed to a COM client. Obviously, the value of the GuidAttribute
type must be identical to the original IDL IID. As for the InterfaceTypeAttribute,
you are provided with the following related enumeration to mark the representa-
tion of the COM interface you are describing:

public enum System.Runtime.InteropServices.ComInterfaceType

{

InterfaceIsDual,

InterfaceIsIDispatch,

InterfaceIsIUnknown

}

The ComInterfaceType value passed into the InterfaceTypeAttribute is used by
the .NET runtime to determine how to build the correct vtable for the unmanaged
COM interface (more on this tidbit in just a moment). Recall that the IStartable
and IStoppable interfaces were defined in IDL as follows:

[object,

uuid(7FE41805-124B-44AE-BEAE-C3491E35372B),

oleautomation,

helpstring("IStartable Interface"),

pointer_default(unique)]

interface IStartable : IUnknown

{ HRESULT Start(); };

COM-to-.NET Interoperability—Advanced Topics

647

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 647

[object,

uuid(B001A308-8D66-4d23-84A4-B67615646ABB),

oleautomation,

helpstring("IStartable Interface"),

pointer_default(unique)]

interface IStoppable : IUnknown

{ HRESULT Break();};

Looking at these interface types, it should be clear that the COM-to-.NET
data type, type, and type member conversion rules still apply (for example,
System.String becomes BSTR and whatnot). In this case, you are happy to find
that Start() and Break() take no parameters, and therefore can be defined in terms
of C# in a rather straightforward manner. Here is the complete code behind the
binary-compatible DvdPlayer:

using System;

using System.Runtime.InteropServices;

using System.Windows.Forms;

namespace ManuallyInterfaceDefsServer

{

// Managed definition of IStartable.

[ComImport,

Guid("7FE41805-124B-44AE-BEAE-C3491E35372B"),

InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]

interface IStartable { void Start(); };

// Managed definition of IStoppable.

[ComImport,

Guid("B001A308-8D66-4d23-84A4-B67615646ABB"),

InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]

interface IStoppable { void Break();};

// A binary compatible DVD player!

[ClassInterface(ClassInterfaceType.AutoDual)]

public class DvdPlayer : IStartable, IStoppable

{

public DvdPlayer(){}

public void Start()

{ MessageBox.Show("Staring movie...", "DvdPlayer");}

public void Break()

{MessageBox.Show("Stopping movie...", "DvdPlayer");}

}

}

Chapter 12

648

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 648

Once you compile this .NET assembly, if you (a) deploy this assembly into the
GAC and (b) export the metadata to a COM *.tlb file via regasm.exe, you would be
able to set a reference to the exported *.tlb file and update the VB 6.0 COM client
as follows:

' Add a DVD player into the mix.

Private Sub Form_Load()

Set theObjs = New Collection

theObjs.Add New CoTruck

theObjs.Add New UFO

theObjs.Add New DotNetLawnMower

theObjs.Add New DvdPlayer

End Sub

Sure enough, you are able to make use of IStartable and IStoppable of the
DvdPlayer as expected (Figure 12-6).

Figure 12-6. Using the binary-compatible DvdPlayer

CODE The ManagedComDefs project is included under the Chapter 12
subdirectory.

Selected Notes on Manually Defining COM Interfaces
Using Managed Code

The previous example was quite straightforward, given that the interfaces you
defined were IUnknown-derived entities (thus no DISPIDs) and contained
methods with no parameters (thus no [in], [out], or [out, retval] attributes to worry
about). As you might expect, if you attempt to manually pound out the details of
more complex COM interfaces, you need to apply additional .NET attributes.
Furthermore, it is possible (although not altogether likely) that you might need to
define other COM types (enums, structures, coclasses) in terms of managed code.
To be sure, if the COM type you are attempting to become binary-compatible with

COM-to-.NET Interoperability—Advanced Topics

649

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 649

has been defined in terms of COM IDL, you will never need to manually define
COM types other than the occasional interface. Even then, if the dependency on a
related interop assembly is acceptable, you will not need to bother to do this
much.

However, there may be some (hopefully) rare cases in which you will need to
manually define COM interfaces via managed code. For example, in C++, it is
possible to build a COM class supporting a set of COM interfaces without the use
of IDL. Given that the midl.exe compiler simply regards IDL interfaces as a collec-
tion of C++ pure virtual functions, a C++ developer could choose to define the
pure virtual functions directly in terms of C++. The obvious downfall to this
approach is that the programmer has effectively created a COM server that can
only be used by other C++ clients. If a .NET programmer wished to build a binary-
compatible type using an interface described in raw C++, it would demand
creating a managed definition of the COM type, given that the COM type library
(and thus the interop assembly) doesn’t exist!

The process of manually defining a COM type in terms of managed code can
be very helpful if you require only a subset of items defined in the type library, or if
you need to somehow modify the COM type to work better from a managed envi-
ronment. As you may recall from Chapter 9, it is possible to crack open an interop
assembly and tweak the internal metadata. The same result can often be achieved
by directly implementing the COM types using managed code (not to mention, it
can be achieved in a much simpler manner). Given these possibilities, let’s walk
through an extended example.

Manually Defining COM Atoms: An Extended Example

The next COM server you examine (AtlShapesServer) defines a coclass
(CoHexagon) that supports a single [dual] interface (IDrawable). IDrawable
defines a small set of methods, one of which makes use of a custom COM
enumeration. Here is the complete IDL:

typedef enum SHAPECOLOR

{

RED, PINK, RUST

}SHAPECOLOR;

[object,

uuid(B1691C03-7EA8-4DAB-86CC-7D6CD859671A),

dual,

pointer_default(unique)]

interface IDrawable : IDispatch

{

[id(1), helpstring("method Draw")]

HRESULT Draw([in] int top, [in] int left, [in] int bottom, [in] int right);

Chapter 12

650

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 650

[id(2), helpstring("method SetColor")]

HRESULT SetColor([in] SHAPECOLOR c);

};

[uuid(95FBF6E3-1B03-4904-A5D3-C77A02785F9A),

version(1.0)]

library ATLSHAPESSERVERLib

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

[uuid(204F9A4B-4D22-451B-BE2F-338F2917E7F5)]

coclass CoHexagon

{

[default] interface IDrawable;

};

};

Defining the Dual Interface (and SHAPECOLOR Enum)
Using C#

When you describe a [dual] interface in terms of managed code, you obviously
need to supply ComInterfaceType.InterfaceIsDual to the InterfaceTypeAttribute
constructor (given the IDL definition). Additionally, you are required to supply the
correct DISPID values for each member. This alone is not too earth-shattering.
However, recall that the IDrawable interface defines two members:

interface IDrawable : IDispatch

{

[id(1)]

HRESULT Draw([in] int top, [in] int left, [in] int bottom, [in] int right);

[id(2)] HRESULT SetColor([in] SHAPECOLOR c);

};

Now, as you are aware, COM interfaces are used to construct a vtable for the
implementing coclass. A vtable is little more than a listing of addresses that point
to the correct function implementation. Given that COM is so dependent on a
valid vtable, you must understand that it is critical that you define the methods of
a managed COM interface in the same order as found in the original IDL (or C++
header file). If you do not, you are most certainly not binary-compatible. Given
this, here is the definition of IDrawable (and the related SHAPECOLOR enum) in
terms of C#:

// Defining COM enums in managed

// code is painless.

public enum SHAPECOLOR

{ RED, PINK, RUST };

COM-to-.NET Interoperability—Advanced Topics

651

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 651

// The managed version of IDrawable.

[ComImport,

Guid("B1691C03-7EA8-4DAB-86CC-7D6CD859671A"),

InterfaceType(ComInterfaceType.InterfaceIsDual)]

interface IDrawable

{

[DispId(1)]

void Draw([In] int top, [In] int left,

[In] int bottom, [In] int right);

[DispId(2)]

void SetColor([In] SHAPECOLOR c);

};

Here, you are making use of the DispIdAttribute type to define the DISPIDs of
each interface. As you are most likely able to figure out, it is critical that the values
supplied to each DispIdAttribute match the values of the original COM IDL. If you
build a .NET type that is binary compatible with the IDrawable interface, you
might author the following:

[ClassInterface(ClassInterfaceType.AutoDual)]

public class Circle: IDrawable

{

public Circle(){}

public void Draw(int top, int left, int bottom, int right)

{

MessageBox.Show(String.Format("Top:{0} Left:{1} Bottom:{2} Right{3}",

top, left, bottom, right));

}

public void SetColor(SHAPECOLOR c)

{

MessageBox.Show(String.Format("Shape color is {0}", c.ToString()));

}

}

If you view the .NET metadata descriptions of the IDrawable interface using
ILDasm.exe, you find that the ComImportAttribute type is not listed directly with
the GuidAttribute and InterfaceType values. The essence of the ComImport
attribute is cataloged, however, using the [import] tag on the interface definition:

.class interface private abstract auto ansi import IDrawable

{

…

} // end of class IDrawable

Chapter 12

652

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 652

Assuming you have processed this .NET assembly using regasm.exe, you
would now be able to build an unmanaged COM client that interacts with the ATL
CoHexagon and C# Circle type in a binary-compatible manner (using either early
or late binding).

So, to wrap up the topic of building binary-compatible .NET types, under-
stand that just because you can define COM interfaces in managed code does not
mean you have to. Typically speaking, you simply set a reference to the correct
interop assembly. However, if you are building a managed application that needs
to communicate to a COM class using an interface for which there is no interop
assembly, it is often necessary to manually define the type in terms of managed
code (recall, for example, your C# COM type library viewer in Chapter 4).

Interacting with Interop Assembly Registration

As you recall from Chapter 2, a COM in-process server defines two function
exports that are called by various installation utilities (regsvr32.exe) to register or
unregister the necessary registry entries. As well, when a .NET assembly is to be
used by COM, the system registry must be updated using regasm.exe to effectively
fool the COM runtime. As you have seen, regasm.exe catalogs the correct entries
automatically. What happens, however, if you want to insert custom bits of infor-
mation into the registry during the default process performed by regasm.exe?

The System.Runtime.InteropServices namespace defines two attributes
for this very reason. To illustrate, assume you have a new C# code library
(CustomRegAsm) that defines some number of types. When you want to
allow regasm.exe to trigger a custom method during the registration process,
simply define a static (or Shared in VB .NET) method that is adorned with the
ComRegisterFunctionAttribute. Likewise, if you wish to provide a hook for
the unregistration process, define a second static member that supports the
ComUnregisterFunctionAttribute. For example:

public class SomeClass

{

public SomeClass(){}

// This method will be called when

// regasm.exe is run against this assembly.

[ComRegisterFunction()]

private static void CustomReg(Type t)

{

MessageBox.Show(String.Format("Registering {0}",

t.ToString()));

}

COM-to-.NET Interoperability—Advanced Topics

653

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 653

// This method will be called when

// regasm.exe is run against this

// assembly using the /u flag.

[ComUnregisterFunction()]

private static void CustomUnReg(Type t)

{

MessageBox.Show(String.Format("Registering {0}",

t.ToString()));

}

}

As you can see, the target methods must provide a single argument of type
System.Type, which represents the current type in the assembly being registered
for use by COM. As you might guess, regasm.exe passes in this parameter auto-
matically.

Inserting Custom Registration Information

So, when might you need to interact with the assembly’s registration process?
Assume that you wish to record the date and time on which a given .NET assembly
has been registered on a given user’s machine. To do this, you can make use of the
Microsoft.Win32 namespace, which contains a small number of types that allow
you to programmatically read from and write to the system registry. For example,
the CustomReg() and CustomUnReg() methods could be retrofitted as follows:

[ComRegisterFunction()]

private static void CustomReg(Type t)

{

RegistryKey k =

Registry.CurrentUser.CreateSubKey(@"Software\Intertech\CustomRegAsm");

k.SetValue("InstallTime", DateTime.Now.ToShortTimeString());

k.SetValue("InstallDate", DateTime.Now.ToShortDateString());

k.Close();

}

[ComUnregisterFunction()]

private static void CustomUnReg(Type t)

{

Registry.CurrentUser.DeleteSubKey(@"Software\Intertech\CustomRegAsm");

}

When you register this .NET assembly via regasm.exe,
you find the following information inserted under
HKEY_CURRENT_USER\Software\Intertech\CustomRegAsm (Figure 12-7).

Chapter 12

654

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 654

Figure 12-7. Getting involved with assembly registration

If you specify the /u flag, the information is correctly removed from the same
subkey.

CODE The CustomRegAsm project is included under the Chapter 12
subdirectory.

Programmatically Converting Assemblies to COM Type
Information

Recall from Chapter 9 that the System.Runtime.InteropServices.TypeLibConverter
type allows you to programmatically convert COM *.tlb files into .NET interop
assemblies. As mentioned at that time, this same class provides the ability to
convert .NET assemblies into COM type information programmatically. Given
this, let’s examine the process of building a customized version of the tlbexp.exe
command line utility (which as you will see looks much like the customized
tlbimp.exe utility).

To begin, assume that you have a new C# console application named
MyTypeLibExporter. The goal here is to allow the user to enter the path to a given
.NET assembly and, using TypeLibConverter, to build a corresponding COM type
library. The application’s Main() method prompts for the assembly to export and
passes this string into a static helper function named GenerateTLBFromAsm().

Once the *.tlb file has been generated (and stored in the application
directory), the user is again prompted to determine if the .NET assembly
should be registered for use by COM. If the user wishes to do so, make use of
the System.Runtime.InteropServices.RegistrationServices type. Here then, is the
complete implementation behind Main():

COM-to-.NET Interoperability—Advanced Topics

655

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 655

static void Main(string[] args)

{

// Get the path to the assembly.

Console.WriteLine("Please enter the path to the .NET binary");

Console.WriteLine(@"Example: C:\MyStuff\Blah\myDotNetServer.dll");

Console.Write("Path: ");

string pathToAssembly = Console.ReadLine();

// Generate type lib for this assembly.

UCOMITypeLib i = GenerateTLBFromAsm(pathToAssembly);

// Ask if user wants to register this server with COM.

int regValue;

Console.WriteLine("Would you like to register this .NET library with COM?");

Console.Write("1 = yes or 0 = no ");

regValue = Console.Read();

if(regValue == 1)

{

RegistrationServices rs = new RegistrationServices();

Assembly asm = Assembly.LoadFrom(pathToAssembly);

rs.RegisterAssembly(asm, AssemblyRegistrationFlags.None);

Console.WriteLine(".NET assembly registered with COM!");

}

}

As you can see, the real workhorse of this application is the
GenerateTLBFromAsm() helper function. Like the custom tlbimp.exe
application you created earlier in this text, the
TypeLibConverter.ConvertAssemblyToTypeLib() method requires you to pass in
an instance of a class that will be called by the TypeLibConverter type to resolve
references to additional assemblies as well as general reporting information. In
this case, however, the class type is required to adhere to the behavior defined by
ITypeLibExporterNotifySink:

public interface ITypeLibExporterNotifySink

{

void ReportEvent(ExporterEventKind eventKind,

int eventCode, string eventMsg);

object ResolveRef(System.Reflection.Assembly assembly);

}

Much like the ITypeLibImporterNotifySink interface seen in Chapter 9, the
implementation of ITypeLibExporterNotifySink delegates the work of resolving the
referenced assembly to the static MyTypeLibExporter.GenerateTLBFromAsm()
helper function:

Chapter 12

656

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 656

// The callback object.

internal class ExporterNotiferSink : ITypeLibExporterNotifySink

{

public void ReportEvent(ExporterEventKind eventKind,

int eventCode, string eventMsg)

{

Console.WriteLine("Event reported: {0}", eventMsg);

}

public object ResolveRef(System.Reflection.Assembly assembly)

{

// If the assembly we are converting references another assembly,

// we need to generate a *tlb for it as well.

string pathToAsm;

Console.WriteLine("MyTypeLibExporter encountered an assembly");

Console.WriteLine("which referenced another assembly...");

Console.WriteLine("Please enter the location to {0}", assembly.FullName);

pathToAsm = Console.ReadLine();

return MyTypeLibExporter.GenerateTLBFromAsm(pathToAsm);

}

}

Before you see the details behind MyTypeLibExporter.GenerateTLBFromAsm(),
you need to define some low-level COM types in terms of managed code. As you
may recall from Chapter 4, when you create a custom COM type library generation
tool, you need to call ICreateTypeLib.SaveAllChanges() to commit the type infor-
mation to file. The trouble, however, is that the System.Runtime.InteropServices
namespace does not define a managed equivalent of this method. Thus, using the
tricks presented in this chapter, here is a makeshift version. It is makeshift in that I
am representing the ICreateTypeInfo interface returned from the CreateTypeInfo()
method (also recall from Chapter 4 that the ICreateTypeInfo interface is huge).

[ComImport,

GuidAttribute("00020406-0000-0000-C000-000000000046"),

InterfaceTypeAttribute(ComInterfaceType.InterfaceIsIUnknown),

ComVisible(false)]

internal interface UCOMICreateTypeLib

{

// IntPtr is a hack to avoid having

// to define ICreateTypeInfo (which is HUGE).

IntPtr CreateTypeInfo(string name, TYPEKIND kind);

void SetName(string name);

void SetVersion(short major, short minor);

void SetGuid(ref Guid theGuid);

void SetDocString(string doc);

COM-to-.NET Interoperability—Advanced Topics

657

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 657

void SetHelpFileName(string helpFile);

void SetHelpContext(int helpCtx);

void SetLcid(int lcid);

void SetLibFlags(uint flags);

void SaveAllChanges();

}

Now that you have a managed definition for use by the GenerateTLBFromAsm()
method, you can flesh out the details as follows:

public static UCOMITypeLib GenerateTLBFromAsm(string pathToAssmebly)

{

UCOMITypeLib managedITypeLib = null;

ExporterNotiferSink sink = new ExporterNotiferSink();

// Load the assembly to convert.

Assembly asm = Assembly.LoadFrom(pathToAssmebly);

if (asm != null)

{

try

{

// Create name of type library based on .NET assembly.

string tlbname = asm.GetName().Name + ".tlb";

// Convert the assembly.

ITypeLibConverter TLBConv = new TypeLibConverter();

managedITypeLib = (UCOMITypeLib)

TLBConv.ConvertAssemblyToTypeLib(asm, tlbname, 0, sink);

// Save the type library to file.

try

{

UCOMICreateTypeLib managedICreateITypeLib =

(UCOMICreateTypeLib)managedITypeLib;

managedICreateITypeLib.SaveAllChanges();

}

catch (COMException e)

{

throw new Exception("Error saving the type lib : "

+ e.ErrorCode.ToString("x"));

}

}

catch (Exception e)

{

throw new Exception("Error Converting assembly" + e);

}

}

return managedITypeLib;

}

Chapter 12

658

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 658

I’d bet the details of this method are not too shocking by this point in the text.
Basically, you load the assembly based on the incoming string parameter and
define a name for the type library you are creating using the assembly’s name as a
base. Once you have an Assembly reference, you call ConvertAssemblyToTypeLib()
and specify the reference to the loaded assembly, the name of the type library to
create, any additional flags (or in our case, a lack thereof), and an instance of the
sink implementing ITypeLibExporterNotifySink.

The System.Object that is returned from ConvertAssemblyToTypeLib() actu-
ally represents a reference to the in-memory representation of the COM type
information, which is to say, an UCOMITypeLib interface. Once you cast this type
into your version of the unmanaged ICreateTypeLib type, you are able to call
SaveAllChanges() to commit the information to file.

Do note that your GenerateTLBFromAsm() helper function returns the
UCOMITypeLib interface to the caller. You really don’t need to do so. Using this
type, however, you could interact with the internal COM types defined by this type
library (as illustrated in Chapter 4). In any case, this wraps up the implementation
of your custom tlbexp.exe utility. Figure 12-8 shows a test drive by importing the
CSharpCarLibrary.dll assembly created in Chapter 6.

Figure 12-8. Exporting CSharpCarLibrary.dll

If you opened the generated *.tlb file using oleview.exe, you would find the
COM definitions for each .NET type (Figure 12-9).

COM-to-.NET Interoperability—Advanced Topics

659

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 659

Figure 12-9. The exported *.tlb file

CODE The MyTypeLibExporter project is included under the Chapter 12
subdirectory.

Hosting the .NET Runtime from an Unmanaged
Environment

The final topic of this chapter is a rather intriguing one: building a custom host
for the .NET runtime (aka the CLR). Like all things under the .NET platform,
the runtime engine is accessible using a set of managed types. In this case, the
assembly in question is mscoree.dll (where “ee” stands for execution engine). It
may surprise you to know that when you install the .NET platform, you receive a
corresponding *.tlb file for mscoree.dll (mscoree.tlb) that has been properly
configured in the system registry.

Chapter 12

660

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 660

Because the content of mscoree.dll has been expressed in terms of COM
metadata, it is possible to build a custom host using any COM-aware program-
ming language (within the realm of the language’s limitations). Do understand
that regardless of which COM language you choose, when you make use of
mscoree.tlb, you are also required to reference the related mscorlib.tlb file. For the
example that follows, assume that you have created a new Standard EXE applica-
tion using VB 6.0. This assumption aside, set a reference to each *.tlb file using the
IDE’s Project | References menu option (see Figure 12-10).

Figure 12-10. Referencing mscoree.tlb/mscorelib.tlb

Various chapters of this text have already examined some types contained
within mscorlib.tlb, but what of mscoree.tlb? Like any loaded type library, the VB
6.0 Object Browser allows you to view the contained types. As you can see from
Figure 12-11, despite the exotic nature of this exported assembly, mscoree.tlb
defines a surprisingly small number of items.

COM-to-.NET Interoperability—Advanced Topics

661

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 661

Figure 12-11. The crux of the CLR in terms of COM type information

A full treatment of each and every type defined in mscoree.dll is beyond the
scope of this text. Luckily, you are able to build a custom CLR host using a single
type: CorRuntimeHost. This single .NET class type implements a set of interfaces
(also defined within mscoree.tlb) that provide the following functionality:

• The ability to load and unload .NET application domains

• The ability to manipulate the .NET garbage collector

• The ability to validate code within a given .NET assembly

• The ability to interact with a given debugger attached to the current process

So, given that mscoree.tlb defines the types you need to build a custom CLR
host, the next logical question is when you might want to do this. Besides the fact
that building a custom host is extremely interesting in its own right, there is a
practical reason to do so. When you build a custom host from unmanaged code,

Chapter 12

662

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 662

you are able to dynamically load .NET assemblies for use by COM, without having
to register the assembly using regasm.exe.

Building a Custom Host

The first detail of your VB 6.0 host is to establish a valid application domain to host
the loaded assemblies. As you may know, under the .NET platform an application
domain is a unit of isolated execution within a Win32 process (similar in function
to the apartment architecture of classic COM). Just as a process may contain
numerous application domains, a given application domain may contain
numerous .NET assemblies. You are able to represent a given application domain
using the System.AppDomain type.

Given this, the Form_Load() event handler creates an instance of
CorRuntimeHost. Once the host has started, obtain a valid AppDomain via
CorRuntimeHost.GetDefaultDomain(). The Form_Unload() event handler shuts
down the CLR via the aptly named CorRuntimeHost.Stop(). Here is the story
thus far:

' The types we need to host the CLR.

Private myAppDomain As AppDomain

Private myCLRHost As CorRuntimeHost

' Load the CLR and set app domain.

Private Sub Form_Load()

Set myCLRHost = New CorRuntimeHost

myCLRHost.Start

myCLRHost.GetDefaultDomain myAppDomain

End Sub

' Unload the CLR.

Private Sub Form_Unload(Cancel As Integer)

myCLRHost.Stop

End Sub

Now assume that the main Form has three VB 6.0 Button types. The Click
event handler of the first button (btnListLoadedAsms_Click()) obtains and
displays the list of each assembly currently hosted by the default application
domain. To do this, you are able to obtain an array of Assembly types from the
GetAssemblies() method of the AppDomain type. To display the name of each
assembly, you are able to simply make use of the Assembly.FullName property:

' List all the loaded assemblies.

Private Sub btnListLoadedAsms_Click()

Dim loadedAsms() As Assembly

loadedAsms = myAppDomain.GetAssemblies()

COM-to-.NET Interoperability—Advanced Topics

663

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 663

Dim theAsms As String

Dim i As Integer

For i = 0 To UBound(loadedAsms)

theAsms = theAsms + loadedAsms(i).FullName + vbLf

Next

MsgBox theAsms

End Sub

The next Button type is responsible for loading the System.Collections.dll
assembly from the GAC to exercise the ArrayList type. Note how the
CreateInstance() method requires you to send in (a) the friendly name of the
assembly containing the type and (b) the fully qualified name of the type itself.
What is returned from AppDomain.CreateInstance() is an ObjectHandle type,
which provides the ability to obtain the underlying type using the Unwrap()
method:

' Load a type from the GAC.

Private Sub btnLoadFromGAC_Click()

Dim arLst As ArrayList

Dim obj As ObjectHandle

Set obj = myAppDomain.CreateInstance("mscorlib",

"System.Collections.ArrayList")

Set arLst = obj.Unwrap

arLst.Add "Hello there!"

arLst.Add 12

arLst.Add True

Dim items As String

items = items + arLst(0) + vbLf

items = items + CStr(arLst(1)) + vbLf

items = items + CStr(arLst(2)) + vbLf

MsgBox items

End Sub

Chapter 12

664

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 664

If you run the application at this point, once you load System.Collection.dll,
you find the message displayed in Figure 12-12.

Figure 12-12. Interacting with System.Collections.dll

The final button of your VB 6.0 Form type is responsible for loading a private,
and unregistered, .NET assembly. To ensure that this example illustrates the point
of loading unregistered .NET binaries, assume you have the following trivial C#
class definition, defined in an assembly named (of course) UnregisteredAssembly:

using System;

using System.Runtime.InteropServices;

namespace UnregisteredAssembly

{

[ClassInterface(ClassInterfaceType.AutoDual)]

public class AnotherAdder

{

public AnotherAdder(){}

public int Add(int x, int y)

{ return x + y;}

}

}

Now, although you do not need to register this assembly, you still need to
generate type information for your VB 6.0 client. Thus, run tlbexp.exe against this
binary, and place the *.tlb and UnregisteredAssembly.dll files in the same directory
as the current VB 6.0 project (Figure 12-13).

COM-to-.NET Interoperability—Advanced Topics

665

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 665

Figure 12-13. Configuring the unregistered assembly and related *.tlb file

Now that you have a private assembly, you are able to write the following
event handler for the Form’s final Button type:

' NOTE!!! Because VB projects do not directly

' run from the application directory within

' the IDE, you will

' need to run the EXE to use this function.

Private Sub btnLoadFromPrivateAsm_Click()

Dim adder As AnotherAdder

Dim obj As ObjectHandle

Set obj = myAppDomain.CreateInstance("UnregisteredAssembly", _

"UnregisteredAssembly.AnotherAdder")

Set adder = obj.Unwrap

MsgBox adder.Add(99, 3)

End Sub

As you can gather from the lengthy code comment, before you can test this
final bit of functionality, you need to build the VB 6.0 application (File | Make) and
run the application outside the VB IDE. Once you have built the EXE, simply
double-click the executable file. If you loaded UnmanagedAssembly.dll and
System.Collections.dll via the correct Button types, you would now find the
results shown in Figure 12-14 when you click on the “list all loaded assemblies”
Button type.

Chapter 12

666

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 666

Figure 12-14. Documenting loaded assemblies

With your custom host complete, you come to the end of Chapter 12. As illus-
trated by this example, when you build a custom host for the CLR, you are able to
avoid the process of registering .NET assemblies prior to building COM clients
that consume them. If you want to dive into further details of the functionality of
mscoree.dll, be sure to check out the tool-builders documents included with the
.NET SDK (installed by default under C:\Program Files\Microsoft Visual Studio
.NET\FrameworkSDK\Tool Developers Guide\docs).

CODE The UnmanagedAssembly and CustomCLRHost projects are
located in the Chapter 12 subdirectory.

Summary

The chapter wraps up your investigation of COM-to-.NET interoperability issues.
As you have seen, just as a COM type can implement .NET interfaces to achieve
type compatibility, a .NET type can implement COM interfaces to achieve binary
compatibility with related coclasses. Using managed code, you are able to build
managed representations of COM types to avoid creating a dependency with a
related interop assembly.

Another key aspect of this chapter illustrated how you are able to build a
customized version of tlbexp.exe. While you may never be in the position of
needing to do so, this should solidify your understanding of what this tool does on
your behalf. The final major topic presented here illustrated how you can interact
with the CLR via mscoree.tlb to build a custom host from unmanaged code.

At this point in the text, you have drilled quite deeply into the COM and .NET
type systems, and you have seen numerous aspects of the interoperability layer.
Before I wrap things up, the next (and final) chapter addresses the topic of
building COM+ types (i.e., configured components) using managed code.

COM-to-.NET Interoperability—Advanced Topics

667

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 667

CHAPTER 13

Building Serviced
Components

(COM+ Interop)

The .NET platform provides a specific assembly, System.EnterpriseServices.dll,
which allows you to build managed code libraries that can leverage the services
provided by the COM+ runtime. Thus, using C#, VB .NET, or any other managed
language, you are able to build types that can support the same behaviors (for
example, automated transactions, JITA, role-based security, and whatnot) as a
classic COM+ type. The point of this chapter is to provide an overview of the
key features of COM+, as well as to dig into the details of building configured
components under the .NET platform. As you will see, building COM+-aware
.NET types is similar to the process of exposing .NET types to a classic COM
client (as described in Chapters 10 through 12).

Now, to be sure, a single chapter cannot cover every possible detail of building
serviced components. However, by the time you have completed this material, you
will have written a three-tier application that illustrates the core services provided
by the COM+ runtime and will be in a perfect position to explore additional
features of COM+ within the world of managed code.

The MTS, COM+, Component Services Name Game

Microsoft-centric developers are without a doubt aware of the role of Microsoft
Transaction Server (MTS). MTS was, in essence, an application server designed to
host classic COM servers in the middle tier under Windows NT. Using MTS, devel-
opers were able to create highly scalable systems complete with numerous bells
and whistles. However, the infrastructure of MTS was incomplete at the time of its
release (for example, no support for object pooling) and was not fully integrated
with COM proper. In effect, MTS was a subsystem, living side-by-side with classic
COM, that produced some rather inelegant constructs (competing registry entries
among the most notable).

669

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 669

With the release of Windows 2000, MTS was integrated with COM itself and
renamed COM+ 1.0. In addition to streamlining the underlying programming
model, COM+ also introduced further services for objects in the middle tier. For
example, under COM+, coclasses can support object constructor strings, partici-
pate in an object pool, make use of loosely coupled events (LCEs), as well as
leverage an object-oriented wrapper (Queued Components) around the raw
MSMQ protocol.

Windows XP has further upgraded the set of services provided by the COM+
runtime by introducing COM+ 1.5 (which by the way, is fully compatible with
COM+ 1.0). Some of these new features include the ability to disable and pause
applications and components, configure private components, as well as expose a
configured application as an NT service or XML Web service. Although the screen
shots shown in this chapter all make use of COM+ 1.5 dialog boxes, I mainly focus
on the services that are common to both COM+ 1.0 and 1.5 (with COM+ 1.5-
specific features clearly noted).

Now, with the advent of .NET, COM+ is more commonly referred to as Compo-
nent Services, because it is possible to build .NET code libraries that can also be
placed under the loving arms of the COM+ runtime layer. Like a classic COM
type, a .NET type is also able to make use of just-in-time activation (JITA), object
constructor strings, object pooling, and automatic transactions. In short, anything
that could be done using a classic COM object can now be done using managed
code (and much more easily I might add).

Given that .NET has nothing to do with classic COM, the shift from “COM+” to
“Component Services” is a justifiable name change. During this chapter, keep in
mind that when discussing the topic of COM+-aware .NET types, I am really
describing Component Services (although I will typically use the term “COM+” for
easy reading). Now that you have a handle on the current terminology, let’s review
exactly what Component Services (aka COM+) brings to the table.

Recapping Component Services

As mentioned, COM+ (Component Services) is an application server that provides
the ability to host classic COM and .NET types in a manner fitting for an enter-
prise-level, n-tier environment. For example, assume you have created a classic
COM binary that is in charge of connecting to a data source (perhaps using classic
ADO) to update a number of related tables. Once this COM server has been
installed under Component Services, it inherits a number of core traits, such as
support for declarative transactions, JIT activation/ASAP deactivation (to increase
scalability), as well as a very nice role-based security model.

For a given object to make use of the services provided by the Component
Services runtime, it must be explicitly installed into a logical entity termed a
COM+ application. The COM+ infrastructure makes use of a distinct registration

Chapter 13

670

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 670

database called (not surprisingly) the COM+ Catalog, which maintains all relevant
settings for the COM+ applications (and their components) configured on a given
machine. Once an object has been placed into a given COM+ application, the *.dll
is referred to as a configured component as opposed to a nonconfigured compo-
nent, which is a *.dll that is not logged within the COM+ Catalog.

All configured components have an associated context object used to repre-
sent any number of specific traits about how the object is being employed. For
example, the context object may contain information about the security creden-
tials of the caller, information regarding the object’s transactional outcome (that
is, the happy bit), and information regarding whether the object is ready to be
reclaimed from memory (that is, the done bit). In addition to object-level context,
COM+ supports call-level context, used to hold contextual information regarding
the current method invocation. More on the topic of context in just a bit.

By and large, configured components are designed to be stateless entities.
This simply refers to the fact that the object can be created and destroyed by the
runtime (to reclaim scarce resources) without affecting the connected “base
client” (the entity making calls to the COM+ runtime layer). In this light, config-
ured components play the role of traditional business objects that perform a unit
of work for the base client and quietly pass away. If the base client makes a call on
the object that has been reclaimed, the COM+ runtime simply creates a new copy
(thus the motivation for building stateless types). Formally speaking, this process
is termed just-in-time activation (JITA), which is used in conjunction with ASAP
deactivation. In addition to the pervious traits, here is a quick rundown of some
additional COM+-specific behaviors:

• Enhanced support for declarative programming. COM+ builds on the
declarative programming model used with classic COM and MTS. Using a
declarative approach, programmers are able to change how a configured
object responds at runtime by changing its settings at design time via a
friendly user interface called the Component Services Explorer. In this way,
you are not required to reengineer an existing code base when you wish to
alter the functionality of a given type. As mentioned, the settings estab-
lished using the Component Services Explorer are logged in the COM+
Catalog.

• Support for poolable objects. The COM+ runtime can maintain a collection
of active objects that can be quickly handed off to the base client. This trait
can help decrease the time the base client needs to wait to be returned an
interface reference from the COM+ type.

• A new event model termed loosely coupled events, or LCEs. The LCE
model of COM+ allows clients and COM+ types to communicate in a

Building Serviced Components (COM+ Interop)

671

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 671

disconnected manner. This means that a given COM+ class can send out an
event without any foreknowledge of who (if anyone) is listening. Also, a
COM+ client can receive events without needing to be connected to (or
aware of) the sender.

• Support for object construction strings. Given that classic COM does not
allow the client to directly trigger class constructors, COM+ introduced a
standard interface (IObjectConstruct) that gives the coclass the ability to
receive any start-up parameters in the form of a COM BSTR (represented as
a System.String in managed code).

• The ability to control the queuing behavior of a COM+ type in a declarative
manner. As you may know, Microsoft Message Queue (MSMQ) is an enter-
prise-level messaging service that entails lots of boilerplate grunge. COM+
introduces Queued Components (QC), which hide much of this grunge
from view.

As you can see, the services provide by COM+ can greatly simplify the devel-
opment of distributed applications. The only problem is that these services were
originally intended for use by classic COM objects. To allow .NET developers to
obtain these same benefits, the base class libraries provide numerous .NET types
defined in the System.EnterpriseServices namespace. For the time being, however,
let’s check out the COM+ runtime environment in greater detail.

Reviewing the COM+ Runtime Environment

The first thing to be aware of is that the COM+ runtime only hosts objects that
have been packaged into a binary *.dll (objects contained within *.exe files cannot
be hosted by the COM+ runtime). As you know, however, *.dll files must always be
contained within a given process. Because COM+ is all about facilitating the devel-
opment of distributed applications, you may wonder exactly who or what is in
charge of hosting a configured *.dll on behalf of the remote base client. The short
(incomplete) answer is that when a local or remote client creates an instance of a
configured component, the COM+ runtime hosts the *.dll within a surrogate
named dllhost.exe. The situation changes just a bit if the types have been config-
ured as a library application (defined later in this chapter).

As you would guess, the COM+ runtime does a great deal more than simply
place DLLs within an instance of dllhost.exe. Specifically, the COM+ runtime
places an activated object within a given context. So what is context? Basically, a
context is the runtime execution scope of a configured object. In even simpler
terms, context is simply a place to store objects.

Chapter 13

672

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 672

Reviewing Object Context

Each COM+ contextual boundary is represented by a runtime-generated object,
called a context object, which implements four key interfaces. The first two inter-
faces, IObjectContext and IObjectContextActivity, are legacy MTS interfaces,
supported for purposes of backward compatibility. Of these two MTS-centric
interfaces, I would assume that IObjectContext is by far the most familiar. Here is
the managed definition:

// This MTS style interface allows a

// configured component to interact with

// its context object.

interface IObjectContext

{

object CreateInstance(Guid rclsid, Guid riid);

void DisableCommit();

void EnableCommit();

bool IsCallerInRole(string role);

bool IsInTransaction();

bool IsSecurityEnabled();

void SetAbort();

void SetComplete();

}

The final two interfaces (IObjectContextInfo and IContextState) are only avail-
able under COM+, and mimic and enhance the behaviors found in the legacy MTS
interfaces. Although it is possible to access the functionality of each of the four
interfaces supported by the context object from managed code, you will most
likely prefer the improved granularity of the COM+-specific interface types. This
said, here are the managed definitions of IObjectContextInfo and IContextState:

// Used to obtain various statistics about the current state of affairs.

interface IObjectContextInfo

{

Guid GetActivityId();

Guid GetContextId();

object GetTransaction();

Guid GetTransactionId();

bool IsInTransaction();

}

// Used to control object deactivation and transaction voting.

// Basically, this is a more granular representation of SetComplete()

// and SetAbort().

interface IContextState

{

Building Serviced Components (COM+ Interop)

673

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 673

bool GetDeactivateOnReturn();

System.EnterpriseServices.TransactionVote GetMyTransactionVote();

void SetDeactivateOnReturn(bool bDeactivate);

void SetMyTransactionVote(System.EnterpriseServices.TransactionVote txVote);

}

Using these interfaces, a configured component is able to read and set its
contextual settings including transactional data, lifetime management data, and
various security settings. If you are coming to .NET from a classic COM+ back-
ground, you are most likely aware that a configured classic COM+ type can obtain
a reference to these interfaces using the CoGetObjectContext() API function.
When you are building managed configured types, however, you do not use
these interfaces directly (in fact, they are marked as internal types to the
System.EnterpriseServices.dll assembly). Instead, you make use of various
static members of the ContextUtil type that you will get to know shortly.

Reviewing Call Context

In addition to the context object, COM+ also supports a call object that is created
each time a member is invoked on a configured component and is destroyed as
soon as the method completes. The COM+ call object supports two interfaces,
ISecurityCallContext and IServerSecurity, which provide information regarding
the call-level security settings for a given method invocation. The managed defini-
tion of the key call-level interface, ISecurityCallContext, is as follows:

// Obtain call level security traits.

interface ISecurityCallContext

{

int Count { get; }

void GetEnumerator(ref System.Collections.IEnumerator pEnum);

object GetItem(string name);

bool IsCallerInRole(string role);

bool IsSecurityEnabled();

bool IsUserInRole(ref Object pUser, string role);

}

Again, if you have a background in classic COM+, you are aware that config-
ured components may interact with the call object using the CoGetCallContext()
API function. However, under .NET, similar call-level information may be obtained
using various static members of the SecurityCallContext type. To summarize the
story thus far, ponder Figure 13-1, which illustrates the basic relationship between
these core items of the COM+ runtime (stubs and proxies removed for clarity).

Chapter 13

674

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 674

Figure 13-1. Clients, objects, and context

Note that under the COM+ model, all objects must belong to a context (such
as the nonconfigured base client). Formally speaking, the contextual boundary
that is used to host types that have not been listed in the COM+ Catalog is termed
the default context.

The Role of the COM+ Catalog

Unlike classic MTS, contextual information for a configured component is not
stored in the system registry. Rather, COM+ components maintain contextual
information within the COM+ Catalog. As mentioned, the COM+ Catalog is a
machine-wide database that is used to hold any and all information for every
configured component on a given machine. As you may already be aware, you are
not going to find a regedit.exe-like tool that allows you to edit the catalog directly.
In fact, the exact name and location of the COM+ Catalog is officially undocu-
mented.

When you wish to manipulate the COM+ Catalog, you will most likely make
use of the Component Service Explorer to do so. Under the hood, however, this
GUI-based tool makes use of a classic COM object model contained within
ComAdmin.dll. Using this COM server, you are able to build applications that
perform the same exact functions as the Component Services Explorer. Although
this chapter does not describe the complete object model maintained by the
ComAdmin.dll, let’s see a simple example.

Building Serviced Components (COM+ Interop)

675

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 675

Assume you wish to build a C# console application capable of displaying the
names of each COM+ application on the local machine. Given that .NET does not
currently support a managed namespace that interacts with the COM+ Catalog,
the first step is to set a reference to the COM+ 1.0 Admin type library (Figure 13-2).

Figure 13-2. Referencing comadmin.dll

To take ComAdmin.dll out for a test drive, create a simple Main() loop that is
responsible for obtaining a collection of all COM+ applications on the current
machine using the generated COMAdminCatalogClass type. If you have never
programmatically manipulated the COM+ Catalog, just understand that the
COMAdminCatalog is the point of entry into the object model. The key method of
this type is GetCollection(), which takes a string parameter used to identify the
collection you are requesting (“Applications” in this case). Once the collection has
been filled using the Populate() method, you are able to iterate over each member
in the collection (using ICatalogObject) and display the relevant information.
Consider the following code listing:

Chapter 13

676

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 676

namespace ComPlusCatalogReader

{

class ComPlusAppReader

{

[STAThread]

static void Main(string[] args)

{

// Load all the COM+ apps into a COM collection.

COMAdminCatalogClass comcat = new COMAdminCatalogClass();

ICatalogCollection apps =

(ICatalogCollection)comcat.GetCollection("Applications");

apps.Populate();

// Iterate over the collection.

foreach(ICatalogObject app in apps)

{

// Print the name of the COM+ application.

Console.WriteLine("COM+ App: {0}", app.Name.ToString());

}

}

}

}

Figure 13-3 shows a possible test run. (Your application names will vary!)

Figure 13-3. Programmatically interacting with the COM+ Catalog

Building Serviced Components (COM+ Interop)

677

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 677

CODE The ComPlusCatalogReader application is located under the
Chapter 13 subdirectory.

The Component Service Explorer

To be sure, if you were to make direct use of ComAdmin.dll every time you
wish to build and configure a new COM+ application, life would be unnecessarily
complex. The Component Services Explorer (aka COM+ Explorer) is a GUI-
based tool that is used to configure the serviced components on a given machine
(including remote machines if you have the correct administrative privileges). Like
most GUI-based configuration tools that ship with Windows 2000/Windows XP,
the Component Services Explorer is yet another Microsoft Management Console
(MMC) snap-in that can be launched from the Windows Control Panel. Simply
open the Administrative Tools directory and double-click the Component Services
icon (Figure 13-4).

Figure 13-4. The Component Service Explorer

Chapter 13

678

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 678

Creating COM+ Applications

The most basic aspect of the Component Services Explorer is the ability to create
new COM+ applications using the COM+ Application Install Wizard (Figure 13-5).

Figure 13-5. Declaratively creating a new COM+ application

The resulting wizard allows you to create a new empty COM+ application (as
well as install existing COM+ applications) and establish the mode of activation
and identity of the contained types. Assume you wish to create a new application
named “COM+ Message Application”. For the current discussion, the most impor-
tant configuration detail is the activation mode (Figure 13-6).

Building Serviced Components (COM+ Interop)

679

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 679

Figure 13-6. Setting the application’s activation level

A given COM+ application can be configured to function as a library
application or a server application. To be honest, almost all of your COM+
applications will be configured to activate as a server application. However,
Table 13-1 illustrates the differences between each application type.

Table 13-1. Server Activation Modes

COM+ Application Activation Mode Meaning in Life

Library applications Library applications are loaded directly into the

context of the calling application. This type of

COM+ application cannot be accessed remotely

and thus must be installed on the same machine as

the calling client. Furthermore, library applications

cannot make use of COM+ role-based security and

cannot contain queued components.

Server applications The most common (and useful) choice. Server

applications run under dllhost.exe and may be

accessed out of process. Also, server applications

can participate in the COM+ role-based security

model and may contain queued components.

Chapter 13

680

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 680

Once you have finished creating the new COM+ application, you find a new
application icon representing the package (Figure 13-7). Of course, the initial
settings you established using COM+ Application Install Wizard can be changed
after the fact by opening the property page for your new application (simply right-
click the icon). In addition, this same property page allows you to establish addi-
tional details of your new COM+ application such as server shutdown, security
settings, and whatnot (you will see specific details during the course of this
chapter).

Figure 13-7. Your new COM+ application

In addition to creating a new COM+ application using the COM+ Application
Install Wizard, you are also able to programmatically establish a new application
using a set of COM types that directly allow you to manipulate the COM+ Catalog.
Finally, and most important for .NET developers, COM+ applications can be
configured using a command line tool named regsvcs.exe. You will get to know the
functionality of this tool in just a bit. However, for the time being, let’s build a
classic COM type to install into your new COM+ application.

Building Serviced Components (COM+ Interop)

681

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 681

A Classic COM+ Example

By way of a simple example, assume you have launched VB 6.0 (or if you wish,
ATL) and selected a new ActiveX DLL named ClassicVBComPlusServer. The only
member of the [default] _MsgClass interface is the following public subroutine:

' _MsgClass member.

Public Sub DisplayMessage(ByVal s As String)

MsgBox s, , "Client says:"

End Sub

Once compiled, the ClassicComPlusServer.dll can be placed under management
of the COM+ runtime using the COM+ Component Install Wizard (Figure 13-8).

Figure 13-8. Installing configured components into a COM+ application

Once you skip past the welcome screen, you are asked to choose from one of
three possible component types; for the current discussion select “Install new
component(s)”. Navigate to the location of your ClassicComPlusServer.dll COM
server and install the component. If you now check out the Components subfolder
of your COM+ application, you find the MsgClass coclass, its interfaces, and their
methods are each listed under a related directory (Figure 13-9).

Chapter 13

682

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 682

Figure 13-9. The installed COM+ type

Like a COM+ application, configured classes, interfaces, and methods each
support a related property page to allow you to further configure the underlying
characteristics of a given entity. Again, you will see details where necessary;
however, for the time being let’s build a simple VB 6.0 COM client to interact with
the configured COM+ type.

CODE The ClassicVBComPlusServer application is included under the
Chapter 13 subdirectory.

Building a VB 6.0 COM+ Client

Like classic COM, Component Services honors the trait of location transparency.
When you are interacting with a configured type (COM based or .NET based), the
base client is not required to perform any special processing to trigger the under-
lying members of the supported interfaces. In fact, the base client is completely
encapsulated from the location and configuration details of the type, and has no
clue that the type has been installed under COM+ management.

Building Serviced Components (COM+ Interop)

683

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 683

To illustrate, fire up VB 6.0 once again and select a new Standard EXE project
workspace (named Vb6ClassicComPlusClient) and select the server’s type infor-
mation using the Add | Project References menu selection. The GUI of the main
Form simply allows the user to enter a message that will be displayed by the
COM+ type (Figure 13-10).

Figure 13-10. The VB 6.0 COM+ client GUI

The code behind the Button should be self-explanatory:

Private Sub btnSendMesage_Click()

Dim o As MsgClass

Set o = New MsgClass

o.DisplayMessage txtMessage.Text

End Sub

When you run the application, you will be able to see that the configured type
has been activated by investigating the Status view of the Components folder
(Figure 13-11).

Figure 13-11. The activated COM+ type

Chapter 13

684

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 684

As you can see, using classic COM, it is possible to install a vanilla-flavored
COM server and have it run as a configured component. However, when you wish
to build a .NET code library, you are required to add some supporting infrastruc-
ture using the types of the System.EnterpriseServices namespace. Before you
check out this key group of .NET types, a brief word on deploying COM+
applications.

CODE The VB6ClassicComPlusClient application is included under the
Chapter 13 subdirectory.

Deploying COM+ Applications

When you are testing and exploring component services from the comfort of your
own home or office, the chances are good that you have a single machine that
contains the base client as well as the configured types. However, when it comes
time to deploy your COM+ application across the enterprise, the Component
Service Explorer provides two key options, both of which are available using the
Export command (Figure 13-12).

Figure 13-12. Exporting a COM+ application

Building Serviced Components (COM+ Interop)

685

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 685

The resulting wizard provides two major options (Figure 13-13).

Figure 13-13. Deployment options

The first choice you have is to export your COM+ application as a server
application. This option generates an *.msi and a *.cab file (at a location of your
choosing) that can be used to install this application onto a new COM+-aware
server machine. Obviously, if you are interested in copying a COM+ application
onto a new machine, this is the option of interest. As you would hope, when the
new machine installs the *.msi file (using the Install prebuilt application option of
the COM+ Application Install Wizard), the target machine will have all necessary
files (the *.dlls, stub/proxy information, and configuration settings) installed
locally under the <Drive>:\Program Files\ComPlus Applications\{<application
ID>} subdirectory.

The second option, Application Proxy, is useful when you simply wish to
redirect a remote base client machine to point to a COM+ server machine. This
approach also generates an *.msi and a *.cab file; however, when run on the
client’s machine, they do not receive a local copy of the original COM+ applica-
tion, rather the client machine receives a copy of the necessary COM type
information (the *.tlb or *.dll file) and has the AppID’s RemoteServerName value
retrofitted to point to the remote server. In this way, the client can simply refer-
ence the COM type information and program against the remote COM+ types as
normal. At runtime, however, the client is redirected to the remote server via an
intervening stub and proxy layer.

Chapter 13

686

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 686

So, hopefully the previous pages have given you a better understanding of the
role of COM+. Now as they say, on to the interesting stuff! The remainder of this
chapter will now address how to construct .NET code libraries that are capable of
leveraging the COM+ runtime layer.

The System.EnterpriseServices Namespace

As mentioned earlier in this chapter, when you wish to build configured types
using a managed language, you must make use of the types found within the
System.EnterpriseServices namespace. Table 13-2 documents the core types,
grouped by related functionality.

Table 13-2. Core Types of the System.EnterpriseServices Namespace

Members of System.EnterpriseServices Meaning in Life

ApplicationAccessControlAttribute These attributes are used to configure the

ApplicationActivationAttribute core characteristics of the COM+

ApplicationIDAttribute application itself (security access settings,

ApplicationNameAttribute activation mode, the identifying GUID,

ApplicationQueuingAttribute friendly name, and queuing behavior).

AutoCompleteAttribute Marks a given method to automatically

call SetComplete() upon successful

completion.

ComponentAccessControlAttribute Enables security checking on calls to a

component.

ConstructionEnabledAttribute Enables COM+ object construction

support.

ContextUtil Obtains information about the COM+

object context. If you have a background

in classic COM+, this is basically an

implementation of the IObjectContext

(and related) interface(s).

DescriptionAttribute Sets the description on an application,

component, method, or interface. Values

are viewable using the property page of

the given item.

EventClassAttribute These attributes are used when you wish

EventTrackingEnabledAttribute to leverage the loosely coupled event

(LCE) model of COM+.

Building Serviced Components (COM+ Interop)

687

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 687

Table 13-2. Core Types of the System.EnterpriseServices Namespace (continued)

Members of System.EnterpriseServices Meaning in Life

JustInTimeActivationAttribute This attribute turns just-in-time activation

(JITA) on or off for a given class type.

ObjectPoolingAttribute Enables and configures object pooling for

a component.

PrivateComponentAttribute Identifies a component as a private

component that is only seen and activated

by components in the same application.

Supported only by COM+ 1.5–enabled

machines.

RegistrationHelper Allows you to programmatically install

and configure assemblies in the COM+

Catalog.

SecurityCallContext As you would expect,

SecurityCallers System.EnterpriseServices contains a

SecurityIdentity number of types that allow you to interact

SecurityRoleAttribute with call context and the COM+ role-

based security model.

ServicedComponent Perhaps the most important type in the

System.EnterpriseServices namespace.

Represents the base class of all classes

using COM+ services.

SharedProperty System.EnterpriseServices also supports

SharedPropertyGroup types that allow .NET objects to interact

SharedPropertyGroupManager with the shared property manager (SPM)

of COM+.

As you can see from Table 13-2, System.EnterpriseServices supports manipu-
lation of the COM+ shared property manager (SPM). However, given that SPM has
shown itself to hinder scalability, I do not address these types. If you have made
use of SPM using classic COM, you will find the process just about identical.

Chapter 13

688

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 688

Having pondered Table 13-2, the one thing that might strike you as odd is that
COM+- (and MTS-) centric interfaces such as IObjectControl, IObjectContext, and
IObjectConstruct are not visible members of the System.EnterpriseServices name-
space. The reason is simple. As you already know, .NET does not demand that
custom types support discrete interfaces. Thus, rather than forcing the .NET
developer to implement or obtain interface references, they are able to override
base class members and/or call any number of static methods of the ContextUtil
and SecurityCallContext types.

Here’s another key point to be mindful of: Many of the attribute types found in
the System.EnterpriseServices namespace are used to ensure that when the
component is installed under the management of COM+, the contained types are
configured with an initial look and feel. Of course, you (or your local system
administrator) are always free to alter the default values using the Component
Services Explorer. In this light, understand that in many cases you are not required
to apply these COM+-centric attributes to function correctly as a configured
component.

The System.EnterpriseServices.ServicedComponent Type

Any .NET type that wishes to function under component services must derive
(directly or indirectly) from System.EnterpriseServices.ServicedComponent,
which in turn derives from ContextBoundObject. Like any .NET type,
ServicedComponent supports the members of System.Object, as well as
the following interfaces:

// The base class of all configured .NET types.

public abstract class System.EnterpriseServices.ServicedComponent :

ContextBoundObject,

System.EnterpriseServices.IRemoteDispatch,

IDisposable,

System.EnterpriseServices.IManagedObject,

System.EnterpriseServices.IServicedComponentInfo

{…}

Table 13-3 documents the critical methods of the ServicedComponent type.
Based on your current exposure to Component Services, you may notice that a
number of the members defined by ServicedComponent echo the functionality
of the standard COM+ interfaces IObjectControl and IObjectConstruct
(both of which will be described shortly). Also note that types derived from
ServicedComponent support two methods that allow the creator to explicitly
destroy any resources held by the configured type (also described shortly).

Building Serviced Components (COM+ Interop)

689

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 689

Table 13-3. Select Members of System.EnterpriseServices.ServicedComponent

Member of Meaning in Life
ServicedComponent

Activate() This method is called by the infrastructure when the object is

created or allocated from a pool. Override this method to add

custom initialization code to objects.

CanBePooled() This method is called by the infrastructure before the object is

put back into the pool. Override this method to vote on whether

the object is put back into the pool.

Construct() This method is called by the infrastructure just after the

constructor is called, passing in the constructor string. Override

this method to make use of the construction string value.

Deactivate() This method is called by the infrastructure when the object is

about to be deactivated. Override this method to add custom

finalization code to objects when just-in-time (JIT) compiled

code or object pooling is used.

Dispose() Releases the resources used by the configured object.

DisposeObject() This static (Shared under VB .NET) method finalizes the

configured object and removes the associated COM+ reference.

The Simplest Possible Example

To illustrate the basic building blocks of creating a configured .NET type, let’s
construct a C# code library named ServicedDotNetLib that mimics the function-
ality of the previous Visual Basic 6.0 COM+ server. Given that this *.dll will contain
a class deriving from System.EnterpriseServices.ServicedComponent, you need to
explicitly set a reference to the containing assembly (Figure 13-14).

As you may recall, when you wish to expose members of a .NET type to COM
(including COM+), you must establish the interface type using the ClassInterface
attribute. The COM+ runtime will host any type of COM interface (custom, dual,
or IDispatch based), so for the sake of ease, set your class interface to be AutoDual.
Of course, if you do not wish to support a class interface on your .NET types, you
are also free to implement any number of custom interfaces on the class itself.

Chapter 13

690

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 690

Figure 13-14. Referencing the System.EnterpriseServices.dll assembly

Another point I should make is that .NET classes that wish to function under
the COM+ runtime must support a default (parameterless) constructor (as you
might expect given the examination of exporting .NET class types to COM). Recall
that although it is syntactically possible for configured .NET types to support
additional parameterized constructors, they are not reachable by the calling
base client. This being said, here is an initial crack at a managed, configured
component:

using System;

using System.Runtime.InteropServices;

using System.EnterpriseServices;

using System.Windows.Forms;

namespace ServicedDotNetLib

{

// Expose class members on the class interface

// (_SimpleServicedType) as a [dual] interface.

[ClassInterface(ClassInterfaceType.AutoDual)]

public class SimpleServicedType : ServicedComponent

{

Building Serviced Components (COM+ Interop)

691

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 691

// Serviced Components must support a default

// constructor.

public SimpleServicedType(){}

public void DisplayMessage(string msg)

{ MessageBox.Show(msg, "Client says:");}

}

}

Before you register this assembly with COM+, you have one further detail to
attend to. COM+ demands that configured .NET assemblies must be signed with
a strong name. As you recall from Chapter 5, strongly named assemblies have a
[.publickey] tag placed into the assembly manifest (the hallmark of a shared
binary entity). Given this, run sn.exe and embed the relevant *.snk file data into
ServicedDotNetLib.dll using the AssemblyKeyFile attribute (you may wish to
explicitly set the version attribute as well).

[assembly: AssemblyVersion("1.0.0.0")]

[assembly: AssemblyKeyFile(@"C:\Apress Books\InteropBook\Labs\Chapter

13\ServicedDotNetLib\bin\Debug\thekey.snk")]

That’s all you need for this current example. Go ahead and compile your
library. Once you are done, place your assembly into the GAC (Figure 13-15).

Figure 13-15. Serviced assemblies are typically placed into the GAC.

Chapter 13

692

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 692

CODE The ServicedDotNetLibrary application is included under the
Chapter 13 subdirectory.

Installing the Code Library

Now that you have a binary *.dll, you are in the position to install the contained
types into a given COM+ application. Your first inclination may be to simply make
use of the COM+ Component Install Wizard as you would for a classic COM-based
*.dll. Sadly, if you attempt to do so, you get the error shown in Figure 13-16.

Figure 13-16. .NET assemblies cannot simply be imported into a COM+ application
using the Component Install Wizard.

In the future, I’m sure that the COM+ Explorer will support the ability to install
.NET components using the IDE, but not for now. So, the million-dollar question
is, how do you install a managed *.dll under the care of COM+? Well, recall that the
COM+ runtime demands that configured components are

• Described using a COM type library

• Cataloged in the system registry (HKCR)

• Accounted for in the COM+ Catalog

To automate each of these tasks, you are offered three equally valid
possibilities:

• Make use of the command line tool named regsvcs.exe.

• Make use of a technique called lazy registration.

• Build a custom .NET application that makes use of the
RegistrationHelper type.

Building Serviced Components (COM+ Interop)

693

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 693

You will get a chance to examine the final two approaches later in this chapter.
For the time being, let’s focus on the most common (and most practical) tech-
nique of running regsvcs.exe.

Using the regsvcs.exe Command Line Utility

Currently, the regsvcs.exe utility is only available at the command line. It is,
however, quite possible that future versions of VS. NET will support this tool
within the IDE. In general, this tool performs a number of actions in a single
swoop:

• Registers an assembly for use by COM (HKCR)

• Generates, registers, and installs a type library into a specified COM+
application

• Configures the new COM+ application according to any attributes that have
been added programmatically to your class

Like any command line tool, regsvcs.exe supports a number of command line
flags that are used to instruct the utility how to create (or locate) the underlying
COM+ application. Table 13-4 documents the key flags.

Table 13-4. Core Flags of regsvcs.exe

regsvcs.exe Utility Option Meaning in Life

/appname:applicationName Specifies the name of the COM+ application to either

find or create

/c Creates the target application

/componly Configures components only; ignores methods and

interfaces

/extlb Uses an existing type library

/fc Finds or creates the target application

/parname:name Specifies the name or id of the COM+ application to

either find or create

/reconfig Reconfigures an existing target application

/tlb:typelibraryfile Specifies the type library file to install

/u Uninstalls the target application

Chapter 13

694

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 694

In general, when you are attempting to install a .NET assembly into the COM+
runtime, you may choose to first build the COM+ application using the Compo-
nent Services Explorer and then make use of the /fc flag. If the utility is able to
locate the specified COM+ application in the COM+ Catalog, the types are
installed into the exiting application.

On the other hand, if the specified COM+ application cannot be found, the /fc
flag instructs regsvcs.exe to create a new listing in the COM+ Catalog. The /fc flag
is the default behavior of regsvcs.exe, and as such, it is also acceptable to specify
the /appname flag directly to locate or create a given COM+ application. In either
case, navigate to the location of your ServicedDotNetLib.dll assembly and enter
the following command:

regsvcs.exe /appname:MyDotNetComPlusApp ServicedDotNetLib.dll

Once you have issued a given request to regsvcs.exe, you are in a position
to build a classic COM or .NET client application. Before you do so, however,
let’s check out exactly what regsvcs.exe has accomplished. As you will see, the
process has a very similar look and feel to the process of exposing a .NET type
to classic COM.

Viewing the Generated Type COM Information

The first task performed by regsvcs.exe is to generate and register COM type infor-
mation (a *.tlb file) for the managed assembly (much like tlbexp.exe). If you
examine the coclass definition using oleview.exe, you will find that the generated
class interface has been listed as the [default], followed by a number of auxiliary
.NET-centric interfaces:

// The generated coclass statement.

coclass SimpleServicedType

{

[default] interface _SimpleServicedType;

interface _Object;

interface IRemoteDispatch;

interface IDisposable;

interface IManagedObject;

interface System_EnterpriseServices_IServicedComponentInfo;

};

As you have already seen in Chapter 8, when a .NET type is exposed to COM,
the type will support an interface named _Object that supports the members of
System.Object. I assume you are already aware of the role of IDisposable and its
single Dispose() method (however, you will revisit COM+ object lifetime later in
this chapter). The remaining interfaces are used internally by the types of the

Building Serviced Components (COM+ Interop)

695

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 695

System.EnterpriseServices namespace and are not intended for use by your
custom code base.

Given that you configured the class interface as AutoDual, you will find the
following [dual] interface definition (with autogenerated DISPIDs and various
inherited public members from the implemented interfaces):

interface _SimpleServicedType : IDispatch

{

[id(00000000), propget,

custom({54FC8F55-38DE-4703-9C4E-250351302B1C}, "1")]

HRESULT ToString([out, retval] BSTR* pRetVal);

[id(0x60020001)]

HRESULT Equals([in] VARIANT obj,

[out, retval] VARIANT_BOOL* pRetVal);

[id(0x60020002)]

HRESULT GetHashCode([out, retval] long* pRetVal);

[id(0x60020003)]

HRESULT GetType([out, retval] _Type** pRetVal);

[id(0x60020004)]

HRESULT GetLifetimeService([out, retval] VARIANT* pRetVal);

[id(0x60020005)]

HRESULT InitializeLifetimeService([out, retval] VARIANT* pRetVal);

[id(0x60020006)]

HRESULT CreateObjRef([in] _Type* requestedType,

[out, retval] _ObjRef** pRetVal);

[id(0x60020007)]

HRESULT Dispose();

[id(0x60020008)]

HRESULT DisplayMessage([in] BSTR msg);

};

Acknowledging the Registration Entries

Much like the process of registering a .NET assembly with classic COM,
regsvcs.exe updates the system registry with entries for the following:

• Each type’s ProgID

• Each type’s CLSID (and relevant information)

• Each interface’s IID (and relevant information)

• The COM type library (and relevant information)

Chapter 13

696

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 696

This process is identical to the one outlined in Chapter 10, so take a peek if
you need a refresher. Finally, as you would expect, regsvcs.exe automatically
generates GUID values for the classes and interfaces found in your .NET assembly.
If you wish to assign specific GUID values to a given entity, simply apply the
GuidAttribute type (as shown in Chapter 8).

And Finally, the COM+ Application Itself

The final task performed by regsvcs.exe is to update the COM+ Catalog based on
any COM+-centric attributes located in the assembly’s metadata. Because you
have not yet added any COM+-centric attributes in the ServicedDotNetLib code
base, regsvcs.exe makes use of a well-known set of default values as it configures
the COM+ application and the contained components, interfaces, and methods.
You will check out these default values (and how to change them) in just a bit. For
now, here is the MyDotNetComPlusApp COM+ application (Figure 13-17).

Figure 13-17. The new COM+ application

The only default value you absolutely must change before you are able to
build a client application is the one assigned to the application activation setting.
If you check out the property page of the new COM+ application, you will find that

Building Serviced Components (COM+ Interop)

697

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 697

regsvcs.exe automatically configures a new application to run as a library applica-
tion rather than a server application (you will see how to change this using .NET
attributes a bit later in this chapter). Figure 13-18 shows the necessary update.

Figure 13-18. Reconfiguring the COM+ application to load within dllhost.exe

Accessing the Configured .NET Component from VB 6.0

To illustrate a classic COM application making use of our managed/configured
component, let’s upgrade the VB 6.0 VB6ComPlusClient application created earlier
in this chapter. Once you have added a reference to the ServicedDotNetLib type
library (and updated the GUI), you are able to make use of the .NET type as
follows (notice of course that the process looks identical to manipulating the
classic COM+ type):

Private Sub btnSendDotNetMesage_Click()

Dim o As SimpleServicedType

Set o = New SimpleServicedType

o.DisplayMessage txtDotNetMsg.Text

End Sub

Chapter 13

698

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 698

Accessing the Configured .NET Component from C#

As you would hope, you can also build managed clients that make use of
managed/configured .NET types. To begin, assume you have a C# console
application that sets a reference to the ServicedDotNetLib.dll assembly. In
addition to setting a reference to the original .NET assembly, any managed
client making use of a configured component also needs to set a reference to
System.EnterpriseServices.dll. Mind you, your client code will not make direct
references to these types; however, given that configured .NET types derive from
ServicedComponent, your client-side code must be able to account for this type in
its own code base. Once this is done, you could retrofit Main() as the following:

using System;

using ServicedDotNetLib;

using System.EnterpriseServices;

namespace CSharpComPlusClient

{

class CSharpClient

{

[STAThread]

static void Main(string[] args)

{

// Use the C# COM+ type.

SimpleServicedType st = new SimpleServicedType();

st.DisplayMessage("Hello from C#!");

}

}

}

CODE The CSharpComPlusClient application is located under the
Chapter 13 subdirectory.

Enabling Component Statistics

One of the great joys of COM+ programming is seeing the hallmark of an activated
type: the famed “spinning ball.” Although this bit of eye candy is quite satisfying, it
does place additional processing burden on the server machine. Given this, when
you install an assembly into the COM+ Catalog, the configured components will
not automatically support event and statistical information (and thus won’t spin).
To change this setting at design time, simply check off the “Component supports

Building Serviced Components (COM+ Interop)

699

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 699

events and statistics” check box on the Activation tab for a given component
(Figure 13-19).

Figure 13-19. Enabling the famed spinning ball

If you wish to ensure that your .NET components automatically support this
behavior, you are also able to apply the EventTrackingEnabled attribute for a given
ServiceComponent derived type:

[EventTrackingEnabled(true)]

[ClassInterface(ClassInterfaceType.AutoDual)]

public class SimpleServicedType : ServicedComponent

{…}

A Brief Word on Lazy (Automatic) Registration

Recall that a .NET assembly may be registered with COM+ using one of three
approaches. Although regsvcs.exe is the technique of champions, it is worth
pointing out that .NET assemblies can also be automatically configured with

Chapter 13

700

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 700

COM+ using lazy registration. The “lazy” aspect of this approach is due to you (or
your system administrator) not being required to manually run regsvcs.exe.
Rather, when a managed client references an assembly and creates a type derived
from ServicedComponent, it automatically creates a new COM+ application that
is named based on the friendly name of the assembly or using the attributes found
within the assembly’s metadata (just like regsvcs.exe). Although this approach may
sound ideal, note the limitations of lazy registration.

• Assemblies must be deployed as private, strongly named binary (and
cannot be placed into the GAC).

• Lazy registration will only occur when accessed by .NET clients! If a classic
COM type attempts to access an assembly that has not been installed
manually, the client will bomb at runtime.

• Once an assembly has been configured within the COM+ Catalog using lazy
registration, it will not be reregistered unless you increment the assembly’s
version number each time you alter the contained types (or add new types).

Given these limitations, you should always prefer using regsvcs.exe to ensure
that all clients (COM based and .NET based) are able to access your
managed/configured types.

Working with the RegistrationHelper Type

The final way in which you may configure a .NET code library to function
within the COM+ runtime environment is to do so programmatically using the
RegistrationHelper type found within the System.EnterpriseServices namespace.
This class provides two very simple (and overloaded) instance-level methods
that allow you to install and uninstall a .NET assembly into the COM+ Catalog.
InstallAssembly() requires you to specify the name of the assembly, generated *.tlb
file, and name of the COM+ application to be created and any additional installa-
tion flags that echo the flags of regsvcs.exe. UninstallAssembly() requires similar
information. Do note that each of these methods are defined by the
IRegistrationHelper interface. Here is the formal definition:

public sealed class System.EnterpriseServices.RegistrationHelper :

MarshalByRefObject,

System.EnterpriseServices.IRegistrationHelper,

System.EnterpriseServices.Thunk.IThunkInstallation

{

…

public void InstallAssembly(string assembly, ref String application,

Building Serviced Components (COM+ Interop)

701

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 701

string partition, ref String tlb,

System.EnterpriseServices.InstallationFlags installFlags);

public virtual void InstallAssembly(string assembly, ref String application,

ref String tlb, System.EnterpriseServices.InstallationFlags installFlags);

public virtual void UninstallAssembly(string assembly, string application);

public void UninstallAssembly(string assembly,

string application, string partition);

}

Let’s see a simple example. Again, let’s say you have a C# Console application
that has set a reference to System.EnterpriseServices.dll. Also assume that this C#
client has a strongly named assembly named FooServicedComp.dll in its applica-
tion directory. These assumptions aside, the following code programmatically
performs the same exact duties as regsvcs.exe (note that if the RegistrationHelper
encounters an error, it throws a RegistrationException):

using System;

using System.EnterpriseServices;

namespace RegistrationHelperApp

{

class MyRegHelper

{

[STAThread]

static void Main(string[] args)

{

// Register a private, strongly named assembly.

RegistrationHelper rh = new RegistrationHelper();

try

{

string comPlusAppName = "NewComPlusApp";

string typeLibName = "FooServicedComp.tlb";

rh.InstallAssembly("FooServicedComp.dll",

ref comPlusAppName,

ref typeLibName,

InstallationFlags.FindOrCreateTargetApplication);

}

catch(RegistrationException rhex)

{

Console.WriteLine(rhex.Message);

}

}

}

}

Chapter 13

702

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 702

Upon successful completion, you will find the newly configured COM+ appli-
cation viewable using the Component Services Explorer. Also, the generated COM
type information will be fully accounted for under HKCR. All you have to do at this
point is install the assembly into the GAC and code away.

CODE The RegistrationHelperApp project is included under the Chapter
13 subdirectory.

Configuring a Managed COM+
Application Using .NET Attributes

Now that you have seen how to install a .NET assembly using the
default behavior of regsvcs.exe, let’s check out the relevant attributes of the
System.EnterpriseServices namespace that allow you to fine-tune the installation
process (some of which you have already seen during the course of this chapter).
Table 13-5 illustrates the assembly-level attributes that you can specify from your
managed code libraries.

Table 13-5. COM+ Application-Specific Attributes

COM+ Application– Value If Omitted Meaning in Life
Level Attribute

ApplicationAccessControl False Allows security configuration for a

given COM+ application.

ApplicationActivation Library Server application or library? Used in

conjunction with the

ActivationOption enumeration.

ApplicationID Autogenerated Specifies a fixed GUID for the

(or simply the GUID application.

GuidAttribute type)

ApplicationName Same as the Specifies a fixed friendly name of the

assembly name. application.

ApplicationQueuing No default Enables QC support for this

application.

Description No description. Specifies a description string for this

COM+ application.

Building Serviced Components (COM+ Interop)

703

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 703

For example, assume you (a) unregister the previous MyDotNetComPlusApp
COM+ application using the /u flag of regsvcs.exe and (b) update the
AssemblyInfo.cs file as follows:

using System.EnterpriseServices;

// COM+ Application configuration.

[assembly: ApplicationName("TheWayCoolCOMPlusApp")]

[assembly: ApplicationID("9F1DE1E4-EC11-4455-9A8E-3D35C71B03F4")]

[assembly: ApplicationActivation(ActivationOption.Server)]

[assembly: Description("My way cool COM+ application created with C#")]

When the assembly is reprocessed using regsvcs.exe, you are able to view the
property page for the new TheWayCoolCOMPlusApp application and find your
initial configuration settings. Understand, of course, that these values can be
changed after the time of installation. As you may agree, the most useful applica-
tion-level attribute is ApplicationActivation, given that the default behavior
establishes your COM+ application as a library application.

Supporting Object Construction Strings

As mentioned, configured .NET types can only be created using a default
constructor (given the requirements of COM(+)). However, as you may know,
classic COM+ defines two standard interfaces (IObjectConstruct and
IObjectConstructString) that can be used by the supporting coclass to receive an
object construction string. Although these interfaces are hidden away as internal
types of the System.EnterpriseServices.dll assembly, the same behavior can be
supported by a .NET type by simply overriding the virtual protected Construct()
method defined by the ServicedComponent base class. Assume you have updated
your SimpleServicedType as follows:

[EventTrackingEnabled(true)]

[ClassInterface(ClassInterfaceType.AutoDual)]

public class SimpleServicedType : ServicedComponent

{

…

// This type now supports an object constructor string.

protected override void Construct(string ctorString)

{ MessageBox.Show(ctorString, "Object Constructor string is:");}

}

Here, for the sake of testing, you are simply grabbing an incoming
System.String and placing the underlying value within a Windows Forms message
box. An obvious question is, what might this value be? The answer is, literally,
anything at all. The string passed into a given Construct() implementation may

Chapter 13

704

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 704

contain type-specific instance data, an ADO(.NET) connection string value (to
allow dynamic resolution of a given data source), or anything else that may be of
use to the object at hand. Regardless of what you decide the value of your type’s
object construction string will be, you are now able to unregister (/u) and rereg-
ister (/fc) the assembly using regsvcs.exe and enable construction string support
using the component’s property page (Figure 13-20).

Figure 13-20. Enabling and configuring object constructor strings

If you would rather make use of .NET attributes to enable and configure an
object construction string, you can make use of the ConstructionEnabled attribute
and specify your configuration using named properties:

[EventTrackingEnabled(true)]

[ClassInterface(ClassInterfaceType.AutoDual)]

[ConstructionEnabled(Enabled = true, Default = "Yo!")]

public class SimpleServicedType : ServicedComponent

{

…

}

Building Serviced Components (COM+ Interop)

705

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 705

In this way, when your assembly is configured with COM+, it will have an
initial value supplied as an object constructor string. Like any attribute value, this
can always be changed after registration using the Component Services Explorer.

Examining the ContextUtil Type

Now that you have seen the basics of creating, installing, and accessing managed
configured components, you can spend the remainder of this chapter examining
the aspects of COM+ that you will leverage in an enterprise-level application. This
task requires an understanding of the System.EnterpriseService.ContextUtil type.
ContextUtil defines a number of static (Shared in VB .NET nomenclature) methods
that expose the functionality found in the classic COM+ object-level contextual
interfaces IObjectContextInfo and IContextState, and the legacy MTS interfaces
IObjectContext and IObjectContextActivity. Given that all of this information is
provided using static members, .NET developers never need to manually call
CoGetObjectContext() or CoGetCallContext() directly. Table 13-6 documents the
key members of ContextUtil.

Table 13-6. Members of the Mighty ContextUtil Type

Static Members of Meaning in Life
the ContextUtil Type

ActivityId Gets a GUID representing the activity containing the

component

ApplicationId Gets a GUID for the current application

ApplicationInstanceId Gets a GUID for the current application instance

ContextId Gets a GUID for the current context

DeactivateOnReturn Gets or sets the done bit in the COM+ context

IsInTransaction Gets a value indicating whether the current context is

transactional

IsSecurityEnabled Gets a value indicating whether role-based security is active

in the current context

MyTransactionVote Gets or sets the happy bit in the COM+ context

Transaction Gets an object describing the current COM+ transaction

TransactionId Gets the GUID of the current transaction

DisableCommit() Sets both the happy bit and the done bit to false in the

COM+ context

Chapter 13

706

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 706

Table 13-6. Members of the Mighty ContextUtil Type (continued)

Static Members of Meaning in Life
the ContextUtil Type

EnableCommit() Sets the happy bit to true and the done bit to false in the

COM+ context

IsCallerInRole() Determines whether the caller is in the specified role

SetAbort() Sets the consistent bit to false and the done bit to true in the

COM+ context

SetComplete() Sets the consistent bit and the done bit to true in the COM+

context

To illustrate how to use the ContextUtil type to scrape out some basic contex-
tual information, assume you have updated your existing SimpleServiceType to
support a new member named ShowObjCtxInfo():

public void ShowObjCtxInfo()

{

StringBuilder sb = new StringBuilder();

sb.AppendFormat("COM+ Application ID: {0}\n",

ContextUtil.ApplicationId);

sb.AppendFormat("Context ID: {0}\n",

ContextUtil.ContextId);

sb.AppendFormat("In a transaction? : {0}\n",

ContextUtil.IsInTransaction.ToString());

sb.AppendFormat("Security Enabled? : {0}\n",

ContextUtil.IsSecurityEnabled);

MessageBox.Show(sb.ToString(), "Object Level Contextual Information");

}

If you were to reinstall this configured component and activate the
ShowObjCtxInfo() method, you would find the output shown in Figure 13-21.

Figure 13-21. Context in action

Building Serviced Components (COM+ Interop)

707

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 707

Now, even if you are unaware of the behavior of each member, don’t sweat it.
The point at this stage of the game is to be aware that ContextUtil is your key to
accessing the meat of the COM+ runtime. You will see numerous details in the
pages that follow. To begin the journey, let’s check out the concept of just-in-time
activation (JITA).

Understanding JITA

Two of the most compelling features of COM+ would have to be its support for
declarative transaction processing and instance management of the objects it is
responsible for hosting. You will examine transactional support later in this
chapter and focus on instance management for the time being. As you have seen,
base clients make use of a configured object in the same exact manner as a
nonconfigured COM or .NET type. Assume for example that you have a VB 6.0
client application that creates a number of class-level variables upon the loading
of the main window:

' Behold, the greedy client.

Private mObjA as SomeObject

Private mObjB as SomeOtherObject

Private mObjC as YetAnotherObject

' Get the objects when the form loads…

Private Sub Form_Load()

Set mObjA = New SomeObject

Set mObjB = New SomeOtherObject

Set mObjC = New YetAnotherObject

End Sub

' Only release them when the form shuts down.

Private Sub Form_Unload(Cancel As Integer)

Set mObjA = Nothing

Set mObjB = Nothing

Set mObjC = Nothing

End Sub

For the sake of argument, let’s say that each of these objects obtains a connec-
tion to a remote database. If 100 client applications were launched, you would
suddenly have dished out 300 database connections. Now assume that all 100 end
users take a well-perceived lunch break (that lasts at least 2 hours) and never
bother to shut down the running applications. Given that these three object vari-
ables have been declared in the [General][Declarations] section, they are scoped at
the class level, and will therefore be alive until the Form type has been unloaded
from memory. Sadly, you now have 300 database connections that are held in
memory but not actually in use (an obvious problem).

Chapter 13

708

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 708

Ideally, some outside agent would be able to determine that the objects are
finished with the current unit of work and could therefore be destroyed, thereby
freeing the expensive data connections. When the end users return from their feast
and begin using the application once again, this same agent would dynamically
create a new object for the calling client. The beauty of this approach is the fact that
the client’s code base can be blissfully unaware that the objects they think they are
always connected to are in fact being destroyed and re-created behind the scenes.

To enable this philosophy, COM+ provides an instance management tech-
nique termed just-in-time activation (JITA) and the closely related as soon as
possible (ASAP) deactivation policy. Using JITA, COM+ is able to make an object
available for use only during the duration of a method invocation. Specifically, the
configured object is activated only at the exact point in which the base client
makes a method call and is destroyed when the method call completes. At this
point, any resources that have been acquired by the type are freed as quickly as
possible.

This technique is exactly why configured types are typically created as state-
less entities. Now, understand that a “stateless COM+ type” does not mean that
you cannot have any number of private member variables defined in the class. It
also does not mean that you cannot have a COM+ type that supports some
number of properties to encapsulate this private data. What is does mean is that
the configured object does not need to be in charge of maintaining the state data
directly.

Rather, if a configured type must remember information between method
invocations, it will either (a) not inform the runtime it is ready to be destroyed
(described in the next section) or (b) inform the runtime it is ready to be destroyed
and save its state data elsewhere (such as in a database, in-memory with the
Shared Property Manager, or perhaps in another nonconfigured type). In a
nutshell, what makes a COM+ type stateless is nothing more than the fact that the
type will inform the runtime when it is finished with its current workload and is
ready to be terminated.

The “Happy” and “Done” Bits

So, the big question at this point is, how does the COM+ runtime know when it is
safe to destroy a given object? In a nutshell, a COM+ context object maintains two
bits that are commonly referred to as the happy and done bits, both of which may
be set to either true or false. A configured object sets the state of its happy and
done bits to inform the runtime of two key points of information:

• Done bit: Can the current object be destroyed safely?

• Happy bit: Should I commit or abort the current database transaction (if any)?

Building Serviced Components (COM+ Interop)

709

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 709

By default, a configured object begins life busy and miserable (happy = false,
done = false). During the course of an object’s lifetime, these bits may be set using
two separate interfaces of the context object. MTS applications make use of the
SetComplete() and SetAbort() methods of the IObjectContext interface. Under
COM+, a configured object is able to report the same information using the
IContextState interface. The benefit of making use of IContextState lies in the
capability of setting the values of these bits independently. Table 13-7 illustrates
how each bit is set using the IObjectContext and IContextState interfaces,
assuming a currently unhappy and preoccupied object.

Table 13-7. Approaches to Setting the Happy and Done Bits

Interface Method Invocation Value of Value of
Happy Bit Done Bit

IObjectControl.SetComplete() True True

IObjectControl.SetAbort() False True

IObjectControl.DisableCommit() False False

IObjectControl.EnableCommit() True False

IContextState.SetDeactivateOnReturn(true) False True

IContextState.SetDeactivateOnReturn(false) False False

IContextState.SetMyTransactionVote(txCommit) True False

IContextState.SetMyTransactionVote(txAbort) False False

One final point to be aware of: Although the term “happy bit” makes the
process of discussing COM+ much more user friendly, the more formal (that is, dry
and boring) term is the “consistency bit,” given that the happy bit is used to
control the outcome of a given transaction (recall the ACID rules?). You will
examine COM+ transactions in the next section. For now, let’s see how to
programmatically control the state of the done bit.

Enabling JITA/ASAP Deactivation

Given that the whole purpose is to keep an object alive only as long as the
current method invocation, you will find that each member of a given configured
component needs to set the done bit before exiting. Using the types within the
System.EnterpriseServices namespace, you have three possible approaches. Also
note that the COM+ Explorer allows you to enable or disable JITA processing for a
given configured type using the Activation tab. Recall that by default, assemblies

Chapter 13

710

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 710

registered with the COM+ Catalog using regsvcs.exe disable this feature; be sure
you enable this feature to make your types JITA aware (Figure 13-22).

Figure 13-22. Enabling JITA for a given configured type

If you wish to ensure that JITA is always enabled during installation, you may
make use of the JustInTimeActivation attribute:

[JustInTimeActivation(true)]

[ClassInterface(ClassInterfaceType.AutoDual)]

public class JITAAwareObject : ServicedComponent {…}

Building Serviced Components (COM+ Interop)

711

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 711

Controlling the Done Bit

Once JITA has been enabled, your first approach is to use the MTS-style
SetComplete() and SetAbort() members of the ContextUtil class. If you would
rather set the done bit independently of the happy bit, you need to use the
static ContextUtil.DeactivateOnReturn property. Finally, be aware that
the System.EnterpriseServices namespace defines the AutoComplete attribute
that can be applied to a given method in order to implicitly set the done bit to true
as soon as the method has completed. In most cases, the AutoComplete attribute
will be your JITA configuration of choice.

To illustrate each technique, assume that you have created a new C# code
library (JITAComponent) that contains a single class type configured as follows:

namespace JITAComponent

{

[JustInTimeActivation(true)]

[ClassInterface(ClassInterfaceType.AutoDual)]

public class JITAAwareObject : ServicedComponent

{

private Random r = new Random();

public JITAAwareObject(){}

// MTS style JITA.

public void MethodA()

{

if(DoSomeWork())

ContextUtil.SetComplete();

else

ContextUtil.SetAbort();

}

// COM+ style JITA.

public void MethodB()

{

if(DoSomeWork())

ContextUtil.DeactivateOnReturn = true;

else

ContextUtil.DeactivateOnReturn = false;

}

// This will always set the done bit to true.

[AutoComplete(true)]

public void MethodC()

{

DoSomeWork();

}

Chapter 13

712

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 712

// Work simulation…

private bool DoSomeWork()

{

if(r.Next(1) == 0)

return false;

else

return true;

}

}

}

Be aware that the AutoComplete attribute is simply a programmatic way to
enable the “Automatically deactivate this object when this method returns” check
box located on the General tab of a method’s property page. As always, this initial
value can be changed after the fact.

JITA and Implementing IObjectControl (So to Speak…)

Classic COM+ types that participate in JITA typically implement the IObjectControl
interface. Understand that a given base client never obtains this interface! Rather,
the COM+ runtime calls the members of IObjectControl on a configured object
when the type is activated or deactivated based on its JITA configuration. This
same interface is also used if the object has been configured as a “poolable” type
(described in the next section). IObjectControl defines three methods:
Activate(), Deactivate(), and CanBePooled():

// This is an internal type!

interface IObjectControl

{

void Activate();

bool CanBePooled();

void Deactivate();

}

When you are building a .NET COM+ type, however, you do not directly
implement this interface, but simply override the appropriate method of the
ServicedComponent base class. For example:

[JustInTimeActivation(true)]

[ClassInterface(ClassInterfaceType.AutoDual)]

public class JITAAwareObject : ServicedComponent

{

// IObjectControl members.

protected override void Activate()

{

// Acquire any necessary resources...

Building Serviced Components (COM+ Interop)

713

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 713

}

protected override void Deactivate()

{

// Free any acquired resources...

}

protected override bool CanBePooled()

{

return false; // This is the default implementation.

}

…

}

Here, the JITAAwareObject class type has overridden each
IObjectControl-centric method. When the type has been created
(given that a base client is making a method invocation), Activate() is called
automatically to give the object a chance to obtain any necessary resources.
As soon as the object informs the COM+ runtime it has finished its current unit
of work (by setting the done bit to true), Deactivate() is also called automatically
to give the type a chance to clean up any allocated resource. This story changes
just a bit if the type is poolable (as you will soon see).

JITA, IObjectControl, and the .NET Garbage Collector

As you are well aware, the .NET runtime makes use of a garbage collected heap to
destroy its objects “at some time in the future.” While this can greatly simplify your
efforts in some regards (deleting allocated memory is no longer your problem), it
does present a new problem: How can you ensure your object’s acquired resources
are freed up in a timely manner? Consider a typical COM+ type. The overridden
Activate() method may attach to a given data source, while the overridden
Deactivate() can be used to release said connection. This is a valid approach that
still makes perfect sense when building managed components using .NET.

However, when is the memory allocated for the .NET type freed? The good
news is that when you install .NET assemblies into the COM+ Catalog, the .NET
runtime ensures that the overridden System.Object.Finalize() implementation is
called automatically (expressed in C# using destructor syntax). In this way, you
can ensure that when an object is deactivated, it is truly destroyed and removed
from memory. Given this, here is the lifecycle of a nonpoolable object:

1. The default constructor of the configured type is called.

2. IObjectControl.Activate() is called.

3. […the object is alive and eventually sets the done bit to true…]

Chapter 13

714

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 714

4. IObjectControl.Deactivate() is called.

5. System.Object.Finalize() is called automatically!

CODE The JITAComponent project is included under the Chapter 13
subdirectory.

Configuring Poolable Objects

COM+ employs one additional instance-level activation technique termed
poolable objects. In some regards, object pooling is a complement to ASAP
deactivation, given that the goal of object pooling is to allocate a set of objects
that can be kept in a ready (deactivate) state for use by calling clients. Distinct
pools are maintained for distinct object types. Therefore, if you have a single
COM+ application that contains four poolable objects, the COM+ runtime will
create four separate pools.

Understand that an object never has to be configured as poolable. Typically
pooling is an attractive option if the configured type requires significant start-up
logic that can take a good deal of time. If a type needs to connect to multiple data
sources, read initialization files, and call across the wire to obtain other bits of
information, it would be quite time intensive to perform these actions in the
Activate() event, due to the same lengthy operation needing to occur each time
the object is placed in a ready state. To shave off time on the initialization of the
type, a poolable object will perform this same sort of logic in the default
constructor.

The lifetime management of a poolable object changes just a bit from a
nonpoolable type. First of all, as with nonpoolable types, the default constructor
and overridden Finalize() methods are called only once. However, Activate() and
Deactivate() are called numerous times as the object comes out of and is placed
into the pool. Once the COM+ application is unloaded (given that its timeout
setting has expired), the destructors of each pooled type are called. The Compo-
nent Services Explorer allows you to configure the poolability of a configured type
using the component’s property page. Notice in Figure 13-23 that you are also able
to define the minimum and maximum size of the pool itself.

Building Serviced Components (COM+ Interop)

715

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 715

Figure 13-23. Configuring the poolability

When you wish to enable pooling programmatically using .NET attributes,
simply adorn the class type as follows:

[JustInTimeActivation(true)]

[ClassInterface(ClassInterfaceType.AutoDual)]

[ObjectPooling(true, 10, 100)]

[EventTrackingEnabled(true)]

public class PoolableObject : ServicedComponent

{

…

protected override bool CanBePooled()

{
return true;

}

}

Chapter 13

716

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 716

The ObjectPoolingAttribute defines a number of properties that may be
configured using the type’s overloaded constructor set. In the previous code block,
you are enabling pooling for this type as well as establishing the minimum and
maximum pool size.

CODE The PoolableComponent is located under the Chapter 13
subdirectory.

A Recap of Transactional Programming

The next major feature of COM+ is its automated transactional support. Before I
dig into the details of building transactional components using managed code, a
few words regarding transactions themselves are in order. A transaction may be
simply defined as a group of operations that must either all succeed or all fail;
there is no middle ground. Although transactions are helpful in areas outside of
database manipulations, they are the driving agent that ensures a database trans-
action is Atomic, Consistent, Isolated, and Durable (that is, it meets the ACID test).
Table 13-8 defines each aspect of the ACID acronym.

Table 13-8. The ACID Properties of a Transaction

Acidic Property Meaning in Life
(Pun Intended)

A is for Atomic An atomic transaction ensures that if any one operation fails, all

operations fail and the current transaction is aborted.

C is for Consistent A consistent transaction ensures that when a transaction is

aborted, any changes made to a data store are rolled back to its

original state.

I is for Isolated An isolated transaction ensures that if two transactions are

manipulating the same data source, they should not see each

other’s work. Under SQL Server, COM+ isolation basically boils

down to locking a data table while a transaction is in progress.

D is for Durable A durable transaction is, well, durable. Once a transaction is

committed (or while it is in progress), it is able to survive

catastrophic failures such as a power outage. Typically, a

database management system maintains a log file to keep

transactions durable.

Building Serviced Components (COM+ Interop)

717

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 717

The entity that is in charge of monitoring the outcome of a given transaction
is formally termed a Transaction Processing Monitor (TPM). As you would guess,
COM+ is one of many possible TPMs. Although the process of configuring COM+
transactions is extremely simple on the surface, under the hood numerous
complex entities are working to ensure your transactions adhere to the ACID test
(the details of which you can be blissfully unaware of during the scope of this
chapter).

In its simplest form, a COM+ transaction may consist of a single object. The
lone configured component may contain a method that is responsible for
updating a given table in some database (Figure 13-24).

Figure 13-24. A single object transaction

While the operations are being carried out by the configured component, the
TPM records all changes it is responsible for making. If the object successfully
completes all its work (that is, it is happy), the transaction is committed. If, on
the other hand, the object is unable to get its work done for any variety of reasons
(can’t find the database, ill-formed data, bad SQL query, or whatnot), the
transaction aborts.

Root Objects, Secondary Objects,
and COM+ Transactions

Although it is quite possible for a COM+ transaction to consist of a single object
doing all the work for a base client, it is far more common for a group of objects to
collaborate for a given base client. To examine this situation, you need to under-
stand a key concept regarding COM+ transactional processing: the role of the root
object. By definition, a root object is an object that marks the beginning of a COM+
transaction (as you may guess, root objects are typically created by a given base
client). If a root object needs to enlist other objects into the current transaction,
these are referred to as secondary objects.

Chapter 13

718

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 718

For example, assume you have created a new COM+ application containing
three configured components, all of which are responsible for performing a given
unit of transactional work. Because all configured types are placed into a given
context, each object has a chance to vote on the outcome of the current transac-
tion by altering the state of their associated happy bit. When the root object is
deactivated, the values of the happy bits are examined (by the runtime) for each
object involved within the transaction. The transaction itself maintains a final bit
termed the doomed bit, which marks the success or failure of the transaction itself.
The rules that are used to calculate the doomed bit are quite simple:

• If all the objects are happy, the transaction is committed (that is, the
transaction’s doomed bit is set to false).

• If any of the enlisted objects are not happy, the transaction is aborted (the
doomed bit is set to true), and any work performed by the enlisted objects is
rolled back to its previous state.

Figure 13-25 illustrates the big picture.

Figure 13-25. A transaction enlisting multiple objects

It is also educational to point out that under the hood, the COM+ runtime
assigns a GUID to each transaction currently in progress. If each of the objects
seen in Figure 13-25 supported a method that displayed the current transactional
ID as follows:

Building Serviced Components (COM+ Interop)

719

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 719

public void ShowMyTxID()

{

MessageBox.Show(ContextUtil.TransactionId.ToString(),

"Tx ID is:");

}

you would be able to verify that each object is indeed in the same transaction.

Programming COM+ Transactions

The beautiful thing about the COM+ transaction model is that you do not need to
write any transaction-centric code. Like most services provided by COM+, trans-
actions are configured using a declarative model through the Transaction tab of an
object’s property page (Figure 13-26).

Figure 13-26. Declarative transactional settings

Chapter 13

720

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 720

Basically, these five settings allow you to control how a configured component
functions in a transactional setting (if at all) as well as whether the object is config-
ured as a root object (if at all). Table 13-9 documents the various settings.

Table 13-9. Transactional COM+ Settings

COM+ Transactional Value Meaning in Life

Disabled The component does not care about, and will not

participate in, a COM+ transaction.

Not Supported The component does not care about, and will not

participate in, a COM+ transaction. If it is within a

transaction, its vote will not count.

Supported The component will take on the transactional settings

of the configured component that created it. Thus, if

COM+ object A is in a transaction and creates COM+

object B, object B is enlisted into the current

transaction.

Required The component demands to be in a transaction. If the

creating client is in a transaction, the object is enlisted.

Also, if the creating client is not in a transaction, this

component will be placed into a new transaction and

will function as the root object.

Requires New The component will always be placed in a brand-new

transaction and function as the root object. Even if the

object is created by another configured type that is

already in a transaction, a new transaction will be

created.

If you wish to ensure that your configured components are automatically set
with a given transactional value when installed under the COM+ runtime, you are
free to adorn your .NET class types with the Transaction attribute. This attribute
works in conjunction with the TransactionOption enumeration:

// Transactional Options

public enum TransactionOption

{

Disabled,

NotSupported,

Required,

RequiresNew,

Supported

}

Building Serviced Components (COM+ Interop)

721

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 721

By default, Transaction establishes the transaction support of a .NET class
type as TransactionOption.Required by way of the default constructor. Also be
aware that when you apply the Transaction property to your managed classes, JITA
support is automatically enabled.

Setting the Happy Bit

As you have seen, the context object maintains the values of the happy and done
bits for a given configured component. The done bit is simple to understand: The
method has completed its unit of work for the base client and is prepared to be
deactivated. But what of the happy bit? When exactly is a COM+ object happy with
the current state of affairs? Simply put, a configured object is happy under two
conditions:

• It is part of a COM+ database transaction.

• It has successfully completed its atomic measure of the current database
transaction.

To set the happy bit for a given method invocation, you may make use of the
static SetComplete() and SetAbort() methods of the ContextUtil type (which also
affect the happy bit). Unlike classic COM, you do not test for failed HRESULTs to
determine the value to assign the happy bit, but rather .NET exceptions. Consider
the following C# class:

[ClassInterface(ClassInterfaceType.AutoDual)]

[Transaction(TransactionOption.Required)]

[EventTrackingEnabled(true)]

public class MyTxClass : ServicedComponent

{

public MyTxClass(){}

public void TryThisTransaction()

{

try

{

// Do the work here...

…

// Everything worked! I'm happy and done.

// Commit the transaction!

ContextUtil.SetComplete();

}

catch

{

Chapter 13

722

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 722

// Problem! I’m done but not happy about it.

// Abort the current transaction.

ContextUtil.SetAbort();

}

}

}

If you would rather interact with the happy bit independently, use the
COM+-style ContextUtil.MyTransactionVote property and the corresponding
TransactionVote enumeration (the done bit can be set using the
DeactivateOnReturn attribute):

public void TryThisOtherTransaction()

{

try

{

// Do the work here...

…

// Happy!

ContextUtil.MyTransactionVote = TransactionVote.Commit;

}

catch

{

// Unhappy.

ContextUtil.MyTransactionVote = TransactionVote.Abort;

}

finally

{

// Done.

ContextUtil.DeactivateOnReturn = true;

}

}

The final way that you can interact with the happy bit is to make use of the
AutoComplete attribute. As you may recall, this attribute sets the done bit to true
once the method returns. However, this same attribute sets the happy bit to true as
long as the method does not trigger any exceptions. Thus, if no exceptions are
thrown, the transaction is committed automatically:

[AutoComplete]

public void YetAnotherTxMethod()

{

// Do the work here...

// Happy and done, if no exceptions are thrown.

}

Building Serviced Components (COM+ Interop)

723

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 723

Regardless of your preferred technique, understand that the essence of a
configured component is to perform a discrete unit of work on behalf of the base
client and be deactivated as quickly as possible (to release any acquired
resources). By ensuring that each method of a given component informs its
context of its transactional vote (the happy bit) and its deactivation status (the
done bit), you enable the COM+ runtime to handle the instance in a scalable
manner.

CODE The SimpleTxComponent project is included under the
Chapter 13 directory.

A Complete Serviced Component Example

To pull together all the information presented thus far, let’s now build a minimal
and complete C# application that makes use of various configured .NET compo-
nents. Your application will be a three-tiered application that is broken down as
described in Table 13-10.

Table 13-10. The Design Notes

Application Tier Meaning in Life

Presentation tier The front end of your application will be a C# Windows Forms

application (that is, base client) that will allow the end user to view

a table of data as well as insert and delete new records (I’ll also re-

create this client using ASP.NET at the conclusion of this chapter).

Business tier The middle tier will be a COM+ application that contains two

configured types written with C#. These types will interact with a

custom SQL Server database and participate under a COM+

transaction. The types are as follows:

• CarInventory. This root object makes use of ADO.NET to insert

and delete records as well as return a DataSet containing all

records.

• LogSale. This type will log a deleted car to a discrete table in the

same database.

Data tier The back end will be a custom SQL Server database named CarLot,

which contains two custom Table objects:

• Inventory. A list of records containing the columns CarMake,

CarColor, and CarID.

• CarsSold. A list of records that have been removed from the

Inventory table, containing the columns CarID and DateSold.

Chapter 13

724

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 724

Building the Custom Database

Your first step is to create the database itself. I make the assumption that you are
well equipped to create a new database using SQL Server; however, here are some
additional design notes.

The Inventory table maintains three columns that represent a given automo-
bile on the car lot. As you might assume, CarID has been established as the
primary key, while CarMake and CarColor are a represented by a fixed number of
characters (Figure 13-27).

Figure 13-27. The Inventory table

The CarsSold table maintains two data columns (CarID and DateSold) as
shown in Figure 13-28.

Building Serviced Components (COM+ Interop)

725

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 725

Figure 13-28. The CarsSold table

There is no need to assign a parent-child relationship between the two tables,
given that the CarsSold database is simply a log book (so to speak) of any car that
has been removed from the Inventory table. Granted, this is hardly an enterprise-
level database design, but it gives you something to work with during the
remainder of this chapter.

Building the C# Code Library

Now on to the managed code library itself (which I have called
ConfiguredCarObjects). Given that the *.dll will contain two configured
objects that both make calls to the CarLot database, begin by setting a
reference to the System.Data.dll and System.EnterpriseServices.dll assemblies.

Chapter 13

726

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 726

Building the LogSale Type

The first class to define is LogSale, which will be created by the root object (not the
base client) to record a new sale to the CarsSold table of the CarLot database. As
this will be a transaction-aware type, make use of the [Transaction] attribute to
ensure that when your assembly is registered with the COM+ Catalog, it is initially
configured as TransactionOption.Required. If you wish, you are free to configure
the type to support an object constructor string; however, I have elected to hard
code the connection string logic directly within the type (the CarInventory object
will make use of an object constructor string).

All of the real work takes place in a single public method named Log(). Once
the record has been constructed based on the incoming CarID, you calculate the
current date (using the DateTime type) and update the CarsSold table. Finally, you
alter the values of the happy and done bits using the MTS-style SetComplete() and
SetAbort() methods of the ContextUtil type. Here is the complete code listing:

[ClassInterface(ClassInterfaceType.AutoDual)]

[Transaction(TransactionOption.Required)]

[EventTrackingEnabledAttribute(true)]

public class LogSale : ServicedComponent

{

public LogSale(){}

public void Log(int ID)

{

try

{

SqlConnection sqlConn = new SqlConnection

("Integrated Security=SSPI;Initial Catalog=CarLot;Data Source=localhost;");

sqlConn.Open();

// Build a SQL statement based on incoming params.

string myInsertQuery =

string.Format(@"INSERT INTO CarsSold (CarID, DateSold)

Values('{0}', {1}'", ID, DateTime.Today);

// Configure SqlCommand type.

SqlCommand sqlCmd = new SqlCommand(myInsertQuery);

sqlCmd.Connection = sqlConn;

// Insert the record.

sqlCmd.ExecuteNonQuery();

sqlConn.Close();

ContextUtil.SetComplete();

}

catch

{

Building Serviced Components (COM+ Interop)

727

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 727

ContextUtil.SetAbort();

}

}

}

Building the CarInventory Class Type

The root object, CarInventory, supports a number of the COM+ topics illustrated
during the course of this chapter. First of all, this object supports an object
constructor string that allows the declarative administration of the ADO.NET
construction string. Also, the object (obviously) supports a COM+-style transac-
tion (TransactionOption.Required) and event statistics. Here is the initial class
definition:

[ClassInterface(ClassInterfaceType.AutoDual)]

[Transaction(TransactionOption.Required)]

[EventTrackingEnabledAttribute(true)]

[ConstructionEnabled(Default =

"Integrated Security=SSPI;Initial Catalog=CarLot;Data Source=localhost;")]

public class CarInventory : ServicedComponent

{

public CarInventory(){}

// Instance data.

private string connString;

private SqlConnection sqlConn;

}

To receive the incoming constructor string, you override the Construct()
method and cache the value in your private connString data member. To control
the timely construction and destruction of your SqlConnection, you also override
the IObjectControl-centric members. Here is the relevant update:

protected override void Construct(string ctorStr)

{connString = ctorStr;}

protected override void Activate()

{

// Make connection to database.

try

{

sqlConn = new SqlConnection(connString);

}

catch(SqlException ex)

{ throw ex;}

}

Chapter 13

728

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 728

protected override void Deactivate()

{

// Close connection to database.

sqlConn.Close();

}

protected override bool CanBePooled()

{return false;}

The first client-reachable member of the CarInventory type is AddCar(), which
as you would expect inserts a new record into the CarLot database and alters the
values of its happy and done bits based on the outcome of the transaction, this
time using the DeactivateOnReturn and MyTransactionVote properties of
ContextUtil:

// Insert a new record and set the happy and done bits!

public void AddCar(string make, string color, int ID)

{

// Always done.

ContextUtil.DeactivateOnReturn = true;

// Build a SQL statement based on incoming params.

string myInsertQuery =

string.Format(@"INSERT INTO Inventory (CarMake, CarColor, CarID)

Values('{0}', '{1}', '{2}'", make, color, ID);

try

{

// Configure SqlCommand type.

SqlCommand sqlCmd = new SqlCommand(myInsertQuery);

sqlCmd.Connection = sqlConn;

sqlConn.Open();

// Insert the record.

sqlCmd.ExecuteNonQuery();

// Update our context.

ContextUtil.MyTransactionVote = TransactionVote.Commit;

}

catch {ContextUtil.MyTransactionVote = TransactionVote.Abort;}

}

The public GetAllInventory() method populates and returns an ADO.NET
DataSet to the base client, and sets the happy and done bits using the
[AutoComplete] attribute (just for the heck of it).

[AutoComplete]

public DataSet GetAllInventory()

Building Serviced Components (COM+ Interop)

729

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 729

{

// Fill a DataSet using a DataAdapter.

SqlDataAdapter dAdapt;

DataSet myDS = new DataSet("CarInventory");

dAdapt = new SqlDataAdapter("SELECT * FROM Inventory", sqlConn);

dAdapt.Fill(myDS, "Inventory");

return myDS;

}

Finally, you have the BuyCar() member, which first creates a LogSale type that
is automatically enlisted into the current transaction. Once the LogSale compo-
nent has moved the moribund record into the CarsSold table, the listing is
removed from the Inventory table:

public void BuyCar(int carID)

{

// Build a SQL statement based on incoming params.

string myInsertQuery =

string.Format("DELETE FROM Inventory WHERE CarID = '{0}'", carID);

try

{

// Log car to be purchased.

LogSale log = new LogSale();

log.Log(carID);

log.Dispose();

// Configure SqlCommand type.

SqlCommand sqlCmd = new SqlCommand(myInsertQuery);

sqlCmd.Connection = sqlConn;

sqlConn.Open();

// Delete the record.

sqlCmd.ExecuteNonQuery();

// Update our context.

ContextUtil.SetComplete();

}

catch{ContextUtil.SetAbort();}

}

That does it for the business logic of the configured types. The final bits of
work are purely administrative. First, be sure to assign a strong name to your
assembly (using the AssemblyKeyFile attribute and a valid *.snk file). Next, insert a
few additional assembly-level attributes to ensure that your application is acti-
vated as a server (not a library) application:

Chapter 13

730

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 730

// COM+ Application configuration.

[assembly: ApplicationName("Configured Car Objects")]

[assembly: ApplicationID("11DF40BE-1C96-4e85-9551-3CE0DCC522DD")]

[assembly: ApplicationActivation(ActivationOption.Server)]

[assembly: Description("Did you really think I would not use cars?")]

Once the assembly has been compiled, install it in the GAC and make use of
regsvcs.exe to update the COM Catalog. The end result of your labors can be seen
in Figure 13-29.

Figure 13-29. The configured car objects

CODE The ConfiguredCarObjects project can be found under the
Chapter 13 directory.

Building Serviced Components (COM+ Interop)

731

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 731

Building the Windows Forms Front End

The main Form of the C# Windows Forms application will provide a minimal but
complete UI that allows the end user to insert, remove, and view the cars currently
within the Inventory table. Before you see the code, assume you have already set a
reference to the ConfiguredCarObjects.dll assembly. Figure 13-30 shows the final
product.

Figure 13-30. The C# Windows Forms client application

When the Form loads, you populate the DataGrid type using the DataSet
returned from CarInventory.GetAllInventory(). The code behind the Update
Inventory and Buy Car # buttons should be self-explanatory.

public class mainForm : System.Windows.Forms.Form

{

CarInventory ci = new CarInventory();

…

private void btnUpdate_Click(object sender, System.EventArgs e)

{

try

{

ci.AddCar(txtMake.Text, txtColor.Text, Int32.Parse(txtID.Text));

UpdateGrid();

}

Chapter 13

732

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 732

catch(Exception ex)

{ MessageBox.Show(ex.Message); }

}

private void btnBuyCar_Click(object sender, System.EventArgs e)

{

try

{

ci.BuyCar(Int32.Parse(txtBuyCarID.Text));

UpdateGrid();

}

catch(Exception ex)

{ MessageBox.Show(ex.Message); }

}

private void Form1_Load(object sender, System.EventArgs e)

{ UpdateGrid(); }

private void UpdateGrid()

{

carDataGrid.DataSource = ci.GetAllInventory().Tables["Inventory"];

}

}

CODE The CarObjectClient is included under the Chapter 13 directory.

Creating Private Components (COM+ 1.5 Only)

Defining visibility is a key aspect of building intelligent object models. In classic
COM, you were offered the [noncreatable] attribute. .NET simplifies the matter by
allowing C# developers to define internal components. Now, with the advent of
COM+ 1.5, you are provided with yet another way to control how your objects are
exposed. When you create a COM+ 1.5 application, you may create private compo-
nents, which cannot be activated outside of the current application (thus, the base
client cannot directly create them). You may agree that the LogSale type is really of
no use to external base clients, and therefore would be a good candidate for a
private component. To do so declaratively, access the Activation tab of a given
COM+ component (Figure 13-31).

Building Serviced Components (COM+ Interop)

733

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 733

Figure 13-31. Configuring a private component

As you would guess, this can be controlled in code using the
PrivateComponent attribute:

[PrivateComponent()]

public class LogSale : ServicedComponent

{…}

Building an ASP.NET Web Service Client

Of course, it is completely possible to build an ASP, ASP.NET Web application, or
ASP.NET Web Service consumer for the configured car types. The process is iden-
tical to the Windows Forms client. By way of a quick illustration, assume you have
created a new ASP.NET Web application project workspace. Using the necessary

Chapter 13

734

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 734

Web Form controls, assemble a GUI that mimics the previous Windows Forms
client. If you ensure that the names of your GUI widgets are identical between the
two base clients, you can literally copy and paste the custom presentation logic
between *.cs files (with an additional call to DataBind() to attach the DataSet to
the Web Form DataGrid). Figure 13-32 shows the UI.

Figure 13-32. A Web-based base client

The code is (again) self-explanatory:

// Set a reference to the ConfiguredCarObjects.dll and

// System.EnterpriseServics.dll assemblies.

public class CarWebForm : System.Web.UI.Page

{

…

CarInventory ci = new CarInventory();

private void Page_Load(object sender, System.EventArgs e)

{

// Put user code to initialize the page here

if(!IsPostBack)

UpdateGrid();

}

Building Serviced Components (COM+ Interop)

735

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 735

private void btnUpdate_Click(object sender, System.EventArgs e)

{

try

{

ci.AddCar(txtMake.Text, txtColor.Text, Int32.Parse(txtID.Text));

UpdateGrid();

}

catch(Exception ex)

{ MessageBox.Show(ex.Message); }

}

private void btnBuyCar_Click(object sender, System.EventArgs e)

{

try

{

ci.BuyCar(Int32.Parse(txtBuyCarID.Text));

UpdateGrid();

}

catch(Exception ex)

{ MessageBox.Show(ex.Message); }

}

private void UpdateGrid()

{

carDataGrid.DataSource = ci.GetAllInventory();

carDataGrid.DataBind();

}

}

Slick, huh? Given that all of the business logic has been placed under compo-
nent services, your choice of front end is more or less left to personal preference.

CODE The *.aspx and *.aspx.cs files for this ASP.NET Web application
are located under the Chapter 13 directory.

Final Thoughts Regarding System.EnterpriseServices

Over the course of this chapter, you have been exposed to the core facets of
the COM+ runtime and how to leverage these atoms from managed code.
Depending on your current COM+ awareness, you are quite likely mindful that
there are additional services I have not addressed. For example, using types within
the System.EnterpriseServices namespace, you are able to programmatically

Chapter 13

736

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 736

establish role-based security settings, interact with the LCE model, as well as other
more exotic techniques such as establishing compensating resource managers
(CRMs). Although I will not address these topics in this text, you should now be in
a position to check out the reaming types of System.EnterpriseServices at your
leisure. If you wish to check out some addition COM+ services, look up the topic
“Writing Serviced Components” using VS .NET online help.

Another point to be made aware of is that when you are designing configured
components using a managed language, you need to spend some time consid-
ering the possible base client(s). For example, if you are creating a component that
is designed exclusively for use by .NET base clients, you can make use of any
construct supported by your language of choice. However, if you intend to allow
COM-based and .NET-based clients to access the same object (which is certainly
likely), keep in mind the design considerations shown in Table 13-11.

Table 13-11. Select Design Considerations

COM/.NET Base Client Design Consideration Meaning in Life

Make use of the GuidAttribute type. Regsvcs.exe will auto-generate

GUIDs for each interface, class,

and enumeration defined in your

managed code. Thus, when you

register and unregister

assemblies, you may end up

with COM clients that reference

out-of-date GUIDs.

Don’t make use of static (Shared) members. As you have already learned,

COM clients cannot access static

members.

Avoid parameterized constructors. COM clients are unable to view

or interact with .NET class

constructors. Recall, however,

that .NET classes that derive from

ServicedComponent should

always support a default

constructor.

Given that we made use of C# for all of the base clients using C# components,
I have not bothered to adhere to each and every design recommendation.
However, be mindful of these design tips if you wish to service COM and .NET
base clients.

Building Serviced Components (COM+ Interop)

737

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 737

Summary

The COM+ runtime is a set of well-defined services designed to host objects in the
middle tier. Although COM+ was originally designed to host classic COM types,
.NET programmers are able to build configured components using the types
defined within the System.EnterpriseServices.dll assembly. As you have seen,
when you wish to build a COM+-aware .NET type, you are required to derive from
the ServicedComponent type. This base class defines a number of COM+-specific
virtual members that allow you to interact with JITA, control object pooling
behaviors, and receive an object construction string.

Beyond deriving from ServicedComponent, most configured components
built using managed code will tend to be decorated with a number of attributes
that control how regsvcs.exe will initially configure the COM+ application. As you
have seen over the course of this chapter, System.EnterpriseServices.dll defines
attributes to control the very same attributes you may set using the Component
Services Explorer. ContextUtil is a core type of the System.EnterpriseServices
namespace. Using its numerous static members, you are able to interact with your
contextual settings (including the happy and done bits) in a manner similar to
using the classic COM+ IObjectContext interface.

Well, that’s about it for this book. Over the course of these 13 chapters, you
have become quite intimate with the COM(+) and .NET type systems. Hopefully
you agree with me that understanding the details of COM and .NET is critical
when engaging interoperability issues, and given this, you found the preliminary
information of both architectures insightful. While the bulk of this book was spent
examining how these extremely unique systems can coexist in harmony, as an
extra bonus, this chapter pounded out the details of what one might consider
“COM+ interop.”

So then, thanks for reading. To those who have read my previous three books,
I promise that my next Apress title will not make use of cars, DVD players, UFOs, or
other startable objects (however, bicycles are still fair game).

Chapter 13

738

*0112_Ch13_CMP3.qxp 3/24/02 8:19 AM Page 738

*
*.cab file, 686

*.cls file, 147–148

*.cpp file, 132–133

*.def files, 90, 133

*.dll files, 672

*.idl files, 65

compiling with MIDL compiler, 77

format of, 162–163

manually editing, 135

regions of, 162

*.il files, 510–512, 525

*.msi file, 686

*.pdb file, 468–469

*.reg files, 137, 574

*.res files, 513, 524

*.rgs file, 139

*.snk files, 261, 392, 640

*.tlb files, 202, 535, 549, 586, 649, 655,

659–661, 666, 695

A
Abstract base class

building in C#, 238–239

translating, 551

Abstract method and property, defining,

258

ACID properties of a transaction, 717

Activator class, 331–332

Activator.CreateInstance() method, 332

ActiveX controls

building, 490–493

consuming from managed code,

490–504

consuming using VS .NET, 495–501

generated assemblies, 498–501

generated IDL, 493–494

importing using AxImp.exe, 501–504

ActiveX interop assemblies, 497–500

Add Method tool (ATL), 145

Add Reference dialog box, COM tab, 343

Add() method, overloaded, 586

AddArray() function, 6

AddNumbers() function, 6, 34, 41

[.addon] directive, 448, 454

AddRef() method, 81, 82, 85

ADO (active data objects), 399

accessing from a managed

application, 400

Connection type, 400

Recordset, 400–401

ADO type library, reading, 211

ADO.NET types, in custom type viewer,

322

Advise() method, 438–439, 614

Alias, mapping a function to, 31

Allocated structures, receiving, 37–39

AppDomain type, 663

AppDomain.CreateInstance() method,

664

AppID (COM server application ID), 70

Application configuration file, 252–253

Application directory

defined, 12

viewing, 251

Application domain, 663

739

Index

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 739

Application object (VB 6.0), 176

Application proxy (COM+), 686

[Appobject] coclass, mapping, 387–388

AppWizard utility (ATL COM), 128–129

Array of pointers, in C++, 57

Array type (System.Array), 348, 414,

416–417

Array-centric value of UnmanagedType,

636

ArrayList type, 478–479, 616, 619–620

ArrayList.RemoveAt() method, 619–620

Arrays

of blittable items, 350

in COM IDL, 179–184

C-style, 419–420

functions using, 6–7

marshaling, 34–35

of non-blittable items, 351

ASAP deactivation, 709, 710–711

ASP.NET Web Service client, 734–736

Assemblies (.NET binaries), 233. See also

Interop assembly; Shared

assemblies

accessing from C++ COM client, 590

of ActiveX controls, 498–501

vs. COM binaries, 234

compiling, 284

for complex C# code library, 302–304

composition of, 233–234

configured as COM invisible, 572

configuring private, 251–253

deploying, 582–583

displaying information about,

316–322

documenting loaded, 667

dumping to a file, 512–513

dynamically loading, 310–312

enumerating types in referenced, 311

installed in the GAC, 262

late binding, 285, 332–338

late binding to private, 332–334

late binding to shared, 335–338

logical view of, 237

referencing, 236, 584–586

registering with COM, 545–546, 644

referencing via VB 6.0, 584–586

specifying locations for, 253–254

strongly named, 255–256, 335, 692

using friendly names, 368

using the /primary flag, 393

viewing type names in, 313

Assembly class, 310

Assembly details, displaying, 317

Assembly (interop). See Interop

assembly

Assembly manifest, 233, 242–245, 514

Assembly metadata, viewing, 245–246

Assembly statement, 367–371

Assembly types, viewing, 243

[Assembly:] prefix, 328

Assembly.FullName property, 663

Assembly.GetCustomAttribute()

method, 330

Assembly.GetCustomAttributes()

method, 330

Assembly.GetTypes() method, 311

Assembly.Info.* file, 328

AssemblyKeyFile attribute, 692

Assembly-level attributes, 328–329

Assembly.Load() method, 310

Assembly.LoadFrom() method, 310

ATL (active template library), 127–146

Add Method tool, 145

autogeneration of DLL exports, 130

implemention of coclass, 136–137

ATL COM AppWizard utility, 128–129

ATL COM map, 136

ATL COM server

reading, 227

testing, 156–159

Index

740

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 740

ATL COM server project, 128

*.cpp file, 132–133

*.def file, 133

adding interface methods, 141

adding methods, 140–143

code updates, 135–136

initial IDL file, 131–132

inserting COM objects, 133–135

ATL error server, building, 462–464

ATL 4.0, SAFEARRAY helper templates,

184

ATL Object Wizard, 133–135

ATL Object Wizard Properties

Attributes tab, 134–135

Names tab, 134

ATL project files, 129–133

ATL project workspace, 129–131

files generated, 130

FileView, 131

with initial files, 131

ATL registration support, 137–140

ATL Simple Object methods, 169

ATL string conversion macros, 179

ATL 3.0, .NET type compatible coclass,

481–484

AtlAdderClass type, 515, 522

ATL-based coclass, COM interfaces for,

143–146

AttachInterfaces() function, 501

Attribute class, 323–324, 517

Attribute class core members, 324

Attribute metadata (.NET), 517–519

Attribute-derived type

(System.Attribute), 525–526

Attributes

assembly (and module) level,

328–329

defined, 72

IDL vs. .NET, 323, 326

.NET, 323–325

reading at runtime, 330–335

restricting use of, 327–328

that take attributes, 327

AttributeTarget enumeration, 327

AttributeUsage type, 327

A2W (ANSI to Unicode) macro, 179

AutoComplete attribute, 712–713, 723

AutoDual class interface, 643

Auxiliary interfaces, defining in VB 6.0,

148–149

Ax- prefixed assemblies, 497, 499–500

AxHost base class, 499–500

AxHost-derived type code, modifying,

504–508

AxImp.exe utility, 501–504, 508–509

B
Base class, specifying for a new type, 80

Base client component design, 737

Basic data types, functions using, 6–7

Behavior of a class, explained, 52

Binaries (.NET). See Assemblies

Binary compatibility, VB 6.0 COM,

151–152

Binary-compatible C# type, building,

641–642

Binary-compatible VB .NET type,

building, 642–643

Binding (late), 331–338

Binding process (.NET), 269–270

BindingFlags enumeration, 333–334

Bit reading/writing-centric members of

Marshal type, 24

Blittable data types, 349–350

BSTR (BASIC String) data type, 178, 181,

183, 214

COM strings as, 177–179

translating to System.String type, 348,

351

Index

741

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 741

BSTR COM library functions, 178

ByRef keyword (VB .NET), 377–378,

380–381

Byte length prefixed Unicode characters,

178

Byte type (System.Byte), 595

ByVal keyword (VB .NET), 377–381

C
C#

accessing a configured .NET

component, 699

applying .NET attributes, 326

building a binary-compatible .NET

type, 641–642

custom attribute, 517

defining a dual interface, 651–653

defining an event, 445

foreach keyword, 434

intercepting incoming COM events,

455

late binding to shared assemblies,

337

out keyword, 378

params keyword, 421

ref keyword, 377–378, 422

serviced component example,

724–736

struct keyword, 598

Windows Forms client application,

732–733

C# abstract type/base class, building,

238–239

C# callback client, building, 46–49

C# class library, 235

C# client application underlying IL,

41–42

C# client interacting with Custom DLL,

40

C# code library

building, 235–242

building complex, 302–304

C# COM server client interop assembly,

342–345

C# COM type information viewer

building, 220–227

displaying COM types, 224–227

loading the type library, 221–224

C# derived types/classes, building,

240–242

C# IDE, Implement Interface Wizard,

642

C# typeof operator, type reference from,

306–307

C#-style destructors, translating,

549–551

C++

#import directive, 102–103

defining an interface in, 54

dynamically writing and reading

COM IDL, 161

implementing an interface in, 55–57

private class members, 54

public structure members, 54

VARIANTS in, 114–115

C++ class, implementing, 119–122

C++ class header file, 119

C++ COM client, 101

accessing an assembly from, 590

building, 589–590

developing, 97–105

C++ COM to .NET main() function, 613

C++ COM-centric macros, 80

C++ equality operator (==), overloading,

71

C++ event client

building, 610–614

client-side sink, 611–614

C++ IDispatch example, 116–117

Index

742

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 742

C++ interface-based programming,

52–62

C++ with managed extensions, defined,

232

C++ not equal operator (!=), overloading,

71

Call objects (COM+), 674

Callback

triggering using a function pointer,

43–44

unmanaged, 42–43

Callback client, building, 46–49

Callback example, 43–44

Callback function, 42, 44–45

Callback pattern, 42

CALLBACK tag, 43

Calling conventions, specifying, 30

CallingConvention field, 30

Call-level context, explained, 671

Categories, grouping COM objects into,

577–578

Categories (.NET), 578

CategoryAttribute type, 506

CATID (COM category ID), 70, 95,

577–578

C-based DLL, building custom, 5–9

CComBSTR class, 178–179

CComModule helper class, 137–138

CComSafeArray helper template, 184

CComSafeArrayBounds helper template,

184

CCW (COM Callable Wrapper), 539–544

simulation of COM identity, 543–544

simulation of implemented COM

interfaces, 542–543

Character set, specifying, 29–30

CharSet values, 29

CheckThisVariant() method (VB 6.0),

469–470

Class, 51–62. See also Coclass

building, 281–284

building .NET type compatible,

476–479

defined, 299

defining in IDL, 174–176

implementing in C++, 119–122

nested, 300

support for IUnknown, 72

supporting multiple behaviors, 60

supporting multiple interfaces, 59–60

Class behavior, 52, 60

Class characteristics (.NET), 299

Class definition, 81

Class details, displaying, 317

Class factory

building, 85–87, 123

explained, 63

Class interface (.NET), 557–562

autogenerated, 485–487

the case against, 563–564, 593

defined, 485

establishing, 559–561

registering, 580

Class keyword (C#), 36–37

Class library (C#), 235

Class member information, displaying,

320–322

Class member parameters, displaying,

321–322

Class members, enumerating, 311

Class members (C++), 54

Class object, 63, 84

Class structure declaration, 514

Class types

building in C++, 55–58

defined, 299

functions using, 8–9

managed representation of, 36–37

.NET, 299–300, 357–358

Index

743

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 743

Class-centric members of

InteropServices, 364

ClassInterface attribute, 690

ClassInterfaceAttribute type, 486

ClassInterfaceType enumeration, 558

Client-side sink (C++ event client),

611–614

Clone method(), 480–481

Cloneable COM object, using, 481

Cloneable COM type, building, 480–481

CLR (Common Language Runtime), 231,

662

CLR host, building, 662, 663–667

CLS (Common Language Specification),

231

CLSCTX, core values of, 98

CLSID (class ID), 70, 75, 96, 140, 397

CLSID key, 92–93, 575–577

Coclass, 63. See also Class

accessing with CoCreateInstance(),

100

ATL implemention of, 136–137

building, 200–201

configuring attributes of, 135

default constructor for, 389

defined, 51

defining in IDL, 75–76, 155–156, 175

implementing .NET interfaces,

475–484

managed, 453–454

naming, 134

naming in VB 6.0, 147

RCW for, 341

support for IUnknown, 72

Coclass (ATL), COM interfaces from,

143–146

Coclass conversion, 385

Coclass IDL attributes, 175

Coclass keyword, 75

Coclass statistics, listing, 208

CoCreateGuid() function, 69, 191

CoCreateInstance() method, 97, 100, 105

Code provider, building, 279

CodeDOM (Code Document Object

Model), 270

languages supported by, 272

member-building types of, 275

namespace-building types of, 274

type-building types of, 274

types of, 274–275

CodeDOM example, 276–284

CodeDOM namespace, 270–284

CoGetCallContext() API function, 674

CoGetClassObject() API function, 97–98,

100

CoGetObjectContext() API function, 674

Collection member variable (private),

429

Collection type (VB 6.0), 429, 645

Collections (COM), 426–436

from managed code, 433–436

typical members of, 429

Collections (custom .NET), 614–619

Collections namespace

(System.Collections), 615

Collections.dll (System), 665–666

COM array representation, 179–184

COM atoms, manually defining, 650–653

COM binaries, vs. .NET binaries

(assemblies), 234

COM classes. See Class; Coclass

COM client

accessing System.Type from, 588

C++, 97–105, 589–590

obtaining .NET type’s enumerator,

622

VB 6.0, 103–105, 644–646

VBScript, 590–591

COM coclass. See Coclass

Index

744

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 744

COM collections, 426–436

from managed code, 433–436

typical members of, 429

COM (Component Object Model), 51

exposing custom .NET interfaces to,

564–566

language-independence of, 51, 84

path of, 230

registering .NET assemblies with, 644

COM connection points, 437–440

COM data types

vs. COM types, 163–164

defined, 163

primitive, 164–167

COM DLL, composition of, 63–64

COM DLL function exports, 64

COM DLL project workspace, creating,

67–68

COM enum statistics, listing, 209–210

COM enums. See also Enums

as name/value pairs, 597

converting to .NET, 391–392

converting .NET enums to, 593–598

32-bit storage, 596

COM error information, handling from

managed code, 466–468

COM error objects, 459–464

COM event interface, creating, 605–606

COM events

intercepting incoming in C#, 455, 456

intercepting incoming in VB .NET,

456–457

from managed environment, 437–440

COM IDL, dynamically writing and

reading (C++), 161

COM IDL data types, conversion to

managed data types, 346–351

COM interface types, IDL definitions of,

171–185

COM interfaces, 51, 68–79, 136

as strongly typed variables, 58–59

for an ATL-based coclass, 143–146

CCW simulation of, 542–543

class support for multiple, 59–60

consumed by RCW, 351–353

containing methods, 106

converting to managed equivalent,

371–374

defining auxiliary in VB 6.0, 148–149

defining in C++, 54

defining in IDL, 73

defining and supporting multiple, 76

derived, 487–488

hidden from managed client, 351–352

implementing in C++, 55–57

implementing explicit, 567

implementing in VB 6.0, 149–151

from multiple base interfaces, 301

[oleautomation]-compatible, 633

parent interface of, 624

registered for universal marshaling,

580–582

supported by VB 6.0, 154

versioned/versioning, 61–62, 373–374

versioning existing, 62

viewing metadata for, 247

COM invisible, .NET assemblies

configured as, 572

COM late binding sytax, vs. .NET,

336–338

COM library definition, controlling, 568

COM library information, displaying,

205–207

COM map, defined, 136

COM memory management, 72

COM metadata, translating into .NET

metadata, 249–250

COM method parameter, conversion to

.NET method parameter, 377–381

Index

745

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 745

COM objects, 72

activating, 97–100

defined, 51

destroying using Marshal class,

474–475

grouping into well-known categories,

577–578

language- and location-neutral, 84

COM programming frameworks,

127–159

COM properties, 105–107

defining in VB 6.0, 155

represented internally as methods,

106

COM registration, 94–95

COM SAFEARRAYs. See SAFEARRAYs

COM server, anatomy of, 51–126

COM server registration, 91–97

COM server registration file, updating,

124

COM strings, as BSTR data types,

177–179

COM structures, 421–425

converting .NET structures to,

598–603

from managed code, 424–425

COM subsystem, initializing, 97

COM type

building cloneable, 480–481

building connectable, 441–442

COM type definitions, generating, 545

COM type information, 161–228

dumping, 207–208

generating at runtime, 161

generating programmatically,

189–191

loading programmatically, 531–533

reading programmatically, 203–212

COM type information generation,

testing, 201–203

COM type information viewer, in C#,

220–227

COM type libraries

library statement section, 368–371

loading, 221–224

registering, 582

setting references to, 156

[version] identifier, 368

COM type and managed code,

marshaling calls between, 340

COM type to .NET type conversion rules,

371–392

COM types

vs. COM data types, 163–164

defined, 163

displaying, 224–227

manipulating using _Class types,

357–358

manipulating using discrete

interfaces, 358–359

with multiple [source] interfaces,

457–459

table of, 164

using [default] interface to interact

with, 361–362

using managed interfaces to interact

with, 359–361

COM VARIANT. See VARIANT data type

COM wrapper types, 355, 398

COM+ application

activation level, 680

configuring using .NET attributes,

703–704

creating, 679–681

deploying, 685–687

defined, 670

installing a .NET type, 693–694

library or server, 680

loading within dllhost.exe, 698

registering, 696–697

Index

746

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 746

COM+ Application Export Wizard, 686

COM+ Application Install Wizard, 679,

681

COM+ Catalog, 671

new COM+ application in, 697

role of, 675–677

COM+ client, VB 6.0, 683–685

COM+ (Component Services), 669–738

application-level attributes, 703

component statistics, 699–700

instance management, 708–709

location transparency, 683

object construction strings, 704–706

poolable objects, 715–717

transactional programming, 720–724

COM+ example, 682–683

COM+ Explorer. See Component

Services Explorer

COM+ interop, explained, 738

COM+ 1.0, 670

COM+ 1.5, 670

COM+ 1.5 private components, 733–734

COM+ runtime environment, 672–675

COM+ shared property manager, 688

COM+ type

activated, 684

installed, 683

stateless, 709

COM+-specific behaviors, 671–672

COMAdminCatalogClass type, 676

ComAdmin.dll, 675–676

COM-aware .NET types

guidelines for building, 547–554

type member visibility, 548

type visibility, 547

COM-centric macros, 79–80

COM-centric members of Marshal type,

20–21, 472

_com_error type, 623

ComEventInterfaces attribute, 607

COMException type, 466

ComImportAttribute type, 647, 652

ComInterfaceAttribute type, 605

ComInterfaceType values, 372, 564, 647

ComInterfaceType.InterfaceIsDispatch,

566

ComInterfaceType.InterfaceIsDual, 565

ComInterfaceType.InterfaceIsUnknown,

565, 629

Communications proxy (.NET-to-COM).

See RCW

CompileCode() method, 284

Compiling an assembly, 284

Component design, base clients and,

737

Component housing, generating,

128–129

Component Services. See COM+

Component Services Explorer, 671, 675,

678–681, 685

Component statistics (COM+), enabling,

699–700

ComRegisterFunctionAttribute type, 653

ComSourceInterfaces attribute, 606, 609

COM-to-.NET communications, core

requirements, 544–546

COM-to-.NET data type mappings, 347

COM-to-.NET interoperability

advanced, 633–667

basic, 539–592

intermediate, 593–631

ComUnRegisterFunctionAttribute type,

653

ComVisible attribute, 475

ComVisibleAttribute type, 548–549

Configured component, defined, 671

Conformant C-style arrays, 419–420

Connectable COM type, building,

441–442

Connectable object, 437–439

Index

747

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 747

Connection point architecture (classic

COM), 437

Connection point container, 437

Connection points (COM), 437–440,

604–609

Consistency bit (JITA), 710

Const keyword, 165

Constant members, translating, 554

ConstructionEnabled attribute, 705

Constructors

parameterized, 300

translating, 549–551

Context object (COM+), 671–673, 675

ContextUtil type, 706–708

ContextUtil.DeactivateOnReturn

attribute, 723

ContextUtil.MyTransactionVote

property, 723

ContextUtil.SetAbort() method, 722

ContextUtil.SetComplete() method, 722

Conversion rules, COM type to .NET

type, 371–392

ConvertAssemblyToTypeLib() method,

659

ConvertTypeLibToAssembly() method,

533–536

CorRuntimeHost type, 662

CorRuntimeHost.GetDefaultDomain()

method, 663

CorRuntimeHost.Stop() method, 663

COSERVERINFO structure, 98

CoUninitialize() method, 97

CreateFile() helper function, 280

CreateInstance() method, 84, 86–87, 332,

664

CreateInterface() helper method,

195–200

CreateTypeInfo() method, 196, 201

CRMs (compensating resource

managers), 737

C-style arrays, 419–420

C-style DLLs, 2–5, 27

CTS (Common Type System), 231, 294

Culture information (strong name), 260

Currency value (UnmanagedType), 637

CurrencyWrapper, 409

CUSTDATA structure, 216

CUSTDATAITEM array, 216–217

Custom C-based DLL, building, 5–9

Custom CLR host, building, 662, 663–667

Custom COM interfaces, managed

versions of, 638–644

Custom database, building, 725–726

Custom dialog GUI, 318

Custom DLL

C# client interacting with, 40

exports of, 10–11

imported modules used by, 10

interacting with, 33–42

Custom DLL path, 14

Custom IDL attributes

AxImp.exe and, 503–504, 508–509

defining, 212–218

for namespace naming, 370

for ProgID of COM type, 561

reading, 214–218

tlbimp.exe and, 508–509

Custom members, exporting, 3–4

Custom metadata, viewing, 326

Custom .NET attributes, building,

325–329

Custom .NET collections, 614–619

Custom .NET data types, building,

297–301

Custom .NET exceptions, 620–621

Custom .NET interfaces

exposing to COM, 564–566

registering, 580

Custom .NET type viewer, building,

312–322

Index

748

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 748

Custom stub and proxy DLL, 581–582

Custom type library importer, 528–538

Custom wrapper (.NET), creating,

519–521

Customize Toolbox, COM Components

tab, 496

CustomReg() method, 654

CustomUnreg() method, 654

D
Data type conversions, 18–19, 540–542

Data type language mappings, 296–297

Data type mappings, COM-to-.NET, 347

Data type representation, Win32 and

.NET, 19

Data type system (.NET), 294–297

Data types (see also COM type

information; .NET types)

blittable, 349–350

building custom, 297–301

COM, 163

COM primitive, 164–167

converting between managed and

COM IDL, 346–351

.NET, 298

non-blittable, 349–351

Data types (.NET), categories of, 298

Data-centric values of UnmanagedType,

636–637

DataGrid type (.NET), 401–402

DataTable type, building with ADO

recordset, 401

Debugging COM servers using VS .NET,

468–470

Declarative programming, COM+, 671

Declarative transactional settings, 720

DECLARE_REGISTRY_RESOURCED

macro, 138

Declspec (declaration specification), 4

Default constructor (private), 387

Default context, defined, 675

[Default] IDL attribute, 76

[Default] interface, 361–362

adding members to, 140–141

defining, 76

Default interop marshaler, changing,

637

Default parameters (COM IDL), 381–383

Default stub code, VB 6.0 IDE used to

generate, 150

[Defaultvalue] keyword (COM IDL),

381–383

Delegate keyword, 444

Delegates (.NET), 298, 443–445

converting to COM connection

points, 604–609

defined, 443

generated by tlbimp.exe, 450–451

Derived interfaces, 487–488

Derived type, viewing metadata for,

247–248

Derived types/classes, building, 240–242

DescriptionAttribute type, 506, 518–519,

522

DescriptionAttributes type, 504

Destructors (C#-style), translating,

549–551

Digital signature (strong name), 260

Discrete interface references, 358–359

Discrete interfaces, using to manipulate

COM types, 358–359

DispEventAdvise() method, 611, 614

DispEventUnadvise() method, 611

DispGetIDsOfNames() method, 122

DispIdAttribute type, 502, 652

DISPID_BACKCOLOR, 492–494, 502

DISPID_NEWENUM, 435

Index

749

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 749

DISPIDs, 109–110, 173, 397, 652

assigning to event interface

members, 605

cataloging, 388–389

controlling generation of, 566

obtaining, 111–112

setting, 432

Dispinterface (oleautomation interface),

109–110, 166

defined, 108–109, 171

defining, 171–172

raw, 566, 604, 611

DISPPARAMS structure, 112, 115–116

DLL client, dynamic C++, 15–17

DLL component housing,

implementing, 88–90

DLL exports, ATL autogeneration of, 130

DLL functions, exporting, 90–91

DLL project type, selecting, 67

DllCanUnloadNow() method, 88–89

Dllexport declaration specification, 4–5

DllGetClassObject() method, 88,

123–124

Dllhost.exe, 672, 698

DllImport statement, 34–35, 37, 47

DllImportAttribute type, 25–26, 28, 41

DllImportAttribute type fields, 28

DllMain() method, 2–3, 68

DllRegisterServer() method, 90, 95

DLLs (dynamic link libraries), 129

core system-level, 12

C-style, 2–5, 27

custom, 10–11, 33–42

deploying traditional, 12–14

location of core Win32, 13

DllUnregisterServer() method, 90

Domain (application), 663

Done bit (JITA), 709–710, 712–713, 722

Doomed bit (in transaction processing),

719

Dot notation, for nested namespace

definitions, 371

DotNetCalcWithInterface type, 589

Dual attribute, 172

Dual interfaces, 118–119

defining, 172–173, 696

defining using C#, 651–653

explained, 118

VB 6.0, 155

Dumpbin.exe

flags, 9

viewing imports and exports with,

9–11

DumpComTypes() helper function, 207

DumpLibraryStats() method, 206

DWORD parameter, 2

Dynamic C++ DLL client, 15–17

Dynamically loading an assembly,

310–312

Dynamically loading an external library,

15–16

DynamicInvoke() method, 444

E
EnterpriseServices core types, 687–688

EnterpriseServices namespace, 687–690,

701, 703, 736–737

EnterpriseServices.AutoComplete

attribute, 712–713

EnterpriseServices.ContextUtil type,

706–708

EnterpriseServices.dll, 669, 691, 699

EnterpriseServices.ServicedComponent

type, 689–690

EntryPoint field, 31

EntryPointNotFoundException, 29

Enum base class type (System.Enum),

597

Enum details, displaying, 317

Index

750

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 750

Enum keyword, 176

Enum type, 301

extracting underlying name of, 597

underlying, 596

Enumerating class members, 311

Enumerating method parameters,

311–312

Enumerating types in a referenced

assembly, 311

Enumeration, viewing metadata for, 246

Enumeration fields, displaying, 320

Enumeration types (.NET), 301

Enums (see also COM enums; .NET

enums)

as name/value pairs, 176, 213, 597

assigned alternative numeric values,

594

assigned a default numeric value, 594

naming convention, 594

Environment variables, viewing, 14

Equality tests, 290, 292–294

Equals() method, 290, 293–295

Error 1400, 33

Error handling (.NET), 464–468

Error information (COM), handling from

managed code, 466–468

Error Lookup utility, 32

Error objects (COM), 459–464

Error-centric members of Marshal type,

24

Event client (C++), building, 610–614

Event client (VB 6.0), building, 609–610

Event interface

creating, 605–606

name string, 606

using ComSourceInterfaces attribute,

606

Event keyword (VB .NET), 609

Event keyword (VB 6.0), 442

Event metadata (.NET), 447

Event server (.NET), building using VB

.NET, 608–609

Event-centric generated types, 449–450

Events (see also COM events)

defining in C#, 445

defining and sending in VB 6.0, 441

loosely coupled, 670–671

.NET events, 445–448, 604–606,

608–609

EventTrackingEnabled attribute, 700

ExactSpelling field, specifying, 29

Exceptions (.NET), 619–621

Explicit interfaces, implementing, 567

Exported class types, interacting with,

39–40

Exporting custom members, 3–4

Exporting DLL functions, 90–91

Exports, viewing using dumpbin.exe,

9–11

EXPORTS tag, 4

Extending COM types, 390–391

External library, dynamically loading,

15–16

F
Fields (database)

converting .NET, 557

reordering at runtime, 35

FillListBoxes() helper function, 224–226

Fixed-length C-style arrays, 419

Foreach keyword (C#), 434

FormatMessage() API function, 33

Form_Load() event handler, 663

Form_Unload() event handler, 663

Friendly alias, mapping a function to, 31

Friendly name, 260, 310, 368

Friendly salutation, 258

Friendly string name, 310

FullName property (assembly), 663

Index

751

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 751

FUNCDESC structure, 198–199, 209

Function entry points, specifying, 31

Function pointers

array of, 57

smart, 102

using to trigger a callback, 43–44

Functions

mapping to friendly aliases, 31

pure virtual, 54

receiving structures, 7–8

using basic data types and arrays, 6–7

using class types, 8–9

G
GAC (Global Assembly Cache), 12

binding to an assembly in, 335

loading an interop assembly from,

396

machine-wide interop assembly in,

640

placing interop assemblies in, 392

serviced assembly in, 692

shared assemblies in, 255

VB .NET binary installed in, 262

Garbage Collector (.NET), 714–715

GenerateAssemblyFromTypeLib()

method, 536–538

GenerateGuidForType() method, 474

GenerateTLBFromAsm() helper

function, 655–656, 659

GetCollection() method

(COMAdminCatalogClass), 676

GetCustomAttributes() method, 330

GetDefaultDomain() method, 663

GetDescription() method, 620

GetDocumentation(), 532–533

GetEnumerator() method, 615, 622–623

GetHashCode() method, 290, 293

GetIDsOfNames() method, 111–122

GetIUnknownForObject() method, 474

GetLastWin32Error() method, 32–33

GetMembers() method, 311

GetMethod(), overloading, 336

GetObjectForIUnknown() method, 474

GetOcx() method, 501

GetParameters() method, 311–312

GetProcAddress() method, 16–17

GetType() method, 290, 306–308, 398

GetTypeInfo() method, 122

GetTypeInfoCount() method, 122

GetTypeLibName() method, 536

GetTypes() method, 311

Global counters, 64

Global ULONG, 87

Global variables, 64

Global-level attributes, 328

GUID helpers, 70–71

GUID structure, 69

GuidAttribute type, 372

GUID-centric members of

InteropServices, 366

Guidgen.exe utility, 69

GUIDs, 213–214, 216–217

comparison of, 70

defined, 69

freezing current values of, 152

mapping managed, 348–349

obtaining at design time, 69

preventing generation of, 151

role of in COM interfaces, 68–71

Guid.ToString() method, 348

H
Handles keyword (VB .NET), 456–457

Happy bit (JITA), 709–710, 722–724

Heap-based entities, 598

Helper sink, building, 535–536

[Helpstring], 157

Index

752

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 752

[Helpstring] attributes, 131–132,

492–494, 506

Helpstrings (.NET), 509–510

AxImp.exe and, 503–504, 508

tlbimp.exe and, 508–509

Hives (registry), 91

HKCR (HKEY_CLASSES_ROOT) hive, 91

CLSID key, 92–93, 575

Component Categories key, 95, 579

ProgIDs key, 92

TypeLib key, 94

HRESULTs (COM), 74, 82, 459–460

Hungarian notation, defined, 19

I
IAdd interface, 516

IBaseInterface interface, 487, 489

IBasicMath interface, 565, 567

IClassFactory interface, 84–87, 136

CreateInstance() method, 86–87

LockServer() method, 87

ICloneable interface, 480–481, 483

ICloneable.Clone method(), 480–481

ICodeCompiler interface, 280

ICodeGenerator interface, 279

IComparable interface, 476–477, 479

IConnectionPoint interface, 438–439,

441, 610, 614

IConnectionPointContainer interface,

437–438, 441, 609–610, 614

IContextState interface, 673, 710

ICreateErrorInfo interface, 460–461

ICreateTypeInfo interface, 657

ICreateTypeInfo2 interface, 190

ICreateTypeLib interface, 191–193, 201

ICreateTypeLib interface members, 192

ICreateTypeLib.SaveAllChanges()

method, 657, 659

ICreateTypeLib2 interface, 190

IDerivedInterface interface, 487–488

IDispatch client (VB 6.0), 117

IDispatch example (C++), 116–117

IDispatch interface, 124

in action, 125

for building scriptable objects,

108–112

helper functions, 120

IDL definition of, 108–109

implementing, 121

methods, 109

IDispatch-based interface statistics,

listing, 209

IDL

meta language used to describe COM

items, 65

viewing with VB 6.0 Oleview.exe,

152–156

IDL attributes, 72

defining custom, 212–218

vs. .NET attributes, 323, 326

reading custom, 214–218

IDL COM types, viewing in Object

Browser, 157

IDL const keyword, 165

IDL core data types, 165–166

IDL data type conversion, 346–351

IDL enumeration, defining, 176

IDL interface attributes, 174

IDL interface definition, 177

IDL interface modifiers, 173–174

IDL method parameter attributes,

167–171

IDL parameter attributes, 74

IDL structures, defining, 176–177

IDL syntax to define COM interfaces,

171–185

IDLCustomAttribute type, 521–524

IDR_ custom resources, 138–139

IE (Internet Explorer), 124

Index

753

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 753

IEnumConnectionPoints interface, 438

IEnumerable interface, 434–435, 615,

617, 621–623

IEnumerable.GetEnumerator() method,

622–623

IEnumerator interface, 436

IEnumVARIANT interface, 431–432, 436,

615, 617, 621

IEnumXXXX interface, 431–432

IErrorInfo interface, 460–461, 466, 620

IErrorInfo.GetDescription() method, 620

IHello interface, creating, 193–198

IID (interface ID), 70, 566

IL (Intermediate Language), 41

ILDasm.exe tool, 243–250

building a version of, 312–322

underlying IL code, 249–250

Implement Interface Wizard, 144,

481–483, 642, 643

Implemented interface, 386

Implements definitions, 149

[Implements] directive, 385

ImportedFromTypeLibAttribute type,

369

ImporterEventKind enumeration, 535

Importlib() statement, 586

Imports, viewing using dumpbin.exe,

9–11

InAttribute type, converting, 556

IndexOutOfBounds exception, 620

IndexOutOfRange exception, 619

Inheritance, multiple, 60

InstallAssembly() method, 701

Instance of a class, in class definition, 36

Instance management (COM+), 708–709

Interface details, displaying, 317

Interface hierarchies

implementing, 487–489

importing, 373–374

Interface members to .NET method

conversion, 375–377

Interface methods, 83, 141

Interface properties, IDL syntax for,

106–107

Interface references, 57, 184

Interface types as method parameters,

184–185

Interface types (.NET), 301

InterfaceIsDispatch COM interface type,

566

InterfaceIsDual COM interface type, 565

InterfaceIsUnknown COM interface

type, 565, 629

Interfaces. See COM interfaces; Dual

interfaces; .NET interfaces

Interfaces from a non-COM perpective,

52–62

Interface-based programming, 52–62

Interface-centric members of

InteropServices, 364–365

InterfaceTypeAttribute type, 372, 629,

647

[Internalcall] directive, 377

Interop assembly, 448–459

building, 342–346, 519–526

building and deploying, 640

building with tlbimp.exe, 354–355

defined, 342

deploying, 392–393

dumping to a file, 512–513

editing, 510–517

generating, 511

IL/metadata definitions, 514–517

loading from the GAC, 396

modifying manually, 508–510

namespace naming, 369–371

.NET types in, 356–362

obtaining, 353–355

placing in the GAC, 392

primary, 393–396

private, 343–344

recompiling the IL code, 524–526

Index

754

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 754

strongly named, 640

two ActiveX-generated, 497–500

updating, 522–524

Interop assembly attributes, 396–399

Interop assembly metadata, 398,

514–517

Interop assembly registration,

interacting with, 653–655

Interop assembly-centric members of

InteropService, 363

Interop marshaler, changing the default,

637

InteropServices namespace, 18,

218–220, 362–367

class-centric members, 364

GUID-centric members, 366

InAttribute and OutAttribute types,

556

interface-centric members, 364–365

interop assembly-centric members,

363

managed attributes, 378–379

method-centric members, 365

parameter-centric members, 365

registration-centric members,

363–364

runtime-centric members, 366

type library-centric members, 363

types to handle VARIANTs, 409

visibility-centric members, 363–364

InteropServices.COMException type,

466

InteropServices.RegistrationServices

type, 655

InteropServices.RuntimeEnvironment

type, 366–367

InteropServices.TypeLibConverter type,

528–530, 655–656

Invoke() method, 111, 333–335

Invoking members, 16–17

IObjectConstruct interface, 672

IObjectContext interface, 673

IObjectContextActivity interface, 673

IObjectContextInfo interface, 673

IObjectControl interface, JITA and,

713–715

IObjectControl interface methods, 710,

713

ISecurityCallContext interface, 674

IStartable and IStoppable, 647

ISupportErrorInfo interface, 462–463

ITypeInfo interface, 121, 185–189, 207

core members of, 187

data types, 188–189

related structures and enums,

188–189

ITypeInfo2 interface, 188, 215, 217

ITypeInfo2 interface core members, 215

ITypeLib interface, 204–206, 532–533

ITypeLib interface core members, 206

ITypeLibConverter interface, 530

ITypeLibExporterNotifySink interface,

656, 659

ITypeLib.GetDocumentation(), 532–533

ITypeLibImporterNotifySink interface,

533

ITypeLib2 interface, 217

ITypeLib2 interface core members, 215

IUnknown interface, 63

AddRef() method of, 81–82

formal IDL definition of, 73

implementing, 81–83

interacting with using Marshal class,

473–474

methods, 72

Release() method of, 81–82

role of, 71–73

IUnknown-based interface statistics,

listing, 209

IUnknown-derived interfaces, building,

173

Index

755

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 755

J
Java, path of, 230

JITA (just-in-time activation), 671,

708–715

enabling, 710–711

and IObjectControl, 713–715

JITAAwareObject class type, 714

JustInTimeActivation attribute, 711

K
Keys (registry), 91

Keywords, language-specific, 84,

296–297

L
Language files (MIDL output), 66

Language mappings of system data

types, 296–297

Language- and location-neutral COM

object, 84

Language-independence of binary IDL,

65

Language-independence of COM

components, 51, 84

Languages supported by CodeDOM, 272

Language-specific keywords, 84,

296–297

Late binding, 331–338

Activator class and, 331

invoking a member using, 333

.NET platform, 331

to a private assembly, 332–334

to shared assemblies, 335–338

Late binding syntax, COM vs. NET,

336–338

Late-bound clients, 110–111, 117,

124–126, 155

Late-bound VB 6.0 IDispatch client, 117

Late-bound VBScript client, building,

124–126

LayoutKind enumeration, 35, 603

LayoutKind.Auto, 603

LayoutKind.Explicit, 603

Lazy (automatic) registration, 693,

700–701

LCE (loosely coupled events), 670–671

Legacy binary modules, accessing using

PInvoke, 49

LIBID (COM type library ID), 70

Libraries (type). See Type libraries

Library applications (COM+), 680

Library of C# code, building complex,

302–304

Library statement, 163, 367–371

LIBRARY tag, 4

Library version attribute, 75

Library-centric Win32 API functions, 15

LoadAndRunAsm() helper function, 285

LoadCOMTypeInfo() helper function,

532

Loading an assembly dynamically,

310–312

Loading an external library dynamically,

15–16

LoadLibrary() method, 15

LoadLists() helper function, 313–314

LoadTypeLib() COM library function,

204

LoadTypeLibEx() method, 217

LoadTypeLibrary() helper function, 223

Location transparency (COM+), 683

Lock counter, 64

LockServer() method of IClassFactory, 87

LONG, 109

Index

756

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 756

M
Macros (COM-centric), 79–80

Managed client, building, 250–253,

526–528

Managed coclass, 453–454

Managed code, defined, 1

Managed COM wrapper types, 355

Managed data types

COM IDL conversion to/from,

346–351

explained, 27

Managed delegates, 450

Managed GUID mappings, 348–349

Managed interfaces

tlbimp.exe-generated, 451–453

using to interact with COM types,

359–361

Managed languages, working with,

232–233

Manifest (assembly), 233, 242–245, 514

Marshal class, 20–25, 471–475

destroying COM objects, 474–475

interacting with IUnknown, 473–474

type library-centric members of, 21

Marshal type

bit reading/writing-centric members

of, 24

COM-centric members of, 20–21, 472

error-centric members of, 24

memory/structure-centric members

of, 23

string conversion members of, 22

Marshal.AddRef() method, 474

MarshalAsAttribute type, 420, 633–637

Marshal.GenerateGuidForType()

method, 474

Marshal.GetIUnknownForObject()

method, 474

Marshal.GetLastWin32Error() method,

32–33

Marshal.GetObjectForIUnknown()

method, 474

Marshal.GetTypeLibName() method,

536

Marshaling arrays, 34–35

Marshaling calls between managed code

and COM type, 340

Marshal.Release() method, 474

Marshal.ReleaseComObject() method,

474

MC++ (Managed C++), 232–233

Member-building types of CodeDOM,

275

Members, invoking, 16–17

Memory/structure-centric members of

Marshal type, 23

Message boxes, 170 639–640

MessageBox() Win32 API function,

639–640

Metadata

translating COM into .NET, 249–250

viewing for an assembly, 245–246

viewing custom, 326

viewing for a derived type, 247–248

viewing for an enumeration, 246

viewing for an interface, 247

Metadata descriptions, 248–249

Metadata dump, 249

Method parameters

COM to .NET conversion, 377–381

enumerating, 311–312

interface types as, 184–185

Method signatures, converting, 555–556

Method-centric members of

InteropServices, 365

MethodInfo.GetMethod() method, 336

MethodInfo.GetParameters() method,

311–312

Index

757

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 757

MethodInfo.Invoke() method, 333

Methods

COM, 105

COM properties as, 106

handling overloaded, 569–570

interfaces containing, 106

invoking parameterized, 334–335

.NET, 375–377

Microsoft.Win32 namespace, 654

MIDL compiler, 65, 77

configuring, 77

core base types, 165–166

output, 66

MIDL compiler-generated files, 78–79

MIDL (Microsoft IDL), 165

Mixed mode debugging, 468–470

MMC (Microsoft Management Console)

snap-ins, 678

_Module (instance of CComModule),

614

Module-level attributes, 328–329

More Details menu

building, 316–322

submenus, 316

Mscoree.dll, 660–661

Mscoree.tlb, 660–662

Mscorlib.dll, 475, 571

Mscorlib.tlb, 477

importing, 570–572

interacting with, 586–589

referencing, 587

MSMQ (Microsoft Message Queue), 672

MTS (Microsoft Transaction Server),

669–670

MulticastDelegate class, 443–445

Multifile assemblies, 233

Multiple base interfaces

interfaces derived from, 301

.NET interface with, 624–627

Multiple behaviors, class supporting, 60

Multiple inheritance, 60

Multiple interfaces

class support for, 59–60

defining and supporting, 76

Multiple [source] interfaces

COM types with, 457–459

establishing, 607–608

N
Named mangling, defined, 11

Namespace definitions

dot notation for nested, 371

programming custom, 369–371

Namespace-building types of

CodeDOM, 274

Namespaces, that have existing

attributes, 324

Name/value pairs, enums as, 176, 213,

597

Nested classes, 300

Nested namespace definitions, dot

notation for, 371

.NET

building blocks of, 231–232

[custom] wrapper, 519–521

error handling, 464–468

Garbage Collector, 714–715

[helpstrings], 509–510

late binding under, 331

philosophy of, 230–231

value type vs. reference type entities,

598

variable declarations in, 296

.NET application, running, 285–288

.NET application code, 287

.NET assemblies. See Assemblies

.NET attribute metadata, 517–519

.NET attributes, 323–325

building custom, 325–329

vs. IDL attributes, 323, 326

restricting use of, 327–328

Index

758

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 758

.NET binaries. See Assemblies

.NET binding process, 269–270

.NET Category, type assignment to, 578

.NET class characteristics, 299

.NET class interface, establishing,

559–561

.NET class types, 299–300, 607–608

.NET collection client (VB 6.0), 617–619

.NET collections, custom, 614–619

.NET collections and exceptions

handled by C++ COM, 621–623

.NET component

accessing from C#, 699

accessing from VB 6.0, 698

.NET data type language mappings,

296–297

.NET data type system, 294–297

.NET data types, building custom,

297–301

.NET DataGrid type, 401–402

.NET delegates, 298, 443–445

converting to COM connection

points, 604–609

defined, 443

generated by tlbimp.exe, 450–451

.NET enums, 301

converting to COM enums, 593–598

inheriting from System.Object, 597

mapping to COM IDL, 593–594

use of System.Int32 type, 595

.NET event metadata, 447

.NET event server, building using VB

.NET, 608–609

.NET events, 445–448, 604–606

.NET exceptions, 619–621

.NET fields, converting, 557

.NET interface hierarchies, converting,

627–630

.NET interface inheritance, simulating,

627

.NET interface types, 301

.NET interfaces, 453

COM coclasses implementing,

475–484

COM type compatibility, 476

discrete, 358–359

exposing custom to COM, 564–566

implementing twice, 485

with multiple base interfaces,

624–627

registering custom, 580

tlbimp.exe-generated, 451–453

using to interact with COM types,

359–361

.NET late binding sytax, vs. COM,

336–338

.NET metadata, translating COM

metadata into, 249–250

.NET methods, converting interface

members to, 375–377

.NET namespace existing attributes, 324

.NET project workspace, 256–257

.NET properties, converting, 556

.NET runtime, 331, 367, 660

.NET runtime spy, 367

.NET server, anatomy of, 229–288

.NET shared assembly, versioning,

265–267

.NET source code file format, 273

.NET structure types, 300

.NET structures, 300

as IDL unions, 603

converting to COM structures,

598–603

.NET type assignment to .NET Category,

578

.NET type compatible coclass, building,

476–479, 481–489

.NET type viewer, building custom,

312–322

Index

759

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 759

.NET types, 289–338

binary-compatible C#, 641–642

binary-compatible VB .NET, 642–643

categories of, 298

COM-aware, 547–554

COM+-aware, 669–738

creating and configuring, 690–694

enumerating, 311, 622

exposing to COM applications,

633–667

implementing COM interfaces, 638

installing in a COM+ application,

693–694

in interop assembly, 356–362

managed representation, 36–37

viewing, 243

.NET UDTs mapped to COM IDL

structures, 600

.NET and Win32 data type

representation, 19

.NET-to-COM communications proxy.

See RCW

.NET-to-COM conversion, critical

details, 554–557

.NET-to-COM IDL data type

conversions, 540–542

.NET-to-COM interoperability

advanced, 471–538

basic, 339–402

high-level overview, 339–342

intermediate, 403–470

New keyword, re-listing inherited

members using, 626, 629–630

_NewEnum() method, 431–432

NewGuid() method, 348

Non-blittable data types, 349–351

Nonconfigured component, defined, 671

[Noncreatable] coclass, mapping,

387–388

[Noncreatable] IDL keyword, 428

Nonpoolable object lifecycle, 714–715

O
Object Browser

IDL COM types in, 157

interop assembly in, 344

type information in, 104

Object construction strings (COM+),

672, 704–706

Object context, 672–673, 675

_Object interface, 562–563, 695

_Object interface members, 562

Object map (server-wide), 136

Object pooling, 715–717

Object references, testing for equality,

292

Object variables, scoped at class level,

708

OBJECT_ENTRY macro, 136, 138

ObjectHandle type, 664

ObjectPooling attribute, 717

ObsoleteAttribute type, 324–325

Oleautomation, defined, 166

Oleautomation data types, 166–167

Oleautomation interface (dispinterface),

109–110, 166

defined, 108–109, 171

defining, 171–172

raw, 566, 604, 611

[Oleautomation]-compatible COM

interface, 633

[Oleautomation]-compatible types,

mapping, 348

Oleaut32.dll (universal marshaler), 565,

581

Oleview.exe utility (VB 6.0), 152–156

OnTheEvent() method, 612

OpenFileDialog type (Windows Forms),

530

Out keyword (C#), 378

OutAttribute type, converting, 556

Outbound interface, 439–440

Index

760

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 760

Overloaded Add() method, 586

Overloaded methods, handling, 569–570

Overridable members, translating,

551–553

P
ParamArray keyword (VB .NET), 421

ParamArrayAttribute type, 421

Parameter arrays (COM), 420–421

Parameter conversions, 379

Parameter modifier decoder, 556

Parameter-centric members of

InteropServices, 365

Parameterized constructors, explained,

300

Parameterized methods, invoking,

334–335

Parameters passed by reference (VB 6.0),

379–381

Params keyword (C#), 421

Parent interface of COM interface, 624

Partial strong name of an assembly, 335

Passing structures, 35–37

Path of COM (.NET philosophy), 230

Path to custom DLL, 14

Path of Java (.NET philosophy), 230

PInvoke COM library function, 531

PInvoke example, 26–33

PInvoke (Platform Invocation), 1–49

to access legacy binary modules, 49

atoms of, 18–26

Platform Invocation Services, 1–49

Pointers

array of, 57

smart, 102

using to trigger a callback, 43–44

Policy assemblies, 267–270

Polymorphism, 58, 61

Poolable objects (COM+), 715–717

Populate() method

(COMAdminCatalogClass), 676

PopulateNamespace() helper method,

281–284

Primary interop assembly

creating, 393–396

determining, 396

registering, 395–396

strong name for, 394

PrimaryInteropAssemblyAttribute type,

394–395

Primitive COM data types, 164–167

Private assembly

configuring, 251–253

late binding to, 332–334

prefixed with Interop, 343–344

relocating, 252

Private class members (C++), 54

Private Collection member variable, 429

Private components (COM+ 1.5),

733–734

Private default constructor, 387

Private interop assemblies, 343–344, 392

Procedure Attributes dialog box, 432,

492–493

ProgIDs (Programmatic Identifiers),

91–92, 96, 140, 561, 575

Project workspace (VB .NET), 256–257

Project-wide imports, setting up, 257

Properties (COM), 105–107

from client’s point of view, 107

defined, 105

mapping to .NET equivalent, 375–376

Properties (.NET), converting, 556

Proxy (.NET-to-COM communications).

See RCW

Public default constructor, explained,

549

Public entity, explained, 547

Public key, 260

Index

761

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 761

Public members

exported structure field data as, 599

inheriting, 553–554

Public structure members (C++), 54

[.publickey] tag, 692

PublicNotCreatable (Instancing

property), 428

Publisher, explained, 267

Publisher policy, explained, 267

Publisher policy assemblies, 267–270

Pure virtual functions, defined, 54

Q
QC (Queued Components), 672

QueryInterface() method, 73, 82, 86, 105

R
RaiseEvent keyword (VB .NET), 608

Random type, 478

Raw dispinterface, 171–172, 566, 604,

611

RCW (Runtime Callable Wrapper), 340,

539

for each coclass, 341

interfaces consumed by, 351–353

responsibilities of, 342

role of, 340–342

RCW translator, 218

Ref keyword (C#), 377–378, 422

Reference type (heap-based) entities,

598

ReferenceEquals() method, 290, 292

Reflection, defined, 203

Reflection namespace, 304, 309

Reflection namespace members, 309

Reflection.Emit, 323

Regasm.exe utility, 395, 572–574, 578

interacting with, 653–655

key flags, 573

updated entries, 574–582

Registering (in the registry)

a COM server, 95–97

the COM type library, 582

a COM+ application, 696–697

exposed interfaces, 579–582

a .NET assembly, 545–546, 644

a primary interop assembly, 395–396

a type, 124

Registration, lazy (automatic), 700–701

Registration of COM server, VB 6.0

automatic, 151

Registration of interop assembly,

interacting with, 653–655

Registration-centric members of

InteropServices, 363–364

RegistrationHelper type, 693, 701–703

RegistrationServices type, 655

Registry, 91. See also Registering (in the

registry)

role of, 66

updated entries in, 574–582

Registry Editor (regedit.exe), 91

Registry hives, 91

Registry keys, 91

Registry subkeys, 91

REGKIND enumeration, 531–532

Regsvcs.exe utility, 681, 693, 694–698

/appname flag, 695

core flags, 694

/fc flag, 695

updating the COM+ Catalog, 697

updating the registry, 696

Release() method, 81–82, 85, 100, 196

ReleaseComObject() method, 474–475

[.remove] directive, 454

RemoveAt() method (ArrayList), 619–620

[.removeon] directive, 448

ReportCOMError() helper function, 467

ReportEvent() method, 535

ResolveRef() method, 535–536

Index

762

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 762

Root object, in transaction processing,

718

Runtime

COM type generation at, 161,

189–191, 201–203

.NET, 331, 367, 660

reading attributes at, 207, 330–335

reordering fields at, 35

Runtime environment (COM+), 672–675

Runtime spy (.NET), 367

Runtime-centric members of

InteropServices, 366

RuntimeEnvironment type, 366–367

S
SAFEARRAY COM library functions,

181–182

SAFEARRAY helper tmeplates (ATL 4.0),

184

SAFEARRAY structure, 180, 183

SAFEARRAYBOUND structure, 180

SAFEARRAYs, 180–181, 410–418, 424

from managed code, 413–418

mapped to System.Array, 348, 414

SayHello() method, building, 198–200

Scriptable object, 108–112, 118–122

Secondary objects (in transactions),

718–719

SecurityCallContext type, 674

SEH (structured exception handling),

464

Self-describing entities, 234

Server lifetime, managing, 88–89

Serviced component example, 724–736

ASP.NET Web Service client, 734–736

C# code library, 726

CarInventory class type, 728–731

CarsSold table, 726

custom database, 725–726

design notes, 724

Inventory table, 725

LogSale type, 727–728

Windows Forms front end, 732–734

Serviced components, building, 669–738

ServicedComponent type

(EnterpriseServices), 689–690

Serviced.Component.Construct()

method, 704

SetErrorInfo() COM library function, 461

SetLastError field (DllImportAttribute),

32–33

SetType() helper method, 319

Shared assembly, 254–267, 261, 393

late binding to, 335–338

placed into the GAC, 255

recording, 263

using, 262–263

versioning, 264–267

Shared interop assemblies, 393

Shared name. See Strong name

ShowMemberStats() helper function,

318–319

ShowTypeStats() helper method, 315

Single-file assemblies, 233

Smart pointers, 102

Sn.exe utility, 392

Solution Explorer, 497

[Source] interface, 439, 442

COM types with multiple, 457–459

establishing multiple, 607–608

IDL definition of, 440

[Source] keyword (IDL), 604

SPM (shared property manager), COM+,

688

Square brackets ([]), use of, 72

Stack-based entities, 598

Stateless COM+ type, explained, 709

Stateless entities, configured

components as, 671

Static members, translating, 554

String conversion macros (ATL), 179

Index

763

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 763

String conversion members of Marshal

type, 22

String name, friendly, 310

String type (System.String), 348, 351, 634

String-centric values of

UnmanagedType, 634

Strong name, 255, 260–262

for an interop assembly, 394, 640

for a .NET assembly, 255–256, 335,

640, 692

for a primary interop assembly, 394

Strongly typed variables, interfaces as,

58–59

Struct keyword (C#), 598

StructLayout attribute, 35, 603

Structure details, displaying, 317

Structure field data exported to COM

IDL, 599

Structure keyword (VB .NET), 598

Structure members (C++), 54

Structure types (.NET), 300

Structures

with blittable fields, 350

COM, 421–425

converting .NET to COM, 598–603

functions receiving, 7–8

with non-blittable fields, 351

passed by reference, 602

passing, 35–37, 602

receiving allocated, 37–39

Structures containing structures, 7–8

Stub and proxy DLL, custom, 581–582

Stub code, VB 6.0 IDE used to generate

default, 150

Stub/proxy files (MIDL output), 66

Subkeys (registry), 91

System data type language mappings,

296–297

System path variable, 13

System registry. See Registering (in the

registry); Registry

System.Activator class, 331–332

System.Activator class members, 332

System.Array type, 416–417

mapping SAFEARRAYS to, 348, 414

members of, 414

System.Attribute base class, 517

System.Attribute core members, 324

System.Attribute-derived type, 525–526

System.Byte type, 595

System.CodeDOM namespace 270–284.

See also CodeDOM

System.Collections namespace, 434–435,

615–616

System.Collections.dll, 665–666

System._ComObject, role of, 399

System.EnterpriseServices namespace,

687–690, 701, 703, 736–737

System.EnterpriseServices.dll, 669, 691,

699

System.Enum base class type, 301, 597

System.Exception base class, 465, 619

System.Exception type members, 465

System.Guid mappings, 348–349

System.IComparable interface, 476

System.InPtr type, 420

System.Int32 type, 595

System-level DLLs, 12

System.MulticastDelegate class, 443–445

System.Object

coclasses derived from, 389

methods of, 290

.NET enum inheriting from, 597

role of, 289–294

variable data types, 404

VARIANTs mapped to, 407

System.Object members, inherited, 390,

597

Index

764

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 764

System.Object-centric values of

UnmanagedType, 635

System.Object.Finalize() method,

714–715

System.Object.GetType() method, 306,

398

System.Object.ToString() method, 239,

563

System.ObsoleteAttribute type, 324–325

System.ParamArrayAttribute type, 421

System.Random type, 478

System.Reflection namespace, 304, 309,

323

System.Reflection namespace members,

309

System.Reflection.Emit, 323

System.Runtime.InteropServices. See

InteropServices namespace

System.String type, 348, 351, 634

System.Type class, 304–308, 418, 588

System.Type class members, 305

System.Type reference, obtaining,

306–307

System.Type.GetCustomAttribute()

method, 330

System.Type.GetCustomAttributes()

method, 330

System.Type.GetType() method, 307–308

System.Type.Missing read-only field,

384–385

System.ValueType, 294, 422

System.ValueType-derived types,

tlbexp.exe and, 599

System.Windows.Forms.AxHost base

class, 499

T
TheEnum type, 326, 330

Tlbexp.exe (Type Library Exporter)

utility, 475

building a custom version of, 655–660

[dual] interface with DISPIDs, 565

and System.ValueType-derived types,

599

using, 546–547

Tlbimp.exe (Type Library Importer)

utility, 342, 353–355, 367, 448–459,

508–509

building an interop assembly with,

354–355

core options of, 354

custom IDL attribute for ProgID, 561

ToString() method, 239, 290, 597

overriding, 290–291

transforming, 563

TPM (Transaction Processing Monitor),

718

Transaction

ACID properties of, 717

defined, 717

enlisting multiple objects, 719

single object, 718

Transaction attribute, 721–722

Transaction processing, and root object,

718

Transactional COM+ settings, 721

Transactional programming, 717–724

Transactional programming (COM+),

720–724

TransactionOption enumeration,

721–722

Type class, 80, 304–308

Type compatible (COM type with .NET

interface), 476

Index

765

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 765

Type information, 161–228

as binary IDL, 65

displaying details, 315–316

dumping, 207–208

generating programmatically,

189–191

located under HKCR\TypeLib, 94

obtaining for a COM wrapper type,

398

reading programmatically, 203–212

viewing in the Object Browser, 104

Type information generation, testing,

201–203

Type information viewer, in C#, 220–227

Type libraries

as binary IDL, 78

building, 191–193

defined, 65

library statement section, 368–371

registering, 582

role of, 65–66

[version] identifier, 368

Type library attributes, reading at

runtime, 207

Type library browser application

building, 203–212

displaying information, 205–207

dumping COM type information,

207–208

listing coclass statistics, 208

listing COM enumeration statistics,

209–210

listing IDispatch interface statistics,

209

listing IUnknown interface statistics,

209

program skeleton, 204–205

reading, 210–212

Type library creation elements, 189

Type library importer utility, building,

528–538. See also Tlbimp.exe

Type library statement name, changing,

568

Type library-centric COM library items,

204

Type library-centric members of

InteropServices, 363

Type library-centric members of

Marshal class, 21

Type marshaling, 633–637

Type member visibility

controlling, 548–549

establishing, 548

Type members, displaying details about,

316–322

Type metadata, viewing, 245–246

Type names in an assembly, displaying,

313

Type reference

from C# typeof operator, 306–307

from System.Object.GetType(), 306

from System.Type.GetType(), 307–308

Type viewer (custom), 312–322

ADO.NET types in, 322

custom dialog GUI, 318

displaying assembly details, 317

displaying assembly information,

316–322

displaying class member

information, 320

displaying class member parameters,

321–322

displaying enumeration fields, 320

displaying type details, 315–316

displaying type names, 313, 315

More Details menu, 316–322

Type visibility

controlling with ComVisibleAttribute,

548–549

establishing, 547

Type-building types of CodeDOM, 274

TYPEFLAGS enumeration, 197–198, 373

Index

766

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:40 PM Page 766

TYPEFLAGS values, 197–198

Type.GetMembers() method, 311

TYPEKIND enumeration, 196, 207

TYPEKIND structure, 201, 207, 226

TYPELIBATTR structure, 224

TypeLibConverter class, 528–530,

533–535, 655–656

TypeLibConverter.ConvertTypeLibToAss

embly(), 533–535

TypeLibImporterFlags enumeration, 534

TypeLibTypeAttribute type, 373

Typeof operator (C#), 306–307

Types. See COM type; Data types; .NET

types; Type information

Types hierarchy, 237, 295

U
UCOM (unmanaged COM) prefix, 220

UCOMITypeLib interface, 537, 659

UDTs (user-defined types), 3, 163, 600.

See also Structures

ULONG, global, 87

Unadvise() method, 438–439

Unicode characters, 18, 178

UninstallAssembly() method, 701

Unions, .NET structures as, 603

Universal marshaler (oleaut32.dll), 565,

581

Universal marshaling, 565, 580–581

Unmanaged callbacks, 42–43

Unmanaged code, 1–2, 232

UnmanagedAssembly.dll, 666

UnmanagedType

array-centric value of, 636

data-centric values of, 636–637

string-centric values of, 634

System.Object-centric values of, 635

UnmanagedType.Currency value, 637

UnregisteredAssembly namespace,

665–666

Unsigned char mapped into a VB 6.0

Byte, 596

Unwrap() method, 664

Updating interop assemblies, 522–524

USES_CONVERSION macro, 179

V
Value type (stack-based) entities, 598

ValueType type, 294

[Vararg] IDL attribute, 420–421

Variable declarations, in .NET, 296

Variables, scoped at class level, 708

VARIANT array, 621

VARIANT COM library functions, 115

Variant compliant types, 166

VARIANT data type, 112–116, 166–167,

217, 384–385, 403–410

in C++, 114–115

from managed code, 407–409

mapped to System.Object, 407

in VB 6.0, 115

VARIANT field, 216

VARIANT structure, 112–114

VARIANT vt field, .NET data types

setting, 404

VARIANT wrappers, 409

VARIANT-centric COM server, building,

405–410

VariantInit() COM library function, 114

Varying C-style arrays, 419

VB COM type, preventing direct creation

of, 428

VB .NET application code, 287

VB .NET binary installed in the GAC, 262

VB .NET client interop assembly, 346

VB .NET code library hierarchy, 256

VB .NET IDE, Implement Interface

Wizard, 643

VB .NET .NET event server, 608–609

VB .NET project workspace, 256–257

Index

767

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:40 PM Page 767

VB .NET shared assembly, versioning,

265–267

VB .NET type, building binary-

compatible, 642–643

VB .NET (Visual Basic .NET)

as a managed language, 232

byRef keyword, 377–378, 380–381

byVal keyword, 377–381

completed application, 286

Event keyword, 609

Handles keyword, 456–457

intercepting incoming COM events,

456–457

ParamArray keyword, 421

RaiseEvent keyword, 608

running application, 285–288

Structure keyword, 598

WithEvents keyword, 456–457

VB 6.0 Byte

building, 644–646

unsigned char mapped into, 596

VB 6.0 client methods, 169–170

VB 6.0 COM client, 103–105, 157,

584–589, 644–646

VB 6.0 COM server

reading, 212

testing, 156–159

VB 6.0 COM types, locating, 153

VB 6.0 COM+ client, building, 683

VB 6.0 COM-supported COM interfaces,

154

VB 6.0 custom CLR host, 663–667

VB 6.0 event client, building, 609–610

VB 6.0 form, code behind, 158

VB 6.0 IDE, using to generate default

stub code, 150

VB 6.0 .NET collection client, 617–619

VB 6.0 structure server, building,

423–424

VB 6.0 (Visual Basic 6.0)

accessing configured .NET

component, 698

ActiveX control, 490–493

application object, 176

applying IDL [helpstrings], 492

automatic registration of COM server,

151

binary compatibility, 151–152

building COM servers using, 146–148

CheckThisVariant() method, 469–470

coclass COM event atom support, 442

Collection type, 429, 645

core COM project types, 147

defining auxiliary interfaces, 148–149

defining and sending events, 441

disallowing structures passed by

value, 601–602

Event keyword, 442

IDispatch client, 117

implementing interfaces in, 149–151

and interfaces with underbars, 489

LameColorControl, 495–496

Oleview.exe utility, 152–156

parameters passed by reference,

379–381

role of, 146–159

setting DISPID_BACKCOLOR, 492,

493

VARIANTs in, 115, 481

WithEvents keyword, 610

VBScript COM client, building, 590–591

VBScript late bound client, building,

124–126

_VBStructObject interface, 424

[Version] identifier of COM type library,

368

Version number (strong name), 260

Versioned interfaces, 61–62, 373–374

Versioning shared assemblies, 264–267

Index

768

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:40 PM Page 768

Virtual functions, pure, 54

Visibility-centric members of

InteropServices, 363–364

VS .NET IDE, 584

VS. NET (Visual Studio .NET), 343

consuming ActiveX controls, 495–501

debugging COM servers, 468–470

managed languages, 232

private interop assemblies, 344

referencing a COM server using, 343

Vtable, 651

W
Web Service client (ASP.NET), 734–736

Well-known category, grouping COM

objects into, 577–578

Win32 *.def file, assembling standard, 90

Win32 API functions, library-centric, 15

Win32 callback functions, 42

Win32 console application project,

creating, 52–53

Win32 DLLs, location of core, 13

Win32 error, obtaining the last, 32

Win32 error code as friendly text string,

32

Win32 namespace, 654

Win32 and .NET data type

representation, 19

Win32 structure, managed equivalent of,

35

WithEvents keyword (VB .NET), 456–457

WithEvents keyword (VB 6.0), 610

WSDL (Web Service Description

Language), 270–272

Wsdl.exe utility, 270–272

W2A (Unicode to ANSI) macro, 179

Index

769

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:40 PM Page 769

	Contents at a Glance
	Contents
	Introduction
	Understanding Platform Invocation Services
	The Anatomy of a COM Server
	A Primer on COM Programming Frameworks
	COM Type Information
	The Anatomy of a .NET Server
	.NET Types
	.NET-to-COM Interoperability— The Basics
	.NET-to-COM Interoperability— Intermediate Topics
	.NET-to-COM Interoperability— Advanced Topics
	COM-to-.NET Interoperability— The Basics
	COM-to-.NET Interoperability— Intermediate Topics
	COM-to-.NET Interoperability— Advanced Topics
	Building Serviced Components (COM+ Interop)
	Index

