
Design and Implementation
Guidelines for Web Clients

Information in this document, including URL and other Internet Web site
references, is subject to change without notice. Unless otherwise noted, the
example companies, organizations, products, domain names, e-mail addresses,
logos, people, places and events depicted herein are fictitious, and no association
with any real company, organization, product, domain name, e-mail address, logo,
person, place or event is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing
of this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

© 2003 Microsoft Corporation. All rights reserved.

Version 1.0

Microsoft, MS-DOS, Windows, Windows NT, Windows Server, Active Directory,
MSDN, MSN, Visual Basic, Visual C#, and Visual Studio are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. The names of actual companies and products mentioned herein
may be the trademarks of their respective owners.

Contents

Chapter 1
The Presentation Layer 1

Introduction . 1
How To Use This Guide . 2
Defining the Presentation Layer . 4

Defining User Interface Components . 6
Defining User Interface Process Components . 7
Additional Information . 8

Summary . 9

Chapter 2
Using Design Patterns in the Presentation Layer 11

In This Chapter . 11
Benefits of Using Design Patterns . 12
Using Design Patterns for the Presentation Layer . 12

Choosing Design Patterns . 13
Frequently Used Presentation Layer Patterns . 14

Implementing Design Patterns by Using the User Interface
Process Application Block . 25
Design of the User Interface Process Application Block. 26
Benefits of Using the User Interface Process Application Block 28
Building Applications with the User Interface Process Application Block 32

Summary . 44

Chapter 3
Building Maintainable Web Interfaces with ASP.NET 45

In This Chapter . 45
Creating New Web Server Controls . 45

Creating and Using Web User Controls . 46
Creating and Using Web Custom Controls . 53

Defining Common Page Layouts . 59
Using a Common Set of Controls . 59
Using Customizable Regions . 60
Using Page Inheritance . 63

Summary . 64

Contentsiv

Chapter 4
Managing Data 65

In This Chapter . 65
Accessing and Representing Data . 65

Choosing the Representation Format for Data Passed Between
Application Layers . 66

Working with Transactions in the Presentation Layer . 67
Determining Which Layers Should Access Data . 69

Presenting Data Using Formatters, Data Binding, and Paging 75
Formatting Data . 76
Data Binding . 76
Paging Data . 77

Supporting Data Updates from the Presentation Layer . 77
Batching Updates . 78
Using Optimistic Concurrency . 78
Designing Data Maintenance Forms to Support Create, Read, Update,

and Delete Operations . 78
Implementing Separate Forms for the List and Entity Display 81

Validating Data in the Presentation Layer . 90
Why Validate? . 90
Choosing a Validation Strategy . 91
Using Validation Controls . 91
Handing Validation Errors . 92

Summary . 92

Chapter 5
Managing State in Web Applications 93

In This Chapter . 93
Understanding Presentation Layer State . 94

Determining State Lifetime . 94
Determining State Scope. 94
Determining State Type . 96

Planning State Management for Web Applications . 97
Storing State in the Session Object . 98
Storing State in Cookies . 105
Storing State in Hidden Form Fields . 106
Storing State in Query Strings (URL fields) . 108
Storing State in ViewState . 110
Storing State in the Application Object . 111

Serializing State . 112
Caching State . 113
Summary . 114

Contents v

Chapter 6
Multithreading and Asynchronous Programming

in Web Applications 115
In This Chapter . 115
Multithreading . 116

Using the Thread Pool . 117
Synchronizing Threads . 119
Troubleshooting . 122

Using Asynchronous Operations . 123
Using the .NET Framework Asynchronous Execution Pattern 123
Using Built-In Asynchronous I/O Support . 130

Summary . 131

Chapter 7
Globalization and Localization 133

In This Chapter . 133
Understanding Globalization and Localization Issues . 133

Additional Information . 135
Using Cultures . 135

Identifying the Current Culture . 135
Using an Alternative Culture . 136

Formatting Data . 138
Localizing String Data . 138
Localizing Numeric Data . 138
Localizing Date and Time Data . 139

Creating Localized Resources . 144
Creating Custom Resource Files . 144

Summary . 147

Appendix A
Securing and Operating the Presentation Layer 149

In This Appendix . 149
Securing the Presentation Layer . 149

Achieving Secure Communications . 150
Performing Authentication . 152
Performing Authorization . 154
Using Code Access Security . 155
Implementing Security Across Tiers . 158
Auditing . 159

Contentsvi

Performing Operational Management . 161
Managing Exceptions in the Presentation Layer . 161
Monitoring in the Presentation Layer . 162
Managing Metadata and Configuration Information . 162
Defining the Location of Services . 164
Deploying Applications . 164

Summary . 164

Appendix B
How To Samples 165

In This Appendix: . 165
How To: Define a Formatter for Business Entity Objects . 166

Defining the ReflectionFormattable Class . 166
Defining the CustomerEntity Class . 168
Defining the CustomFormatting Class . 169

How To Perform Data Binding in ASP.NET Web Forms . 171
Data Binding an Entity Object to Simple Controls . 171
Data Binding a Collection of Entity Objects to a DataList Control 177
Data Binding a Collection of Entity Objects to a DataGrid Control 185

How To: Design Data Maintenance Forms to Support Create, Read, Update,
and Delete Operations . 190
Defining Business Entities . 190
Defining Data Access Logic Components . 191
Defining Business Components . 196
Designing CRUD Web Forms . 198

How To: Execute a Long-Running Task in a Web Application . 215
Defining the Payment Class . 215
Defining the CCAuthorizationService Class . 217
Defining the ThreadResults Class . 218
Defining the Result Class . 219

How To: Use the Trusted Subsystem Model . 221
How To: Use Impersonation/Delegation with Kerberos Authentication 222
How To: Use Impersonation/Delegation with Basic or Forms Authentication 223
How To: Localize Windows Forms . 224
How To: Define a Catch-All Exception Handler in Windows Forms-based

Applications . 226

Additional Resources 227

1
The Presentation Layer

Introduction
Most, if not all, applications require some level of user interaction. In today’s
distributed applications, the code that manages this user interaction is in the
presentation layer.

Most simple presentation layers contain user interface components, such as
Microsoft® Windows Forms or ASP.NET Web Forms. These components typically
contain code to perform functions such as configuring the visual appearance of
controls; accepting and validating user input; and acquiring and rendering data
from data access logic components or business components.

The presentation layer can also include user interface process components. User
interface process components perform presentation layer tasks that are not directly
concerned with user interactions. For example, user interface process components
orchestrate the flow of control between forms in the presentation layer and coordi-
nate background tasks such as state management and handling of concurrent user
activities.

Design and Implementation Guidelines for Web Clients provides advice on how best to
implement logic in the presentation layer of a distributed application. This guide is
designed to accompany the User Interface Process Application Block; this applica-
tion block provides a template implementation for user interface process compo-
nents. For more information about how and when to use this block, see Chapter 2,
“Using Design Patterns in the Presentation Layer,” in this guide. For more informa-
tion about the application block, including download information, see User Interface
Process Application Block Overview on MSDN® (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnbda/html/uip.asp).

Design and Implementation Guidelines for Web Clients2

How To Use This Guide
This guide addresses specific goals of presentation layer component design. This
guide provides prescriptive recommendations and code samples that enable you to
use design patterns and Microsoft .NET Framework programming idioms effectively
in the presentation layer of your applications. The intent of this guide is to help you
increase the portability, maintainability, scalability, security, and overall design
quality of your presentation layer code; it does not discuss aesthetic user interface
design issues.

The information in this guide is organized into the following chapters:
● This chapter introduces the topics in this guide and provides guidance on basic

terminology. It also notes the decisions the authors of this guide assume you have
already made.
Additionally, this chapter summarizes the key messages that are documented in
detail elsewhere in this guide and describes how this guide fits into the Microsoft
patterns & practices family of documentation.

● Chapter 2, “Using Design Patterns in the Presentation Layer,” describes how to
separate the responsibilities of components in the presentation layers by using
common design patterns.
Design patterns help you get a clean separation between the code that presents
data to the user and accepts user interactions and the code that orchestrates the
flow of control between forms and handles issues such as state management, data
access, and asynchronous behavior in the presentation layer. By partitioning your
code in this way, you can reduce the coupling between the various parts of your
application, and thereby make your code easier to change and extend as require-
ments evolve.
Chapter 2 introduces a template implementation of the key design patterns. The
template is included in the User Interface Process Application Block. Chapter 2
describes how to use this block as the basis for your own user interface code,
thereby realizing the benefits described in the previous paragraph.

● Chapter 3, “Building Maintainable Web Interfaces with ASP.NET,” describes how
to make ASP.NET code easier to implement and maintain. This chapter describes
how to use custom controls to share specific behavior across multiple controls
and how to use common page layouts to ensure there is a common appearance
across all the pages in your Web site. This chapter also describes how to use
inheritance appropriately and effectively in Web applications in order to reuse
controls in the presentation layer.

● Chapter 4, “Managing Data,” describes the correct way for components in the
user interface (UI) to access, present, update, and validate data input, and how
the UI participates in maintaining data integrity.

Chapter 1: The Presentation Layer 3

The first of these topics, “Accessing and Representing Data,” compares and
contrasts various techniques for accessing data in the presentation layer. This
topic describes the best way to represent data in disconnected and streaming
applications and how best to use transactions in the presentation layer. This topic
also describes the importance of a layered approach to data access and how to
use message-driven techniques, data access logic components, and business
objects to access data in specific scenarios.
The second topic in the chapter, “Presenting Data Using Formatters, Data Bind-
ing, and Paging,” describes how to use .NET Framework formatter classes, data
binding techniques, and paging to display data to the user.
The third topic in the chapter, “Supporting Data Updates from the Presentation
Layer,” describes how the presentation layer can participate in updates to data
in a back-end data store such as a relational database. This topic describes how to
create data maintenance forms that let users create, read, update, and delete data
entities either individually or as part of a list. It also describes how to increase
productivity by implementing metadata-based forms that are sufficiently flexible
to handle data in any structure.
The final topic in the chapter, “Validating Data in the Presentation Layer,” de-
scribes scenarios where data validation is appropriate in the presentation layer.
The presentation layer is the first line of defense against accidental or malicious
rogue data from the user. This topic describes how and when to use .NET Frame-
work validator controls to validate the format and content of input data and
includes strategies for handling validation failures.

● Chapter 5, “Managing State in Web Applications,” describes the types of state
used in the presentation layer and offers guidance about how to manage state in
applications written for the Web. Correct state management is critical to the
scalability and availability of Web applications.
For Web applications, this chapter discusses the pros and cons of storing per-user
session data in the in-process Session object, the state server-based Session
object, or the SQL Server™-based Session object. This chapter also discusses how
to use cookies, hidden form fields, URL rewiring, and the ASP.NET ViewState
property as alternative ways to maintain state between pages in an ASP.NET Web
application. Finally, it discusses how to use the Application object to share state
between all users and sessions of an application.

● Chapter 6, “Multithreading and Asynchronous Programming in Web Applica-
tions,” describes how to increase performance and responsiveness of the code in
the presentation layer by using multithreading and asynchronous programming.
This chapter describes how to use .NET Framework thread pools to simplify
multithreaded code in your application. In situations where the thread pool
is inappropriate, the chapter describes how to manually create, manage, and
synchronize threads in your code.

Design and Implementation Guidelines for Web Clients4

This chapter also describes how and when to use asynchronous method invoca-
tion, by using delegates. Delegates represent method calls on objects; with del-
egates, you can start methods asynchronously by using the BeginInvoke and
EndInvoke delegate methods.

● Chapter 7, “Globalization and Localization,” describes how globalization and
localization requirements affect the development of your presentation layers.
This chapter addresses how the .NET Framework uses cultures to define lan-
guage-specific and country-specific issues, such as number formats and currency
symbols; it also describes how and when it might be useful to define alternative
cultures programmatically.
Additionally, this chapter describes how to format various .NET Framework data
types appropriately, according to the current culture. As part of this discussion, it
describes how to create custom resource files to hold language-specific string
resources and images.

● Appendix A, “Securing and Operating the Presentation Layer,” describes how
security and manageability considerations affect the design of presentation layer
components.
This appendix reviews the importance of authentication and authorization in the
presentation layer and the options available for performing these tasks in various
circumstances. Additionally, it describes how to improve the security of commu-
nications using Secure Sockets Layer (SSL), Internet Protocol Security (IPSec), and
Virtual Private Networking (VPN).
This appendix also describes operational management issues as they pertain to
the presentation layer. It describes how to manage exceptions in the presentation
layer; health monitoring; and performance monitoring.

● Appendix B, “How To Samples,” provides code samples to illustrate the various
techniques described throughout this guide.

The next section defines the types of components that the presentation layer con-
tains; it also describes how this guide fits into the broader family of Microsoft
patterns & practices guides.

Defining the Presentation Layer
For architectural- and design-level guidance about creating layered, distributed
applications, see Application Architecture for .NET: Designing Applications and Services
on MSDN (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/
distapp.asp). It defines the application architecture illustrated in Figure 1.1.

Chapter 1: The Presentation Layer 5

Data Access Logic
Components

Service Agents

UI Components

UI Process Components

Service Interfaces

Business
Workflows

Business
Components

Business
Entities

Data Sources Services

Users

S
ecurity

O
perational M

anagem
ent

C
om

m
unication

Figure 1.1
Application architecture

The presentation layer includes the following types of software components that
perform specific tasks:
● User interface components – These components make up the user interface of

the application. Users see and interact with these components.
● User interface process components – These components orchestrate the user

interface elements and control user interaction. Users do not see user interface
process components; however, these components perform a vital supportive role
to user interface components.

The combination of these two types of components forms the presentation layer
of the application. The presentation layer interoperates with the business and data
access layers to form the overall solution. The following section outlines the typical
responsibility for each kind of component in the presentation layer and explains the
benefits for dividing the presentation layer as described.

Design and Implementation Guidelines for Web Clients6

Defining User Interface Components
User interface components make up the subset of presentation layer components
that interact with the user. You can think of it as a layer in itself. They are generally
referred to as “views” in presentation design patterns. User interface components
are responsible for:
● Acquiring data from the user
● Rendering data to the user

The following characteristics determine other responsibilities for user interface
components:
● Validation, input masking, and using appropriate controls for data input
● Managing visual layouts, styles, and the general appearance and navigation

of the application
● Encapsulating the affect of globalization and localization
● Formatting data and displaying it in useful visual styles
● Browsing, searching, and organizing displayed data

Common user interface choices include:
● Console applications – This approach is suitable for simple utilities that can easily

be controlled from a command line.
● Windows Forms-based applications – Windows Forms-based user interfaces are

the preferred choice for rich client applications that are deployed on desktop,
laptop, and tablet PCs.

● Microsoft Office VBA solutions – In environments where Microsoft Office
applications are used extensively, it can frequently be appropriate to build cus-
tom Office-based solutions that allow users to perform business tasks from
familiar applications.

● .NET Compact Framework applications – The .NET Framework 1.1 includes a
subset of classes suitable for building applications for smart devices such as
Pocket PCs and Smartphones. This approach can be used to develop rich user
interfaces for mobile devices.

● ASP.NET Web applications – When an application must be accessible across an
intranet or Internet connection, it is a good idea to use ASP.NET to create a Web
application hosted in Internet Information Services (IIS). ASP.NET makes it
possible to build complex user interfaces that transcend many of the limitations
of conventional static HTML and script-based Web solutions.

● ASP.NET mobile Web applications – The .NET Framework 1.1 includes ASP.NET-
based controls specifically targeted at mobile devices such as Personal Digital
Assistants (PDAs) and Wireless Application Protocol (WAP)-enabled mobile
phones. These controls are dynamically rendered in a format appropriate to the

Chapter 1: The Presentation Layer 7

device being used to access the application, and therefore make it possible to
build Web applications for a broad spectrum of mobile devices.

● Speech-enabled applications – The Microsoft .NET Speech SDK makes it possible
to build applications that respond to voice input. When combined with Microsoft
Speech Server, the .NET Speech SDK makes it possible to build voice-driven
telephony solutions with a wide range of applications. Beta 3 of the .NET Speech
SDK is currently available. For more information about speech-enabled applica-
tion development, see the Microsoft Speech Technologies Web site (http://
www.microsoft.com/speech/).

Regardless of the specific technology used to implement them, user interface compo-
nents are used to present information to the user and to accept user input, thereby
enabling interaction with the business process embodied in the application.

Defining User Interface Process Components
The user interface components described in the preceding section manage data
rendering and acquisition with the user, but these responsibilities do not cover the
full spectrum of issues that presentation layers must handle.

A user interacts with an application executing use cases. Each use case requires a set
of interactions with the user and the business layers to complete. Applications that
have use cases involving multiple user interface components, or that have to imple-
ment multiple user interfaces, have to decide how to maintain data or state across all
user interactions and how the user control flows across multiple user interface
components.

User interface process components are responsible for managing interactions be-
tween multiple user interactions in a use case. User interface process components
are referred to as application controllers in design pattern terminology.

User interface process components are responsible for:
● Managing control flow through the user interface components involved in a use

case
● Encapsulating how exceptions affect the user process flow
● Separating the conceptual user interaction flow from the implementation or

device where it occurs
● Maintaining internal business-related state, usually holding on to one or more

business entities that are affected by the user interaction

This means they also manage:
● Accumulating data taken from many UI components to perform a batch update
● Keeping track of the progress of a user in a certain process
● Exposing functionality that user interface components can invoke to receive data

they must render to affect the state for the process

Design and Implementation Guidelines for Web Clients8

To help you separate the tasks performed by user interface process components from
the tasks performed by user interface components, follow these guidelines:
● Identify the business process or processes that the user interface process helps to

accomplish. Identify how the user sees this as a task.
● Identify the data needed by the business processes. The user process needs to be

able to submit this data when necessary.
● Identify additional state you need to maintain throughout the user activity to

assist rendering and data capture in the user interface.

The User Interface Process Application Block provides a template implementation
for user interface process components. For more information about how to use this
block, see Chapter 2, “Using Design Patterns in the Presentation Layer.”

Additional Information
For more information about the full range of available patterns & practices guides
and application blocks, see the patterns & practices Web site (http://www.microsoft.com
/resources/practices/).

The following guides provide guidance and background information about how to
implement the other tiers in the recommended application architecture:
● .NET Data Access Architecture Guide

This guide provides guidelines for implementing an ADO.NET-based data access
layer in a multi-tiered .NET Framework application. It focuses on a range of
common data access tasks and scenarios and presents guidance to help you
choose the most appropriate approaches and techniques. For more information
about this guide, including download information, see .NET Data Access Architec-
ture Guide on MSDN (http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnbda/html/daag.asp).

● Designing Data Tier Components and Passing Data Through Tiers
This guide covers data access and representation of business data in a distributed
application and provides guidance to help you choose the most appropriate way
to expose, persist, and pass data through the application tiers. For more informa-
tion about this guide, including download information, see Designing Data Tier
Components and Passing Data Through Tiers on MSDN (http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnbda/html/BOAGag.asp).

● Web Service Façade for Legacy Applications
This guide defines best practices for interfacing with COM-based applications by
using XML Web services created using ASP.NET and the Microsoft .NET Frame-
work. For more information about this guide, including download information,
see Web Service Façade for Legacy Applications on MSDN (http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnpag/html/wsfacadelegacyapp.asp).

Chapter 1: The Presentation Layer 9

Summary
Presentation layer components provide the user interface that users use to interact
with the application. Presentation layer components also perform user interface
process management to orchestrate those interactions. All applications require a
presentation layer of some kind, and when designing a solution, you must consider
the architectural issues relating to the presentation layer of your particular application.

The rest of this guide reviews the architectural issues relating to presentation layer
development.

2
Using Design Patterns
in the Presentation Layer

In This Chapter
This chapter describes how to use presentation layer design patterns to solve com-
mon problems in the user interface. It also describes how to use the Microsoft User
Interface Process Application Block to implement user interface process components
in your application. The chapter includes the following sections:
● Benefits of Using Design Patterns
● Using Design Patterns for the Presentation Layer
● Implementing Design Patterns by Using the User Interface Process Application

Block

This chapter describes how to apply design patterns in the presentation layer. The
design patterns help you to improve the quality of your implementation code by
factoring and organizing components in your presentation layer. Additionally, the
design patterns help to increase developer productivity through component reuse
and to improve the maintainability of your code. The design patterns also help you
identify the components that are affected when making decisions about state man-
agement, data access, asynchronous programming, and other areas covered in later
chapters in this guide.

Design and Implementation Guidelines for Web Clients12

Benefits of Using Design Patterns
Most computing problems you will encounter in business applications have already
been confronted and solved by someone, somewhere. Design patterns and reusable
frameworks based on these solutions help you to overcome the complexity that
exists in large applications. The following is a brief summary of the benefits of
design patterns and reusable components:
● Design patterns – Design patterns provide access to proven methodologies for

solving general problems and the ability to use the collective knowledge and
experience of the IT community to improve the quality of your own applications.
You can use patterns to help you organize code in proven ways to solve well-
understood problems.
There are many proven design patterns that help you solve problems relevant to
the presentation layers. Choosing the correct patterns leads to more maintainable
code that separates unrelated tasks and functionality. Using these patterns leads
to better modularity, higher cohesion, and lower coupling in your application;
these are essential characteristics of well-designed systems. The design patterns
described in this chapter apply to both Windows Forms-based user interfaces and
ASP.NET Web pages.

● Reusable components – Reusable components encapsulate functionality that is
common across many applications and increase productivity when building your
own components following a certain set of design patterns.
The Microsoft User Interface Process Application Block is a reusable component
that helps you build user interfaces based on the Model-View-Controller (MVC)
and Application Controller patterns. This block simplifies navigation between
related pages or forms in the user interface, and it also lets you take a snapshot
of the current state in the application so the user can resume the application at
the same stage later. Additionally, the block enables you to get a clean separation
between the code that handles user interactions and renders the user interface
and the code that performs ancillary tasks; this approach allows you to use the
same programming model for Windows Forms applications, Web Forms applica-
tions, and mobile applications.

The following section describes how to use design patterns for the presentation
layer. Reusable components are covered later in this chapter.

Using Design Patterns for the Presentation Layer
The presentation layer provides a rich source of well-documented and well-
understood design patterns. The purpose of design patterns is to:
● Document simple mechanisms that work
● Provide a common vocabulary and taxonomy for developers and architects

Chapter 2: Using Design Patterns in the Presentation Layer 13

● Enable solutions to be described concisely as combinations of patterns
● Enable reuse of architecture, design, and implementation decisions

Appropriate use of patterns reduces the design and development effort required to
build your application. Additionally, the adoption of widely used patterns improves
maintainability and reduces the risk that an early design decision will have conse-
quences later in the development process or product lifecycle.

Poor design decisions in the presentation layer are particularly expensive and time
consuming to resolve. You are most likely to notice poor design decisions when:
● You have to support user interactions of increasing complexity, involving non-

trivial relationships between forms and pages in the user interface.
● Existing business processes change and you have to present new or modified

functionality to your users.
● You have to port your application to other platforms or make the application

accessible to additional client types (such as mobile devices).

By basing your design on frequently used patterns, you can avoid many of the
problems associated with these scenarios. The following sections describe the
patterns that are applicable in the presentation layer and provide recommendations
on when to use each design pattern.

Choosing Design Patterns
Use the following guidelines to help you select and use the appropriate design
patterns for your presentation layers:
● Read the following pattern descriptions, and then use Figure 2.1 to understand

the reasons for using each design pattern.
● Identify the patterns that address your particular requirements, and then study

the design-level and implementation-level descriptions for these patterns.
● Examine the sample implementation for the patterns that are relevant to your

requirements. A sample implementation is available for each pattern; it shows
how to apply the pattern for .NET Framework applications.

● Evaluate using the User Interface Process Application Block to assist you in
implementing the design patterns. For more information, see “Implementing
Design Patterns by Using the User Interface Process Application Block” later
in this chapter.

The appropriate use of patterns is not always straightforward; patterns provide
general-purpose solutions that apply to many different problems. Knowing where
to apply a particular pattern can be difficult, especially if the pattern description is
particularly abstract or your system requirements documentation is weak.

Design and Implementation Guidelines for Web Clients14

Ultimately, you will have first-hand experience to help you identify the patterns that
are most appropriate for your development team in a particular application scenario
and environment. To reduce risk, you are advised to read about as many patterns as
you can and experiment with their implementation in test scenarios before you use
them on a real project.

Frequently Used Presentation Layer Patterns
The guide Enterprise Solution Patterns: Using Microsoft .NET on MSDN (http://
msdn.microsoft.com/practices/type/Patterns/Enterprise/default.asp) describes how to use
patterns in the architecture, design, and implementation of .NET Framework appli-
cations. Chapter 3 of the guide focuses on presentation layer patterns and describes
patterns that are frequently used in presentation layer design.

The patterns that are most relevant to the presentation layer include:
● Observer
● Page Controller
● Front Controller
● Model-View-Controller (MVC)
● Application Controller

There are some important differences between Web applications and rich-client
applications that affect the relevance and suitability of these design patterns for each
kind of application. The following section outlines these differences and describes
how they influence your choice of design patterns for Web applications and rich-
client applications.

Differences in Patterns for Web Applications and Rich-Client Applications
Some patterns that are related to Web presentation seem to be less relevant in the
context of rich-client applications because of differences in the programming models
exposed to developers, and how state is managed. For example:
● Web applications receive HTTP requests that represent commands from the user.

Some of the patterns listed earlier, such as the Front Controller pattern, describe
how to direct, interpret, and execute these coarse-grained commands.
ASP.NET uses, and allows you to implement, the basic patterns for mapping
HTTP requests to events and functions in your page components.
The stateless nature of HTTP, and the fact that a Web application is shared across
many users, means you have to think about how and where state is managed
across requests. The Application Controller pattern describes how to get state
management in Web applications.

● Rich-client applications are generally built on platforms based on in-memory
message pumps, such as the message pump built into the Windows operating

Chapter 2: Using Design Patterns in the Presentation Layer 15

system. Messages typically represent low-level user interactions such as button
clicks and keyboard entry, and are much finer-grained than Web requests.
.NET Windows Forms encapsulates the underlying message–handling mecha-
nism, and maps Windows messages to ‘events’ on your form components. It is
also possible for business applications to intercept messages and treat them as
“business requests,” but this approach is uncommon and not recommended.
Rich-client applications are inherently stateful and typically involve interactions
with a single user. These two factors frequently mislead designers and developers
into treating state management as an afterthought. This can make it difficult to
share information between forms and users. The design patterns listed earlier
prescribe effective mechanisms for sharing state in rich-client applications.

Driving Factors for Choosing Patterns
Each of the patterns listed earlier in this chapter has its own particular strengths and
considerations for specific scenarios.

The main factor for choosing among these patterns is to identify how to apportion
responsibilities across the various classes and components in the presentation layer.
The risk of using a pattern too complicated for the application, team, and environ-
ment can be higher complexity and lower productivity.

Use Figure 2.1 on the next page to walk your way through the following descrip-
tions of patterns and determine applicability and effort required.

The following sections describe each of the patterns shown in Figure 2.1. The infor-
mation for each pattern is organized as follows:
● Problem – A brief description of the kind of problem that the pattern solves
● Solution – An explanation of how the pattern resolves the stated problem
● When to use the pattern – Specific scenarios where the pattern is typically applied
● Class diagram – A Unified Modeling Language (UML) class diagram that shows

the participating classes and interfaces for the pattern
● How to use this pattern – Step-by-step guidance on how to use the pattern
● References – Links to further information and samples

This information helps you decide when and how to apply the appropriate design
pattern in particular scenarios.

Design and Implementation Guidelines for Web Clients16

Start

Observer

Page Controller*

Model-View-
Controller

Application
Controller

Need to react to user
gestures.

Need to centralize some
control logic for related
requests.

(*) = Encapsulated by the Windows Forms implementation
(**) = Not very relevant in Windows Forms applications

Need to separate data rendering and
acquisition from controlling logic, and
isolate business layers from the
presentation layer

Need to manage control flow and state
management across multiple user interactions

Evaluate the UIP
Application Block
for implementation

Windows
Web

Front Controller**

Figure 2.1
Choosing patterns for the presentation layer in .NET Framework applications

Chapter 2: Using Design Patterns in the Presentation Layer 17

Using the Observer Pattern

The Observer pattern provides a mechanism for one object to notify other objects of
state changes without being dependent on those other objects.

Problem: You have a simple scenario where you want to react to user actions such as
mouse clicks and keyboard entry. In response to these actions, logic executes in your
application.

Solution: Use the ASP.NET code-behind class or Windows Forms events to react to
user actions and input, and process data accordingly.

When to use the pattern: Use the Observer pattern when you have simple user
interfaces where state is not shared across interactions, and where use cases do not
drive the flow of control across multiple pages or forms.

Class diagram: Figure 2.2 shows the classes and interfaces that participate in the
Observer pattern.

*
Iterates through
list of observers

Subject «interface»
Observer

+Update()

ConcreteOberverConcreteSubject

observers: Collection

+subscribe(Observer)
+unsubscribe(Observer)
+Notify()

Figure 2.2
The Observer pattern

� To use the Observer pattern to receive events from user interface components
1. Decide the user actions or UI events that you have to react to in your application.
2. Evaluate whether you want to use the event handlers provided by ASP.NET

pages or Windows Form controls (you typically get these by double-clicking the
control in the Microsoft Visual Studio® .NET development system) or add your
own handlers.

The following are recommendations for implementing the Observer pattern in the
.NET Framework presentation layer code:
● Use Visual Studio .NET support and default handlers as much as possible. For

example, to define event handlers in Microsoft Visual C# ® development tool
projects, use the Events list in the Properties window in Visual Studio .NET. To
define event handlers in Microsoft Visual Basic® .NET development system

Design and Implementation Guidelines for Web Clients18

projects, use the Class Name and Method Name list boxes at the top of the code
editor window.

● Use standard .NET Framework naming conventions for event handler method
names and for any custom delegates and events that you define yourself.

● Do not invoke event handlers from other event handler methods. This quickly
leads to unreadable code where it is unclear what triggers what.

● Do not link the default event handlers for specific events to events from other
controls or actions. Use your own event handler to make this aggregation clear.
For example, do not use the same event handler method to handle both the Click
and DoubleClick events for a Label control.

● Use the += syntax to register event handlers in Visual C# code. Use the Handles
controlname.EventName syntax at the end of event handler method signatures
in Visual Basic .NET.

References
● “Observer”:

http://msdn.microsoft.com/architecture/patterns/DesObserver/
● “Implementing the Observer pattern in .NET”:

http://msdn.microsoft.com/architecture/patterns/ImpObserverInNET/default.aspx

Using the Page Controller Pattern

The Page Controller pattern is a variation on the Model-View-Controller (MVC)
pattern (described later in this section). The Page Controller pattern is particularly
suitable in thin-client applications, where the view and controller are separated;
presentation occurs in a client browser, whereas the controller is part of the server-
side application.

Problem: You want to separate business layers from the presentation logic in a Web
application. You also want to structure the controller components in such a way that
you gain reuse and flexibility, while avoiding code duplication between the control-
ler component for each Web page.

Solution: Use a Page Controller component to accept input from the page request,
invoke the requested actions on the model, and determine the correct view to use for
the resulting page. The Page Controller enables you to separate the dispatching logic
from any view-related code.

When you create an ASP.NET Web application using Visual Studio .NET, a Page
Controller component is provided automatically for each Web page.

When to use the pattern: Use the Page Controller pattern in Web applications that
have simple user interfaces and navigational paths between pages. In these sce-
narios, the logic in the Page Controller component is simple, and you do not need
centralized navigation control or to share state across user interface components.

Chapter 2: Using Design Patterns in the Presentation Layer 19

Class diagram: Figure 2.3 shows the classes that participate in the Page Controller
pattern.

PageController

Model

DomainLogic

View

Generate HTML

- Handle HTTP request
- Update model and
 decide view

Figure 2.3
The Page Controller pattern

� To use the Page Controller pattern in your presentation layer
1. Identify the controller components that you require. This pattern helps mostly

with a one-to-one mapping between controller components and Web pages, so
typically there will be one controller component per page. Because each Web
page is handled by a specific controller, the controllers have to deal with only
a limited scope and can remain simple.

2. Evaluate whether you want to write controller code in the ASP.NET code-behind
class for the page or in a separate class. The drawback of a separate class is that
you will have to access ASP.NET context information by using the
HttpContext.Current property; this returns an HttpContext object that
encapsulates all HTTP-specific information about the current HTTP request.

// Get HTTP-specific information about the current HTTP request
HttpContext context = HttpContext.Current;

The following are recommendations for implementing the Page Controller pattern in
ASP.NET applications:
● By default, ASP.NET implements the Page Controller pattern for your applica-

tion. Every page you create with Visual Studio .NET automatically receives a
controller class. This is specified in the @ Page tag in the ASPX file.

<%@ Page language="c#"
 Codebehind="SimplePage.aspx.cs"
 AutoEventWireup="false"
 Inherits="SimplePage" %>

Design and Implementation Guidelines for Web Clients20

When the user navigates to a URL for an ASP.NET Web page, the Web server
analyzes the URL associated with the link and executes the associated ASP.NET
page. In effect, the ASP.NET page is the controller for the action taken by the user.
The ASP.NET page framework also provides code-behind classes to run controller
code. Code-behind classes provide better separation between the controller and
the view and also allow you to create a controller base class that incorporates
common functionality across all controllers.

● For information about sharing a controller across multiple pages, see Chapter 3,
“Building Maintainable Web Interfaces with ASP.NET,” in this guide.

References
● “Enterprise Solution Patterns: Page Controller”:

http://msdn.microsoft.com/practices/type/Patterns/Enterprise/DesPageController/
● “Enterprise Solution Patterns: Implementing Page Controller in ASP.NET”:

http://msdn.microsoft.com/practices/type/Patterns/Enterprise/ImpPageController/

Using the Front Controller Pattern

The Front Controller pattern is a variation of the Page Controller pattern. The Page
Controller pattern associates a separate controller class with each Web page. It is
suitable for simple Web applications where the navigation between Web pages is
straightforward. In contrast, the Front Controller pattern is applicable where the
page controller classes have complicated logic, are part of a deep inheritance hierar-
chy, or your application determines the navigation between pages dynamically
based on configurable rules.

Problem: You have to enforce consistency on how and where a user’s actions and
input are handled. You might also have to perform other tasks consistently in
several Web pages, such as data retrieval and security checks.

You can reach these goals by using the Page Controller pattern and writing the same
code in each code-behind page. However, this approach leads to code duplication in
the code-behind classes, and therefore leads to maintenance difficulties in your code.

Alternatively, you can use the Page Controller pattern and create a base class for
behavior shared among individual pages. However, this approach can result in
complex and inflexible inheritance hierarchies when the number of pages in your
application grows.

Solution: Have multiple requests channeled through a single controller class. The
controller class provides a centralized location for shared logic and also determines
how to transfer control to the appropriate view.

When to use this pattern: Use the Front Controller pattern in Web applications
where you want to enforce shared behavior across several pages, or where the flow
of control between Web pages is non-trivial.

Chapter 2: Using Design Patterns in the Presentation Layer 21

Class diagram: Figure 2.4 shows the classes and interfaces that participate in the
Front Controller pattern.

Client Handler

Concrete
Command 1

Concrete
Command 2

*

«interface»
 Command

+Execute() : void

Figure 2.4
The Front Controller pattern

� To use the Front Controller pattern in Web applications
1. Identify the commands that you want to handle in a similar fashion across

multiple pages. This similarity may be driven by the type of functional work
the request invokes, such as updating data in a database or running business
components. Alternatively, the similarity might be driven by the policies or
aspects associated with the work that will be completed, such as instrumentation,
auditing, or authorization.

2. Create a handler class that receives the HTTP Post or Get request from the Web
server and retrieves relevant parameters from the request. The handler class
uses these parameters to run the appropriate command to handle the request.
A common way of implementing this is by using an ASP.NET HttpHandler. A
code example of how to do this is provided in the “References” section later in
this section. The handler should be as efficient as possible and use external
resources only when absolutely necessary. You should also consider caching any
external resources to increase the handler’s performance.

The following are recommendations for implementing the Front Controller pattern
in ASP.NET pages:
● Use the Front Controller pattern to enforce similar behavior between Web pages

but do not try to force the whole application into a single front controller class
because this can lead to performance issues.

● If you use the Front Controller pattern to service user interface requests and
render the user interface back to the user, you might have to update the URL

Design and Implementation Guidelines for Web Clients22

through a redirect. Otherwise, the whole application might end up having a
single URL, and hyperlinks would not work.

● Carefully test performance of Front Controller implementations because a front
controller adds execution overhead to every request it serves.

References
● “Enterprise Solution Patterns: Front Controller”:

http://msdn.microsoft.com/practices/type/Patterns/Enterprise/DesFrontController/
● “Enterprise Solution Patterns: Implementing Front Controller in ASP.NET using

HttpHandler”:
http://msdn.microsoft.com/practices/type/Patterns/Enterprise/ImpFrontControllerInASP/

Using the Model-View-Controller (MVC) Pattern

The Model-View-Controller (MVC) pattern adds an intermediary to isolate your
user interface logic from your business layers.

Problem: You have to separate business layers from the presentation logic. You also
have to separate the logic that controls the state and behavior of the user interface
from the logic that renders and acquires data from the user.

Solution: Separate the user interface into controllers and views. Use an intermediary
to access appropriate business model elements the views require.

When to use the pattern: Use the Model-View-Controller pattern in applications
with complex user interfaces that may display or acquire the same data in different
ways in different views. This pattern is also appropriate in applications where strict
separation of user interface layers and business layers is required.

Class diagram: Figure 2.5 shows the classes that participate in the MVC pattern.

Model

Controller

View

Figure 2.5
The Model-View-Controller(MVC) pattern

Chapter 2: Using Design Patterns in the Presentation Layer 23

� To use the MVC pattern in your presentation layer
1. Identify the components that represent the model. Typically, this is a combination

of business entities, business components, data access logic components, and
service agents. For information about how to identify the components that apply
to your requirements, see Chapter 4, “Managing Data,” in this guide.

2. Create the views you have to implement as user interface components, such as
Windows Forms, ASP.NET pages, and controls. If you are not using the User
Interface Process Application Block, you have to create and hold a reference to
the controller object from the view object.

3. Define a controller class and implement methods that the view can call when
requesting data or starting an action. These methods will access the model
components identified in Step 1.

The following are recommendations for implementing the MVC pattern in Windows
Forms and ASP.NET applications:
● Evaluate using the User Interface Process Application Block for your require-

ments. This block provides a template implementation of the MVC pattern for
.NET Framework applications.

● Restrict the view to read-only access to data in the model. If any changes are
required in the data, these changes should be performed by the controller instead
of by the view. This constraint simplifies application logic by reducing direct
coupling between the model and the view.

● Raise model-related events to signify important state changes. This is particularly
appropriate in Windows Forms-based applications, where multiple views display
data from the same model; the model-related events enable the views to update
the data that appears to the user. By raising events in the model, instead of calling
methods directly on the views, you preserve the low coupling between the model
and the views.

● Implement controllers in a platform-agnostic manner to increase the portability of
the controllers regardless of the kinds of views that interact with them. For
example, avoid writing ASP.NET-specific or Windows Forms-specific code in the
controller class.

● Unit-test the controller classes. Controllers can be easily unit tested, because they
expose programmatic functionality instead of providing a user interface.

References
● “Enterprise Solution Patterns: Model-View-Controller”:

http://msdn.microsoft.com/practices/type/Patterns/Enterprise/DesMVC/
● “Enterprise Solution Patterns: Implementing Model-View-Controller in

ASP.NET”:
http://msdn.microsoft.com/practices/type/Patterns/Enterprise/ImpMVCinASP/

Design and Implementation Guidelines for Web Clients24

Using the Application Controller Pattern

The Application Controller pattern manages multiple user interactions by enforcing
control flow, providing state management capabilities, and relating views to specific
controller classes.

Problem: You have to enforce the flow of control between different views and gain
state management across these views.

You can reach these goals by embedding code in the controller and view classes, but
this would make it difficult to change navigation and add additional controllers and
views in the future.

Solution: Create a separate Application Controller class to control flow through
controller logic and views.

When to use the pattern: Use the Application Controller pattern in applications
with deterministic flow between views.

Class diagram: Figure 2.6 shows the classes and interfaces that participate in the
Application Controller pattern.

View

Controller Application
Controller

Model

Figure 2.6
The Application Controller pattern

� To use the Application Controller pattern in your presentation layer
1. Identify a distinct use case in your application. The use case defines a set of

related user activities to fulfil a particular task. Identify the views that participate
in the user case and the controllers that are required for the interaction.

2. If you are using the User Interface Process Application Block, configure a
navigation graph for each use case; a navigation graph defines the flow between
views in the use case. For more information about navigation graphs, see the
procedure “To configure the User Interface Process Application Block” later in
this chapter.

Chapter 2: Using Design Patterns in the Presentation Layer 25

The following are recommendations for implementing the Application Controller
pattern in ASP.NET applications:
● Use the User Interface Process Application Block to implement this pattern in

your application. Application Controller functionality is not simple to design or
write, especially if you require portability across platforms, if you have to sup-
port multiple view types, or if you require state management across the views.

● If you cannot use the User Interface Process Application Block directly in your
application, review the documentation and samples that accompany the block;
base your design and implementation on the block, where possible.

References
● Application Controller pattern:

Patterns of Enterprise Applications, Fowler, 2003. ISBN 0321127420
● “User Interface Process Application Block Overview”:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/uip.asp

Implementing Design Patterns by Using the User Interface
Process Application Block

After you choose the appropriate design patterns for the presentation layer in your
application, the next step is to implement the patterns in code.

The .NET Framework, especially ASP.NET and Windows Forms, provide
programming models that implicitly support all the patterns described earlier,
except for the Model-View-Controller (MVC) and Application Controller patterns.
If you want to use either of these patterns, use the Microsoft User Interface Process
Application Block to help you implement these patterns in your application.

The primary goal of most design patterns in the presentation layer is to get a clean
separation between the code that renders the user interface and accepts user
interactions, and the code that deals with background tasks such as view navigation
and state management. Design patterns reinforce the following good practices:
● Do not implement user interface navigation and workflow as part of the user

interface views. Otherwise, code becomes complex and difficult to maintain and
extend; each piece of user interface code is tightly linked to the steps before and
after it, so a small business process change might result in major re-development
and re-testing.

● Do not manipulate application and session state directly in the view. Otherwise,
code becomes unwieldy because each view is responsible for handing off state to
the next step in the application workflow.

Design and Implementation Guidelines for Web Clients26

To avoid the preceding problems, you should separate your presentation layer into
user interface components and user interface process components. User interface
components and user interface process components perform distinct tasks:
● User interface components provide the forms and controls that the user interacts

with.
● User interface process components synchronize and orchestrate the user interac-

tion with the application, to provide the navigation and workflow required to
support the business processes.

For a more detailed discussion of the context of user interface components and user
interface process components, see Application Architecture for .NET: Designing Applica-
tions and Services on MSDN (http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnbda/html/distapp.asp).

The User Interface Process Application Block is a flexible, general-purpose, reusable
component that you can use in your applications to implement user processes. The
block enables you to write complex user interface navigation and workflow pro-
cesses that you can reuse and that are easy to extend as your application evolves.
This section includes the following topics:
● Design of the User Interface Process Application Block
● Benefits of Using the User Interface Process Application Block
● Building Applications with the User Interface Process Application Block

The User Interface Process Application Block download includes comprehensive
documentation on how the block is designed and how to use the block in your
applications. The download also includes a sample “shopping cart” ASP.NET Web
application that illustrates how to use the block to simplify navigational flow and
state management in the presentation layer.

Design of the User Interface Process Application Block
The User Interface Process Application Block helps you build applications based
on the Model-View-Controller (MVC) pattern, to get a strict separation between the
code that renders the user interface and responds to user interactions, and the code
that implements the underlying business logic. The block also implements the
Application Controller pattern because it handles control flow and state manage-
ment between views.

The User Interface Process Application Block has been designed with reusability
and extension in mind, to enable you to create controllers that can be used across
multiple view types including Windows Forms and ASP.NET applications.

Figure 2.7 shows the major components in the User Interface Process Application
Block.

Chapter 2: Using Design Patterns in the Presentation Layer 27

ASP.NET Pages or Windows Forms belonging to a use case

Your ASP.NET Pages Your Windows Forms

WinFormViewWebFormView

Business
Components

DALC

ControllerBase

YourController
Class with Logic

Application XML
Configuration File

UIP Manager

State
Persistence
Provider

UIP Configuration

View
Manager

- Windows Forms
- Web Pages

Persistence Providers:
- SQL Server
- Encrypted SQL Server
- Memory
- ASP.NET Session
- Custom

Your State Type
(Optional)

State

Figure 2.7
Components in the User Interface Process Application Block

The components in the User Interface Process Application Block perform the follow-
ing tasks:
● UIPManager –Manages the user interface process. Dispenses controllers to views,

generates new views, coordinates tasks, and provides workflow-based
navigation.

● ControllerBase – Abstract base class, equivalent to the controller class in the MVC
pattern. Its primary purpose is to control the navigation between views, and to
act as a façade between the user interface layer and the business layer.

Design and Implementation Guidelines for Web Clients28

● State – Class that represents the state shared across steps in a task. Implements
a dictionary-like interface to hold state values. You can inherit from this class to
share strong-typed state objects across controllers in a task.

● SqlServerStatePersistence, SecureSqlServerStatePersistence,
MemoryStatePersistence, and SessionStatePersistence – These plug-ins manage
storing and loading state from multiple places.

● WinFormView – Base class for a form in a Windows Forms application. You
inherit from this class when developing your Windows forms.

● WinFormViewManager – Plug-in that the UIPManager uses to transition the user
between Windows forms.

● WebFormView – Base class for a form in an ASP.NET Web application. You inherit
from this class when developing your Web forms.

● WebFormViewManager – Plug-in that the UIPManager uses to transition the user
between Web forms.

The User Interface Process Application Block exposes degrees of freedom in its
implementation. There are many ways to extend it, but the common ones are:
● State type – You can create strongly-typed state types, by inheriting from the State

class.
● State location – You can store shared state in different places, by implementing

the IStatePersistence interface. You can write methods to store data held in a
State object to a durable medium and to retrieve that state when reconstructing
a State object.

● Views – You can assign custom controllers for many component types by
implementing the IView interface.

● View transition – You can handle different styles of visual transition across views
by implementing the IViewManager interface.

For more information about how to use and customize the block, search for the
topics “Customizing State Management” and “Customizing Views and View
Management” in the documentation provided with the block.

Benefits of Using the User Interface Process Application Block
The User Interface Process Application Block helps you to:
● Abstract the workflow and navigation from the user interface layer
● Abstract state management from the user interface layer
● Use the same user interface programming model for different types of applica-

tions, including Windows-based applications, Web applications, and device
applications

Chapter 2: Using Design Patterns in the Presentation Layer 29

● Introduce the concept of a task: a snapshot of an interaction in a use case that can
be persisted

Each of these points is described more fully in the following sections. For an ex-
ample of how to use the block, see “Building Applications with the User Interface
Process Application Block” later in this chapter.

Separating Workflow from the User Interface
Workflow is a decision process that results in flowing control, either between Web
pages, Windows Forms, or mobile phone screens. These decisions generally depend
on the result of tasks performed by back-end systems. For example, some possible
actions resulting from trying to authorize a customer’s credit card are:
● Ask the customer to use another card because the authorization failed.
● Show the customer the “Thank You” page and ask them if they want to continue

to shop.

If a developer writes all the decision-making code and page-redirection logic in
the user interface component (for example, in an ASP.NET code-behind class), the
developer creates a brittle system. By allowing user interface components to know
about each other, they are inextricably linked. In a 10-page application, this is not a
huge liability. However, in a 500-page application, this can become a major problem
that makes your application difficult to maintain and extend.

The User Interface Process Application Block helps you separate workflow from
your user interface component in the following ways:
● The block uses navigation graphs — expressed as XML documents — to define

reusable workflow definitions. The navigation graphs and other configuration
settings dictate how the workflow proceeds.

● The block delegates all workflow responsibilities to two components: your
controller class and the standard UIPManager class. The controller and the
UIPManager cooperate as follows, to control the application workflow:
● The controller decides the next step in the workflow based on business logic

such as whether the customer credit card was authorized satisfactorily.
● The UIPManager uses the results provided by the controller to determine the

appropriate view to present the next step in the workflow to the user.

By abstracting workflow in this way, the block enables you to create extremely
flexible presentation layers. Flexible presentation layers include views that are
independent of each other, business logic that is centralized and reusable, and
multiple output modalities that can share most of the same code except the actual
user interface elements themselves.

Design and Implementation Guidelines for Web Clients30

Enhancing Portability
Many applications provide multiple user interfaces to support different client types.
For example, an e-commerce application might offer a Web-based user interface to
customers and a Windows-based user interfaces to administrative, sales, and sup-
port staff. Additionally, as applications evolve, you frequently have to add support
for additional client types, such as Personal Digital Assistants (PDAs) and mobile
phones.

Although you can make each user interface share common appearance and usage
models, their implementation and delivery mechanisms differ significantly. How-
ever, despite the user interface differences, the business processes used by the
consumers of the application are frequently common across all clients. The solution
is to define a user interface process component, as shown in Figure 2.8.

User Process

ShowProducts()
{
}

ShowProducts()
{
}

Categories

Products

Figure 2.8
Supporting multiple user interfaces

The User Interface Process Application Block helps you build more portable applica-
tions in the following ways:
● The block abstracts state management, allowing both Windows-based and Web

applications to use the same state management mechanisms. When you migrate
an application, you do not have to rework your state management mechanisms.

● The block encourages views to never hold state, except state that might be
directly involved in generating the user interface elements themselves.

Chapter 2: Using Design Patterns in the Presentation Layer 31

● The block manages state communication between views by centralizing state in
a single entity.

● The block delegates all business-logic and workflow control to the controller and
UIPManager.

The block encapsulates all issues that are not directly related to rendering the user
interface and intercepting user actions; these tasks are performed by the user inter-
face components. If you have to migrate your application to a new platform, for
example migrating a Windows Forms-based application to a Web application, all
you have to re-implement is the user interface components; the code in the user
interface process components can be reused without modification.

Abstracting State Management from the User Interface
In classic applications, state is frequently stored directly in the user interface compo-
nent. This results in complex code to store, access, and manipulate that state. It also
means that the state is dependent on the user interface type; this makes it difficult to
transfer code between application types.

The following problems typically occur if you store state in the user interface
component:
● In Windows Forms applications, a form might have many member variables that

hold state during a user interaction with that form. In most non-trivial scenarios,
you have to access the state from other forms in the application. Developers have
to write a great deal of extraneous code to capture and transfer that state, using
one or all of the following techniques:
● Externalize the state to a structure or stateful class
● Use member variables in the business classes underlying the user interface

● In Web applications, passing state between views is especially chaotic. For
example:
● Query strings produce dependencies between views. Both views must know

the name of the passed item, and the underlying type of the information.
● Hidden form fields introduce the same problem as query strings.
● Cookies experience the same problem as query strings and hidden form fields;

additionally, they are unreliable because some users completely deny cookies.
● The Session, Application, and Cache types in the .NET Framework class

library offer better type-preservation, but they also intimately tie the user
interface to ASP.NET.

The User Interface Process Application Block simplifies state management by:
● Allowing long-running user interaction state to be easily persisted, so that a user

interaction can be abandoned and resumed, possibly even using a different user
interface. For example, a customer can add some items to a shopping cart using

Design and Implementation Guidelines for Web Clients32

the Web-based user interface, and then call a sales representative later to
complete the order.

● Centralizing user process state, making it easier to achieve consistency in user
interfaces with multiple related elements or windows. Centralized user process
state also makes it easier to allow users to perform multiple activities at the same
time.

● Abstracting state location and lifetime, to enhance the robustness of the user
interface component; views know where to find state, but they do not have to
know where state is stored or how it is passed to other views.

● Providing the IStatePersistence interface for persisting State objects. The flexibil-
ity offered by separating persistence behavior from the State data means that
developers are free to optimize persistence without affecting the consumers of
State objects.

The preceding benefits illustrate how the User Interface Process Application Block
can simplify the development of presentation layers that require user interface
process functionality.

Building Applications with the User Interface Process Application
Block
There are two steps to building applications with the User Interface Process
Application Block:
● Gather requirements for your application. The first step in this task is to separate

the application into distinct use cases. For each use case, you must define the
workflow and state management requirements.

● Implement views and controller classes as required and write a configuration
file to configure the User Interface Process Application Block for use in your
application.

Gathering Requirements
The following steps help you identify the requirements for your application, and
they help you decide how to use the User Interface Process Application Block to
assist you in implementation:
1. Separate the application into use cases.
2. Design the navigation graph for each use case.
3. Verify the existing functionality in the User Interface Process Application Block

satisfies your requirements.
4. Determine state persistence for each task.
5. Design the controller classes.
6. Design the views.

Chapter 2: Using Design Patterns in the Presentation Layer 33

The following sections describe each of these steps.

Separate the Application into Use Cases

Applications are typically composed of many use cases. For example, an online
retailing application might have use cases to purchase items, add stock to the inven-
tory, and remove low-selling stock from the inventory.

Each use case involves a particular sequence of interactions with the user. Separating
use cases correctly gives you better reusability, because your use cases will be
encapsulated and you will almost be able to call them as a function.

Design the Navigation Graph for Each Use Case

Decide the control flow that each use case requires and draw a navigational graph
that depicts the use case as a visual flow between views.

For example, Figure 2.9 shows a navigation graph for the
UIProcessQuickstarts_Store sample application in the User Interface Process
Application Block download.

browsecatalog

error
congrats

cart checkout

failaddItem

resume

fail

resume

checkout

resume

passCheckout

failCheckout

Figure 2.9
Sample navigation graph

The navigation graph in Figure 2.9 identifies logical views in the application, such as
“browsecatalog” and “cart.” The navigation graph also defines the navigational
steps that cause a transition from one view to another. For example, the “addItem”
navigational step causes a transition from the “browsecatalog” view to the “cart”
view, and the “resume” navigational step causes a transition back again.

Design and Implementation Guidelines for Web Clients34

Verify that the Existing Functionality in the User Interface Process Application Block Satisfies
your Requirements

The User Interface Process Application Block includes common implementations for
state persistence, state type, views, and view managers. Review your requirements
to evaluate whether the block provides sufficient functionality in the following
areas:
● State location (the block provides built-in support for storing state data in SQL

Server, secure SQL Server, session, and memory)
● State type (by default, the block uses loose-typed dictionary-like state storage)
● View management (the block provides built-in support for Windows Forms

navigation and Web forms navigation)

For more information about how to customize these aspects of behavior in the block,
see the User Interface Process Application Block documentation.

Determine State Persistence for Each Task

In the terminology used in the User Interface Process Application Block documenta-
tion, a task is a running instance of a process. For example, a user can start a task for
an “Add Payment Method” process. A task encapsulates all conversation state
between the application and the user.

Each use case might have a different lifetime for its tasks. For example, you may
want the user to be able to resume a task he or she started earlier in a different Web
session or after closing a Windows application. You also have to determine whether
the task can be associated with only a single user (for example, a checkout in a retail
site) or multiple users (for example, a support call being transferred across members
of a helpdesk team).

Table 2.1 describes the attributes of the four state persistence providers available in
the User Interface Process Application Block. Use this table to help you decide the
state persistence provider that best suits your requirements.

Table 2.1: Attributes of State Persistence Providers

State Provider Flexibility in Ability for task Supported for Supported for
Provider assigning a to span session Windows-based Web applications

task to different or application applications
users lifetime

SQL Server ✓ ✓ ✓ ✓

Secure SQL Server ✓ ✓ ✓ ✓

Session ✓

Memory ✓

Chapter 2: Using Design Patterns in the Presentation Layer 35

Design the Controller Classes

The User Interface Process Application Block defines a reusable class named
ControllerBase; this acts as the base class for your application-specific controller
classes.

In your controller classes, you must write properties and methods that interact with
the business layers to retrieve data, update data, and perform business-related
processing. Declare some of these properties and methods public; this enables views
to render data or pass updated data to the controller when necessary. Do not allow
views to modify state directly, because this violates the MVC principle of separation
between the model and the view.

For example, the UIProcessQuickstarts_Store sample application defines a
StoreController class that has methods such as IsUserValid, AddToCart, and
CheckoutOrder.

Design the Views

The final step is to design the views for your application. Typically, you implement
each view as a Windows form or an ASP.NET Web form. Each view is responsible
for displaying a particular user interface, retrieving data from a controller and
rendering it on the form, and invoking other methods on the controller to instigate
business-related processing.

Building Components
After you gather the requirements, implement the views and controllers that make
up the use case and configure the User Interface Process Application Block to tie
them together.

The first step is to add a reference to the block in your application.

� To reference the User Interface Process Application Block
1. Open Visual Studio .NET, and create a Windows-based application or ASP.NET

Web application, as appropriate.
2. In Solution Explorer, right-click your project, and then add a reference to the

Microsoft.ApplicationBlocks.UIProcess.dll assembly. The location of this
assembly depends on how you installed it.
● If you installed the assembly in the global assembly cache, you can reference

the assembly from this location.
● Otherwise, you must reference the assembly from its installation folder, such

as C:\Program Files\Microsoft Application Blocks for .NET\User Interface
Process\Code\CS\Microsoft.ApplicationBlocks.UIProcess\bin\Debug.

Design and Implementation Guidelines for Web Clients36

3. In each source file that uses classes from the block, add a using statement to
reference the Microsoft.ApplicationBlocks.UIProcess namespace. All User
Interface Process Application Block types are located in this namespace.

using Microsoft.ApplicationBlocks.UIProcess;

� To create a view
1. If you are building a Windows-based application, view the source code for the

Windows form class. In the form class definition, remove the base class
System.Windows.Forms.Form and replace it with the WinFormView base class.

public class MyWindowsForm : WinFormView

If you are building an ASP.NET Web application, view the source code for the
Web form class. In the form class definition, remove the base class
System.Web.UI.Page and replace it with WebFormView.

public class MyWebForm : WebFormView

2. Create a private property “getter” to return a reference to the controller object for
your application.
Use the static Controller property, defined in the WinFormView or
WebFormView base class, to access the controller object. Cast the controller
object into the actual type of the controller class for your application.

private StoreController StoreController
{
 get{ return (StoreController)this.Controller; }
}

3. Add code to your view class to perform tasks such as retrieving data from the
database, saving data to the database, and moving on to the next form in the
process. These tasks are implemented by methods in the controller class; to
instigate these tasks from the view, invoke the appropriate methods on this
controller object.
The following example invokes a method named AddToCart on the controller to
add a quantity of a particular product to the user’s shopping cart.

StoreController.AddToCart(productID, quantity);

4. Add code to your view class to retrieve state information from the controller
object when required. The controller object has a public State property that
enables you to get and set named items of state, and it facilitates state
management for both Windows-based and Web applications.

Chapter 2: Using Design Patterns in the Presentation Layer 37

The following example gets the value of a state item named
CustomerNameState.

customerNameLbl.Text = StoreController.State["CustomerNameState"].ToString();

The controller object encapsulates all implementation details about state manage-
ment. The code in your view class is unconcerned about where the state comes
from or where it is stored.

� To create a controller class
1. Create a new class using Visual Studio .NET.
2. Make this class inherit from ControllerBase.

public class StoreController : ControllerBase
{
 // ...
}

3. Add a constructor that takes a State parameter and calls the corresponding
constructor in the base class.

public class StoreController : ControllerBase
{
 public StoreController(State controllerState)
 : base(controllerState){}
 //...
}

4. Write helper properties in your controller class to help state management.
In the following example, the Cart property gets and sets a state item named
CartState; it is a hash table containing the user’s shopping cart.

private Hashtable Cart
{
 get
 {
 Hashtable cart = (Hashtable)State["CartState"];
 if (cart == null)
 {
 cart = new Hashtable();
 State["CartState"] = cart;
 }
 return cart;
 }
 set
 {
 State["CartState"] = value;
 }
}

Design and Implementation Guidelines for Web Clients38

5. Write public methods in your controller class to provide controlled access to state
items.
In the following example, the AddToCart method adds a quantity of a particular
product to the user’s shopping cart.

public void AddToCart(int productID, int quantity)
{
 if (Cart.Contains(productID))
 {
 // Product ID is already in cart, so just increment quantity
 int existingQuantity = (int)Cart[productID];
 Cart[productID] = existingQuantity + quantity;
 }
 else
 {
 // Product ID is not in cart, so insert it
 Cart[productID] = quantity;
 }
}

6. Write public methods in your controller class to change the current step in the
user interface process. To change the current step, set the NavigateState property
on the State object and call the Navigate method. The UIPManager checks its
configuration to determine the view that is expected to show on that outcome,
and then it uses the ViewManager of the current NavigationGraph to transition
to that view.
The following methods show how to stop and resume the current shopping task.

public void StopShopping()
{
 // Proceed to next view
 State.NavigateValue = "stop";
 Navigate();
}

public void ResumeShopping()
{
 // Proceed to next view
 State.NavigateValue = "resume";
 Navigate();
}

The following method shows how to complete checkout. The method validates
the user’s credit card details, and then it proceeds to the “failCheckout” or
“successCheckout” navigation step accordingly.

public void CompleteCheckout(string name, string addr, string ccnum)
{
 if (… some credit card validation code …)

Chapter 2: Using Design Patterns in the Presentation Layer 39

 {
 State.NavigateValue = "failCheckout";
 }
 else
 {
 State.NavigateValue = "successCheckout";
 }
 Navigate();
}

In each of these examples, notice that the controller code does not contain any
hard-coded links to specific views. Instead, the association between navigation
steps and views is specified declaratively in the navigation graph. Therefore, the
controller class has no direct dependencies on the view classes or on the sequence
of views in each use case.

� To configure the User Interface Process Application Block

This section describes how to configure the User Interface Process Application Block
to define the flow of control between views, and to specify state management
information in your application.

For complete information about how to configure the block, search for “Creating the
Configuration File” in the documentation provided with the block.
1. Open the configuration file for your application:

● For ASP.NET Web applications, the configuration file is Web.config in your
ASP.NET project.

● For Windows Forms applications, create a configuration file named
ApplicationName.exe.config in the same folder as your application executable
file The configuration file must have a root element named <configuration>.

2. In the configuration file, define a new configuration section in the
<configSections> element as follows.

<configuration>
 …
 <configSections>
 <section name="uipConfiguration"
 type="Microsoft.ApplicationBlocks.UIProcess.UIPConfigHandler,
 Microsoft.ApplicationBlocks.UIProcess" />
 </configSections>
 …
</configuration>

3. Create a new configuration section named <uipConfiguration>. This is used to
define the classes to be used by the application for view management, state
management, and controllers; the views available to the user; and the navigation
graphs that define the workflow path through those views.

Design and Implementation Guidelines for Web Clients40

The structure of the <uipConfiguration> section is defined in the
UIPConfigSchema.xsd XML Schema document, which is included in the block.
This schema specifies which elements and attributes are required and which are
optional, how many times each may occur, and in what order they must appear.
If your <uipConfiguration> section does not adhere to the schema, an exception
will occur at run time.

<configuration>
 …
 <uipConfiguration enableStateCache="true">
 <objectTypes>
 … identify the relevant classes in the application …
 </objectTypes>
 <views>
 … identify the views available to the user …
 </views>
 <navigationGraph>
 … define the navigation graphs …
 </navigationGraph>
 </uipConfiguration>
 …
</configuration>

4. Specify the details in the <objectTypes> element to identify the relevant classes
in your application. You must provide the following information for
<objectTypes>.

<objectTypes>

 <iViewManager
 name="name of view manager class"
 type="type of view manager class"/>

 <state
 name="name of state management class"
 type="type of state management class"/>

 <controller
 name="name of controller class"
 type="type of controller class"/>

 <statePersistenceProvider
 name="name of state persistence provider class"
 type="type of state persistence provider class"
 connectionString="connection string to data source for state management"/>

</objectTypes>

Chapter 2: Using Design Patterns in the Presentation Layer 41

The following example shows the <objectTypes> element in the configuration
file for the UIProcessQuickstarts_Store sample application in the User Interface
Process Application Block download.

<objectTypes>

 <iViewManager
 name="WebFormViewManager"
 type="Microsoft.ApplicationBlocks.UIProcess.WebFormViewManager,
 Microsoft.ApplicationBlocks.UIProcess, Version=1.0.1.0,
 Culture=neutral, PublicKeyToken=null"/>

 <state
 name="State"
 type="Microsoft.ApplicationBlocks.UIProcess.State,
 Microsoft.ApplicationBlocks.UIProcess, Version=1.0.1.0,
 Culture=neutral, PublicKeyToken=null"/>

 <controller
 name="StoreController"
 type="UIProcessQuickstarts_Store.StoreController,
 UIProcessQuickstarts_Store.Common, Version=1.0.1.0,
 Culture=neutral, PublicKeyToken=null" />

 <controller
 name="SurveyController"
 type="UIProcessQuickstarts_Store.SurveyController,
 UIProcessQuickstarts_Store.Common, Version=1.0.1.0,
 Culture=neutral, PublicKeyToken=null" />

 <statePersistenceProvider
 name="SqlServerPersistState"
 type="Microsoft.ApplicationBlocks.UIProcess.SqlServerPersistState,
 Microsoft.ApplicationBlocks.UIProcess, Version=1.0.1.0,
 Culture=neutral, PublicKeyToken=null"
 connectionString="Data Source=localhost;Initial Catalog=UIPState;
 user id=UIP;password=U1Pr0c3ss"/>

</objectTypes>

5. Specify the details in the <views> element to identify the views available in your
application. You must provide the following information for <views>.

<views>

 <view
 name="logical name of view"
 type="ASP.NET file for view"
 controller="name of controller class for this view"/>

 … plus additional <view> elements, for the other views in the application …

</views>

Design and Implementation Guidelines for Web Clients42

The following example shows the <views> element in the configuration file for
the UIProcessQuickstarts_Store sample application in the User Interface Process
Application Block download.

<views>

 <view
 name="cart"
 type="cart.aspx"
 controller="StoreController" />

 <view
 name="browsecatalog"
 type="browsecatalog.aspx"
 controller="StoreController" />

 <view
 name="error"
 type="uipError.aspx"
 controller=»StoreController» />

 <view
 name="congratulations"
 type="congratulations.aspx"
 controller="StoreController" />

 <view
 name="checkout"
 type="checkout.aspx"
 controller="StoreController" />

 <view
 name="survey"
 type="survey.aspx"
 controller="SurveyController" />

</views>

6. Specify the details in the <navigationGraph> element, as follows:
● <navigationGraph> has attributes that specify the name of the process, the

starting view, the ViewManager type, the shared state type, and the state
persistence provider for this process.

● <navigationGraph> also has <node> elements that identify the nodes in the
navigation graph.

The structure of the <navigationGraph> is as follows.

<navigationGraph
 name="name of this navigation graph"
 startView="logical name of first view in this navigation graph"
 iViewManager="name of the view manager"

Chapter 2: Using Design Patterns in the Presentation Layer 43

 state="name of the state type"
 statePersist="name of the state persistence mechanism">

 <node view="name of view'>
 <navigateTo navigateValue="navigation step"
 view="view to navigate to, for this value of navigateValue"/>
 … plus additional <navigateTo> elements, for other navigational steps …
 </node>

 … plus additional <node> elements, for other views …

</navigationGraph>

The following example shows the navigation graph for the
UIProcessQuickstarts_Store sample application provided in the User Interface
Process Application Block download.

<navigationGraph
 iViewManager="WinFormViewManager"
 name="Shopping"
 state="State"
 statePersist="SqlServerPersistState"
 startView="cart">

 <node view="cart">
 <navigateTo navigateValue="resume" view="browsecatalog" />
 <navigateTo navigateValue="checkout" view="checkout" />
 <navigateTo navigateValue="fail" view="error" />
 <navigateTo navigateValue="stop" view="cart" />
 </node>
 <node view="browsecatalog">
 <navigateTo navigateValue="addItem" view="cart" />
 <navigateTo navigateValue="fail" view="error" />
 </node>
 <node view="error">
 <navigateTo navigateValue="resume" view="cart" />
 </node>
 <node view="checkout">
 <navigateTo navigateValue="successCheckout" view="congratulations" />
 <navigateTo navigateValue="failCheckout" view="checkout" />
 </node>
 <node view="congratulations">
 <navigateTo navigateValue="resume" view="cart" />
 </node>

</navigationGraph>

The navigation graph configuration maps closely to the flow of control identified
in the requirements and it clearly exposes the major options for user interface
process design.

Design and Implementation Guidelines for Web Clients44

Summary
This chapter described how to use design patterns to solve common problems in the
presentation layer. The .NET Framework provides built-in support for most of these
patterns in Windows Forms applications and ASP.NET Web applications. Addition-
ally, the Microsoft User Interface Process Application Block provides support for the
Model-View-Controller and Application Controller patterns to enable you to
decouple user interface code from user interface process code. You can use this block
as a starting point in your own applications to help you implement best practice
presentation layer solutions.

3
Building Maintainable
Web Interfaces with ASP.NET

In This Chapter
This chapter describes how to create reusable and maintainable Web interfaces with
ASP.NET. The chapter includes the following sections:
● Creating New Web Server Controls
● Defining Common Page Layouts

These techniques can simplify ASP.NET Web application development and can help
you get consistency across the various pages in your Web application.

Creating New Web Server Controls
ASP.NET provides a wide range of controls that you can use to build your Web
applications. However, situations might occur that require you to use specialized
controls or to share specific behavior across multiple controls. ASP.NET supports
the following two mechanisms for creating new Web server controls:
● Web user controls
● Web custom controls

Web user controls are generally more suitable for static layout, and Web custom
controls are more suitable for dynamic layout. The following sections describe how
to create and use Web user controls and Web custom controls; they also provide
recommendations on when to use each approach.

Design and Implementation Guidelines for Web Clients46

Creating and Using Web User Controls
This section includes the following topics:
● Overview of Web User Controls
● Usage Scenarios for Web User Controls
● Creating Web User Controls
● Adding Web User Controls to an ASP.NET Web Page
● Defining Shared Code-Behind Files for Web User Controls

This section provides guidance on how and where to use Web user controls and
includes code samples to illustrate key points.

Overview of Web User Controls
A Web user control is a collection of related controls and associated code; it
provides a reusable unit that you can add to any ASP.NET Web pages that require
this functionality.

In implementation terms, Web user controls are similar to ASPX pages except for the
following differences:
● Web user controls have an .ascx file name extension instead of .aspx. The .ascx file

name extension prevents attempts to execute the Web user control as if it were a
standalone ASP.NET Web page.

● Web user controls do not have elements such as <html>, <head> or <body>.
These elements are provided by the ASPX Web page that hosts the Web user
control.

● Web user controls can have code-behind files, just like regular ASP.NET Web
pages. The class in the code-behind file for a Web user control must inherit from
System.Web.UI.UserControl, whereas ASP.NET Web pages inherit from
System.Web.UI.Page.

To use a Web user control in an ASP.NET Web page, you must add the .ascx file and
its code-behind file to the project. In other words, Web user controls are reused at the
source-code level instead of being compiled into reusable assembly files.

When you add a Web user control to an ASP.NET page, the Web user control appears
as a placeholder glyph on the page. The constituent controls that make up the Web
user control do not appear individually; this means you cannot set their properties
directly in the Properties window.

Usage Scenarios for Web User Controls
Web user controls are useful in the following scenarios:
● You have a collection of related controls that you want to use in several ASP.NET

Web pages. You can use the rapid control development features of the Visual

Chapter 3: Building Maintainable Web Interfaces with ASP.NET 47

Studio .NET Designer to design a Web user control that groups these related
controls together.

● You want to partition an ASP.NET Web page into separate sections so you can
define different caching strategies for some parts of the page. For example, if part
of the Web page requires you to perform time-consuming database operations,
you might want to cache that part of the Web page for a relatively long period of
time to improve performance. Web user controls give you the ability to partition
Web pages in this fashion, by including an @ OutputCache directive in the .ascx
file as shown in the following example.

<%@ OutputCache Duration="120" VaryByParam="None" %>

● You do not have to add the Web user control to the Toolbox. Web user controls
cannot be added to the Toolbox because they are not compiled into discrete
assemblies. Instead you must copy the Web user control into each application
that requires it; this can be disadvantageous if the Web user control is used in
many applications.

● When developers add a Web user control to their ASP.NET Web page, they do not
require design-time access to the properties on the individual controls that make
up the Web user control.

If these scenarios do not match your requirements, Web custom controls might be
more appropriate. For more information, see “Usage Scenarios for Web Custom
Controls” later in this chapter.

Creating Web User Controls
The easiest way to create a Web user control is to use the visual support provided by
Visual Studio .NET.

� To create a Web user control
1. Open Visual Studio .NET and create an ASP.NET Web application.
2. In Solution Explorer, right-click the project name. On the shortcut menu, point to

Add, and then click Add Web User Control.
3. Drag controls from the Toolbox onto the Designer to create the visual appearance

that you want for your Web user control. By default, the Web user control is in
flow layout mode; this means controls are arranged from top-to-bottom and from
left-to-right. If you want absolute positioning, first add a Grid Layout Panel to
your Web user control.

4. Use the Properties window to set the design-time properties for the constituent
controls in your Web user control.

Design and Implementation Guidelines for Web Clients48

5. Add code to the code-behind class, as follows:
● Declare public or protected instance variables corresponding to the constituent

controls.
● Initialize the constituent controls in the Page_Load method.
● Handle events from the constituent controls locally to encapsulate the overall

behavior of the Web user control and to maximize its usefulness and reusabil-
ity by host ASP.NET Web pages.

● Add public methods and properties to enable external code (such as the host
ASP.NET Web page) to configure the appearance of the constituent controls
and to get and set their values.

It is also possible to manually create an .ascx file and code-behind files without
using Visual Studio .NET.

� To manually create an .ascx file and code-behind files
1. Create a file with an .ascx file name extension.
2. Add a @ Control directive to the .ascx file, as shown in the following example.

For more information about the permitted attributes, see @ Control directive in
Visual Studio .NET Help.

<%@ Control Language="cs" AutoEventWireup="false"
 Codebehind="MyWebUserControl.ascx.cs" Inherits="MyProj.MyWebUserControl"
 TargetSchema="http://schemas.microsoft.com/intellisense/ie5"%>

3. Add controls to the .ascx file in the same way that you add controls to an
ASP.NET Web page. Do not define <html>, <head>, <body>, or <form>
elements, or a <!DOCTYPE> directive.

4. Create the code-behind file with a file name extension, such as .ascx.cs.
5. Define a code-behind class that inherits from System.Web.UI.UserControl.

Implement the class in the same way that you implement ASP.NET Web pages.

You can convert an existing ASP.NET Web page into a Web user control so that you
can reuse it on other pages.

� To convert an ASP.NET Web page into a Web user control
1. Change the file name extension of the ASP.NET Web page file from .aspx to .ascx.
2. Change the file name extension of the ASP.NET code-behind file (for example,

.ascx.cs or .ascx.vb).
3. Remove the <html>, <head>, <body>, and <form> elements from the .ascx file.

Also remove the <!DOCTYPE> directive.
4. Change the @ Page directive to a @ Control directive in the .ascx file. Also change

the Codebehind attribute to refer to the control’s code-behind class file (for
example, .ascx.cs or .ascx vb).

Chapter 3: Building Maintainable Web Interfaces with ASP.NET 49

5. Remove any attributes that are not supported in the @ Control directive. For a
full list of attributes supported in each directive, see @ Page directive and
@ Control directive in Visual Studio .NET Help.

6. Modify the code-behind class so that it inherits from
System.Web.UI.UserControl instead of System.Web.UI.Page.

After you create a Web user control, you can add it to ASP.NET Web pages (or to
other Web user controls) as described in the next section.

Adding Web User Controls to an ASP.NET Web Page

The easiest way to add a Web user control to an ASP.NET Web page is by using the
drag-and-drop capabilities of Visual Studio .NET. In this approach, the Web user
control must be implemented in the same language as the host ASP.NET Web page.

� To add a Web user control to an ASP.NET Web page
1. Open Visual Studio .NET and create an ASP.NET Web application.
2. Add the .ascx file and code-behind file for the Web user control to the project.

The Web user control must be implemented in the same language as the host
ASP.NET Web page.

3. Drag the .ascx file from Solution Explorer onto the Designer. The Designer
displays a glyph to represent the Web user control, as shown in Figure 3.1.
The constituent controls that make up the Web user control do not appear
individually, so you cannot edit their properties or visual appearance in the
Windows Forms Designer. If you require this capability, consider using Web
custom controls instead. For more information, see “Creating and Using
Web Custom Controls” later in this chapter.

Figure 3.1
Appearance of a Web user control in an ASP.NET Web page

Design and Implementation Guidelines for Web Clients50

4. View the HTML markup for the ASP.NET page and notice the @ Register direc-
tive. Visual Studio .NET adds this directive when you drag a Web user control
onto the Web page. The @ Register directive associates a tag prefix and tag name
with the .ascx source file for the Web user control.

<%@ Register TagPrefix="uc1"
 TagName="MyWebUserControl"
 Src="MyWebUserControl.ascx" %>

Visual Studio .NET also adds an element to represent the instance of the Web user
control on your ASP.NET Web page. The tag prefix and tag name (for example,
uc1:MyWebUserControl) identify the type of the Web user control. The id
attribute (for example, MyWebUserControl1) identifies a particular instance.

<uc1:MyWebUserControl id="MyWebUserControl1" runat="server">
</uc1:MyWebUserControl>

5. Add code to the code-behind file for the ASP.NET Web page as follows:
● Declare a public or protected instance variable corresponding to the Web user

control instance. The variable name must be the same as the id attribute of the
Web user control as shown in the following example.

protected MyWebUserControl MyWebUserControl1;

● Write code to interact with the Web user control as required. If the Web user
control has public fields for its constituent controls, you can access these
controls directly from the ASP.NET Web page. Otherwise, you have to use the
methods and properties defined on the Web user control itself.

6. Build the ASP.NET Web project. The compiler generates a single assembly that
contains the compiled code-behind classes for the ASP.NET Web page and the
Web user control.

It is also possible to manually add a Web user control by writing code in the HTML
file and the code-behind files for the ASP.NET. In this approach, the Web user
control and the ASP.NET Web page are compiled separately; therefore, they can be
implemented in different languages.

� To manually add a Web user control
1. Copy the .ascx file and code-behind file for the Web user control into an appropri-

ate folder, so that the files can be accessed by the ASP.NET Web page.
2. Open the .aspx file for the ASP.NET page and add a @ Register directive as

follows. The @ Register directive associates a tag prefix and tag name with the
.ascx source file for the Web user control.

Chapter 3: Building Maintainable Web Interfaces with ASP.NET 51

<%@ Register TagPrefix="uc1"
 TagName="MyWebUserControl"
 Src="MyWebUserControl.ascx" %>

3. Add an element to represent the instance of the Web user control on your
ASP.NET Web page as shown in the following example.

<uc1:MyWebUserControl id="MyWebUserControl1" runat="server">
</uc1:MyWebUserControl>

4. Add code to the code-behind file for the ASP.NET Web page as described earlier.
5. Compile the source files for the Web user control and the ASP.NET Web page:

● If the source files are written in the same language, you can compile them into
a single DLL assembly as shown in the following example.

csc /t:library WebForm1.aspx.cs MyWebUserControl.ascx.cs ...

● If the source files are written in different languages, you must compile them
separately using the appropriate compiler. The following example compiles
the Web user control into its own DLL, and then it compiles the ASP.NET Web
page by referencing that DLL.

csc /t:library MyWebUserControl.ascx.cs ...
vbc /t:library WebForm1.aspx.vb /r:MyWebUserControl.ascx.dll

To summarize this section on adding Web user controls to an ASP.NET Web page,
the easiest approach is to use the drag-and-drop capabilities provided by Visual
Studio .NET. The main reason for not using Visual Studio .NET is because you want
to use a Web user control that is written in a different language.

Defining Shared Code-Behind Files for Web User Controls

As stated earlier, a Web user control typically comprises two files:
● An .ascx file; this file defines the visual appearance of the Web user control.
● A code-behind file; this file provides the functionality of the Web user control.

This division of responsibility between visual appearance and functionality, coupled
with the fact that Web user controls are shipped as source files instead of as com-
piled assemblies, enables you to create shared code-behind files that can be used by
several .ascx files. Figure 3.2 on the next page illustrates this technique.

Design and Implementation Guidelines for Web Clients52

Control1 Control1

UserControl1.ascx UserControl2.ascx

ControlCode.cs
or

ControlCode.vb

Code-behind module

Control2Control3

C
on

tr
ol

2

Figure 3.2
Using shared code-behind files for Web user controls

Shared code-behind files are useful if you have to define several different user
interfaces for the same Web user control. Each user interface is represented by a
separate .ascx file; each .ascx file defines its own set of constituent controls as appro-
priate. The .ascx files are linked to the same code-behind file to reuse the functional-
ity of the code-behind file.

In the code-behind class, you can define instance variables representing the superset
of controls that appear in any .ascx file linked to the code-behind file. The following
example shows a sample code-behind class for the scenario depicted in Figure 3.2.

public class ControlCode : System.Web.UI.UserControl
{
 protected Control1Type Control1;
 protected Control2Type Control2;
 protected Control3Type Control3;
 ...
}

If some of these controls are absent in certain Web user controls, the corresponding
instance variable contains a null reference. Therefore, you must look for null refer-
ences whenever you try to access controls in your code as shown in the following
example.

public class ControlCode : System.Web.UI.UserControl
{
 ...
 public void MyMethod1()
 {
 if (Control1 != null)
 ...
 }
}

Chapter 3: Building Maintainable Web Interfaces with ASP.NET 53

If there are wide differences between the constituent controls defined in each .ascx
file, the code-behind class can become unwieldy because it has to cope with all the
different user interfaces. Shared code-behind files work best when the .ascx files
contain broadly similar sets of controls.

Creating and Using Web Custom Controls
The previous section described how to create Web user controls as a way of reusing
portions of user interface code in different ASP.NET Web pages. Web custom con-
trols offer an alternative approach to get the same result.

This section includes the following topics:
● Overview of Web Custom Controls
● Usage Scenarios for Web Custom Controls
● Creating Web Custom Controls
● Adding Web Custom Controls to an ASP.NET Web Page
● Defining Alternative User Interfaces for Web Custom Controls

This section describes how Web custom controls differ from Web user controls and
provides guidance on how and where to use Web custom controls. Code samples are
included to illustrate key points.

Overview of Web Custom Controls
A Web custom control is a compiled component that encapsulates user interface and
related functionality into reusable packages. Web custom controls are very different
from Web user controls:
● Web user controls are written using the same programming model as ASP.NET

Web pages and are ideal for rapid application development. A Web user control is
saved as an .ascx file and is reused by adding the .ascx file to each project that
requires it.

● Web custom controls are compiled components that rely on object-oriented
programming features such as inheritance, polymorphism, and encapsulation. A
Web custom control is compiled into an assembly and is reused by referencing
the assembly in each project that requires it.

You can add Web custom controls to the Toolbox in Visual Studio .NET to simplify
reuse of the control at development time. You can also insert Web custom controls
into the global assembly cache to share the control between applications and to
simplify accessibility of the control at run time.

Design and Implementation Guidelines for Web Clients54

Usage Scenarios for Web Custom Controls
Web custom controls are useful in the following scenarios:
● There is an existing ASP.NET Web server control that meets most of your require-

ments, but you have to add some additional features.
● None of the existing ASP.NET Web server controls meet your requirements. You

can create a completely new Web server control in this scenario.
● You have a collection of related controls that you want to use in several ASP.NET

Web pages. There are two approaches available:
● Create a Web user control, as described earlier in this chapter. The benefit of

this approach is simplicity at design time, because you can visually drag
constituent controls from the Toolbox. The disadvantage is limited
configurability when you use the control, because you cannot modify proper-
ties directly in the Properties window.

● Create a composite Web custom control. This entails writing a class that
inherits directly or indirectly from System.Web.UI.Control, and creates the
constituent controls programmatically. The benefit of this approach is flexibil-
ity when you use the control, because you can add it to the Toolbox and access
properties directly in the Properties window. The disadvantage is complexity
at design time, because you must create the control programmatically instead
of using ASP.NET-like drag-and-drop techniques.

The following section describes how to create Web custom controls in each of the
scenarios described earlier.

Creating Web Custom Controls
You can define Web custom controls to extend the functionality of an existing
ASP.NET Web server control.

� To create a Web custom control
1. Create a class library project in Visual Studio .NET and add a reference to the

System.Web.dll assembly.
2. Add a using statement (Imports in Visual Basic .NET) in your code to import the

System.Web.UI.WebControls namespace.
3. Define a class that inherits from the ASP.NET Web server control of your choice.
4. Define methods, properties, and events as necessary in the new class.
5. Annotate your class with [Description] attributes to provide design-time infor-

mation about the class and its members. The [Description] attribute is defined in
the System.ComponentModel namespace.

The following example illustrates these points. The example defines a customized
text box control that can detect and remove space characters: the CountSpaces

Chapter 3: Building Maintainable Web Interfaces with ASP.NET 55

property counts the number of spaces in the text, the RemoveSpaces method re-
moves all space characters, and the TextChangedWithSpaces event is generated
(instead of TextChanged) if the text changes between postbacks and the new text
contains spaces.

using System.Web.UI.WebControls; // For various Web UI classes
using System.ComponentModel; // For the [Description] attribute

namespace MyCustomControls
{
 [Description("Space-aware TextBox control")]
 public class MyTextBoxControl : TextBox
 {
 [Description("Fires when the text has been changed, and it contains spaces")]
 public event EventHandler TextChangedWithSpaces;

 [Description("Count of spaces in the text")]
 public int CountSpaces
 {
 get
 {
 int count = 0;
 foreach (char c in this.Text)
 if (c == ' ') count++;
 return count;
 }
 }

 [Description("Remove all spaces from the text")]
 public void RemoveSpaces()
 {
 this.Text = this.Text.Replace(" ", "");
 }

 protected override void OnTextChanged(EventArgs e)
 {
 if (this.Text.IndexOf(" ") != -1)
 this.TextChangedWithSpaces(this, e);
 else
 base.OnTextChanged(e);
 }
 }
}

If none of the existing Web server controls provide a suitable baseline for your new
control, you can create a completely new Web server control that is not based on an
existing control.

� To create a completely new Web server control
1. Create a class library project in Visual Studio .NET and add a reference to the

System.Web.dll assembly.

Design and Implementation Guidelines for Web Clients56

2. Add a using statement (Imports in Visual Basic .NET) in your code to import the
System.Web.UI.WebControls namespace.

3. Define a new class for your control. If your control renders a user interface,
inherit from WebControl; otherwise, inherit from Control.

4. Optionally implement the following interfaces, as necessary:
● INamingContainer – This is a marker interface that makes sure the constituent

controls have unique IDs.
● IPostBackDataHandler – This interface indicates that the control must examine

form data that is posted back to the server by the client. This interface allows a
control to determine whether its state should be altered as a result of the
postback, and to raise the appropriate events.

● IPostBackEventHandler – If a control captures client-side postback events, and
handles the events or raises server-side events, the control must implement the
IPostbackEventHandler interface.

5. Define methods, properties, and events as necessary in the new class. For ex-
ample, if your new control has a user interface, you must write code to render the
user interface.

For an example that illustrates these techniques, see “Developing a Simple ASP.NET
Server Control” in Visual Studio .NET Help. For more information about how to
render a user interface in a Web server control, see “Rendering an ASP.NET Server
Control” in Visual Studio .NET Help.

In some situations, you may find it appropriate to develop a composite Web custom
control that is an amalgamation of several existing controls.

� To develop a composite Web custom control
1. Create a class library project in Visual Studio .NET and add a reference to the

System.Web.dll assembly.
2. Add a using statement (Imports in Visual Basic .NET) in your code to import the

System.Web.UI.WebControls namespace.
3. Define a new class that inherits from Control.
4. Implement the INamingContainer marker interface to make sure that the con-

stituent controls have unique IDs in the hierarchical tree of controls on a Web
page.

5. Override the CreateChildComponents method in your class. In this method,
create instances of the constituent controls and add them to the Controls
collection.

6. Define methods, properties, and events as necessary in the new class.

For more information about composite controls, see “Developing a Composite
Control” in Visual Studio .NET Help. For an example of how to implement custom
controls, see “Composite Server Control Sample” in Visual Studio .NET Help.

Chapter 3: Building Maintainable Web Interfaces with ASP.NET 57

Adding Web Custom Controls to an ASP.NET Web Page
This section describes how to use a Web custom control in ASP.NET Web pages.

If you intend to use the control in only a small number of ASP.NET Web pages, you
can copy the control’s DLL assembly into the subfolder for each ASP.NET Web page.
If you intend to use the Web custom control in many ASP.NET Web pages, consider
adding the control to the global assembly cache to simplify reuse.

The easiest way to reuse a Web custom control is through the Toolbox.

� To add a control to the Toolbox
1. Right-click the Toolbox, and then click Add Tab. Enter an appropriate name for

the new tab.
2. Right-click in the new tab, and then click Add/Remove Items.
3. In the Customize Toolbox dialog box, click Browse. Locate the DLL assembly for

your Web custom control, and then click OK. Verify that the control appears in
the list of controls in the Customize Toolbox dialog box.

4. In the Customize Toolbox dialog box, click OK. Verify that the control appears in
the Toolbox.

When you drag a Web custom control from the Toolbox onto an ASP.NET Web page,
the Designer displays the actual visual interface for the Web custom control (in
contrast to Web user controls, where a placeholder glyph appears instead).

Figure 3.3 shows a Web page that contains various controls, including the custom
text box control described earlier.

Figure 3.3
Appearance of a Web custom control in an ASP.NET Web page

Design and Implementation Guidelines for Web Clients58

You have full design-time access to the properties and events of the Web custom
control, as shown in Figure 3.4 and Figure 3.5.

Figure 3.4
Design-time access to the properties of a Web custom control

Figure 3.5
Design-time access to the events of a Web custom control

Figures 3.4 and 3.5 illustrate that Web custom controls are easier to use than Web
user controls, because you can use them just like built-in ASP.NET Web server
controls in the Designer.

Chapter 3: Building Maintainable Web Interfaces with ASP.NET 59

Defining Alternative User Interfaces for Web Custom Controls
If you have to provide alternative user interfaces for a Web custom control, you can
use a technique known as skinning to get this effect.

Skinning is similar to the shared code-behind technique discussed in “Defining
Shared Code-Behind Files for Web User Controls” earlier in this chapter. Skinning
involves defining a Web custom control that has no user interface elements of its
own. At run time, load a Web user control to provide the interface (or skin) for the
Web custom control.

The Web user control provides only the user interface; it contains no code. The Web
user control must define a set of constituent controls with well known names. The
Web custom control uses the well known names to obtain references to the constitu-
ent controls, and it wires up its own methods to handle control events or assigns its
own instance members to the constituent controls.

With this technique, you can mix and match Web custom controls and Web user
controls. Different Web user controls can implement subsets of the constituent
controls defined in the Web custom control and can use different layouts. The Web
custom control must make sure that a constituent control exists before accessing it.

Defining Common Page Layouts
This section describes how to define a common page layout for pages in a Web
application. A consistent look makes it easier for users to navigate and use your Web
application, and it can simplify application maintenance. It also increases branding
and user recognition; these are important factors if your application provides ser-
vices that compete directly with those of other companies.

The features of a common page layout typically include elements such as headers,
footers, menus, and navigation controls. With ASP 3.0, common HTML or script was
included into pages using server-side includes. ASP.NET provides a variety of
approaches, including:
● Using a common set of controls
● Using customizable regions
● Using page inheritance

The following sections discuss these approaches, including the benefits and disad-
vantages of each.

Using a Common Set of Controls
Using a common set of controls provides a simple mechanism for making sure there
is a consistent look across the pages in a Web application. You must create the
individual controls that make up your common layout and put them in a shared

Design and Implementation Guidelines for Web Clients60

location. Each ASPX page references the common set of controls in addition to its
custom content.

This is an improvement over ASP server-side includes and ensures that all applica-
tion pages display the same elementary controls. However, there is no concept of a
shared layout; you must define the location of each control separately in each page.
Figure 3.6 illustrates two ASP.NET pages that implement a common page layout
through the disciplined use of a common set of controls.

Page1.aspx Page2.aspx

ctrlFooter ctrlFooter

ctrlHeader ctrlHeader

ct
rlN

av

ct
rlN

av

Figure 3.6
Using a common set of controls

The requirement to work with each page individually makes this approach suitable
only for small ASP.NET applications that have a manageable number of pages and
where the overhead of a more elaborate approach would be unwarranted.

Using Customizable Regions
In this approach, you define the common controls and their layout; you also identify
a region in the common layout that holds the custom content for each page. There
are two frequently used techniques to implement this model, master page and
master Web user control.

This section includes the following topics:
● Using a Master Page
● Using a Master Web User Control

Chapter 3: Building Maintainable Web Interfaces with ASP.NET 61

Using a Master Page
The master page approach requires you to create a single page that you return in
response to every user request. The master page defines the common page content
and layout of your application. Additionally, this master page defines the region that
loads the appropriate contents to satisfy a specific user request.

The content specific to each request is typically defined as a Web user control. Your
application identifies the appropriate content to load for each user request using a
key; this key is specified in the query string or a hidden field of the user request.

The master page approach makes it easy for you to get a common layout for the
pages in your Web application; you have to develop only the individual Web user
controls for each of the unique pages. Figure 3.7 illustrates a master page
(MasterPage.aspx) that displays custom content based on an ID specified in a query
string or hidden field.

MasterPage.aspx

Page1.aspx Page2.aspx

ctrlHeader ctrlHeader

ctrlFooter ctrlFooter

ct
rlN

av

ct
rlN

avCustom
Region
ID # 1

Custom
Region
ID # 2

Figure 3.7
Using a master page

The main disadvantage of the master page approach is that you cannot use the built-
in authorization mechanism provided by ASP.NET to restrict access to each page,
because the client always requests the same page. Therefore, you must implement
your own authorization mechanism. Additionally, because the client request con-
tains the content key, it leaves your application susceptible to attack.

Overall, the master page approach works best when you have a common layout for
your whole application and there are no restrictions on the content that users are
permitted to access.

Design and Implementation Guidelines for Web Clients62

The IBuySpy ASP.NET example application, accessible at http://www.asp.net
/IBS_Store/, uses the master page approach and includes an example of how to
secure individual pages.

Using a Master Web User Control
The master Web user control approach requires you to create a separate .aspx file for
every page in your Web application. You also create a Web user control that defines
the common page layout and contains an updateable region, such as a table cell,
where the dynamic content is inserted. You add the Web user control to every .aspx
file that requires the common layout.

Each ASPX page is responsible for defining the content to display in its custom
region. For example, a page can set a property on the master Web user control to
refer to another Web user control that contains the custom content for that page.

Figure 3.8 illustrates two pages that contain a master Web user control. On each
page, the customizable region of the master Web user control is configured to show
a different Web user control.

Page1.aspx Page2.aspx

ctrlHeader

ctrlFooter

ct
rlN

av User
Control A

Master User Control

ctrlHeader

ctrlFooter

ct
rlN

av User
Control B

Master User Control

Figure 3.8
Using a master Web user control

The master Web user control approach is best used on small- to medium-sized Web
applications, where the cost of developing a more extensive architecture is not
warranted. Each Web page corresponds to a separate .aspx file, so you can use the
built-in authorization mechanisms of ASP.NET on a page-by-page basis. The main
overhead of the master Web user control approach is the requirement to develop the
Web user controls that provide the custom content for each page.

Chapter 3: Building Maintainable Web Interfaces with ASP.NET 63

Using Page Inheritance
All ASP.NET Web pages compile to classes that inherit from the common base class
System.Web.UI.Page. You can take advantage of this support for inheritance as a
means to implement a common page layout in your ASP.NET application.

� To use page inheritance
1. Define a class derived from System.Web.UI.Page.
2. Add controls to the page to create the common layout for all pages that will

inherit from this page. Also add a container control, such as a Panel, where
derived classes can generate their own content.

Figure 3.9 illustrates the use of page inheritance to implement a common page layout.

Base Page Class

System.Web.UI.Page

Page 1.aspx

ctrlFooter

ctrlHeader

Containerct
rlN

av

ctrlFooter

ctrlHeader

Containerct
rlN

av

ctrlFooter

ctrlHeader

Containerct
rlN

av

Page2.aspx
Figure 3.9
Using page inheritance

Design and Implementation Guidelines for Web Clients64

The main advantage of using page inheritance is that it enables you to implement
common behavior and common layout; it also provides a convenient way of defin-
ing shared helper routines. Also, because each Web page corresponds to a separate
.aspx file, you can use the built-in authorization mechanisms of ASP.NET on a page-
by-page basis.

The main disadvantage of using page inheritance is increased complexity compared
to the other options discussed in this section.

Summary
This chapter described how to create Web user controls and Web custom controls to
encapsulate recurring controls in your ASP.NET Web applications.

The choice between using Web user controls or Web custom controls involves a
trade-off between simplicity at development time versus flexibility at usage time.
Web user controls are easier to develop because they use familiar ASP.NET-like
drag-and-drop techniques, whereas Web custom controls must be created program-
matically. In contrast, Web custom controls offer more flexibility at usage time
because they provide full access to the properties, events, and methods in the Visual
Studio .NET Designer.

This chapter also discussed several techniques for creating common page layouts in
a Web application. Master Web pages are appropriate if all the pages in the Web
application have the same layout and access restrictions. Master Web user controls
are more appropriate if you have different access restrictions for the pages in the
Web application. Page inheritance is useful if you want to define shared application
logic across the pages in the Web application.

4
Managing Data

In This Chapter
This chapter describes how to manage data in the presentation layer. The chapter
includes the following sections:
● Accessing and Representing Data
● Presenting Data Using Formatters, Data Binding, and Paging
● Supporting Data Updates from the Presentation Layer
● Validating Data in the Presentation Layer

Most business applications involve some degree of data processing. Typically, the
presentation layer must display data retrieved from a data store, such as a relational
database, and accept user input of data. This chapter describes best practices for
accessing, presenting, updating, and validating input of data in the presentation
layer.

For recommendations specific to data access, see the .NET Data Access Architecture
Guide on MSDN (http://msdn.microsoft.com/library/en-us/dnbda/html/daag.asp).

Accessing and Representing Data
You must take into account a number of considerations when designing the data
access functionality of an application. These considerations include:
● Choosing the representation format for data passed between application layers
● Working with transactions in the presentation layers
● Determining which layers should access data

This section addresses each of these considerations.

Design and Implementation Guidelines for Web Clients66

Choosing the Representation Format for Data Passed Between
Application Layers
Data can be represented in a number of formats as it is passed internally between
the components and layers of a distributed application. The following formats
are generally used to represent data in distributed Microsoft .NET Framework
applications:
● Data set
● Typed data set
● Data reader
● XML
● Custom “business entity” objects

It is a good idea to choose the most appropriate data representation format for your
requirements, and use it consistently throughout your application. For recommenda-
tions about choosing representations for your business data and for passing data
across tiers, see Designing Data Tier Components and Passing Data Through Tiers on
MSDN (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/boagag.asp)

There are two main ways to access data from the presentation layer:
● Using disconnected data – In this scenario, you pass data such as data sets,

custom objects, or XML documents to the presentation layer. These objects and
documents may or may not represent data in a database, and they do not imply
any connection to a data store.

● Using streaming data – In this scenario, you use an object such as a data reader
(SqlDataReader, OracleDataReader, or OleDbDataReader) to access streaming
data in a data store, typically in read-only, forward-only manner.

The following sections describe how to use disconnected data and streaming data in
the presentation layer.

Using Disconnected Data
The term “disconnected data” refers to data that you retrieve from a database and
then you close the database connection or leave the scope of the current transaction.
After you close the database connection or exit the transaction, you continue to use
the data even though you have no current connection to the database.

It is a good idea to use disconnected data structures in your user interface layers in
any scenario where you have to handle, populate, or modify data outside the scope
of a database access or transaction, or if you cannot receive data from a direct
connection to the database from the physical tier that contains the presentation
layers.

Chapter 4: Managing Data 67

When using disconnected data, you have to:
● Choose the type of object you will use to represent the data. Possible representa-

tion formats include XML, data sets, and custom “business entity” objects.
● Determine how you will manage concurrency. For example, you must create a

policy for dealing with overlapping updates to data in the data store by different
users.

● Decide how you will retain access to the data, especially in Web scenarios. Pos-
sible solutions include the use of session state to store per-user data, or applica-
tion state to store per-application data.

These issues are addressed in the guide described earlier, Designing Data Tier Compo-
nents and Passing Data Through Tiers. The rest of this section discusses these issues
from the perspective of the presentation layers.

Using Streaming Data
The term “streaming data” refers to data that you obtain through a data reader. You
use the data reader to pull information from the database in a read-only, forward-
only manner while a connection is kept open.

Use streaming data from the user interface in the following scenarios:
● You are consuming data in a read-only, forward only manner.
● You require access to the data in a physical tier that can access the database

directly.
● You are outside the scope of a transaction.

Streaming data is typically more appropriate in Web applications than in smart-
client applications, because Web applications are more likely to have access to the
database server. A typical scenario is for a Web application to use a data reader to
populate controls with read-only data from the data store.

Note: Data readers implement the System.Collections.IEnumerable interface; a subset of .NET
Framework user interface controls can use this for data binding. In contrast, data sets imple-
ment System.Collections.IList; this allows data sets to be data bound to a wider range of user
interface controls. For more information, see “Presenting Data Using Formatters, Data Binding,
and Paging” later in this section.

Working with Transactions in the Presentation Layer
This section describes how to manage transactions in the presentation layer. There
are two distinctly different kinds of transactions:
● Atomic transactions – Atomic transactions are intended to encapsulate small,

brief units of work that occupy few resources and complete quickly. A typical
example is the transfer of money; this locks the accounts being updated for a

Design and Implementation Guidelines for Web Clients68

short time while they are updated, and then releases the locks after the updates
are complete.
Atomic transactions have just two potential outcomes — success or failure — and
provide ACID (atomicity, consistency, isolation, and durability) guarantees.

● Business transactions – Business transactions encapsulate operations that can last
several minutes, hours, days, or even weeks. An example is the exchange of
documents between two businesses that have to follow a particular protocol. The
documents may require manual processing or authorization; these operations
could take a lot more time than atomic transactions. In these circumstances, it is
not advisable to keep resources locked for the duration of the transaction, so an
alternative strategy has to be used instead.
Business transactions may have many potential outcomes, including compensa-
tion activities to handle various transaction failure scenarios.

In distributed systems (unlike client-server applications), the presentation layer
should not initiate, participate in, or vote on atomic transactions for the following
reasons:
● Atomic transactions typically represent a business operation that should be

handled by a business component. The business component should be isolated
from how data is displayed to the user.

● If you initiate an atomic transaction in the presentation layers, the physical
computer where the presentation layers are deployed becomes part of the trans-
action. This means that an extra node and set of communication links are re-
quired to coordinate the transaction; this adds failure points and may add
security risks because of the extra channels involved.

● If you initiate or vote on atomic transactions in the presentation layers, you risk
exposing a situation that requires user interaction between the transaction initia-
tion and its completion. During this time span, all resource managers participat-
ing in the transaction have to keep locks to provide ACID guarantees; scalability
is drastically reduced because other activities have contention on these locks.

To prevent presentation layers from initiating, participating in, or voting on atomic
transactions, follow these guidelines:
● Do not use the Transaction attribute on ASP.NET pages.
● If your controller classes are hosted in COM+ applications, they must not have

the Supported, Required, or Requires New, transactional attributes.

The implication for distributed systems of not initiating transactions in the presenta-
tion layers is that all data in the presentation layers exists outside the scope of
transactions; this implies the data might be stale. For information about mechanisms
for managing data staleness and optimistic concurrency, see the guide described
earlier, Designing Data Tier Components and Passing Data Through Tiers.

Chapter 4: Managing Data 69

Determining Which Layers Should Access Data
When designing a layered application, you sometimes have to choose between
“strict layering” and “loose layering”:
● Strict layering means a component only interacts with components in the same

layer, or with components in the layer directly beneath it.
● Loose layering means a component is allowed to interact with components in any

layer, not just those in the layer directly beneath it.

The choice between strict layering and loose layering arises because of potential
tradeoffs between the maintainability that strict layering provides by letting you
change and extend the behavior in the future, and the productivity gain that you can
get by letting a layer access layers other than the one directly beneath it.

For data access, the data source itself should be accessed only by data access logic
components or data access helper components in the data access layer. The main
design decision is whether to allow the presentation layer to access the data access
layer directly or force all data access requests to pass through the business layer.
There are three different approaches to consider:
● Using message-based business processes
● Invoking business objects
● Invoking data access logic components directly from the presentation layer

Note: This section describes the relationship between the logical user interface layers and
other logical layers. It does not describe how to distribute these layers in a multi-tiered
environment.

Using Message-based Business Processes
In the message-based approach to data access, data is accessed by exchanging
messages between the user interface process components in the presentation layer
and business workflows in the business layer. The reliance on purely message-based
communication means that it is the easiest way for some applications to convert
smart-client user interfaces to offline mode.

The processes-based approach is shown in Figure 4.1 on the next page. In the illus-
tration, the solid lines represent requests for data and the dashed lines represent the
returned data.

Design and Implementation Guidelines for Web Clients70

Business Entities

Service AgentsData Access Logic
Components

UI Components

UI Process Components

Business Components

Business Workflows

Well-defined business process

Figure 4.1
Using message-based business processes for data access

This approach is not straightforward and relies on a careful analysis of your
requirements.

� To access data by using message-based business processes
1. Analyze your application use cases to determine the data flow back and forth.
2. Define or use an existing business process as an exchange of messages.
3. Design coarse-grained messages or Web services for each data flow. Coarse-

grained communication increases efficiency and establishes a document-based
information exchange that can be reused by other clients (not necessarily user
interfaces) using the same business process.

4. Write code in your user interface process layer controllers to invoke the service
interfaces that access the business workflow or business components.

This approach may be cumbersome if the presentation and business layers are built
together as part of the same application. Also, if the business process was not origi-
nally designed to be consumed from a user interface, it might rely on messages
being sent to your presentation layers. For example, your user interface might have
to react to incoming messages or Web service calls. Such notification architecture for

Chapter 4: Managing Data 71

your presentation layer necessitates additional infrastructure and code and is out-
side the scope of this guide. You can build notification as part of your application,
or rely on external infrastructures, such as e-mail, MSN® Messenger, or Windows
Messenger.

Invoking Business Objects
The invocation of business objects is probably the most used approach when busi-
ness logic exposed by an application is designed to service the user interface. For
example, the presentation layer can invoke business components through .NET
Framework remoting or Web services to retrieve data, and then invoke other busi-
ness components. This approach does not rely on business workflows to control the
process.

Figure 4.2 shows how to invoke business objects from the presentation layer.

Business Entities

Service AgentsData Access Logic
Components

UI Components

UI Process Components

Business Components

Figure 4.2
Invoking business objects from the presentation layer

� To access data by invoking business objects
1. Design methods in your business components that acquire the reference data

the user interface requires and return it to the presentation layer. Write coarse-
grained methods that return a set of data all at the same time, such as a whole
Order object or a data set. The use of course-grained methods increases commu-
nication efficiency. Optimistic concurrency management is also simplified, be-
cause related data is acquired in one call and is therefore easier to time stamp.

Design and Implementation Guidelines for Web Clients72

2. Design methods in your business components that take coarse grained sets of
data, encapsulate transactions, and update data.

This approach is appropriate for most applications and enforces strict layering in the
application. However, if the methods exposed by the business components are just
wrappers for methods provided by data access logic components and provide no
additional business logic, you might prefer to bypass the business layer and access
the data access logic components directly from the presentation layer.

Invoking Data Access Logic Components Directly from the Presentation Layer
It is a good idea to allow your presentation layer components to directly access the
data access layer when:
● You do not mind tightly coupling your data access semantics with your presenta-

tion semantics. This coupling involves joint maintenance of presentation layer
changes and data schema changes. Evaluate this option if you have not encapsu-
lated all data access and entity-specific business logic into business entity
components.

● Your physical deployment places the data access layer and presentation layer
components together; in this scenario you can retrieve data in streaming formats
(such as a data reader) from data access logic components, and bind the data
directly to user interface elements for performance. If your presentation layer
components and data access logic components are deployed on different servers,
this functionality is not available.

There are two variations of this approach:
● Invoke data access logic components from user interface process “controller”

components.
● Invoke data access logic components from user interface components.

The following sections describe how and when to use each technique.

Invoking Data Access Logic Components from User Interface Process Controllers

If you do not require the maintainability and growth capabilities afforded by strict
layering, you might decide to acquire data, and maybe even update it directly, using
the data access logic layer from the controller functions in the user interface process
layer. This is a useful approach in small data-intensive applications that have pre-
dictable areas of growth.

The user interface process layer uses data access logic component methods to read
reference data that is to be displayed to the user, and it uses the layering style
described in the previous section for operations that might require additional busi-
ness transaction logic at some future point. Figure 4.3 shows this approach.

Chapter 4: Managing Data 73

Business Components

Business Entities

Service AgentsData Access Logic
Components

UI Components

UI Process Components

G
etC

ustom
er

G
etR

egionsB
yC

ountry

You may choose to mix
approaches. This
figure illustrates
getting reference data
on the left, and leaving
update-intensive
operations to a
business component.

G
et...

GetCusto-
merStatus

UpdateCustomer
Region

Figure 4.3
Invoking data access logic components from the user interface process layer

� To invoke data access logic components from the user interface process layer
1. Decide the kinds of operations that will be permitted from the user interface

process layer to the data access layer. For example, you might choose to allow
only operations that read data, or you might also allow operations that update
the data.

2. Choose which methods or use cases will have direct access to the data access
layer. It is a good idea to choose read methods that are unlikely to require data
aggregation or some other type of logic in the future, and write methods that are
unlikely to grow into business transactions with more implications than a data
write.

Consider the following issues when deciding whether to allow the user interface
process layer to directly invoke the data access layer:
● You have to expose the data access logic to the user interface process layer. In

smart client scenarios, or Web scenarios with remote application tiers, this means
configuring .NET Framework remoting or Web services to enable remote access
from the user interface process components. Consider the security and maintain-
ability implications of exposing such fine-grained operations. Keep in mind that
it may not add complexity to make remote calls from the user interface process
layer with controller functions if business components already require remote
access.

Design and Implementation Guidelines for Web Clients74

● Business components functions that return data typically do so in disconnected
formats (such as a data set), whereas data access logic component frequently
return streaming data (through a data reader). If you originally use data access
logic components to get data as a data reader, and then you have to upgrade your
logic to use a business component instead, you will have to change your presen-
tation layer code to use data sets (or another disconnected format). To avoid
costly code rewrites, plan ahead and return disconnected data for complex
queries that might evolve into more complex operations.

Invoking Data Access Logic Components from User Interface Components

It is a good idea to access the data access layer directly from the user interface
components (forms, pages, controls) only in specific cases where:
● You have to encapsulate logic for accessing the data in the user interface

component.
● The user interface component requires read-only access to reference data, and the

use case embodied in the user interface process is agnostic to the data.
● The data, or its source, does not vary depending on the use case.
● Bypassing the controller functions does not negatively affect maintainability in

the long term.

For example, you can develop a custom Countries list box control that knows how
to populate itself with country data from a data access logic component. The benefit
of this approach is that the developer building the user interface does not have to
know how to retrieve or load the data. The drawback is the tight coupling that this
introduces between the user interface controls and data design and the affect it may
have on scalability if multiple controls get their data independently from a remote
tier. It is not recommended to use this approach for update operations because this
would be equivalent of allowing views to update model data in the Model-View-
Controller (MVC) pattern.

Figure 4.4 shows user interface components directly using data access logic
components.

A slightly different design with a potential for better maintainability and scalability
is to encapsulate functions in the data-intensive controls that are specifically in-
tended to be controller function helpers, so that the user interface process controller
methods can invoke them when appropriate. For example, the Countries list box
control can have a method that invokes a data access logic component and places the
data in the state of the current user interface process, the control, or both. This way
the developer has more control over what data is displayed and when the queries
are performed.

Chapter 4: Managing Data 75

Business Components

Business Entities

Service AgentsData Access Logic
Components

G
etC

ategories

G
etC

ountries

UIC UI Process ComponentsUIC

UI Process Components

Figure 4.4
Invoking data access logic components from user interface components

Presenting Data Using Formatters, Data Binding, and Paging
One of the main functions of the presentation layer is to present data to the user.
There are a number of architectural considerations for data presentation that you
must take into account. They are:
● What format should you use to display the data the user?
● How should you bind user interface controls to data in the data source?
● What pagination strategy should you use if there is a large amount of data to

display to the user?

This section addresses each of these issues.

Design and Implementation Guidelines for Web Clients76

Formatting Data
You frequently have to format data for display. For example, you might want to
display the database value “1.2300000” as “1.23.” The .NET Framework provides
several format specifiers that you can use to format strings in your application.
Other basic types must be converted to strings using their ToString method before
formatting can be applied. The format specifiers include:
● Numeric – The .NET Framework provides many standard numeric format strings,

such as currency, scientific notation, and hexadecimal, for formatting numbers.
For a complete list of the numeric format strings, see “Standard Numeric Format
Strings” in the .NET Framework Developer’s Guide on MSDN (http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconstandardnumericformatstrings.asp).

● Date and Time – When displaying date and time information to a user, you
frequently want to display a simpler representation than the complete contents of
the DateTime data type. For a complete list of the date and time format strings,
see “Standard DateTime Format Strings” in the .NET Framework Developer’s Guide
on MSDN (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide
/html/cpconstandarddatetimeformatstrings.asp).

● Enumeration – When you have an enumeration, you can use ToString to create a
numeric, hexadecimal, or string representation of the enumeration value. For
more information, see “Enumeration Format Strings” in the .NET Framework
Developer’s Guide on MSDN (http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/cpguide/html/cpconenumerationformatstrings.asp).

● Custom – If none of the built-in format strings fully meet the formatting function-
ality your application requires, you can create a base type that accepts a custom
format string or create a format provider class to provide formatting for an
existing type. For more information, see “Customizing Format Strings” in the
.NET Framework Developer’s Guide on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpguide/html/cpconcustomizingformatstrings.asp).
For an example of how to define a custom formatter to format business entity
objects, see “How to: Define a Formatter for Business Entity Objects” in Appen-
dix B of this guide.

With each of the format specifiers, you can supply a culture to localize the string
format. For more information, see “Formatting for Different Cultures” in the .NET
Framework Developer’s Guide on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpguide/html/cpconformattingfordifferentcultures.asp).

Data Binding
Web Forms and Windows Forms allow you to display information by binding
controls to a source of data.

Chapter 4: Managing Data 77

However, because of the nature of Web Forms and the architecture of Web program-
ming, there are some significant differences between data binding in Web Forms and
Windows Forms. The most significant difference is that the data-binding architecture
of Web Forms does not perform updates — that is, it does not write data from the
control back to the data source; you must perform this logic.

You can bind to any data source that implements the IEnumerable interface; this
includes collection objects, data reader objects, data set objects, DataView objects,
and DataTable objects. All these objects (except data readers) also implement the
IList interface; this supports data binding to a wider range of Windows Forms
controls.

This difference is because of the type of scenario each object type is designed for.
Data set and DataTable objects provide a rich, disconnected structure suited to both
Windows Forms applications and Web applications. Data readers, on the other hand,
are optimized for Web applications that require optimized forward-only data access.

For an example of how to perform data binding, see “How to: Perform Data Binding
in ASP.NET Web Forms” in Appendix B of this guide.

Paging Data
When you have to retrieve a large amount of data, it is a good idea to consider using
data paging techniques to avoid scalability problems. Generally, follow the simple
rule of not retrieving any more data than you require at any one time. For example,
if you have to display 1,000 rows of data in a grid with 20 rows per page, implement
data retrieval logic that retrieves 20 rows at a time.

Data paging techniques help to reduce the size of data sets, and to avoid expensive
and unnecessary heap allocations that are not reclaimed until the process is recycled.
For more information about data paging, see the .NET Data Access Architecture Guide
on MSDN (http://msdn.microsoft.com/library/en-us/dnbda/html/daag.asp).

Supporting Data Updates from the Presentation Layer
In addition to viewing data, many applications must allow users to make updates,
insertions, or deletions. There are a number of considerations to keep in mind when
implementing data update functionality in the presentation layer. These consider-
ations include the following:
● Is it appropriate to perform batched updates?
● How should you implement optimistic concurrency?
● Do you have to define data maintenance forms to support CRUD (Create, Read,

Update, Delete) operations?

This section addresses each of these issues.

Design and Implementation Guidelines for Web Clients78

Batching Updates
The purpose of batching updates is to improve performance, scalability, and integ-
rity of data. This technique groups related operations and submits them as a unit, so
that they occur in one network roundtrip, or so that they can be encapsulated in a
transaction.

To batch updates you can use two techniques:
● Make changes to data in a data set, and then bind the data set to a DataAdapter

object in the data access logic components.
● Store data for your changes in your custom business objects, and invoke the

appropriate data access logic methods from a business object.

The first technique is easier to implement, but it does not offer much flexibility in
how the resulting changes are sent back. For example, the data set has to be bound
to a DataAdapter that is specific to a database connection.

Using Optimistic Concurrency
When using optimistic concurrency, a row in the data source is not locked when a
user reads it. Because the row of data is not locked, other users can read or update
the row after the original user reads it. When the original user tries to update the
row, the system must check whether the data has been modified by another user in
the intervening period.

There are various techniques for identifying whether the data has been modified.
For example, you can use timestamps to indicate the last-modification time for the
row. Another approach is to keep a copy of the original data for the row and com-
pare it against the current data for the row when you perform an update.

For guidance on implementing optimistic concurrency strategies, see the section
titled “Using Optimistic Concurrency” in Designing Data Tier Components and Passing
Data Through Tiers on MSDN (http://msdn.microsoft.com/library/en-us/dnbda/html
/BOAGag.asp).

Designing Data Maintenance Forms to Support Create, Read, Update,
and Delete Operations
Many applications require Create, Read, Update, and Delete (CRUD) forms to allow
administrators and other users to perform day-to-day data maintenance tasks.
However, data maintenance is only a part of the user interface of the application;
most applications also provide forms to support specific business use cases and to
perform reporting tasks.

Note: If a use case for updating data works mostly with other services, instead of being just an
update, it is not likely to be built as a distinct CRUD form. For example, checkout pages in an
e-commerce site are generally not designed as CRUD forms.

Chapter 4: Managing Data 79

Data Maintenance Principles
The primary motivation for designing CRUD forms is to maintain simple data
related to business entities. Typically, the design and implementation of CRUD
forms is strongly driven by the relational data storage design of the application.

One of the key assumptions of CRUD data maintenance forms is that the actions are
relatively predictable on the data of the application; this can lead to some optimiza-
tions. For example, you can assume that adding a product category generally results
in a new row in a table of product categories.

Data maintenance operations are also constrained to simple entities that are normal-
ized, pretty much in the same way as the database. This predictability leads to
opportunities to use caching, and thereby reduce roundtrips to remote servers.

Typically, many data maintenance forms are built around the following base
elements:
● The business entity that you want to maintain
● A mechanism to display a list of business entities, where the user selects one from

the list
● A mechanism to view, edit, or delete a single business entity

The business entity you are maintaining does not have to be complex. In fact, main-
taining complex business entities typically involves departing from conventional
CRUD mechanisms. The business entities you deal with can be expected to have the
following set of characteristics:
● A set of attributes that together represent the business entity data
● A set of validation rules for the individual data members in the business entity,

and for the business entity as a whole
● A set of fields that identify the business entity, such as a primary key
● Fields that are references to other business entities, such as a RegionID field in

a customer entity.

To display a set of business entities in a control, such as a DataGrid or a DataList,
you typically have to consider the following questions:
● What business entities are being displayed? Business entities are typically filtered

in some way, or they are loaded on specific user gestures such as paging through
a large set of entities.

● What attributes of the business entities have to be displayed?
● What actions are permitted on the business entities (such as editing and deleting)

and what action triggers them (for example, right-clicking on a DataList, select-
ing a shortcut menu option, and clicking a hyperlinked attribute)?

Design and Implementation Guidelines for Web Clients80

To display and allow data entry on a business entity, consider the following
questions:
● What attributes are shown in “new” or “edit” modes?
● How do you make sure there is integrity in new or edited business entities?
● What controls are used to display the attributes, and how do they proactively

enforce integrity? For example, you can use a drop-down list to select the region
of a customer, or a calendar control for picking a date. You also require extra
information, such as default values, and how the reference data for drop-down
lists is retrieved.

Using Different Visual Styles for Data Maintenance
There are many visual styles for data maintenance. The most common are:
● Implementing separate forms for the list and entity display – Create separate

forms to display a list of business entities and a single business entity. For ex-
ample, you might display a form that shows a list of all geographical regions to
the user. When the user selects a specific region, display a new form that shows
the details for the selected region.

● Implement list and details in the same form – Create a single master-detail form.
The master-section of the form displays a list of all the business entities. When
the user selects one of the entities, its details are displayed in the detail-section
of the form.

● Implement inline editing in grids or specialized controls – Create a form that
contains grids or other specialized controls to allow inline editing of the data.

When deciding which style to use, consider issues such as usability and the com-
plexity of the business entity being maintained. Simple business entities (for ex-
ample, reference data consisting of an ID and a small set of fields) can be
represented in a grid, whereas more complex entities generally have separate forms
for the display. Practical issues such as development effort and maintainability are
important factors. Consistency is also an important consideration, because it in-
creases usability and therefore reduces training costs.

The following sections describe each of the techniques listed earlier in this section.
If you examine the diagrams closely, you will see that each technique uses the same
functionality in the controllers and performs the same interaction with the server.
Therefore, if you implement these techniques correctly, they can all be equally
scalable. However, you also have to consider the impact of the user interface on how
the data is consumed. For example, if you show the details for customers just below
a list of all known customers, a user may click each customer in the list, causing the
application to perform many data retrievals from the database.

For an example that illustrates each of the techniques listed above, see “How to:
Design Data Maintenance Forms to Support Create, Read, Update, and Delete
Operations” in Appendix B of this guide.

Chapter 4: Managing Data 81

Implementing Separate Forms for the List and Entity Display
When implementing separate forms to display a list of business entities and indi-
vidual business entity details, it is a good idea to use different controller classes for
the list view and the single-entity view, effectively creating different user interface
“processes.” This simplifies reuse of the business entity details form for insert and
edit operations.

Figure 4.5 illustrates a solution that uses separate entity list and entity details forms.
The interaction with the server from the controller functions is illustrated as a call
into a service agent to reduce clutter. For CRUD operations, calls typically go to the
data access layer.

(Delete Confirmation)

Customer
ListG

etC
ustom

ers

D
eleteeC

ustom
er

G
etO

neC
ustom

er

Multiple Customers
Display Controller

Single Customer Display
Form, Page, or Control

Multiple Customers Display
Form or Page

G
etC

ustom
ers

N
ew

LoadC
ustom

ers

Edit

D
elete

U
pdateC

ustom
er

InsertC
ustom

er

O
K

C
ancel

Customer
X

Single Customer
Display Controller- New/Edit

- CustomerID

Figure 4.5
Using separate forms to display a list of business entities and an individual business entity

Design and Implementation Guidelines for Web Clients82

It is a good idea to use one schema, type, or data set for the data that appears in the
list (the list might contain aggregated, computed, or formatted data), and another
schema, type, or data set for the single entity.

Implementing List and Details in the Same Form
When you have to edit only one entity at a time, you might consider implementing
the entity list and details user interface elements on the same form. Reusability is
reduced in this scenario because the single-entity view is embedded in the same
view as the list, and programming the state machine in the forms and controls can
be more difficult because users can change selection in the list while editing the
attributes of the active entity. For example, if you use a
System.Windows.Forms.DataGrid control to display an entity list in a Windows
Forms-based application, you must decide how to respond to user actions, such as
moving to another row or re-selecting the current row. For each user action, you
must make decisions such as whether to accept the data that currently appears or
to cancel the update.

When using this approach, you are advised to encapsulate the single-entity view in
a containing control; this allows you to enable or disable the control instead of
opening a new form when an entity is to be edited.

You are also recommended to use different controller classes for the list view and the
single-entity view, as described in the previous section. If you use the same control-
ler class for the list view and the single-entity view, there will be increased coupling
as shown in Figure 4.6. The dotted lines indicate that the list view might capture
user actions that inform the single-entity view to accept or discard changes on the
current entity.

If a user clicks on many rows while browsing through data, the properties that
appear in the single-entity view must be updated in fast succession. To address this
issue, it may be efficient to preload as much of this information as possible.

Chapter 4: Managing Data 83

(Delete Confirmation)

Customer
List

Customer
XG

etC
ustom

ers

D
eleteeC

ustom
er

G
etO

neC
ustom

er

Multiple & Single Customer Display Controller

Single Customer Display
Control

Multiple Customers Display
Form, Page or Control

G
etC

ustom
ers

N
ew

LoadC
ustom

ers

Edit

D
elete

U
pdateC

ustom
er

InsertC
ustom

er

'O
K

' G
estures

'C
ancel' G

estures

Figure 4.6
Using a single form to display a list of business entities and an individual business entity

Implementing Inline Editing in Grids or Specialized Controls
An inline editing approach is suitable in Windows Forms-based applications where
you allow users to edit data in a grid directly. In this approach, a set of entities
appears in the user interface and facilitates editing inline so that a separate view is
not required. All data insertions and updates are performed on the display of the
entity list itself.

The inline editing approach is best suited for simple entities that have relatively few
fields and do not require specialized user interfaces to edit or create. It is assumed

Design and Implementation Guidelines for Web Clients84

that the user can act directly on the data in the grid, so special interactions are not
required with the business or data layers to get the entity data. This approach is also
appropriate when updates to multiple rows can be batched, for example by taking a
modified data set and sending it back to the business and data layers for processing.

You can develop an inline editing user interface manually with any grid that sup-
ports editing. Follow these guidelines:
● Capture the appropriate events from the controls that receive user actions, and tie

the events to the controller functions described earlier in this chapter.
● Use data binding with feature-rich grid controls that handle all the user actions

relating to navigation, editing, and inserting new rows; this allows you to re-
spond only to events to confirm row deletion. To update the data source, take the
modified data set and use batched updates, or iterate through the data set and
invoke appropriate single-entity methods on the server.

Figure 4.7 shows an inline editing user interface design.

Chapter 4: Managing Data 85

Single Customer Display
Control

CustomerList

(Delete Confirmation)

Multiple & Single Customer Display Controller

(With Batch Updates) (Without Batch Updates)

B
atch U

pdates

D
eleteeC

ustom
er

U
pdateC

ustom
er

InsertC
ustom

er

Edit

D
elete

Figure 4.7
Using inline editing to display a modifiable list of entities in a grid control

Advanced Data Maintenance Implementation Techniques
If you have a recurrent structure in your code that depends only on the description
of the entities and information such as how they are displayed and validated, you
can use metadata-based techniques to automatically generate CRUD user interfaces.
With this approach, the development team does not have to perform tedious, repeti-
tive tasks for each different entity in your application.

Design and Implementation Guidelines for Web Clients86

You use metadata to create a simple meta-model for your application; the meta-
model describes the structure of classes and their inter-relationships. For example,
you can write an XML document containing appropriate elements to help with
things such as automatic generation of CRUD-related components, pages, and
forms. Figure 4.8 shows a fragment of an example of such a model.

Control Type
-Name
-IsMultiline
-Value

TextBox ListBox CheckBox

1

AttributeDisplay

SingleEntityView

-ControlType
-VisibleOnNew
-VisibleOnEdit

Columns
-Label
-Sortable

1

.

EntityListDisplay
-DataSetCommand
-PKFields
-DefaultSortOrder
-EditVisible
-DeleteVisible
-ViewStyle

.

1

-End10

-End9

BusinessEntity
-Name
-Description

1

.

Attributes
-Name
-Description
-LongLabel
-ShortLabel
-FloatHelp
-DefaultValue

Presentation -
Views for

CRUD

.

-Name

Figure 4.8
Fragment of a data maintenance meta-model

Chapter 4: Managing Data 87

The first step in using a metadata-based approach is to model the metadata you
require. Generally, you require information about the entities, how to display them,
and how to allow data entry. The best way to determine what metadata you require
is to analyze a small set of CRUD implementations that follow the same structure,
and that express the variability points you believe will be required across all the
entities.

Table 4.1 shows some common pieces of metadata that are required and some
sources where that metadata can already be found, or sources that can be used to
capture metadata.

Table 4.1: Common sources of metadata for data maintenance user interfaces

DataSet Visual Studio
Metadata RDBMS Schema .NET Designer Manual Entry

Entities

Attributes and data ✓ ✓

types

Validation rules for ✓ ✓

attributes

Validation rules for ✓ ✓ ✓

entities

Default values for ✓ ✓

attributes

Entity display

Controls to use for ✓

attributes

Layout of controls ✓

Friendly names for ✓

attributes and entities

Data binding

Binding of view, ✓

controller, and
components

Names of forms and ✓ ✓

controls

Names of assemblies ✓

that perform insert,
read, update, and delete
operations

Names of controller ✓

classes

Design and Implementation Guidelines for Web Clients88

There are two main ways to implement a metadata-based approach to building a
data maintenance user interface:
● Using metadata for code generation – Use metadata at design time, in the tool,

or during the build process to automatically generate all data maintenance user
interface code. This approach is appropriate if you use code generation as a
starting point for the development process but expect to change or customize the
generated code after it is working, or if the effort of acquiring and interpreting
the metadata at runtime is costly in terms of security, performance, and initial
development effort.
To use this approach, you have to know:
● The implementation structure you are trying to repeat.
● Whether it relies on reusable components (for example, a validation frame-

work or a specialized ListView).
● The templates for the code you have to generate.
● The schema for the metadata required to generate the code.
● The sources for the metadata.

● Interpreting metadata at run time – Using metadata at run time can enhance
maintainability. Maintainability is improved because only the metadata must be
changed to modify the application behavior; the source code is not affected. This
means that modifications can be implemented by business users if they are
provided with appropriate editing tools.
However, this approach might require:
● Extra effort in design and development of the code that acquires and interprets

the metadata. For example, you have to load assemblies at run time, create
controls on a form and display them at run time, and bind events.

● Careful analysis of performance degradation. For example, performance might
suffer if the metadata is interpreted many times across users.

● Security reviews and testing. For example, the use of metadata at run time
might open the door to elevation of privileges and component injection
techniques.

To use this approach, you have to know:
● How to load controls, bind events, and call components at run time
● Whether the framework that interprets the metadata has sufficient extension

points to grow with the requirements
● Whether the dynamic behavior relies on techniques that require full trust

security privileges, for example by using reflection
● The sources for the metadata that can be used at run time

Chapter 4: Managing Data 89

You can use the Configuration Management Application Block to store the metadata
in a secure way. You can download this block from MSDN (see http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/cmab.asp).

Figure 4.9 shows a metadata-based approach to data maintenance user interface
design.

Metadata
processing

- Controls
- CRUD Pages and Forms
- Code
- Documentation

Templates + Reusable
Components

Metadata Schema

Metadata Source
Inventory
- Database
- Datasets
- Requirements Docs
- VS Forms Designer
- ...

Analyze multiple
implementations

Figure 4.9
A meta-data based approach to data maintenance user interface design

Metadata techniques apply mostly to enterprise-level application developers who
require CRUD forms for many entities, and to ISVs who want to build very flexible
and rapidly customizable applications.

Design and Implementation Guidelines for Web Clients90

Validating Data in the Presentation Layer
Validation is an important issue in the presentation layer. There are two kinds of
validation:
● Continuous validation – Continuous validation occurs each time a form or page

is submitted. The validator controls provided by the .NET Framework provide
continuous validation.

● One-time validation – One-time validation occurs only once. To perform one-time
validation of a control, you must write some code.

This section describes why validation is important, and it provides guidance on how
to perform validation in the presentation layer.

Why Validate?
It is a good idea to never trust user input. Validating the data entered in your appli-
cation can produce the following benefits:
● Integrity – Validation enables you to prevent integrity errors in the data in your

application.
● Usability – Validation permits you to format user-entered data (for example, a

user enters a phone number as “1234567890” and you want it to display it as
“123-456-7890”).

● Security – Validation on incoming data helps prevent security threats such as
cross-site scripting attacks and code-injection.

● Responsiveness – The built-in validator controls (RegularExpressionValidator
and RequiredFieldValidator) enable you to give users immediate, client-side
feedback.

● Simplicity – The built-in validator controls provide a simple way to replace
validation in client-side ECMAScipt (JScript, JavaScript) code . These validator
controls are much cleaner, easier to implement, and easier to debug and maintain
than writing custom scripting code at the client.

● Client-side and server-side validation – The concept of “is this page valid” is
nicely abstracted on both the client and server. The System.Web.UI.Page class
has a Validators property that returns a collection of validator controls contained
on the requested page, and an IsValid property that indicates whether page
validation succeeded.

Data validation is important because it protects the integrity of your application
data and improves the usability of the application.

Chapter 4: Managing Data 91

Choosing a Validation Strategy
Any input coming from a user must be validated before being used. The .NET
Framework provides a rich set of validator controls that you can use in ASP.NET
Web applications, to handle this task.

There are five main types of validator controls:
● ComparisonValidator – Verifies that a user’s input is of the correct type, or that

the input matches a specific pre-defined value.
● RequiredFieldValidator – Verifies that the user has entered a value for a particu-

lar control.
● RangeValidator – Verifies that a user has entered a value within a permissible

range. For example, you can test that the amount a user wants to withdraw from
his or her checking account is between $0 and the total balance.

● RegularExpressionValidator – Verifies that user input matches a specific pattern.
For example, you can test that a social security number matches the patter “nnn-
nn-nnnn,” where “n” is a number between 1 and 9.

● CustomValidator – If none of the built-in validator controls suit your validation
requirements, you can write a custom validation function that performs server-
side validation of user input.

By using the validation controls provided in the .NET Framework, you can prevent
many of the problems associated with invalid data entry in ASP.NET Web applica-
tions.

Note: The validator controls are only available in ASP.NET Web applications. In Windows Forms-
based applications, you must write your own code to perform these validation tasks.

Using Validation Controls
Consider the following issues when using validation controls:
● You might have to enable or disable some validator controls in response to user

actions or if previous validator controls return as invalid. For example, you might
have to validate the Province field only if the user selects Canada in the Country
field. This must be done programmatically, and it can involve fairly complex
logic.

● There are scenarios where the standard validator controls do not provide suffi-
cient functionality and you must resort to the CustomValidator. Moreover, if you
require client-side validation, you must write your own custom script code.

● There is no RequiredFieldValidator that works with a CheckBoxList control. To
perform validation on this control, you must create your own validator class that
inherits from BaseValidator.

Design and Implementation Guidelines for Web Clients92

Handing Validation Errors
There are several options for handling validation errors:
● Raise an exception. This might not be a useful action in the presentation layer.

However, you might want to raise (or log) an exception if one of your validator
controls detects some sort of attack.

● Display individual error messages, indicating the reason for the validation error
and allowing the user to re-enter data accordingly.

● Use the ValidationSummary control to display a summary of all validation errors
in a single location.

Whatever action you decide to perform when validation fails, you must make sure
that the user is clearly notified about what is wrong and is given an opportunity to
correct the data entry.

Summary
Accessing, presenting, modifying, and validating data are fundamental to most
applications. You must make sure that you carefully plan how data will be accessed
by the presentation layer, and in particular whether presentation layer components
should have direct access to data access logic components. You must consider the
impact of your data presentation approach on scalability, and you must carefully
consider how you will implement data maintenance forms that allow users to view
and modify data. Finally, it is a good idea to always implement at least a minimal
level of data input validation to protect the integrity of your application’s data and
to improve usability.

5
Managing State in Web Applications

In This Chapter
This chapter describes how to manage state in the presentation layer in Web applica-
tions. The chapter includes the following sections:
● Understanding Presentation Layer State
● Planning State Management for Web Applications

State management is an important aspect of many applications. In the presentation
layer, you frequently have to store information about the state of the application or
keep track of user state information. Some examples of state include:
● The identity of the current user
● The contents of a shopping cart
● The current step in a navigation flow of the application
● A database connection string

When designing your application, you have to make decisions about how to handle
state management, including what to store, where to store it, and how long informa-
tion will be kept.

The Microsoft .NET Framework provides access to a rich set of state management
mechanisms for both Windows-based and Web applications. This chapter describes
state management mechanisms for Web applications.

Before looking at the individual mechanisms for state management, make sure that
you understand the nature of application state to select the most appropriate
mechanism.

Design and Implementation Guidelines for Web Clients94

Understanding Presentation Layer State
Three characteristics of state determine the state management mechanism most
appropriate to your requirements. These three characteristics are:
● State lifetime
● State scope
● State type

The next sections describe each of these characteristics.

Determining State Lifetime
The lifetime of state refers to the period when that state is valid. Table 5.1 lists the
common lifetime periods you use in your presentation layer.

Table 5.1: Common Lifetimes for Application State

State lifetime Description Example

Permanent Data that is always valid Information stored in a database

Process Data that is valid only within The process a user must go
the scope of a particular through to add an item to a
process shopping cart in an online store

Session Data that is valid only within The contents of a user’s
the scope of a single session shopping cart
for a single user

Message Data that is valid only within The checkout request made by
the scope of a single message a user
or data exchange

Time span Data that is valid only until A coupon code that expires in
a particular date and time two weeks

During the design process you must identify the most appropriate lifetime for your
user interface state.

Determining State Scope
The scope of state defines the accessibility of an application’s state. Scope is addi-
tionally divided as follows:
● Physical scope
● Logical scope

The following sections describe the various kinds of physical and logical scope
available.

Chapter 5: Managing State in Web Applications 95

Determining Physical Scope
Physical scope defines the physical locations that state can be accessed from. Table
5.2 lists common physical scopes for application state.

Table 5.2: Common Physical Scopes for Application State

State Physical Scope Description Example

Organization State is accessible to all Organizational information
applications in an organization stored in Microsoft Active

Directory® directory service

Farm State is accessible to all Information stored in a shared
computers in an application farm database associated with the

farm

Computer State is accessible to all Information stored on the file
applications running on a computer system or a local database

(with no restricting permissions)

Process State is accessible to multiple Identity of the process
application domains running in the
same process

Application Domain State is accessible only to code Objects stored in the
running in a single application application domain’s
domain CurrentDomain property

When designing your presentation layer, consider the affect of the various options
for physical state storage locations, and select the most appropriate one for your
application.

Determining Logical Scope
Logical scope defines the logical locations where state can be accessed. Table 5.3 lists
common logical scopes for application state.

Table 5.3: Common Logical Scopes for Application State

State Logical Scope Description Example

Application State is accessible only in a Application-specific information
certain application stored in a database

Business Process State is accessible only to elements A purchase order being built by
of a single business process a business process

Role State is accessible only to a Payroll information
particular role or group of users

User State is accessible only to a The contents of a specific
particular user user’s shopping cart

View State is only relevant to a particular The contents of a data grid
form, page, or control

Design and Implementation Guidelines for Web Clients96

Selecting the correct logical scope for your presentation layer state is important
because it has a significant affect on security and performance.

Determining State Type
The purpose, content, and quantity of state data are important factors when deter-
mining the state management mechanism to implement. Table 5.4 lists the character-
istics of state that have the most effect on your choice of state management
mechanism.

Table 5.4: Common Types of Application State

State Type Description Example

Secret / Sensitive Information that is intended for Bank account transactions; private
a specific audience key used for encryption

Insensitive Information that is not restricted Public key used for encryption; hit
in who, what, or both, that can count for a Web site
see it

Object Information that is stored in an The working set for a user
object such as a DataSet or a performing an administration task
Hashtable offline

Scalar Information that is stored in a The number of times a user has
single value executed an application

Large State that takes up a large The daily order report for a large
amount of storage space e-commerce Web site

Small State that takes up a small The user ID of the user logged in to
amount of storage space the application

Durable Information that must be stored A submitted customer order
in a permanent medium to survive,
for example, computer reboots

Transient Information that is not required The current page that a user is on
to be stored in a permanent in a Web application
medium

You must be familiar with the types of state your presentation layer must manage.
Most applications use a combination of the state types listed in Table 5.4.

Chapter 5: Managing State in Web Applications 97

Planning State Management for Web Applications
Applications based on Web Forms are inherently stateless, but it is frequently
necessary for an application to keep track of state information. ASP.NET simplifies
state management by providing access to a variety of client-side and server-side
state management mechanisms:
● Client-side state management mechanisms – Cookies, hidden form fields, query

strings, and the ViewState property.
● Server-side state management mechanisms – Session state, application state, and

a database.

Table 5.5 lists these mechanisms and provides an indication of the state lifetime,
scope, and type that the particular mechanism is most appropriate for.

Table 5.5: State Management Mechanisms for Web Applications

Mechanism Lifetime Physical Scope Logical Scope Type

Session object: Session Process Application, Any
In-process User

Session object: Session Organization Application, Any
State server User

Session object: Session Organization Application, Any
SQL Server User

Cookies Permanent Web farm Application, Small, non-essential,
Session User insensitive
Time span

Hidden form Message Web farm Application, Small, non-essential,
fields User, View insensitive

Query strings Message Web farm Application Small, non-essential,
(URL fields) insensitive

ViewState Message Web farm View Small, non-essential,
insensitive

Application Process Process Application Any
object

Database Application- Datacenter Application Any
controlled

Design and Implementation Guidelines for Web Clients98

The following sections describe each of the state storage mechanisms listed in Table
5.5. Each section provides:
● An overview of the mechanism
● Guidance on when to use the mechanism, and points to consider before deciding

to use the mechanism
● Sample code and configuration settings, to show how to use the mechanism

When planning your Web application, use the following guidance to identify and
implement the most appropriate state storage mechanism for your presentation
layer.

Note: If you want to encapsulate the choice of state storage mechanism in an ASP.NET Web
application, you can use the Microsoft User Interface Process Application Block to manage
state storage. You can configure the block to use the Session object or SQL Server to store
state information.
For more information about using this block to manage state storage, see the “To create a
controller class” procedure in Chapter 2 of this guide.

Storing State in the Session Object
By default, whenever a new client connects to an ASP.NET application, ASP.NET
creates a cookie on the client containing a unique session identifier (ID). With each
subsequent request, the client passes the cookie to the application. This allows the
application to maintain context across a series of stateless Web requests. If the client
or application is configured to disallow cookies, ASP.NET encodes the session ID as
part of the URL the client uses when making requests to the application.

The Session object provides a state store that is unique for each session. Internally,
ASP.NET manages Session objects for each active client session and makes the
appropriate Session object available in your application through the Session prop-
erty of the System.Web.UI.Page class, where all Web Forms pages inherit from.

The benefits of using the Session object include:
● The ASP.NET runtime manages the mapping of the session ID to session data.
● State data is easily accessible through the page-level Session property.
● You can configure a timeout after which ASP.NET terminates an inactive Session

and disposes of the state for that session.
● State is not transmitted to clients, so this mechanism is efficient for network

bandwidth purposes and more secure than mechanisms such as cookies and
hidden form fields.

● Session management events can be raised and used by your application.

Chapter 5: Managing State in Web Applications 99

● Data placed in session-state variables can survive Internet Information Services
(IIS) restarts and worker-process restarts without losing session data, because the
data is stored in another process space.

● Session state can be used in both multi-computer and multi-process configura-
tions, thereby improving scalability.

● Session state works with browsers that do not support HTTP cookies, although
session state is most commonly used with cookies to provide user identification
facilities to a Web application.

In addition to these benefits, you can configure the Session object to use one of the
following three backing stores:
● In process
● State server
● SQL Server

Each backing store is described in the following sections.

Note: It is also possible to disable session state storage. To do this, add a <sessionState
mode=”Off”/> element to the <system.web> section of the Web.config file for your ASP.NET
Web application.

Storing State in the In-Process Session Object
Using in-process session state in ASP.NET is closely analogous to using the classic
ASP session state and is the default mechanism for managing state in an ASP.NET
application. Session state is stored and managed in-process (using the
Aspnet_wp.exe process); when that process recycles, the session state that was
stored in it is lost.

The main benefit of storing state in-process is performance: the reading and updat-
ing of session state occurs much faster when that state information is stored in
memory in the same process as the ASP.NET application, because there is no addi-
tional overhead for cross-process, network, or database communications.

Use the in-process Session object when:
● You have to store small or medium amounts of state information.
● You require high performance data access.
● You do not require durability; in-process Session object data does not survive

computer reboot, IIS reset, or application domain unloading.
● Your application is hosted on a single server.

Before deciding to use the in-process Session object, consider the following points:
● In-process session state is the fastest of the three available backing stores for the

Session object.

Design and Implementation Guidelines for Web Clients100

● The state information cannot be shared between multiple computers. If your
application is running in a Web farm, you have to make sure that individual users
are pinned to a specific server, or their state information will be lost as they
bounce between the various servers in the Web farm.

● As the amount of state information stored in-process increases, so does the
memory required to store that information. As more and more information is
added to the in-process session state, the performance of the whole application
may be degraded because it takes longer to access and modify the state informa-
tion.

If in-process session state is appropriate for your application, you can configure it in
the Web.config file associated with your ASP.NET Web site.

Note: The settings in Web.config take precedence over any machine-wide settings defined in
the machine.config file. If you want to define machine-wide state management settings, edit
machine.config instead of Web.config file.

● If you are using version 1.1 of the .NET Framework, machine.config is located in the
%windir%\Microsoft.NET\Framework\v1.1.4322\Config folder.

● If you are using version 1.0 of the .NET Framework, machine.config is located in the
%windir%\Microsoft.NET\Framework\v1.0.3705\Config folder.

� To configure the in-process Session object
1. In the application’s Web.config file (or in the computer-wide machine.config file

if you prefer), add the <sessionState> element if it is not already there.
2. In the <sessionState> element, set the mode attribute to “InProc”.

This causes the Session object to be stored in the Aspnet_wp.exe process for the
ASP.NET application.

3. If you want to specify a timeout period after which state for an idle process will
be discarded, set the timeout attribute in the <sessionState> element. The default
timeout period is 20 minutes.

The following example illustrates these points.

<configuration>
 <system.web>
 <sessionState mode="InProc" timeout="10"/>
 </system.web>
</configuration>

This example specifies in-process session management, with a timeout period of 10
minutes.

Chapter 5: Managing State in Web Applications 101

Storing State in the State Server-based Session Object
Another option for storing session state in an ASP.NET application is out-of-process,
by using a state server process. When you use this option, session state is stored in
the Aspnet_state.exe process; this process runs as a service and may be located on a
separate state server. Using a state server allows applications running in a Web farm
to access shared state information.

State information stored in a state server is not lost when a particular application
recycles. However, the data is still transient: if the state server recycles, the state
information is lost.

Use the state server-based Session object when:
● You have to share state information between multiple applications or multiple

computers.
● You do not require durability. Data does not survive reboots of the state server.

Before deciding to use the state server-based Session object, you must consider the
following points:
● Using out-of-process session state is slower than in-process session state.
● The state service does not require authentication.
● Network traffic between the application and state service is not encrypted. For

security reasons, it is best to not run the state service on a server that is directly
accessible through the Internet.

● Communications between applications and the state server use the well-under-
stood (and plain-text) HTTP protocol. It is a good idea to encrypt traffic between
the application and state server using Internet Protocol Security (IPSec). For
detailed information about IPSec, see Chapter 4 of “Building Secure ASP.NET
Applications: Authentication, Authorization, and Secure Communication” on
MSDN (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/secnetlpMSDN.asp).

● Information stored in a state server must be serialized; for more information, see
“Serializing State” later in this chapter.

• The IP address or network name of the state server must be specified in
Web.config.

If state server-based session state is appropriate for your application, you can
configure it in the Web.config file associated with your ASP.NET Web site (or in
machine.config)..

Design and Implementation Guidelines for Web Clients102

� To configure the state server-based Session object
1. Make sure that the state service (Aspnet_state.exe) is running on the state server

computer.
2. The default port used by the state service is the “well-known” port number,

42424, making this an easy target for attack. To change the port number, set the
value in the
HKLM\SYSTEM\CurrentControlSet\Services\aspnet_state\Parameters\”Port”
registry key.

3. In the Web.config file for your Web application (or in the computer-wide
machine.config file if you prefer), add the <sessionState> element if it is not
already there.

4. In the <sessionState> element, set the mode attribute to “StateServer”. Also set
the stateConnectionString attribute to the IP address or network name of the
state server, and indicate the port number the state service is running on.
Optionally, also set the stateNetworkTimeout attribute to the number of seconds
that the ASP.NET Web application will wait for the state server to respond to
network requests. The default value is 10 seconds, but there are many factors that
might warrant a higher timeout value, such as if the state server or the Web
server are overloaded.

The following example illustrates these points.

<configuration>
 <system.web>
 <sessionState mode="StateServer"
 stateConnectionString="tcpip=myStateServer:42424"
 stateNetworkTimeout="20"/>
 </system.web>
</configuration>

This example specifies state server-based session management. The state service is
running on a computer named myStateServer and is accessed through port 42424. A
timeout period of 20 seconds has been specified.

Storing State in the SQL Server-based Session Object
Another option for storing session state for ASP.NET applications is to use SQL
Server. Using SQL Server to store session state provides several benefits:
● State can survive SQL Server restarts, if it uses a database other than the default

database, TEMPDB.
● You can share state between multiple instances of your Web application in a Web

farm.
● You can take advantage of clustering; this persists the state if SQL Server stops

unexpectedly.

Chapter 5: Managing State in Web Applications 103

The following sections describe when and how to store state in the SQL Server-based
Session object.

Use the SQL Server-based Session object when:
● You have to share state information between multiple applications or multiple

computers.
● You require fine-grained security control over who is permitted to access the

data.
● Your state information must be durable.

Before deciding to use the SQL Server-based Session object, consider the following
points:
● Using SQL Server for session state also allows user tasks in your application to

span multiple sessions and devices.
● Using SQL Server to store session state is slower than using the in-process and

state server-based Session object options.
● Session state stored in SQL Server must be serialized; for more information, see

“Serializing State” later in this chapter.
● If the connection string used to connect to the SQL state server uses integrated

security, your ASP.NET application must use impersonation. For information
about how to use impersonation in ASP.NET applications, see Chapter 8 of
Building Secure ASP.NET Applications: Authentication, Authorization, and Secure
Communication on MSDN (http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnnetsec/html/secnetlpMSDN.asp).

● SQL Server can use clustering and failover to make sure state data is available.
● Using SQL Server allows you to perform external backup of long-lived state data.

If SQL Server-based session state is appropriate for your application, you must
configure the application to connect to the appropriate database server.

� To configure the SQL Server-based Session object
1. Configure SQL Server to handle Session object state. To do this, run the

InstallSqlState.sql script on the computer that is running SQL Server. By default,
the script is located in the \systemroot\Microsoft.NET\Framework\version
folder.
This script creates the necessary databases, tables, and stored procedures to
support session state storage.

2. In the Web.config file for your Web application (or in the computer-wide
machine.config file if you prefer), add the <sessionState> element if it is not
already there.

3. In the <sessionState> element, set the mode attribute to “SQLServer”. Also set
the sqlConnectionString, to configure the database connection.

Design and Implementation Guidelines for Web Clients104

The following example illustrates these points.

<configuration>
 <system.web>
 <sessionState mode="SQLServer"
 sqlConnectionString=”datasource=x; user id=y; password=z”/>
 </system.web>
</configuration>

Note: If you are using version 1.1.4322 of the .NET Framework, you may choose to run the
InstallPersistSqlState.sql script instead of running InstallSqlState.sql. The
InstallPersistSqlState.sql script adds state management tables to the ASPState database
instead of to the TempDB database, so that session state survives a restart of the state
server.
If you use the InstallSqlState.sql script, the SQL state server uses TempDB to store state
information. For details about how to configure persistent state in versions of the .NET
Framework earlier than 1.1.4322, see article 311209, “HOW TO: Configure ASP.NET for
Persistent SQL Server Session State Management,” in the Microsoft Knowledge Base (http://
support.microsoft.com/).

Using the Session Object
Whichever underlying storage mechanism you choose to use for the Session object,
it does not affect how you use the object in your ASP.NET Web application code.

The System.Web.UI.Page class has a Session property that returns a
System.Web.SessionState.HttpSessionState object; through this object you can
manipulate the contents of the Session object associated with the current user
session. State items are held as Object references in HttpSessionState.

The HttpSessionState class provides properties and methods to manipulate the
collection’s contents, enabling you to add and remove collection elements, get and
set specific data elements, enumerate the collection, and clear the collection.

The following code sample shows how to set Session object state, by using the C#
indexer of the HttpSessionState class.

Session["username"] = "myUserName";
Session["lastvisit"] = DateTime.Now;

The following code sample shows how to get Session object state. Notice the re-
quirement to cast the retrieved data from Object into the required data type.

string userName = Session["username"].ToString();
DateTime lastVisit = (DateTime)Session["lastvisit"];

The following section describes how to use cookies as an alternative to the Session
object for storing state information.

Chapter 5: Managing State in Web Applications 105

Storing State in Cookies
A cookie is a small amount of application data stored on the client — either on disk
or in memory. The client passes the cookie as part of each request to the application,
meaning that the application has access to the data held in the cookie. The applica-
tion can use the cookie data to make runtime decisions, and it can modify or add to
the cookie data before sending the cookie back to the client as part of the
application’s response.

By default, ASP.NET uses cookies to hold a client’s session identifier; this allows
ASP.NET to retrieve the correct Session object (discussed earlier). You can also use
cookies to store your own state information.

Use cookies when:
● You have to store small amounts of state information.
● The state does not include secret or sensitive information.
● The state does not provide access to or drive secured parts of your application.
● Your application runs on a server farm and you have no means of providing a

centralized state store.
● The state must survive across page requests or even across application invoca-

tions.
● Your application will still function if the state is not available.
● You have a relationship with the users and can be confident that they will enable

cookies for your application.

Before deciding to use cookies, consider the following points:
● Cookies can survive across page requests, sessions, application invocations, and

even computer reboots.
● Users can configure their browser to disallow cookies; in this case, your applica-

tion must provide an alternate mechanism for storing the state information.
● The user’s browser determines how much information a cookie can contain.

Individual cookies are limited to a maximum size of 4 KB, and a specific domain
may set a maximum of 20 cookies on a user’s computer.

● Information stored in cookies is not durable; the cookie may expire based on
information provided by the application or the user. The user can also delete the
cookie.

● Because cookies are stored on the client, the information they contain is subject to
modification.

● Cookies increase network traffic because the cookie is sent as part of each request
and response.

Design and Implementation Guidelines for Web Clients106

● There is no state maintained on the server between client requests; this is particu-
larly useful in a server farm because you do not have to maintain state centrally.

● Cookies allow you to set expiration times on the state information, after which
the client browser discards the cookie.

Using Cookies
Cookies contain simple name/value string pairs. The easiest way to access cookie
state is through the Request.Cookies and Response.Cookies properties of the
current System.Web.UI.Page object. Both properties return a
System.Web.HttpCookieCollection object containing the set of
System.Web.HttpCookie objects that were received from, or will be sent to, the
client.

The following code sample shows how to set state information in a cookie.

Response.Cookies["userinfo"]["username"] = "myUserName";
Response.Cookies["userinfo"]["lastvisit"] = DateTime.Now.ToString();

The following code sample shows how to get state information from a cookie.
Notice the requirement to cast the retrieved data from String into the required data
type.

string userName = Request.Cookies["userinfo"]["username"];
DateTime lastVisit = DateTime.Parse(Request.Cookies["userinfo"]["lastvisit"]);

Cookies can be a useful way to store state on the client. However, if you cannot
guarantee that cookies will be enabled on every client, consider an alternative
approach such as hidden form fields or query strings.

Storing State in Hidden Form Fields
Many Web applications store session state information in hidden form fields on the
form that the user is currently working on. A hidden form field is not rendered
visibly in the browser, but you can set its value property to hold a single piece of
page-specific information. When the user re-submits the form to the server, the value
of the hidden form field is sent in the HTTP Form collection along with the values of
other controls on the form.

Use hidden form fields when:
● You have to store small amounts of state information.
● The state does not include secret or sensitive information.
● The state does not provide access to or drive secured parts of your application.
● Your application runs on a server farm and you have no means of providing a

centralized state store.

Chapter 5: Managing State in Web Applications 107

● Cookies are disabled.
● The state does not have to survive across page requests.
● Your application will still function if the state is not available.

Before deciding to use hidden form fields, consider the following points:
● You can encrypt the information stored in hidden form fields to make it harder to

attack. However, it is a good idea to use a back-end database to store any sensi-
tive information.

● You can store only a limited amount of information in a hidden form field; the
maximum size is limited by the control you choose for the hidden field.

● Information stored in hidden form fields is transmitted to the user and increases
the size of the download. This can negatively impact performance.

● Pages must be submitted by way of an HTTP POST. If pages are submitted as an
HTTP GET, your Web application will not be able to retrieve the information in
the hidden form fields.

● It is a good idea to never trust data that comes from the user, especially if that
data is of a sensitive nature. Some early shopping cart applications stored item
price information for their carts in hidden form fields. This information was
stored in plain text, and attackers soon realized they could modify the price in the
hidden form fields to obtain a discount. Sensitive information should never be
stored in hidden form fields, especially in plain text.

The following section describes how to use hidden form fields in an ASP.NET Web
page.

� To use hidden form fields
1. Add a hidden field to a form on your ASP.NET Web page.

One of the ways to do this is to use the HtmlInputHidden control; this control is
located on the HTML tab on the Toolbox. When you add this control to your
form, an <INPUT> tag is generated as shown in the following example.

<INPUT type="hidden">

Note: Another way to add a hidden form field is to use a standard Web Forms control such
as a text box, and set its Visible attribute to false. If you adopt this approach, you do not
have to perform Steps 2 and 3 in this procedure.

2. Add a runat=”server” attribute to the <INPUT> tag, to enable you to access the
hidden control in server-side postbacks. Also add an id attribute, to assign a
programmatic identifier for the hidden control.

<INPUT type="hidden" runat="server" id="MyHiddenControl">

Design and Implementation Guidelines for Web Clients108

3. In the code-behind file for your ASP.NET Web page, declare an
HtmlInputHidden instance variable to correspond to the hidden control. The
name of the instance variable must be exactly the same as the id attribute of the
hidden control.

protected System.Web.UI.HtmlControls.HtmlInputHidden

MyHiddenControl;

4. At an appropriate juncture in your ASP.NET Web page, assign a value to the
hidden control to store some information in the control.
The hidden control, and its value, will be returned as part of the response to the
client’s browser.

MyHiddenControl.Value = "myUserName";

5. On a subsequent postback, retrieve the value of the hidden control and use the
information as required.

string userName = MyHiddenControl.Value;

Hidden form fields provide a simple mechanism for storing state. A closely related
mechanism is to use query strings.

Storing State in Query Strings (URL fields)
The HTTP specification allows for client browsers to pass data as part of the
request’s query string. This feature is typically used in HTTP GET requests to pass
arguments to an application, but you can also use it to pass state information back
and forth between the client and server. For example, in the URL http://www.asp.net
/somepage.aspx?userid=12&location=Boston, the query string contains two attribute-
value pairs: one named userid and the other named location.

Use query strings when:
● You have to store small amounts of state information.
● The state does not include secret or sensitive information.
● The state does not provide access to or drive secured parts of your application.
● Your application runs on a server farm and you have no means of providing a

centralized state store.
● Cookies are disabled.
● The state must survive across page requests or even across application invocations.
● Your application will still function if the state is not available.

Chapter 5: Managing State in Web Applications 109

Before deciding to use the query strings to manage state, consider the following
points:
● Some browsers or proxies have URL length restrictions. The current IETF RFC

about URL length limits them to 4096 characters.
● If cookies are disabled, ASP.NET embeds the session ID in the URL of the page,

which means the number of characters available for query string state is reduced.
● Users can easily change the contents of the query string. Make sure that no pages

assume authorization, and write code to redirect users to a logon page if they
have not already logged on.

● If the query string values contain characters such as spaces and punctuation,
encode the query string values by using HttpUtility.UrlEncode.

• Use HttpUtility.UrlDecode when reading information from the query string to
decode any encoded query string values and to protect against invalid characters
in the query string.

● To make sure people do not modify a query string, it is a good idea to create a
keyed hash code for the data.

● If you want to store sensitive state in the query string, you must use encryption.
However, this raises the problem of key management, so it is a good idea to avoid
the query string in favor of a more secure state mechanism.

The following procedure describes how to use query strings in an ASP.NET Web
page.

� To use query strings
1. Write code in your ASP.NET Web page to programmatically assign a URL to a

hyperlink control, form control, image control, or a similar control.
The URL can contain a query string that relays information to the server-side
postback when the user navigates the URL link. For example, the following
statement sets the NavigateUrl property on a hyperlink control; the URL contains
the user’s ID in the query string.

HyperLinkSubmitOrder.NavigateUrl = "orderVerify.aspx?userid=" +
 HttpUtility.UrlEncode("123 456 <789>");

2. On a subsequent postback, retrieve the required information from the query
string as shown in the following example.

string userID =
 HttpUtility.UrlDecode(Request.QueryString["userid"].ToString());

Query strings and hidden form fields are generic techniques that are used in many
Web technologies. The following section describes an ASP.NET-specific mechanism,
whereby state is stored in the ViewState property of an ASP.NET Web page.

Design and Implementation Guidelines for Web Clients110

Storing State in ViewState
Each ASP.NET page has a ViewState property that is used by the .NET Framework
to persist control state between page requests. Every time the application responds
to a client request, ASP.NET serializes the content of the page’s view state and
includes it in the HTML response as a hidden field. When the client submits the next
request to the application, the request includes the serialized view state. ASP.NET
parses the view state and uses it to set the initial state of the page and the contained
controls. You can also use view state to store custom state information for your
application

Use view state when:
● You have to keep track of page-specific information between postbacks.
● You have to store small amounts of state information.
● The state does not include secret or sensitive information.

Before deciding to use view state, consider the following points:
● State stored in the ViewState property is available only to the current page; view

state is not persisted across pages.
● The values in view state are sent to the client, increasing the amount of network

traffic.
● Storing large sets of information in the view state property can slow the render-

ing of the page and the parsing of requests, because ASP.NET has to manipulate
the view state values.

● When rendered to HTML, the view state values are compressed, encoded and
hashed. This improves efficiency by reducing the amount of data sent, and it
helps make sure people cannot submit modified view state. However, because the
view state is not encrypted, merely encoded, people can easily decompress and
decode the view state to obtain the contained data.

● When using ASP.NET mobile controls to deliver applications to mobile devices,
view state is not sent to the client device, but instead it is stored in the Session
object automatically by the ASP.NET runtime.

The following procedure describes how to use view state in an ASP.NET Web page.

� To use ViewState
1. Write code in your ASP.NET Web page, to assign a value to a ViewState property

for your Web page.
If a ViewState setting with the specified name does not already exist, it is created
automatically. The following example creates a ViewState property named
“username,” and sets its value to “myUserName.”

ViewState["username"] = "myUserName";

Chapter 5: Managing State in Web Applications 111

2. On a subsequent postback, retrieve the required information from the view state
and cast it to the appropriate type.

string userName = ViewState["username"].ToString();

Using view state in this way makes it easy to persist small amounts of state between
page postbacks on pages where controls have server-side event handlers.

Storing State in the Application Object
The System.Web.UI.Page class, that all ASP.NET pages inherit from, provides an
Application property through which you can share state between all users and all
sessions of an application.

Use the Application object when:
● You have to manage application-wide state that is not specific to any particular

user or session.
● The state does not have to survive the life of the process the application is run-

ning in.
● The state is sensitive and cannot be passed across the network.
● You have substantial amounts of read-only state that you can load into the

Application object at the start of application execution. An alternative solution
might be to cache the data; for more information, see “Caching State” later in this
chapter.

Before deciding to use the Application object, consider the following points:
● The Application object is a dictionary-based, in-memory storage mechanism,

meaning that it is fast, but storing large amounts of data affects the performance
of your server.

● Because the state is stored on the server, the Application object offers higher
levels of security than the client-based state mechanisms such as cookies, hidden
form fields, and query strings; however, because all application code can access
the Application object, it does not provide as secure a solution as the Session
object.

● You must synchronize access to Application state data, because other threads
may be accessing the state at the same time. This means the Application object is
best for read-only state.

● Unlike the Session object, you cannot specify a timeout value after which the
Application object state expires. Data in the Application object is retained until
you remove it or until the application terminates.

The following section describes how to store state in the Application object.

Design and Implementation Guidelines for Web Clients112

Using the Application Object
The System.Web.UI.Page class has an Application property that returns a
System.Web.HttpApplicationState object; through this object, you can manipulate
the contents of the Application object. State items are held as Object references in
HttpApplicationState.

The HttpApplicationState class provides properties and methods to manipulate the
collection’s contents, enabling you to add and remove collection elements, get and
set specific data elements, enumerate the collection, and clear the collection.

The following code sample shows how to access Application object state, by using
the C# indexer of the HttpApplicationState class.

Application.Lock();
if (Application["hitCount"] == null)
{
 Application["hitCount"] = 1;
}
else
{
 Application["hitCount"] = 1 + (int)Application["hitCount"];
}
Application.UnLock();

Note the use of the Lock and UnLock methods to serialize access to the Application
object state. Note also that the data is cast to the appropriate data type (in this case
an integer) when retrieved.

Serializing State
When you store state out-of-process, such as in a state server or in SQL Server, the
data must be serialized. Depending on the type of data that you store, this might
lead to a major performance hit.

If you store basic types such as integers, strings, and GUIDs, the .NET Framework
uses optimized methods to serialize the data. However, if you want to store non-
trivial types such as a Hashtable, the framework uses the BinaryFormatter by
default to perform serialization. This method of serialization is slower than that
used for basic types.

� To enable custom types to be serialized
1. Annotate your custom type with the [Serializable] attribute.

For example, the following code defines a serializable class named
CustomerDetails.

[Serializable]
public class CustomerDetails

Chapter 5: Managing State in Web Applications 113

{
 // Plus other members ...
}

2. Declare fields, properties, and methods in the class as usual.
Note that BinaryFormatter serializes all the fields of a class — even fields marked
as private. In this respect, binary serialization differs from the XmlSerializer
class; the XmlSerializer class serializes only public fields.

3. If you want selective fields to be excluded from binary serialization, annotate the
fields with the [NonSerialized] attribute.
The following example defines three fields; the mName and mAddress fields will
be serialized, but the mLastUpdate field will not be serialized.

[Serializable]
public class CustomerDetails
{
 private string mName;
 private string mAddress;
 [NonSerialized] private DateTime mLastUpdate;
 // Plus other members ...
}

If your custom type is particularly large, or if it contains information that can be
summarized into a more concise format, consider defining a custom serialization
format for your type.

� To define a custom serialization format
1. Implement the ISerializable interface in your custom type.
2. Provide a GetObject method to define how you want the object’s information to

be serialized.
3. Provide a deserialization constructor to enable a copy of the object to be reconsti-

tuted during deserialization.

For more information about how to perform custom serialization, see “Custom
Serialization” on MSDN (http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/cpguide/html/cpconcustomserialization.asp).

Caching State
Caching is a technique used to improve the performance and scalability of
applications. Caching is most useful in server-based applications, in particular Web
applications, but it also applies to many smart client situations. The purpose of
caching is to keep state that is expensive to create or retrieve in a more easily
accessible form or location. For example, when a user has an active session on your

Design and Implementation Guidelines for Web Clients114

Web application, if you keep a copy of their profile in memory instead of always
reading from a remote SQL Server, your application performance improves.

You must consider your caching requirements when you design the state
management aspects of your application. Caching can be difficult to implement in
an existing application, and the capabilities of the caching mechanism must be
appropriate to the lifetime, scope, and type of state you have to manage.

A complete discussion of caching is beyond the scope of this guide. For
comprehensive coverage, see the “Caching Architecture Guide for .NET Framework
Applications” on MSDN (http://msdn.microsoft.com/architecture/application
/default.aspx?pull=/library/en-us/dnbda/html/CachingArch.asp).

Summary
State management is a crucial consideration in Web applications. You must choose
the appropriate storage locations and mechanisms to manage state in your presenta-
tion layer to attain the optimal levels of security, scalability, manageability, and
extensibility.

6
Multithreading and Asynchronous
Programming in Web Applications

In This Chapter
This chapter describes how to use two closely related mechanisms to enable you to
design scaleable and responsive presentation layers for ASP.NET Web applications.
The two mechanisms are:
● Multithreading
● Asynchronous programming

Performance and responsiveness are important factors in the success of your appli-
cation. Users quickly tire of using even the most functional application if it is unre-
sponsive or regularly appears to freeze when the user initiates an action. Even
though it may be a back-end process or external service causing these problems,
it is the user interface where the problems become evident.

Multithreading and asynchronous programming techniques enable you to overcome
these difficulties. The Microsoft .NET Framework class library makes these mecha-
nisms easily accessible, but they are still inherently complex, and you must design
your application with a full understanding of the benefits and consequences that
these mechanisms bring. In particular, you must keep in mind the following points
as you decide whether to use one of these threading techniques in your application:
● More threads does not necessarily mean a faster application. In fact, the use of

too many threads has an adverse effect on the performance of your application.
For more information, see “Using the Thread Pool” later in this chapter.

● Each time you create a thread, the system consumes memory to hold context
information for the thread. Therefore, the number of threads that you can create
is limited by the amount of memory available.

Design and Implementation Guidelines for Web Clients116

● Implementation of threading techniques without sufficient design is likely to lead
to overly complex code that is difficult to scale and extend.

● You must be aware of what could happen when you destroy threads in your
application, and make sure you handle these possible outcomes accordingly.

● Threading-related bugs are generally intermittent and difficult to isolate, debug,
and resolve.

The following sections describe multithreading and asynchronous programming
from the perspective of presentation layer design in ASP.NET Web applications. For
information about how to use these mechanisms in Windows Forms-based applica-
tions, see “Multithreading and Asynchronous Programming in Windows Forms-
Based Applications” in the appendix of this guide.

Multithreading
There are many situations where using additional threads to execute tasks allows
you to provide your users with better performance and higher responsiveness in
your application, including:
● When there is background processing to perform, such as waiting for authoriza-

tion from a credit-card company in an online retailing Web application
● When you have a one-way operation, such as invoking a Web service to pass data

entered by the user to a back-end system
● When you have discrete work units that can be processed independently, such as

calling several SQL stored procedures simultaneously to gather information that
you require to build a Web response page

Used appropriately, additional threads allow you to avoid your user interface from
becoming unresponsive during long-running and computationally intensive tasks.
Depending on the nature of your application, the use of additional threads can
enable the user to continue with other tasks while an existing operation continues in
the background. For example, an online retailing application can display a “Credit
Card Authorization In Progress” page in the client’s Web browser while a back-
ground thread at the Web server performs the authorization task. When the authori-
zation task is complete, the background thread can return an appropriate “Success”
or “Failure” page to the client. For an example of how to implement this scenario,
see “How to: Execute a Long-Running Task in a Web Application” in Appendix B
of this guide.

Note: Do not display visual indications of how long it will take for a long-running task to
complete. Inaccurate time estimations confuse and annoy users. If you do not know the scope
of an operation, distract the user by displaying some other kind of activity indictor, such as an
animated GIF image, promotional advertisement, or similar page.

Chapter 6: Multithreading and Asynchronous Programming in Web Applications 117

Unfortunately, there is a run-time overhead associated with creating and destroying
threads. In a large application that creates new threads frequently, this overhead can
affect the overall application performance. Additionally, having too many threads
running at the same time can drastically decrease the performance of a whole
system as Windows tries to give each thread an opportunity to execute.

Using the Thread Pool
A common solution to the cost of excessive thread creation is to create a reusable
pool of threads. When an application requires a new thread, instead of creating one,
the application takes one from the thread pool. As the thread completes its task,
instead of terminating, the thread returns to the pool until the next time the applica-
tion requires another thread.

Thread pools are a common requirement in the development of scaleable, high-
performance applications. Because optimized thread pools are notoriously difficult
to implement correctly, the .NET Framework provides a standard implementation in
the System.Threading.ThreadPool class. The thread pool is created the first time
you create an instance of the System.Threading.ThreadPool class.

The runtime creates a single thread pool for each run-time process (multiple applica-
tion domains can run in the same runtime process.) By default, this pool contains a
maximum of 25 worker threads and 25 asynchronous I/O threads per processor
(these sizes are set by the application hosting the common language runtime).

Because the maximum number of threads in the pool is constrained, all the threads
may be busy at some point. To overcome this problem, the thread pool provides a
queue for tasks awaiting execution. As a thread finishes a task and returns to the
pool, the pool takes the next work item from the queue and assigns it to the thread
for execution.

Benefits of Using the Thread Pool
The runtime-managed thread pool is the easiest and most reliable approach to
implement multithreaded applications. The thread pool offers the following
benefits:
● You do not have to worry about thread creation, scheduling, management, and

termination.
● Because the thread pool size is constrained by the runtime, the chance of too

many threads being created and causing performance problems is avoided.
● The thread pool code is well tested and is less likely to contain bugs than a new

custom thread pool implementation.
● You have to write less code, because the thread start and stop routines are

managed internally by the .NET Framework.

Design and Implementation Guidelines for Web Clients118

The following procedure describes how to use the thread pool to perform a back-
ground task in a separate thread.

� To use the thread pool to perform a background task
1. Write a method that has the same signature as the WaitCallback delegate.

This delegate is located in the System.Threading namespace, and is defined
as follows.

[Serializable]
public delegate void WaitCallback(object state);

2. Create a WaitCallback delegate instance, specifying your method as the callback.
3. Pass the delegate instance into the ThreadPool.QueueUserWorkItem method to

add your task to the thread pool queue. The thread pool allocates a thread for
your method from the thread pool and calls your method on that thread.

In the following code, the AuthorizePayment method is executed in a thread
allocated from the thread pool.

using System.Threading;

public class CreditCardAuthorizationManager
{
 private void AuthorizePayment(object o)
 {
 // Do work here ...
 }

 public void BeginAuthorizePayment(int amount)
 {
 ThreadPool.QueueUserWorkItem(new WaitCallback(AuthorizePayment));
 }
}

For a more detailed discussion of the thread pool, see “Programming the Thread
Pool in the .NET Framework” on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dndotnet/html/progthrepool.asp).

Limitations of Using the Thread Pool
Unfortunately, the thread pool suffers limitations resulting from its shared nature
that may prevent its use in some situations. In particular, these limitations are:
● The .NET Framework also uses the thread pool for asynchronous processing,

placing additional demands on the limited number of threads available.
● Even though application domains provide robust application isolation bound-

aries, code in one application domain can affect code in other application
domains in the same process if it consumes all the threads in the thread pool.

Chapter 6: Multithreading and Asynchronous Programming in Web Applications 119

● When you submit a work item to the thread pool, you do not know when a
thread becomes available to process it. If the application makes particularly
heavy use of the thread pool, it may be some time before the work item executes.

● You have no control over the state and priority of a thread pool thread.
● The thread pool is unsuitable for processing simultaneous sequential operations,

such as two different execution pipelines where each pipeline must proceed from
step to step in a deterministic fashion.

● The thread pool is unsuitable when you need a stable identity associated with the
thread, for example if you want to use a dedicated thread that you can discover
by name, suspend, or abort.

In situations where use of the thread pool is inappropriate, you can create new
threads manually. Manual thread creation is significantly more complex than using
the thread pool, and it requires you to have a deeper understanding of the thread
lifecycle and thread management. A discussion of manual thread creation and
management is beyond the scope of this guide. For more information, see
“Threading” in the “.NET Framework Developer’s Guide” on MSDN (http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconthreading.asp).

Synchronizing Threads
If you use multiple threads in your applications, you must address the issue of
thread synchronization. Consider the situation where you have one thread iterating
over the contents of a hash table and another thread that tries to add or delete hash
table items. The thread that is performing the iteration is having the hash table
changed without its knowledge; this causes the iteration to fail.

The ideal solution to this problem is to avoid shared data. In some situations, you
can structure your application so that threads do not share data with other threads.
This is generally possible only when you use threads to execute simple one-way
tasks that do not have to interact or share results with the main application. The
thread pool described earlier in this chapter is particularly suited to this model
of execution.

Synchronizing Threads by Using a Monitor
It is not always feasible to isolate all the data a thread requires. To get thread syn-
chronization, you can use a Monitor object to serialize access to shared resources by
multiple threads. In the hash table example cited earlier, the iterating thread would
obtain a lock on the Hashtable object using the Monitor.Enter method, signaling to
other threads that it requires exclusive access to the Hashtable. Any other thread
that tries to obtain a lock on the Hashtable waits until the first thread releases the
lock using the Monitor.Exit method.

Design and Implementation Guidelines for Web Clients120

The use of Monitor objects is common, and both Visual C# and Visual Basic .NET
include language level support for obtaining and releasing locks:
● In C#, the lock statement provides the mechanism through which you obtain the

lock on an object as shown in the following example.

lock (myHashtable)
{
 // Exclusive access to myHashtable here...
}

● In Visual Basic .NET, the SyncLock and End SyncLock statements provide the
mechanism through which you obtain the lock on an object as shown in the
following example.

SyncLock (myHashtable)
 ' Exclusive access to myHashtable here...
End SyncLock

When entering the lock (or SyncLock) block, the static (Shared in Visual Basic .NET)
System.Monitor.Enter method is called on the specified expression. This method
blocks until the thread of execution has an exclusive lock on the object returned by
the expression.

The lock (or SyncLock) block is implicitly contained by a try statement whose
finally block calls the static (or Shared) System.Monitor.Exit method on the expres-
sion. This ensures the lock is freed even when an exception is thrown. As a result, it
is invalid to branch into a lock (or SyncLock) block from outside of the block.

For more information about the Monitor class, see “Monitor Class” in the “.NET
Framework Class Library” on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpref/html/frlrfsystemthreadingmonitorclasstopic.asp).

Using Alternative Thread Synchronization Mechanisms
The .NET Framework provides several other mechanisms that enable you to syn-
chronize the execution of threads. These mechanisms are all exposed through classes
in the System.Threading namespace. The mechanisms relevant to the presentation
layer are listed in Table 6.1.

Chapter 6: Multithreading and Asynchronous Programming in Web Applications 121

Table 6.1: Thread Synchronization Mechanisms

Mechanism Description Links for More Information

ReaderWriterLock Defines a lock that implements http://msdn.microsoft.com/library
single-writer/multiple-reader /default.asp?url=/library/en-us
semantics; this allows many /cpref/html/frlrfsystemthreading
readers, but only a single writer, readerwriterlockclasstopic.asp
to access a synchronized object.

Used where classes do much
more reading than writing.

AutoResetEvent Notifies one or more waiting http://msdn.microsoft.com/library
threads that an event has /default.asp?url=/library/en-us
occurred. /cpref/html/frlrfsystemthreading

autoreseteventclasstopic.asp
When the AutoResetEvent
transitions from a non-signaled to
signaled state, it allows only a
single waiting thread to resume
execution before reverting to the
non-signaled state.

ManualResetEvent Notifies one or more waiting http://msdn.microsoft.com/library
threads that an event has /default.asp?url=/library/en-us
occurred. /cpref/html/frlrfsystemthreading

manualreseteventclasstopic.asp
When the ManualResetEvent
transitions from a non-signaled to
signaled state, all waiting threads
are allowed to resume execution.

Mutex A Mutex can have a name; this http://msdn.microsoft.com/library
allows threads in other processes /default.asp?url=/library/en-us
to synchronize on the Mutex; only /cpref/html/frlrfsystemthreading
one thread can own the Mutex at mutexclasstopic.asp
any particular time providing a
machine-wide synchronization
mechanism.

Another thread can obtain the
Mutex when the owner releases it.

Principally used to make sure only
a single application instance can
be run at the same time.

Design and Implementation Guidelines for Web Clients122

With such a rich selection of synchronization mechanisms available to you, you
must plan your thread synchronization design carefully and consider the following
points:
● It is a good idea for threads to hold locks for the shortest time possible. If threads

hold locks for long periods of time, the resulting thread contention can become a
major bottleneck, negating the benefits of using multiple threads in the first place.

● Be careful about introducing deadlocks caused by threads waiting for locks held
by other threads. For example, if one thread holds a lock on object A and waits
for a lock on object B, while another thread holds a lock on object B, but waits to
lock object A, both threads end up waiting forever.

● If for some reason an object is never unlocked, all threads waiting for the lock end
up waiting forever. The lock (C#) and SyncLock (Visual Basic .NET) statements
make sure that a lock is always released even if an exception occurs. If you use
Monitor.Enter manually, you must make sure that your code calls Monitor.Exit.

Using multiple threads can significantly enhance the performance of your presenta-
tion layer components, but you must make sure you pay close attention to thread
synchronization issues to prevent locking problems.

Troubleshooting
The difficulties in identifying and resolving problems in multi-threaded applications
occur because the CPU’s scheduling of threads is non-deterministic; you cannot
reproduce the exact same code execution sequence across multiple test runs. This
means that a problem may occur one time you run the application, but it may not
occur another time you run it. To make things worse, the steps you typically take to
debug an application — such as using breakpoints, stepping through code, and
logging — change the threading behavior of a multithreaded program and frequently
mask thread-related problems. To resolve thread-related problems, you typically
have to set up long-running test cycles that log sufficient debug information to allow
you to understand the problem when it occurs.

Note: For more in-depth information about debugging, see “Production Debugging for .NET
Framework Applications” on MSDN (http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnbda/html/DBGrm.asp).

Chapter 6: Multithreading and Asynchronous Programming in Web Applications 123

Using Asynchronous Operations
Some operations take a long time to complete. These operations generally fall into
two categories:
● I/O bound operations such as calling SQL Server, calling a Web service, or calling

a remote object using .NET Framework remoting
● CPU-bound operations such as sorting collections, performing complex math-

ematical calculations, or converting large amounts of data

The use of additional threads to execute long running tasks is a common way to
maintain responsiveness in your application while the operation executes. Because
threads are used so frequently to overcome the problem of long running processes,
the .NET Framework provides a standardized mechanism for the invocation of
asynchronous operations that saves you from working directly with threads.

Typically, when you invoke a method, your application blocks until the method
is complete; this is known as synchronous invocation. When you invoke a method
asynchronously, control returns immediately to your application; your application
continues to execute while the asynchronous operation executes independently. Your
application either monitors the asynchronous operation or receives notification by
way of a callback when the operation is complete; this is when your application can
obtain and process the results.

The fact that your application does not block while the asynchronous operation
executes means the application can perform other processing. The approach you use
to invoke the asynchronous operation (discussed in the next section) determines
how much scope you have for processing other tasks while waiting for the operation
to complete.

Using the .NET Framework Asynchronous Execution Pattern
The .NET Framework allows you to execute any method asynchronously using the
asynchronous execution pattern. This pattern involves the use of a delegate and
three methods named Invoke, BeginInvoke, and EndInvoke.

The following example declares a delegate named AuthorizeDelegate. The delegate
specifies the signature for methods that perform credit card authorization.

public delegate int AuthorizeDelegate(string creditcardNumber,
 DateTime expiryDate,
 double amount);

When you compile this code, the compiler generates Invoke, BeginInvoke, and
EndInvoke methods for the delegate. Figure 6.1 on the next page shows how these
methods appear in the IL Disassembler.

Design and Implementation Guidelines for Web Clients124

Figure 6.1
MSIL signatures for the Invoke, BeginInvoke, and EndInvoke methods in a delegate

The equivalent C# signatures for these methods are as follows.

// Signature of compiler-generated BeginInvoke method
public IAsyncResult BeginInvoke(string creditcardNumber,
 DateTime expiryDate,
 double amount,
 AsyncCallback callback,
 object asyncState);

// Signature of compiler-generated EndInvoke method
public int EndInvoke(IAsyncResult ar);

// Signature of compiler-generated Invoke method
public int Invoke(string creditcardNumber,
 DateTime expiryDate,
 double amount);

The following sections describe the BeginInvoke, EndInvoke, and Invoke methods,
and clarify their role in the asynchronous execution pattern. For full details on how
to use the asynchronous execution pattern, see “Including Asynchronous Calls” in
the “.NET Framework Developer’s Guide” on MSDN (http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/cpguide/html/cpconasynchronousprogramming.asp).

Performing Synchronous Execution with the Invoke Method
The Invoke method synchronously executes the method referenced by the delegate
instance. If you call a method by using Invoke, your code blocks until the method
returns.

Using Invoke is similar to calling the referenced method directly, but there is one
significant difference. The delegate simulates synchronous execution by calling
BeginInvoke and EndInvoke internally. Therefore your method is executed in the
context of a different thread to the calling code, even though the method appears to
execute synchronously. For more information, see the description of BeginInvoke in
the next section.

Chapter 6: Multithreading and Asynchronous Programming in Web Applications 125

Initiating Asynchronous Operations with the BeginInvoke Method
The BeginInvoke method initiates the asynchronous execution of the method
referenced by the delegate instance. Control returns to the calling code immediately,
and the method referenced by the delegate executes independently in the context of
a thread from the runtime’s thread pool.

The “Multithreading” section earlier in this chapter describes the thread pool in
detail; however, it is worth highlighting the consequences of using a separate thread,
and in particular one drawn from the thread pool:
● The runtime manages the thread pool. You have no control over the scheduling of

the thread, nor can you change the thread’s priority.
● The runtime’s thread pool contains 25 threads per processor. If you invoke

asynchronous operations too liberally, you can easily exhaust the pool causing
the runtime to queue excess asynchronous operations until a thread becomes
available.

● The asynchronous method runs in the context of a different thread to the calling
code. This causes problems when asynchronous operations try to update Win-
dows Forms components.

The signature of the BeginInvoke method includes the same arguments as those
specified by the delegate signature. It also includes two additional arguments to
support asynchronous completion:
● callback argument – Specifies an AsyncCallback delegate instance. If you specify

a non-null value for this argument, the runtime calls the specified callback
method when the asynchronous method completes. If this argument is a null
reference, you must monitor the asynchronous operation to determine when it is
complete. For more information, see “Managing Asynchronous Completion with
the EndInvoke Method” later in this chapter.

● asyncState argument – Takes a reference to any object. The asynchronous method
does not use this object, but it is available to your code when the method com-
pletes; this allows you to associate useful state information with an asynchronous
operation. For example, this object allows you to map results against initiated
operations in situations where you initiate many asynchronous operations that
use a common callback method to perform completion.

The IAsyncResult object returned by BeginInvoke provides a reference to the
asynchronous operation. You can use the IAsyncResult object for the following
purposes:
● Monitor the status of an asynchronous operation
● Block execution of the current thread until an asynchronous operation completes
● Obtain the results of an asynchronous operation using the EndInvoke method

The following procedure shows how to invoke a method asynchronously by using
the BeginInvoke method.

Design and Implementation Guidelines for Web Clients126

� To invoke a method asynchronously by using BeginInvoke
1. Declare a delegate with a signature to match the method you want to execute.
2. Create a delegate instance containing a reference to the method you want to

execute.
3. Execute the method asynchronously by calling the BeginInvoke method on the

delegate instance you just created.

The following code fragment demonstrates the implementation of these steps. The
example also shows how to register a callback method; this method is called auto-
matically when the asynchronous method completes. For more information about
defining callback methods and other possible techniques for dealing with asynchro-
nous method completion, see “Managing Asynchronous Completion with the
EndInvoke Method” later in this chapter.

public class CreditCardAuthorizationManager
{
 // Delegate, defines signature of method(s) you want to execute asynchronously
 public delegate int AuthorizeDelegate(string creditcardNumber,
 DateTime expiryDate,
 double amount);

 // Method to initiate the asynchronous operation
 public void StartAuthorize()
 {
 AuthorizeDelegate ad = new AuthorizeDelegate(AuthorizePayment);
 IAsyncResult ar = ad.BeginInvoke(creditcardNumber,
 expiryDate,
 amount,
 new AsyncCallback(AuthorizationComplete),
 null);
 }

 // Method to perform a time-consuming operation (this method executes
 // asynchronously on a thread from the thread pool)
 private int AuthorizePayment(string creditcardNumber,
 DateTime expiryDate,
 double amount)
 {
 int authorizationCode = 0;

 // Open connection to Credit Card Authorization Service ...
 // Authorize Credit Card (assigning the result to authorizationCode) ...
 // Close connection to Credit Card Authorization Service ...
 return authorizationCode;
 }

 // Method to handle completion of the asynchronous operation
 public void AuthorizationComplete(IAsyncResult ar)
 {
 // See "Managing Asynchronous Completion with the EndInvoke Method"

Chapter 6: Multithreading and Asynchronous Programming in Web Applications 127

 // later in this chapter.
 }
}

The following section describes all the possible ways to manage asynchronous
method completion.

Managing Asynchronous Completion with the EndInvoke Method
In most situations, you will want to obtain the return value of an asynchronous
operation that you initiated. To obtain the result, you must know when the opera-
tion is complete. The asynchronous execution pattern provides the following mecha-
nisms to determine whether an asynchronous operation is complete:
● Blocking – This is rarely used because it provides few advantages over synchro-

nous execution. One use for blocking is to perform impersonation on a different
thread. It is never used for parallelism.

● Polling – It is generally a good idea to not use this because it is inefficient; use
waiting or callbacks instead.

● Waiting – This is typically used for displaying a progress or activity indicator
during asynchronous operations.

● Callbacks – These provide the most flexibility; this allows you to execute other
functionality while an asynchronous operation executes.

The process involved in obtaining the results of an asynchronous operation varies
depending on the method of asynchronous completion you use. However, eventu-
ally you must call the EndInvoke method of the delegate. The EndInvoke method
takes an IAsyncResult object that identifies the asynchronous operation to obtain
the result from. The EndInvoke method returns the data that you would receive if
you called the original method synchronously.

The following sections explore each approach to asynchronous method completion
in more detail.

Using the Blocking Approach

To use blocking, call EndInvoke on the delegate instance and pass the IAsyncResult
object representing an incomplete asynchronous operation. The calling thread blocks
until the asynchronous operation completes. If the operation is already complete,
EndInvoke returns immediately.

Design and Implementation Guidelines for Web Clients128

The following code sample shows how to invoke a method asynchronously, and
then block until the method has completed.

AuthorizeDelegate ad = new AuthorizeDelegate(AuthorizePayment);
IAsyncResult ar = ad.BeginInvoke(creditcardNumber, // 1st param into async method
 expiryDate, // 2nd param into async method
 amount, // 3rd param into async method
 null, // No callback
 null); // No additional state

// Block until the asynchronous operation is complete
int authorizationCode = ad.EndInvoke(ar);

The use of blocking might seem a strange approach to asynchronous completion,
offering the same functionality as a synchronous method call. However, occasionally
blocking is a useful approach because you can decide when your thread enters the
blocked state as opposed to synchronous execution; synchronous execution blocks
immediately. Blocking can be useful if the user initiates an asynchronous operation
after which there are a limited number of steps or operations they can perform
before the application must have the result of the asynchronous operation.

Using the Polling Approach

To use polling, write a loop that repeatedly tests the completion state of an asyn-
chronous operation using the IsCompleted property of the IAsyncResult object.

The following code sample shows how to invoke a method asynchronously, and
then poll until the method completes.

AuthorizeDelegate ad = new AuthorizeDelegate(AuthorizePayment);
IAsyncResult ar = ad.BeginInvoke(creditcardNumber, // 1st param into async method
 expiryDate, // 2nd param into async method
 amount, // 3rd param into async method
 null, // No callback
 null); // No additional state

// Poll until the asynchronous operation completes
while (!ar.IsCompleted)
{
 // Do some other work...
}

// Get the result of the asynchronous operation
int authorizationCode = ad.EndInvoke(ar);

Polling is a simple but inefficient approach that imposes major limitations on what
you can do while the asynchronous operation completes. Because your code is in a
loop, the user’s workflow is heavily restricted, providing few benefits over synchro-
nous method invocation. Polling is really only suitable for displaying a progress

Chapter 6: Multithreading and Asynchronous Programming in Web Applications 129

indicator on smart client applications during short asynchronous operations.
Generally, it is a good idea to avoid using polling and look instead to using waiting
or callbacks.

Using the Waiting Approach

Waiting is similar to blocking, but you can also specify a timeout value after which
the thread resumes execution if the asynchronous operation is still incomplete.
Using waiting with timeouts in a loop provides functionality similar to polling, but
it is more efficient because the runtime places the thread in a CPU efficient sleep
instead of using a code level loop.

To use the waiting approach, you use the AsyncWaitHandle property of the
IAsyncResult object. The AsyncWaitHandle property returns a WaitHandle object.
Call the WaitOne method on this object to wait for a single asynchronous operation
to complete.

The following code sample shows how to invoke a method asynchronously, and
then wait for a maximum of 2 seconds for the method to complete.

AuthorizeDelegate ad = new AuthorizeDelegate(AuthorizePayment);
IAsyncResult ar = ad.BeginInvoke(creditcardNumber, // 1st param into async method
 expiryDate, // 2nd param into async method
 amount, // 3rd param into async method
 null, // No callback
 null); // No additional state

// Wait up to 2 seconds for the asynchronous operation to complete
WaitHandle waitHandle = ar.AsyncWaitHandle;
waitHandle.WaitOne(2000, false);

// If the asynchronous operation completed, get its result
if (ar.IsCompleted)
{
 // Get the result of the asynchronous operation
 int authorizationCode = ad.EndInvoke(ar);
 ...
}

Despite the advantages, waiting imposes the same limitations as polling — the
functionality available to the user is restricted because you are in a loop, even
though it is an efficient one. Waiting is useful if you want to show a progress or
activity indicator when executing long-running processes that must complete before
the user can proceed.

Another advantage of waiting is that you can use the static methods of the
System.Threading.WaitHandle class to wait on a set of asynchronous operations.
You can wait either for the first one to complete (using the WaitAny method) or for
them all to complete (using the WaitAll method). This is very useful if you initiate a
number of asynchronous operations at the same time and have to coordinate the

Design and Implementation Guidelines for Web Clients130

execution of your application based on the completion of one or more of these
operations.

Using Callbacks

When you specify an AsyncCallback delegate instance in the BeginInvoke method,
you do not have to actively monitor the asynchronous operation for completion.
Instead, when the operation completes, the runtime calls the method referenced by
the AsyncCallback delegate and passes an IAsyncResult object identifying the
completed operation. The runtime executes the callback method in the context of a
thread from the runtime’s thread pool.

The following code sample shows how to invoke a method asynchronously, and
specify a callback method that will be called on completion.

AuthorizeDelegate ad = new AuthorizeDelegate(AuthorizePayment);
IAsyncResult ar = ad.BeginInvoke(creditcardNumber,
 expiryDate,
 amount,
 new AsyncCallback(AuthorizationComplete),
 null);
...

// Method to handle completion of the asynchronous operation
public void AuthorizationComplete(IAsyncResult ar)
{
 // Retrieve the delegate that corresponds to the asynchronous method
 AuthorizeDelegate ad = (AuthorizeDelegate)((AsyncResult)ar).AsyncDelegate;

 // Get the result of the asynchronous method
 int authorizationCode = ad.EndInvoke(ar);
 }
}

The great benefit of using callbacks is that your code is completely free to continue
with other processes, and it does not constrain the workflow of the application user.
However, because the callback method executes in the context of another thread,
you face the same threading issues highlighted earlier in the discussion of the
BeginInvoke method.

Using Built-In Asynchronous I/O Support
I/O is a situation where you frequently use asynchronous method calls. Because of
this, many .NET Framework classes that provide access to I/O operations expose
methods that implement the asynchronous execution pattern. This saves you from
declaring and instantiating delegates to execute the I/O operations asynchronously.
The following list identifies the most common scenarios where you would use

Chapter 6: Multithreading and Asynchronous Programming in Web Applications 131

asynchronous I/O in your presentation layer and provides a link to a document
where you can find implementation details:
● Consuming XML Web services:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconinvokingwebservicesasynchronously.asp

● Calling methods on remote objects using .NET Framework remoting:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconasynchronousremoting.asp

● File access:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconasynchronousfileio.asp

● Network communications:
● http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html

/cpconmakingasynchronousrequests.asp
● http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html

/cpconusingnon-blockingclientsocket.asp
● http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html

/cpconusingnon-blockingserversocket.asp
● Microsoft message queue:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html
/vbconAsynchronousProcessing.asp?frame=true

Using the built-in asynchronous capabilities of the .NET Framework makes the
development of asynchronous solutions easier than it would be to explicitly create
delegates to implement asynchronous operations.

Summary
Application performance and scalability can be greatly enhanced using
multithreading and asynchronous operations. Wherever possible, try to use these
techniques to increase the responsiveness of your presentation layer components.

7
Globalization and Localization

In This Chapter
This chapter describes how to address globalization and localization issues in Web
applications. The chapter includes the following sections:
● Understanding Globalization and Localization Issues
● Using Cultures
● Formatting Data
● Creating Localized Resources

Applications might be used in multiple geographical locations and cultures; this
can bring many challenges to software architects, particularly when designing the
presentation layer. This chapter describes how to address these challenges so that
your applications can support as broad a customer base as possible. This chapter
also describes how to design and implement your applications so that they can be
easily extended to support new cultures when necessary.

For a summary of best practices and recommendations discussed in this chapter,
see “Best Practices for Developing World-Ready Applications” on MSDN
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconbestpracticesforglobalapplicationdesign.asp).

Understanding Globalization and Localization Issues
Globalization is the term given to the process of making sure that an application does
not contain any internal dependencies on a particular culture; for example, it is best
for a globalized application to not have any hard-coded number formats that can
differ across multiple countries, or to assume a particular sorting mechanism for

Design and Implementation Guidelines for Web Clients134

strings. A globalized application can correctly accept, process, and display a world-
wide assortment of scripts, data formats, and languages.

Localization is the process of adapting an application, and in particular the user
interface, to suit a specific culture. Localization typically involves tasks such as
translating strings into different natural languages, resizing user interface elements
to fit on the screen, and regenerating images for specific cultures.

To simplify localization efforts and minimize costs, deal with globalization and
localization issues during the design phase of a project. Failure to correctly identify
such requirements at design time can lead to expensive and inferior attempts at
localization later in development.

There are several issues you must take into account:
● Natural language issues – Natural languages differ in display, alphabets, gram-

mar, and syntactical rules. For more information about how this affects globaliza-
tion and localization efforts, see “Language Issues” on MSDN (http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html
/vxconlanguageissues.asp).

● Data formatting issues – Cultures around the world have different rules for
formatting data such as numbers, dates, and times. These issues are described in
the “Formatting Data” section later in this chapter. For additional information,
see “Formatting Issues” on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/vsent7/html/vxconformattingissues.asp).

● String-related issues – To support different cultures, user interfaces that display
text may have to be amenable to change. For information about the issues to
consider, see “String-Related Issues” on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/vsent7/html/vxconstring-relatedconsiderations.asp).

● User interface issues – In addition to text, user interfaces also typically contain
elements such as images, user interface controls, and message boxes. To support
localization, you must design these user interface elements carefully. For informa-
tion about the user interface issues to consider, see “User Interface Issues” on
MSDN (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html
/vxcondesigninginternational-awareuserinterface.asp).

Globalization and localization are particularly important in Web applications be-
cause users can potentially access these applications from anywhere in the world. By
providing culture-sensitive user interfaces and application logic, you increase the
reach of the application and improve the user’s experience when they use the
application.

Effective globalization and localization helps reduce the effort you expend to de-
velop world-ready Web applications and also simplifies maintenance and extensibil-
ity after the application has been deployed.

Chapter 7: Globalization and Localization 135

Additional Information
For a summary of general best practices for globalization and localization, see “Best
Practices for Globalization and Localization” on MSDN (http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/vsent7/html/vxconbestglobalizationpractices.asp).

For advice on how to test your application for globalization and localization, see
“Testing for Globalization and Localization” on MSDN (http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/vsent7/html
/vxcontestingforglobalizationlocalization.asp).

Using Cultures
The various rules for languages and countries, such as number formats, currency
symbols, and sort orders, are aggregated into a number of standard cultures.

Each culture is identified by a culture ID as defined in RFC 1766; each culture ID is
made up of a neutral culture code indicating the language of the culture and an
optional specific culture code indicating the country represented by the culture.
Neutral culture codes are written in lowercase, for example “en” represents English,
while “fr” represents French. Specific culture codes are appended in uppercase,
allowing specific language and country combinations such as “en-US” (English in
the United States), “en-GB” (English in the United Kingdom), “fr-FR” (French in
France) and “fr-CA” (French in Canada) to be represented.

The .NET Framework supports all cultures defined in RFC 1766 in addition to an
invariant culture for culturally-insensitive data; an invariant culture uses an empty
string as the culture ID and is defined as English language with no specific country.
A culture is represented programmatically in the .NET Framework using the
System.Globalization.CultureInfo class.

Identifying the Current Culture
On any particular computer running Windows, the system’s current culture is
determined by the system regional and language settings. By default, .NET Frame-
work applications inherit the current culture from these settings and use it when
performing tasks such as formatting numbers, sorting strings, and displaying
currency.

The .NET Framework actually uses a combination of two cultures to handle different
aspects of localization:
● Current culture – Determines how various data types are formatted, such as

numbers and dates.

Design and Implementation Guidelines for Web Clients136

● Current user interface culture – Determines which localized resource file the
resource manager loads. For more information about how to create localized
resource files, see “Creating Localized Resources” later in this chapter.

These two aspects of localization are represented by the CurrentCulture and
CurrentUICulture static properties of the CultureInfo class:
● CultureInfo.CurrentCulture – Returns the Thread.CurrentCulture property; this

property indicates the culture of the currently executing thread.
● CultureInfo.CurrentUICulture – Returns the Thread.CurrentUICulture property;

this property indicates the user interface culture of the currently executing
thread.

The following code shows how to get the culture and user interface culture of the
currently executing thread.

using System.Globalization;
using System.Threading;
…
string currentCulture = CultureInfo.CurrentCulture.Name;
string currentUICulture = CultureInfo.CurrentUICulture.Name;

In addition to retrieving the current culture and user interface culture, it is also
possible to change these settings to influence how information is presented to the
user. The following section describes how to use an alternative culture.

Using an Alternative Culture
In most Windows-based applications (and on smart-device applications), it is rea-
sonable to assume the system regional and language settings indicate the culture
that an individual application uses. However, in some cases you might want to
allow the user to select an alternative culture in your application, regardless of the
underlying system settings.

For Web applications, the requirement to programmatically use an alternative
culture is even more pronounced. The underlying system settings indicate the
regional and language settings of the server hosting the application, not necessarily
those of the user accessing it.

There are various ways to set the culture and user interface culture in an ASP.NET
Web application, depending on your intended scope:
● Set the culture and user interface culture in Web.config – Use this approach if

you want to set the default culture and user interface culture for all the pages in a
Web application. The following fragment from a Web.config file illustrates this
technique.

Chapter 7: Globalization and Localization 137

<configuration>
 <system.web>
 <globalization culture=»en-US» uiCulture=»de-DE»/>
 </system.web>
</configuration>

● Set the culture and user interface culture in the @ Page directive – Use this
approach if you want to override the default culture and user interface culture for
a specific page in a Web application. The following fragment from an .aspx file
illustrates this technique.

<%@ Page Culture="en-GB" UICulture="Fr-FR" ... %>

● Set the culture and user interface culture programmatically – Use this approach
if you want to select which culture and user interface culture to use at run time.

Note: You cannot change a thread’s culture in semi-trusted code; changing the culture
requires a SecurityPermission with the SecurityPermissionFlag,ControlThread set.
Manipulating threads is dangerous because of the security state associated with threads.
Therefore, this permission should be given only to trustworthy code, and then only as
necessary.

The following code in an ASP.NET Web page retrieves the user’s language
preferences from the Request.UserLanguages property and uses the culture and
user interface culture for the preferred language.

using System.Globalization;
using System.Threading;

// Set the culture to the browser's accept language
Thread.CurrentThread.CurrentCulture =
 CultureInfo.CreateSpecificCulture(Request.UserLanguages[0]);

// Set the user interface culture to the browser's accept language
Thread.CurrentThread.CurrentUICulture =
 new CultureInfo(Request.UserLanguages[0]);

Note: You cannot change the CurrentCulture or CurrentUICulture properties when program-
ming with the .NET Compact Framework. If you have to support per-application localization on
smart-client devices such as Pocket PCs, you must use a CultureInfo object to store the user-
selected culture internally, and use it explicitly whenever loading resource files or formatting
data.

Design and Implementation Guidelines for Web Clients138

Formatting Data
Different cultures format data in different ways. An example of this is the formatting
of numbers in different currencies, but there are many other data type-specific issues
that must be considered when using multiple cultures:
● Localizing string data
● Localizing numeric data
● Localizing date and time data

The following sections describe each of these localization issues.

Localizing String Data
Different cultures use different character sets to represent string values. Generally,
a globalized application stores all strings internally as Unicode and converts them
to the appropriate character set code-pages only if necessary to display them (for
example by sending a code-page specific array of bytes to a browser). You can use
the static GetEncoding method of the System.Text.Encoding class to retrieve an
Encoding object for a specific code-page, and then use its GetBytes method to
convert Unicode strings to a code-page specific byte array.

Another aspect of dealing with localized string data is that sort orders are culture-
specific. For example, an application that sorts the names Ändré and Andrew
produces different results depending on the culture used (in German cultures,
Ändré is at the beginning; while in Swedish cultures, Andrew is first). The static
Sort method of the Array class automatically sorts according to the
Thread.CurrentThread.CurrentCulture setting.

You can also compare strings using the static Compare method of the String class;
this allows a CultureInfo object to be passed so that the sort order from a culture
other than the current culture can be used. Alternatively, the CultureInfo class has a
CompareInfo object property; this provides a Compare method similar to that of the
String class.

Localizing Numeric Data
You can display localized number formats using the ToString method of the base
numeric types (such as int, long, and double) or any derived class that implements
the IFormattable interface.

With the ToString method, you can pass a format parameter to indicate the kind of
numeric formatting required (such as currency or decimal) to format the number
according to the Thread.CurrentThread.CurrentCulture setting.

Chapter 7: Globalization and Localization 139

The following example formats a double value as a currency by passing the “c”
format string to ToString; if the current culture is en-US, the result string is format-
ted as “$12,345,678,910.11.”

double number = 12345678910.11;
string resultString = number.ToString("c");

You can also pass a CultureInfo object in the provider parameter of the ToString
method to format the number for an alternative culture. The following example
formats a double value as a currency using the “fr-FR” culture. The result string is
formatted as “12 345 678 910,11 .”

double number = 12345678910.11;
string resultString = number.ToString("c", new CultureInfo("fr-FR"));

For a complete list of the numeric format strings, see “Standard Numeric Format
Strings” on MSDN (http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/cpguide/html/cpconstandardnumericformatstrings.asp).

Localizing Date and Time Data
Date and time data presents three challenges in respect to localization:
● Formatting dates
● Using different calendars
● Handling time zones

The following sections describe how to address each of these issues.

Formatting Dates
To display dates in an appropriate localized format, you can use any of the
ToXxxxString methods (such as ToShortDateString or ToShortTimeString) pro-
vided by the DateTime structure; these methods automatically format the date
according to the Thread.CurrentThread.CurrentCulture setting.

Formating Dates and Times for a Particular Culture
The following example sets the current culture to “fr-FR,” and then formats a
DateTime object as a short and long date string, followed by a short and long time
string. Sample results are shown in each case.

Thread.CurrentThread.CurrentCulture = new CultureInfo("fr-FR");
DateTime dt = DateTime.Now;

string shortDateString = dt.ToShortDateString(); // "31/12/2003"
string longDateString = dt.ToLongDateString(); // "mercredi 31 décembre 2003"

string shortTimeString = dt.ToShortTimeString(); // "09:32"
string longTimeString = dt.ToLongTimeString(); // "09:32:57"

Design and Implementation Guidelines for Web Clients140

Customizing Date and Time Formatting for a Particular Culture

If you want more control over how the date or time is formatted, you can use the
DateTimeFormat property of a CultureInfo object to obtain a DateTimeFormatInfo
object for that culture. DateTimeFormatInfo has properties and methods that enable
you to specify how to format items such as long dates, short dates, long times, and
short times.

The following example modifies the long date pattern for the current culture, so that
long dates appear in the format [year—monthName—day].

DateTimeFormatInfo fmt = Thread.CurrentThread.CurrentCulture.DateTimeFormat;
fmt.LongDatePattern = @"\[yyyy-MMMM-dd\]";

string longDateString = DateTime.Now.ToLongDateString(); // «[2003-décembre-31]»

Parsing Culture-Specific Date and Time Strings

To read a date from a string into a DateTime object, you can use the static Parse
method of the DateTime structure. By default, the Parse method assumes that the
date is formatted according to the Thread.CurrentThread.CurrentCulture setting,
but you can also pass a CultureInfo object to read dates in formats for an alternative
culture.

The following example parses a date string that has been formatted using the “fr-
FR” culture.

DateTime dt = DateTime.Parse(aFrenchDateString, new CultureInfo("fr-FR"));

Using Different Calendars
Although most people are familiar with the Gregorian calendar, some cultures
provide alternative calendars that your application might have to support. A global-
ized application typically displays and uses calendars based on the current culture.

The .NET Framework provides a Calendar class that you can use to perform calen-
dar-related operations. Each culture has a default calendar (available from the
Calendar property of the CultureInfo object) and a collection of optional calendars
(available from the OptionalCalendars property of the CultureInfo object). The
.NET Framework includes the following Calendar implementations:
GregorianCalendar, HebrewCalendar, HijriCalendar, JapaneseCalendar,
JulianCalendar, KoreanCalendar, TaiwanCalendar, and ThaiBuddhistCalendar.

Enumerating Calendars for a Culture

The following example retrieves the default calendar and any optional calendars for
the current culture. Note that GregorianCalendar has a CalendarType property; this
indicates the language version of the GregorianCalendar.

Chapter 7: Globalization and Localization 141

// Display details for the default calendar for the current culture
Calendar calendar = Thread.CurrentThread.CurrentCulture.Calendar;
Console.Write("Default calendar: {0}", calendar);
if (calendar is GregorianCalendar)
 Console.Write(", subtype: {0}", ((GregorianCalendar)calendar).CalendarType);

// Display details for all the optional calendars for the current culture
Calendar[] calendars = Thread.CurrentThread.CurrentCulture.OptionalCalendars;
foreach (Calendar cal in calendars)
{
 Console.Write("\nOptional calendar: {0}", cal);

 if (cal is GregorianCalendar)
 Console.Write(", subtype: {0}", ((GregorianCalendar)cal).CalendarType);
}

The following sample output shows the default calendar and optional calendars for
the “ja-JP” culture.

Default calendar: System.Globalization.GregorianCalendar, subtype: Localized
Optional calendar: System.Globalization.JapaneseCalendar
Optional calendar: System.Globalization.GregorianCalendar, subtype: USEnglish
Optional calendar: System.Globalization.GregorianCalendar, subtype: Localized

Interpreting Dates and Times for a Culture

The following example shows how to interpret dates and times correctly for a
particular calendar. The culture is set to “he-IL” (Hebrew in Israel), and the calendar
is set to the HebrewCalendar. A DateTime object is then created using the “he-IL”
culture, and the HebrewCalendar is used to retrieve the year according to the
Hebrew calendar. The year is also obtained directly by using the DateTime.Year
property; note that the DateTime structure always returns date information in the
GregorianCalendar.

// Set the current culture to "he-IL"
CultureInfo he = new CultureInfo("he-IL");
Thread.CurrentThread.CurrentCulture = he;

// Use the Hebrew calendar for date-and-time formatting
he.DateTimeFormat.Calendar = new HebrewCalendar();

// Create a DateTime, using HebrewCalendar rules
DateTime dt = new DateTime(5763, 11, 4, he.DateTimeFormat.Calendar);

// Retrieve the year, using HebrewCalendar rules
Console.WriteLine("Hebrew year: {0}", he.DateTimeFormat.Calendar.GetYear(dt));

// Retrieve the year, using GregorianCalendar rules
Console.WriteLine("Gregorian year: {0}", dt.Year);

Design and Implementation Guidelines for Web Clients142

The preceding example produces the following output.

Hebrew year: 5763
Gregorian year: 2003

Displaying Calendar Controls for a Culture

When you add a Calendar control to an ASP.NET Web page, the calendar is
displayed using the current culture. Figure 7.1 shows how a Calendar control
appears in the “en-US” culture.

Figure 7.1
Calendar control in an ASP.NET Web form, using the “en-US” culture

To display the calendar control in a culture-specific fashion, add the following code
to the Page_Load method (or another appropriate location) in your Web application.

// Set the culture to "Hebrew in Israel"
CultureInfo cultureInfo = new CultureInfo("he-IL");
Thread.CurrentThread.CurrentCulture = cultureInfo;

// Use the Hebrew calendar for formatting and interpreting dates and times
cultureInfo.DateTimeFormat.Calendar = new HebrewCalendar();

Figure 7.2 shows how the Calendar control appears in the “he-IL” culture.

The Calendar control in Figure 7.2 illustrates two aspects of localization. First, the
month name and year number are displayed in Hebrew because the “he-IL” culture
is being used. Second, the days of the month are displayed in Hebrew numerals
because a HebrewCalendar object has been assigned to the
cultureInfo.DateTimeFormat.Calendar property.

Chapter 7: Globalization and Localization 143

Figure 7.2
Calendar control in an ASP.NET Web form, using the “he-IL” culture

Handling Time Zones
Some applications might be used in multiple time zones. For example, a scheduling
application might allow a user to schedule an event while in one time zone and
automatically update the event details when the user moves to another time zone.
To handle this kind of functionality, the .NET Framework supports universal time,
a neutral time zone that can be used for the internal storage of date/time values.

You can use the ToUniversalTime and ToLocalTime methods of the DateTime
structure to convert date/time values between the local time for the current system
time zone and universal time. Additionally, the static Parse and ParseExact methods
of the DateTime structure allow you to specify a styles parameter of
DateTimeStyles.AdjustToUniversal to automatically read a date in a local time
zone and adjust it to universal time. This makes it easier to accept input in the local
DateTime format and to use universal time internally.

Persisting Dates and Times Using the Invariant Culture

When persisting a date as a string, it is a good idea to use the invariant culture to
format it — this ensures that a consistent format is always used internally, regardless of
the culture used for presenting dates to the user. For example, you can use the follow-
ing code to persist a date/time value so that it can be adjusted for local time zones.

// Function to save DateTime value
private void SaveDateTime(DateTime localDateTime)
{
 // Convert the value to universal time
 DateTime udtDate = localDateTime.ToUniversalTime();

 // Format the date string using the invariant culture
 string dataToSave = udtDate.ToString(CultureInfo.InvariantCulture);

Design and Implementation Guidelines for Web Clients144

 // Save the data
 StreamWriter f = new StreamWriter(@"C:\SavedDate.txt");
 f.WriteLine(dataToSave);
 f.Close();
}

// Function to load a saved time
private DateTime LoadDateTime()
{
 // Load the data
 StreamReader f = new StreamReader(@"C:\SavedDate.txt");
 string loadedData = f.ReadToEnd();
 f.Close();

 // Create a DateTime object based on the string value formatted for
 // the invariant culture
 DateTime udtDate = DateTime.Parse(loadedData,CultureInfo.InvariantCulture);

 // Convert the value to local time and return it
 return udtDate.ToLocalTime();
}

With this approach, you can handle all internal date/time storage neutrally, only
applying culture-specific formats and local time zones when required.

Creating Localized Resources
You can create localized collections of string and binary data that the .NET Frame-
work common language runtime loads automatically depending on the
Thread.CurrentThread.CurrentUICulture setting. This approach is typically used to
create localized user interfaces, although it can also be used to manage any set of
strings or binary data that require localization in your application.

To localize a user interface, avoid hard-coding localizable strings or images in your
ASP.NET Web Forms or Windows Forms; store this data in localized resource files
instead. Each application has a default set of resources; this set is used when no
culture-specific resource file is available.

This section focuses on how to create custom resource files for ASP.NET Web appli-
cations and for other situations where you want to localize non-user interface data.
For information about how to localize Windows Forms, see “How to Localize
Windows Forms” in Appendix B in this guide.

Creating Custom Resource Files
If your application is not a Windows Forms-based application, or if you want to
localize non-user interface data, you can create custom resource files. Custom
resource files are compiled as satellite assemblies; you use the
System.Resources.ResourceManager class to load the appropriate resources for the
Thread.CurrentThread.CurrentUICulture setting.

Chapter 7: Globalization and Localization 145

Creating Resource Files
You can create resource files in three different ways:
● Text (.txt) files – Text files contain string resources in name=value pairs.

You cannot directly embed a .txt file in an assembly; you must convert the .txt file
into a .resources file using the Resource File Generator, Resgen.exe.

● .resx files – .resx files are XML files that contain references to strings and objects.
When you view a .resx file, you can see the binary form of embedded objects
(such as pictures) as long as the binary information is in the resource manifest.
You cannot directly embed a .resx file in an assembly; you must convert the .resx
file into a .resources file using the Resource File Generator, Resgen.exe.

● .resources files – .resources files contain references to strings and objects. You can
create .resources files programmatically by using methods in the
System.Resources.ResourceWriter class. You can also generate .resources files
from .txt and .resx files by using the Resource File Generator, Resgen.exe. You can
read .resources files programmatically by using methods in the
System.Resources.ResourceReader class

For more information about these three types of resource files and how to use the
Resgen.exe tool, see “Creating Resource Files” on MSDN (http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/cpguide/html/cpconcreatingresourcefiles2.asp).

Visual Studio .NET allows you to add XML .resx resource files to a project and
automatically generates and embeds a binary version of the file when the project is
compiled. You can use the resource editing window in Visual Studio .NET to add
string and encoded binary resources to a resource file.

You must create a default resource file using the naming format
ResourceFileName.resx; this file is used when no specific resource file can be found
for the current user interface culture. For example, an assembly might contain a
default resource file named MyResources.resx. Resource files for specifically sup-
ported cultures must be named using the format
ResourceFileName.Culture_ID.resx. For example, a resource file for the “English in
the UK” culture might be named MyResources.en-GB.resx.

Create the same list of resources in each resource file. It is a good idea for each
resource file to use the same name property for each resource, with a localized
value. For example, you might have a resource with the name welcomeMessage; this
resource has the value “Welcome” in a MyResources.en-GB.resx file and the value
“Bienvenue” in a MyResources.fr-FR.resx file.

When the solution is compiled, the default resource file is embedded in the applica-
tion assembly and a satellite assembly for each culture-specific resource file is
created and linked to the main assembly.

Design and Implementation Guidelines for Web Clients146

At run time, the common language runtime loads the most appropriate resources for
the current user interface culture. If a specific culture resource file (that is, a resource
file for a specific language and geographical location such as “en-GB”) is available
for the current user interface culture, it is loaded. If not, the runtime looks for an
appropriate language culture (such as “en”) and loads that. If no language culture
resource file is available, the runtime uses the default resource file embedded in the
main assembly. Note that this “closest match” approach allows you to make your
localization language- and location-specific (for example, by having different re-
sources for English speakers in the U.K., English speakers in the U.S., French speak-
ers in Canada, and French speakers in France) or just language-specific (for example,
by having different resources for English speakers and French speakers).

Retrieving Localized Resources
To retrieve the appropriate resource at run time, you can use the
System.Resources.ResourceManager class. To create a ResourceManager object to
load resources from satellite assemblies (or the main assembly if the default resource
file is required), use the constructor that allows you to specify baseName and
assembly parameters:
● The baseName is the root name of the resource files, including the namespace.

For example, the baseName for the MyResources.resx and MyResources.en-
GB.resources resource files in an assembly that uses the namespace
“MyApplication” is “MyApplication.MyResources.”

● The assembly parameter is used to specify the main assembly for the resources.
This is generally the assembly that the code to create the ResourceManager object
resides in, and you can specify the current assembly by passing
this.GetType().Assembly to the constructor.

The following sample code shows how to create a ResourceManager object.

using System.Resources;
…
ResourceManager resMan =
 new ResourceManager("MyApplication.MyResources", this.GetType().Assembly);

You can retrieve resources by using the GetString and GetObject methods of the
ResourceManager class and passing the name of the resource to be retrieved. For
example, the appropriate welcomeMessage string resource for the current culture (as
defined in the CultureInfo.CurrentUICulture object) can be retrieved using the
following code.

string welcomeMessage = resMan.GetString("welcomeMessage");

The GetString method is overloaded to allow you to pass a CultureInfo object and
therefore retrieve a resource for an alternative culture.

Chapter 7: Globalization and Localization 147

Additional Information
For more information about how to retrieve data from all kinds of resource files, see
“Best Practices for Developing World-Ready Applications” on MSDN (http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconbestpracticesforglobalapplicationdesign.asp).

For additional information about how to use resources to localize the layout and
presentation of an ASP.NET Web page, see “Enterprise Localization Toolkit” on
MSDN (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html
/entloctoolkit.asp). The Toolkit enables you to extend the .NET Framework founda-
tion, and it includes code to manage resource strings through a database, localize
complex data types, and build resource files automatically.

Summary
Globalization and localization are important factors in Web applications. By careful
thought, you can design your user interface in a suitably generic manner so that it
can be easily localized for different cultures. You can also take advantage of the
extensive support provided by the .NET Framework class library to write code that
is sensitive to the current culture.

A
Securing and Operating
the Presentation Layer

In This Appendix
This appendix describes security and operational issues relating to the presentation
layer. It includes the following sections:
● Securing the Presentation Layer
● Performing Operational Management

Security is a necessary consideration in most industrial-strength solutions to pre-
serve the integrity and privacy of data as it passes over the network, and also to
protect resources and business intelligence at the host.

Operational management is also a vital issue to make sure that applications are
deployed correctly and run effectively.

Securing the Presentation Layer
You must approach application security from the earliest stages of your application
design. For a good starting point, see “Designing for Securability” on MSDN
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html
/vxcondesigningforsecurability.asp). This document describes how to assess and
mitigate the security risks facing your application.

Appendix

Design and Implementation Guidelines for Web Clients150

The presentation layer provides specific threats and risks to the security of your
application. You must take care to secure it against these threats. Consider the
following guidelines when thinking about presentation layer security:
● Rely on proven and tested security solutions based on industry-proven

algorithms instead of creating custom solutions.
● Never trust external input; make sure your presentation layer validates all input

before processing.
● Assume all external systems that your application accesses are insecure.
● Apply the principle of least privilege to the users of the system and hide func-

tionality from those who do not have authorization to use a particular feature.
● If your application supports multiple user interfaces and client types, make sure

you enforce a suitable security baseline across all interface and client types.
● Aim to stop unauthorized actions in the presentation layer before any process

penetrates deeper into the application.

The following sections describe presentation-layer specific issues relating to the
following aspects of application security:
● Achieving Secure Communications
● Performing Authentication
● Performing Authorization
● Using Code Access Security
● Implementing Security Across Tiers
● Auditing

Applying the guidance in these sections may help you to design and implement
secure presentation layer solutions.

Achieving Secure Communications
Exchanging data over exposed networks, such as the Internet, introduces risks to
the security of your communications. If your application processes sensitive data —
such as credit card details or medical records —you must implement mechanisms to
make sure of the secrecy and integrity of the data as it travels between application
components.

Whether your presentation layer supports Web- or Windows-based clients, there are
a number of widely used secure communications solutions available to you. These
solutions are typically implemented by the underlying software or hardware infra-
structure where your application runs. This means your application transparently
gains the benefits of secure communications without the requirement to implement

Appendix A: Securing and Operating the Presentation Layer 151

secure communications mechanisms at the application level. The most common
secure communications solutions are shown in Table A.1:

Table A.1: Secure Communications Options

Option Use in Webs Forms Use in Windows Forms

Secure Sockets Layer Use when securely Use when smart clients are calling
(SSL) communicating between the Web services

browser and Web server

Internet Protocol Use between server tiers in Not used
Security (IPSec) a data center

Virtual Private Not used Use to access servers in the
Networking (VPN) intranet/extranet

For detailed information about SSL/TLS and IPSec, see Chapter 4 of “Building
Secure ASP.NET Applications: Authentication, Authorization, and Secure Communi-
cation” on MSDN (http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnnetsec/html/secnetlpMSDN.asp).

For more information about Virtual Private Networking, see article 323441, “HOW
TO: Install and Configure a Virtual Private Network Server in Windows Server
2003,” in the Microsoft Knowledge Base (http://support.microsoft.com
/default.aspx?scid=kb;en-us;323441).

Despite the availability and widely acknowledged success of these solutions, your
application may demand different or additional levels of secure communications.
Some examples include:
● Using message authentication codes to ensure data integrity
● Using digital signatures to ensure data integrity and support non-repudiation
● Using data encryption to provide end-to-end privacy of application data

You typically have to implement these features in your application, and the presen-
tation layer is a common place to implement them. The .NET Framework provides
cryptographic classes that support symmetric and asymmetric encryption, hashing,
digital certificates, and key exchange. These cryptographic solutions are common
to Windows and Web programming. Your selection of a cryptographic solution
depends on the specific requirements of your application.

Be aware that such solutions bring with them their own problems. The primary
problem with implementing cryptographic security solutions is key management
and distribution. For more details about implementing secure communications
solutions using the .NET Framework cryptographic classes, see “Cryptographic
Services” in the “.NET Framework Developer’s Guide” on MSDN (http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconcryptographicservices.asp).

Design and Implementation Guidelines for Web Clients152

Performing Authentication
The purpose of authentication is to securely establish the identity of a person who
wants to use your application. Authorization and auditing require authentication.
The most common authentication technique on the Windows platform is the use of
user names and passwords (using built-in Windows authentication or a mechanism
such as Microsoft .NET Passport.) However, other mechanisms, such as smart cards,
biometrics, and digital certificates, are gaining in popularity as they become more
accessible and easier to implement. This is especially true in applications that re-
quire higher levels of security.

The techniques you use for authentication vary, depending primarily on whether
you are creating a Windows-based or Web application. In both instances, there are
operating system-provided mechanisms that are transparent to your application.
Of course, you can implement a custom application-level authentication mechanism;
however, implementing a secure and reliable authentication scheme is not trivial.
Where possible, use the mechanism the operating system provides.

For .NET Framework applications, the result of authentication is an identity object
and a principal object associated with each thread that the runtime can use to make
authorization decisions.
● Identity object – An identity object implements the IIdentity interface and pro-

vides run-time information about the owner of the currently executing thread.
The IsAuthenticated property in the IIdentity object indicates whether the user
has been authenticated, and the AuthenticatedType property returns the authen-
tication type as a string (for example, “Basic” or “NTLM”). There is also a Name
property (this provides the name of the current user); if the user hasn’t been
authenticated, this is an empty string (“”). You can use these details to decide
whether the current user can access a particular resource or execute a particular
piece of code.
The .NET Framework defines a GenericIdentity class that you can use for most
custom logon scenarios and a more specialized WindowsIdentity class that you
can use if you want your application to use Windows authentication.

● Principal object – A principal object implements the IPrincipal interface and
stores the roles associated with the current user. The IPrincipal object can then be
used to authorize or reject access to particular resources.
The IPrincipal interface has an Identity property; this returns an IIdentity object
that identifies the current user. The IPrincipal interface also has an IsInRole
method; this enables you to perform role-based checks to grant or deny access to
a particular resource (or piece of code) depending on whether the current user is
in a certain role. Principals allow fine-grained authorization checks at a very
detailed programmatic level.

Appendix A: Securing and Operating the Presentation Layer 153

The .NET Framework defines GenericPrincipal and WindowsPrincipal classes
to use with the GenericIdentity and WindowsIdentity classes described earlier.

IIS supports a variety of authentication mechanisms. Use the following guidelines
to help you decide when to use these mechanisms:
● Anonymous authentication – Anonymous authentication is effectively synony-

mous with “no IIS authentication.” Under Anonymous authentication, the IIS
server creates a guest account to represent all anonymous users. By default, the
anonymous account has the name IUSR_COMPUTERNAME, where
COMPUTERNAME is the NetBIOS name of the computer at install time.
Anonymous authentication is appropriate if you want to allow unfettered access
to resources, and it offers the best performance because the authentication
overheads are minimal. Another scenario where Anonymous authentication is
appropriate is if you want to perform your own custom authentication.
If you enable Anonymous authentication, IIS always attempts to authenticate
the user with Anonymous authentication first, even if you enable additional
authentication methods. You can change the account that is used for Anonymous
authentication in IIS Manager. You can also change the security settings for the
IUSR_computername account in Windows by using the Group Policy Manager
snap-in of the Microsoft Management Console (MMC); when you change the
IUSR_computername account, the changes affect every anonymous HTTP
request that a Web server services.

● Basic authentication – Basic authentication is part of the HTTP specification;
therefore it is supported by most browsers. Basic authentication requires the user
to supply credentials — a user name and password — so that IIS can prove the
user’s identity. If a user’s credentials are rejected, Internet Explorer displays an
authentication dialog box to re-enter the user’s credentials. Internet Explorer
allows the user three connection attempts before failing the connection and
reporting an error to the user.
The user’s credentials are submitted in unencrypted format; a network snooper
can easily intercept the packets and steal these details. Therefore, use Basic
authentication only in conjunction with SSL/TSL to ensure secure communica-
tion between the client and the IIS server. For more information, see “Achieving
Secure Communications” earlier in this chapter.

● Digest authentication – Digest authentication was first introduced in IIS 5.0 as
an enhancement to Basic authentication. The user’s credentials are hashed before
they are transmitted to the IIS server instead of being transmitted in clear text. To
enable Digest authentication, the user and the IIS server must be part of the same
domain, and the user must have a Windows user account stored in Active Direc-
tory on the domain controller. Additionally, the domain controller and the IIS
server must be running Windows 2000 or later.

Design and Implementation Guidelines for Web Clients154

● Integrated Windows authentication – Integrated Windows authentication relies
on an encrypted exchange of information between the client and the IIS server to
confirm the identity of the user. Unlike Basic authentication, Integrated Windows
authentication does not initially prompt for a user name and password; the
current Windows user information on the client computer is used for Integrated
Windows authentication.
Integrated Windows authentication is either provided by Kerberos or NTLM
(Windows NT LAN Manager) Challenge/Response, depending on the client and
server configuration: Kerberos is used if the domain controller is running Win-
dows 2000 or later and Active Directory Services is installed; NTLM authentica-
tion is used in all other cases.

● Certificate authentication – Certificate authentication relies on the user submit-
ting a client certificate to the IIS server to prove the user’s identity. The user
obtains this client certificate from a Certification Authority (CA). At the IIS server,
you must create a client certificate map to map client certificates to particular
Windows user accounts; this enables IIS to test the client’s certificate to verify
that it corresponds with a recognized and authenticated user. When the user
submits his or her certificate, it means IIS does not have to perform Basic, Digest,
or Integrated Windows authentication to identify the user.

In addition to the security mechanisms provided by IIS, ASP.NET provides its own
security mechanisms as follows:
● Forms authentication – Forms authentication provides an easily extensible

mechanism that enables you to implement a custom authentication scheme.
● .NET Passport authentication – .NET Passport authentication provides access to

the single logon capabilities of the Internet-based .NET Passport service.

Both Forms and .NET Passport authentication require significantly more effort to
implement than IIS-based authentication; however, they are the only workable
solutions if you have an Internet-facing Web application and do not want to estab-
lish Windows accounts for every user.

For complete information about designing and implementing an appropriate
authentication and authorization mechanisms for your Web applications, see
“Building Secure ASP.NET Applications: Authentication, Authorization, and
Secure Communication” on MSDN (http://msdn.microsoft.com/library/en-us/dnnetsec
/html/secnetlpMSDN.asp).

Performing Authorization
Authorization is the process of determining whether a user has permission to access
a particular resource or piece of functionality. To perform authorization, you must
have an authentication mechanism in place to establish the identity of the user, and
that mechanism must determine the identity of the user accurately and reliably.

Appendix A: Securing and Operating the Presentation Layer 155

In .NET Framework applications, authorization is generally based on two pieces of
information associated with the active thread:
● The Windows access token
● The IPrincipal object

The Windows access token represents the capabilities of the active Windows
account. In smart client applications, such as Windows Forms applications, this
is generally the currently logged on user. In server-based applications, such as
ASP.NET, this is generally a special service account configured to run the applica-
tion; for example, the default account named for ASP.NET is named ASPNET.
Windows uses the access token to determine whether the current thread can access
resources and functionality secured at the operating system level.

The IPrincipal object is an application-level object that represents the identity and
roles of the current user. Application code can use the IPrincipal object to make
authorization decisions based on the roles of the active user. Frequently, the
IPrincipal represents the same user as the Windows access token; however, applica-
tions can change the IPrincipal relatively easily to represent a different user. This is
most frequently done in server applications to represent the user connected to the
server instead of the account that the server service is running as.

Using Code Access Security
Code access security is a security feature that applies to all .NET Framework
managed code to protect computer systems from malicious code and to provide a
way to allow mobile code to run safely.

You will have to consider the ramifications of code access security in the following
scenarios:
● You are designing browser-hosted controls
● You are hosting third-party applications
● You are hosting assemblies from different vendors on a shared server
● You want to prevent certain native functions, such as file write APIs, to be

available to certain assemblies

Code access security allows code to be trusted to varying degrees, depending on
factors such as where the code comes from and its strong assembly name. Code
access security enables you to specify the operations your code can perform and the
operations your code cannot perform.

Code access security supports a permission support mechanism where code can
explicitly request particular permissions and explicitly refuse others that it knows it
never requires. Each permission represents the right for code to access a protected
resource such as a file, directory, or registry entry, or the right for it to perform a
protected operation such as calling into unmanaged code. Permissions can be

Design and Implementation Guidelines for Web Clients156

demanded by code and the run-time security policy determines which permissions
to grant.

The .NET Framework allows administrators to assign a pre-defined set of
permissions to an application. For example, applications running on a UNC share
(running in the Intranet security zone) receive the LocalIntranet permission set.
Applications running on the local computer (running in the MyComputer security
zone) receive the FullTrust permission set.

ASP.NET Web applications can be configured by assigning them trust levels. Trust
levels are configured using the <trust> element in the configuration file.

<trust level="Full | High | Medium | Low | Minimal" originUrl="url" />

Each level determines the application’s permissions; an XML security policy file
specifies the details of these permissions. Each level maps to a specific file. The
default mappings for ASP.NET are:
● Full – This trust level has no associated configuration file. Full trust allows appli-

cations to use all resources (subject to operating system permissions); this is just
like running without code access security (although code access security cannot
be switched off for managed code).

● High – This trust level maps to web_hightrust.config. This trust level provides
permissions that grant applications read/write access to the application directory
(subject to operating system permissions) and allows the application to replace
the authentication principal object.
This trust level restricts applications from calling unmanaged code, calling
serviced components, writing to the event log, accessing Microsoft Message
Queuing queues, or accessing OLE database data sources.

● Medium – This trust level maps to web_mediumtrust.config. This trust level
provides permissions that grant applications read/write access to the application
directory (subject to operating system permissions) and allows the application to
replace the authentication principal object.
The restrictions listed for the high trust level also apply to the medium trust
level. Additionally, file access is restricted to the current application directory,
and registry access is not permitted.

● Low – This trust level maps to web_lowtrust.config. This trust level allows
applications to read from the application directory and provides limited network
connectivity. Applications can connect back to their host site, assuming the
originUrl attribute of the <trust> element is configured appropriately.
The restrictions listed for the medium trust level also apply to the low trust level.
Additionally, the application is not able to connect to SQL Server data sources or
call the CodeAccessPermission.Assert method.

Appendix A: Securing and Operating the Presentation Layer 157

● Minimal – This trust level maps to web_minimaltrust.config. In this trust level,
only the execute permission is available.

You can override these mappings in the <securityPolicy> element of the
configuration file, and you can customize and extend each level. You can also create
your own levels that define arbitrary permission sets. The default <securityPolicy>
mapping set is shown in the following example.

<securityPolicy>
 <trustLevel name="Full" policyFile="internal" />
 <trustLevel name="High" policyFile="web_hightrust.config" />
 <trustLevel name="Medium" policyFile="web_mediumtrust.config" />
 <trustLevel name="Low" policyFile="web_lowtrust.config" />
 <trustLevel name="Minimal" policyFile="web_minimaltrust.config" />
</securityPolicy>

ASP.NET configuration is hierarchical in nature, with configuration files optionally
at the computer, application, and sub-application levels. Sub-level configuration files
can be used to override settings made at a higher level or can be used to add
additional configuration information. While this provides a high degree of
flexibility, administrators may sometimes want to enforce the configuration settings
and not allow them to be overridden by specific applications.

For example, an administrator of a hosted Web site may want to specify the code
access security level and not allow it to be changed by individual applications. This
can be achieved using the <location> element coupled with the allowOverride
attribute. For example, an administrator of a hosted Web site may want to make sure
that no applications are permitted to call into unmanaged code. The following
configuration file fragment shows how an administrator can lock down the code
access configuration settings for a whole site and restrict applications with the High
trust level (this does not allow calls into unmanaged code).

<location path="somesitepath" allowOverride="false">
 <trust level="high" originUrl="http://somesite.com" />
</location>

The path attribute may refer to a site or a virtual directory, and it applies to the
nominated directory and all sub-directories. In the preceding example, if you set
allowOverride to “false,” you can prevent any application in the site from
overriding the configuration settings specified in the <location> element. Note that
the ability to lock configuration settings applies to all settings, not just security
settings such as trust levels.

Design and Implementation Guidelines for Web Clients158

Implementing Security Across Tiers
ASP.NET Web applications typically interact with business objects, .NET Framework
remoting objects, or some other back-end application. The Web application typically
undertakes the responsibility for authenticating and authorizing the user. There are
two ways to pass the results of the authentication and authorization to downstream
applications:
● Trusted subsystem model
● Impersonation/delegation model

The following sections describe these models and provide guidance on when to use
each model.

Using the Trusted Subsystem Model
The ASP.NET Web application authenticates and authorizes the user at the first point
of contact, and it creates a trusted identity to represent the user. By default, the
ASP.NET Web application worker process (aspnet_wp.exe) runs using an account
named ASPNET.

Whenever the ASP.NET application communicates with downstream applications, it
does so using this security context. The downstream applications trust the ASP.NET
application to correctly authenticate and authorize the original user.

There are two key benefits of the trusted subsystem model:
● Simplicity – Downstream applications have to authenticate only a single user

account (that is, the ASPNET account of the ASP.NET application). Moreover,
access control lists (ACLs) can be defined in terms of this single trusted identity
instead of defining access rights for every authorized user or role.

● Scalability – The ASP.NET application always forwards the same security creden-
tials to downstream applications, regardless of the identity of the user who
actually contacted the ASP.NET application. This facilitates connection pooling.
Connection pooling is an essential requirement for scalability and it allows
multiple clients to reuse resources in an efficient manner, as long as the users
have the same security context.

For more information, see “How to Use the Trusted Subsystem Model” in Appendix
B in this guide.

Using the Impersonation/Delegation Model
In the impersonation/delegation model, the ASP.NET Web application authenticates
and authorizes the user at the first point of contact as before. However, these origi-
nal credentials are flowed to downstream applications instead of passing the same
trusted identity for all users. This enables downstream applications to perform their
own authentication and authorization tests using the real security credentials of the
original user.

Appendix A: Securing and Operating the Presentation Layer 159

There are two key benefits of the impersonation/delegation model:
● Flexibility – Downstream applications can perform their own per-user and per-

role security checks, using the user’s real security context.
● Auditing – Downstream applications, and the resources that they access (such as

databases), can keep an accurate audit trail of which users have accessed which
resources.

Before you use the impersonation/delegation model, you must be aware of the
following issues:
● Scalability restrictions – Connection pooling is not possible with impersonation/

delegation, because each user’s original security context is flowed downstream.
Connection pooling works only if the same security context is used to access
pooled resources.

● Complexity – You must define ACLs for particular users and roles instead of
being able to express these ACLs in terms of a single trusted identity.

● Technology difficulties – Applications that perform impersonation require higher
privileges than typical applications. Specifically, they require the operating
system privilege.

There are two different ways to use impersonation/delegation model, depending on
how you initially authenticate the user in the ASP.NET Web application:
● Using Kerberos authentication – Kerberos involves authenticating a user with a

Windows NT Domain or Active Directory account. For more information about
how to perform impersonation/delegation with Kerberos, see “How to: Use
Impersonation/Delegation with Kerberos Authentication and Delegation” in
Appendix B in this guide.

● Using Basic authentication or Forms authentication – Basic authentication is part
of the HTTP 1.0 specification; it transmits the user’s name and password to the
Web server using Base64 encoding. Forms authentication uses HTTP client-side
redirection to redirect unauthenticated users to an HTML login form. For more
information about how to perform impersonation/delegation with Basic authen-
tication or Forms authentication, see “How to Use Impersonation/Delegation
with Basic or Forms Authentication” in Appendix B in this guide.

Use the appropriate impersonation/delegation model, depending on how you
initially authenticate the user in your ASP.NET Web application.

Auditing
Auditing of presentation layer activities is generally limited to a small set of global
events including:
● Users logging on
● Users logging off

Design and Implementation Guidelines for Web Clients160

● Sessions timing out
● Password changes
● Failed logon attempts
• Failed authorizations
• Failure and success of business processes

You might also decide to audit the business processes initiated by the user in the
presentation layer. Having a high-level view of a user’s actions can provide useful
diagnostic information. However, it is best not to rely on presentation layer auditing
to provide the sole audit trail of user activities. Typically, a presentation layer event
triggers a series of events in the business and data access layers. To provide the
granularity of information required for security auditing, make sure that each of
the lower layers audits its own activities.

Aside from what to audit, the most important decision you must make is where to
store audit logs. The most appropriate storage location depends on the architecture
of your application.

Server-based applications that support thin Windows-based or Web clients generate
all audit events at the server. In this scenario, it is easy to manage a handful of
servers that write to their local Windows Event Logs. As the number of servers
grows, it is better to switch to a centralized audit log. If all servers reside on a
private network, the security risks are minimal, and the administrative and opera-
tion benefits of a global security log are significant.

Distributed applications that implement significant portions of their functionality
in smart client applications might have to audit some presentation layer events on
the clients. In these situations, writing to the local Windows Event Log becomes a
problem. You must implement a mechanism to pull or push the events from the
remote computers to a central store. Although there are tools available to automate
this, the approach becomes unmanageable (or at least inefficient) as the number of
clients grows. In this scenario, your application can implement a custom auditing
service that your presentation layer logic can write audit records to. The service
takes responsibility for delivering the audit logs to a central store. When implement-
ing remote auditing mechanisms, consider the following guidelines:
● Sign the audit records with a digital signature or message authentication code

before sending to ensure data integrity.
● Avoid including sensitive information in audit records; if unavoidable, it is a

good idea to encrypt the records before sending them. For more information
about using the .NET Framework cryptographic classes, see “Achieving Secure
Communications” earlier in this chapter.

● Use a reliable transport and delivery mechanism to make sure audit records do
not get lost.

Appendix A: Securing and Operating the Presentation Layer 161

● Make sure operating system security is in place to stop users from deleting audit
records before delivery.

● Make sure users cannot change the location to where the audit service stores and
delivers records.

Regardless of where you store your audit logs, audit records must be immutable and
accessible only to authorized people.

Performing Operational Management
Operational management is concerned with the deployment and ongoing, day-to-
day running of your application. For information about overall operational manage-
ment issues relating to distributed applications, see “Application Architecture for
.NET: Designing Applications and Services” on MSDN (http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp).

The following sections describe specific aspects of operational management to
consider when designing your presentation layer:
● Managing Exceptions in the Presentation Layer
● Monitoring in the Presentation Layer
● Managing Metadata and Configuration Information
● Defining the Location of Services
● Deploying Applications

These sections provide guidance for planning the operational management of your
application.

Managing Exceptions in the Presentation Layer
One important point that relates closely to the presentation layer is the issue of
unhandled exceptions. As the name suggests, an unhandled exception is one that
your application code does not explicitly handle. This might be because the excep-
tion represents an unrecoverable error, or perhaps the programmer did not antici-
pate and code for that type of exception. Whatever the case, these unhandled
exceptions occur until they reach the outer boundary of your application, where
they appear to the user as a confusing error. Not only is the presentation of a stack
trace not useful for a typical user, but it might also provide attackers with useful
information they can use to attack your system in the future. It is a good idea to
never allow a user to see the raw details of an uncaught exception.

If you are developing an ASP.NET application, you can configure the application to
display a specific page when an exception occurs. You can also use application- and
page-level events to handle exceptions. For more information about these mecha-
nisms, see the “Exception Management Application Block for .NET” on MSDN
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/emab-rm.asp).

Design and Implementation Guidelines for Web Clients162

If you are developing Windows Forms-based applications, it is a good idea to
implement a catch-all exception handler. For an example of how to do this, see
“How to Define a Catch-All Exception Handler in Windows Forms Applications” in
Appendix B in this guide.

Monitoring in the Presentation Layer
Implementing the appropriate levels of monitoring to your application allows you
to know when things are running smoothly and when problems are encountered.

The types of monitoring to consider for your presentation layer include:
● Health monitoring, to determine:

● Whether the application is running
● If there are errors or other problems that might cause the application to not

perform in an optimal manner
● Performance monitoring, to determine:

● How long the application takes to process a user request
● If there are any bottlenecks needing attention

It is also important that you communicate problems affecting application operation
to users clearly, effectively, and in a timely manner. Some options for communicating
these problems include Windows Management Instrumentation (WMI), writing to
the Event Log, or publishing exceptions to isolated storage. As a minimum, display
an informative message if your application is down, and include an estimate for
when normal operation will resume. Depending on the nature of your application
and user base, it may be appropriate to provide application health and status infor-
mation directly to the users.

For information about how to write instrumentation code, see “Monitoring in .NET
Distributed Application Design” on MSDN (http://msdn.microsoft.com/library/en-us/
dnbda/html/monitordotnet.asp).

Managing Metadata and Configuration Information
Presentation layers frequently rely heavily on application configuration information
and metadata. This is particularly true if your application:
● Provides an extensible framework that you load pluggable modules or add-ins

into
● Dynamically renders user interfaces based on user profiles and run-time context
● Relies on external services that you have to provide location and authentication

details for

The .NET Framework supports a range of storage mechanisms to hold application
configuration information. Each mechanism has benefits and disadvantages that

Appendix A: Securing and Operating the Presentation Layer 163

make it more suitable in certain situations. The most common mechanisms for
storing configuration information are listed in Table A.2.

Table A.2: Common Configuration Information Storage Mechanisms

Option Notes

XML or INI Files Using XML files to store configuration information provides an easy
and standard way to store and read the information.
Include built-in support for files such as Web.config and
Machine.config through IConfigurationSectionHandler.
Security is provided by Windows ACLs.

Databases (SQL Server, Configuration information is available to multiple computers and
MSDE) applications.

Provide greatest flexibility in terms of the types of data stored and
data security.
Require additional infrastructure and ongoing management.

Active Directory Within an organization, you may decide to store application metadata
in Active Directory so that the metadata available for clients on the
domain.
Security is provided by Windows ACLs.

Constructor strings If you are using Enterprise Services–based components, you can add
configuration data to the constructor string for the components.

Windows Registry Your application should store configuration information in the
Windows registry only when absolutely necessary, such as when you
must work with earlier versions of applications that use the registry.
Storing configuration information in the Windows registry increases
the deployment burden of your application.
Configuration information is available to multiple applications on the
same computer. Security is provided by Windows ACLs.

All these mechanisms provide some form of general-purpose administration tools,
allowing you to manage your configuration information and configure its security.
However, you frequently have to develop your own application-specific utilities to
manage your applications configuration data effectively — especially if the configu-
ration data is complex, or if you have to distribute administrative capabilities
between different users. The development of usable, high-quality, administrative
tools is important to the long-term success of your application and should not be
sidelined as a trivial exercise to be done only if there is time.

Note: The Configuration Management Application Block available on MSDN (http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/cmab.asp) simplifies the
storage and retrieval of configuration information. The block allows you store application
configuration information in XML files, the Windows registry, or SQL Server and is extensible so
that you can add support for other data stores. Additionally, the block supports features such
as encryption and message authentication codes to ensure the confidentiality and integrity of
your application configuration data.

Design and Implementation Guidelines for Web Clients164

Defining the Location of Services
If your presentation layer code uses remote objects and XML Web services, make
sure that you do not hard code the locations of these services into your code. Doing
so reduces the maintainability of your code. If a service address changes, you have
to update, rebuild, test, and distribute your application. It is a good idea for service
location and authentication information to be stored securely with your other
application configuration information. For information about application configura-
tion, see the previous section of this chapter.

Deploying Applications
Deployment is rarely an application-specific decision in medium- to large-sized
organizations that have standard application deployment policies and mechanisms
owned by operations departments. None of the major application deployment
mechanisms require you to implement specific features in your application; how-
ever, you can use the following guidelines to simplify application deployment:
● If security considerations allow, implement browser-based user interfaces where

possible to avoid the requirement to distribute client software to a high number
of computers.

● Minimize external software dependencies and resource dependencies to simplify
installation procedures and reduce security requirements.

For comprehensive information about deploying .NET Framework applications, see
“Deploying .NET Framework-based Applications” on MSDN (http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/dalgroadmap.asp).

Summary
This appendix has described how to secure the presentation layer in ASP.NET Web
applications by applying built-in support provided by the IIS, ASP.NET, and the
.NET Framework for authentication, authorization, and secure communications. It
also described how to perform operational management tasks to enable applications
to run smoothly and securely day-to-day.

B
How To Samples

In This Appendix:
● How to: Define a Formatter for Business Entity Objects
● How to: Perform Data Binding in ASP.NET Web Forms
● How to: Design Data Maintenance Forms to Support Create, Read, Update, and

Delete Operations
● How to: Execute a Long-Running Task in a Web Application
● How to: Use the Trusted Subsystem Model
● How to: Use Impersonation/Delegation with Kerberos Authentication
● How to: Use Impersonation/Delegation with Basic or Forms Authentication
● How to: Localize Windows Forms
● How to: Define a Catch-All Exception Handler in Windows Forms-based

Applications

Note: This code samples focus on the concepts in this appendix and as a result may not
comply with Microsoft security recommendations. The code samples presented in this
appendix have been written for Windows Server 2003 and the .NET Framework 1.1.

Appendix

Design and Implementation Guidelines for Web Clients166

How To: Define a Formatter for Business Entity Objects
This example shows how to define a custom formatter class to control how business
entity objects are displayed in the presentation layer.

There are three classes in this example:
● ReflectionFormattable – This is a base class that performs custom formatting for

business entity objects. The class uses a formatting string to display selective
properties of a business entity object in a particular format. For example, a
formatting string such as “{LastName}, {Name}” displays the LastName and
Name properties for a business entity object, separated by a comma and a space.

● CustomerEntity – This is a sample business entity class. CustomerEntity inherits
from ReflectionFormattable, to make use of its formatting capabilities.

● CustomFormatting – This is a simple ASP.NET Web page that uses the formatting
capabilities of the ReflectionFormattable class to display a CustomerEntity
object in a particular format.

The following sections describe these classes.

Defining the ReflectionFormattable Class
The ReflectionFormattable class implements the IFormattable interface, and pro-
vides basic formatting capabilities that can be inherited by business entity objects.

ReflectionFormattable has a ToString method that receives a format string and
extracts property names enclosed in braces {}. The method then uses reflection to
obtain the value of each requested property on the current business entity object.

using System;
using System.Collections;
using System.Reflection;
using System.Text;
using System.Text.RegularExpressions;
using System.Runtime.InteropServices;

// Defines a custom formatting syntax that is used to create string using the
// properties for a given entity.
[ComVisible(false)]
public class ReflectionFormattable
 : IFormattable
{
 // The regular expresion used to parse the custom syntax
 const string format = @"\{(\w+)\}";

 // Object to use for synchronized operations in thread-safe code
 static object SyncRoot = new object();

 // Cached compiled regular expression
 static Regex regEx = null;

Appendix B: How To Samples 167

 // Constructor safe for multi-threaded operations.
 protected ReflectionFormattable()
 {
 if (regEx == null)
 {
 lock (SyncRoot)
 {
 if (regEx == null)
 {
 regEx = new Regex(format, RegexOptions.Compiled);
 }
 }
 }
 }

 // ToString overload for the formattable object
 public string ToString(string format, IFormatProvider formatProvider)
 {
 if (format != null && format.Length != 0 && format.Trim().Length != 0)
 {
 string tempString = format;

 // Use the regular expression
 MatchCollection matchCollection;
 lock (typeof(Regex))
 {
 matchCollection = regEx.Matches(format);
 }

 // Use the matches to find the properties on the current instance
 foreach (Match m in matchCollection)
 {
 if (m.Groups.Count > 1)
 {
 foreach (Capture c in m.Groups[1].Captures)
 {
 if (c.Value != null &&
 c.Value.Length != 0 && c.Value.Trim().Length != 0)
 {
 tempString = tempString.Replace("{" + c.Value + "}",
 GetPropertyValue(c.Value));
 }
 }
 }
 }

 // Return the formatted string
 return tempString;
 }
 else
 {
 // Call base ToString method, because the format is null or an empty string
 return ToString();
 }
 }

Design and Implementation Guidelines for Web Clients168

 // Use reflection to get the value of a property with a specified name
 protected string GetPropertyValue(string name)
 {
 PropertyInfo pi = this.GetType().GetProperty(name);
 if (pi != null)
 {
 object value = pi.GetValue(this, null);
 return value == null ? "" : value.ToString();
 }
 return "{" + name + "}";
 }
}

Defining the CustomerEntity Class
CustomerEntity is a sample business entity class for this sample. The class has three
properties (and associated private fields), and inherits formatting capabilities from
ReflectionFormattable.

using System;
using System.Runtime.InteropServices;

public class CustomerEntity
 : ReflectionFormattable
{
 // Entity ID
 public int ID
 {
 get { return _id; }
 set { _id = value; }
 } int _id = 0;

 // Customer name
 public string Name
 {
 get { return _name; }
 set { _name = value; }
 } string _name = "";

 // Customer last name
 public string LastName
 {
 get { return _lastName; }
 set { _lastName = value; }
 } string _lastName = "";

 // Customer date created
 public DateTime DateCreated
 {
 get { return _dateCreated; }
 set { _dateCreated = value; }
 } DateTime _dateCreated = DateTime.Now;
}

Appendix B: How To Samples 169

Defining the CustomFormatting Class
CustomFormatting is an ASP.NET Web page that asks the user to enter details for a
CustomerEntity object. When the user clicks the Set values button, the customer
details are displayed in the format {ID} – {LastName}, {FirstName}.

Figure B.1 shows how the page appears in the browser.

Figure B.1
Formatting business entity objects in an ASP.NET Web page

The relevant portions of code for the CustomFormatting class are shown in the
following code sample. Notice that the SetTitle method calls ToString on the
CustomerEntity object, passing the format string “({ID}) - {LastName}, {Name}” as
the first parameter:

[ComVisible(false)]
public class CustomFormatting : System.Web.UI.Page
{
 private CustomerEntity customer = new CustomerEntity();

 protected System.Web.UI.WebControls.TextBox txtId;
 protected System.Web.UI.WebControls.TextBox txtName;
 protected System.Web.UI.WebControls.TextBox txtLastName;
 protected System.Web.UI.WebControls.Calendar clDateCreated;
 protected System.Web.UI.WebControls.ImageButton btnCalendar;

 protected System.Web.UI.WebControls.Button btnClear;
 protected System.Web.UI.WebControls.Button btnSetValues;

 protected System.Web.UI.WebControls.Label lblDateCreated;
 protected System.Web.UI.WebControls.Label lblTitle;
 protected System.Web.UI.WebControls.Label lblMessage;

Design and Implementation Guidelines for Web Clients170

 private void Page_Load(object sender, System.EventArgs e)
 {
 if (!IsPostBack)
 {
 clDateCreated.SelectedDate = DateTime.Now;
 lblDateCreated.Text = clDateCreated.SelectedDate.ToShortDateString();
 }

 try
 {
 // Populate the CustomerEntity object with data
 customer.ID = Int32.Parse(txtId.Text);
 customer.Name = txtName.Text;
 customer.LastName = txtLastName.Text;
 customer.DateCreated = clDateCreated.SelectedDate;

 // Set the title on the form
 SetTitle();
 }
 catch (Exception ex)
 {
 // Exception-handling code…
 }
 lblMessage.Visible = false;
 }

 private void btnSetValues_Click(object sender, System.EventArgs e)
 {
 try
 {
 // Populate the CustomerEntity object with data
 customer.ID = Int32.Parse(txtId.Text);
 customer.Name = txtName.Text;
 customer.LastName = txtLastName.Text;
 customer.DateCreated = clDateCreated.SelectedDate;

 // Set the title on the form
 SetTitle();
 }
 catch (Exception ex)
 {
 lblMessage.Text = "Incorrect data: " + ex.Message;
 lblMessage.Visible = true;
 }
 }

 private void SetTitle()
 {
 lblTitle.Text = (customer.ID == 0) ?
 "New customer" :
 customer.ToString("({ID}) - {LastName}, {Name}", null);
 }

 // Plus other code…
}

Appendix B: How To Samples 171

How To Perform Data Binding in ASP.NET Web Forms
Data binding in ASP.NET Web Forms is more straightforward than data binding in
Windows Forms:
● In Windows Forms, objects are kept in memory. A notification mechanism is

required between the objects and the controls they are bound to.
● In Web Forms, objects are bound to controls at the server. The data-bound output

is returned to the client; there is no live data at the client. All user actions, such as
editing and paging through the data, are achieved by postbacks and ViewState
interactions at the server.

As a consequence of this simplified behavior in Web Forms, entity classes do not
have to implement any special interfaces in order to support data binding. Likewise,
you can easily create data-bound collections of entity objects by adding them to an
ArrayList or any class that implements IEnumerable.

The following sections describe how to perform data binding in three particular
scenarios:
● Data Binding an Entity Object to Simple Controls
● Data Binding a Collection of Entity Objects to a DataList Control
● Data Binding a Collection of Entity Objects to a DataGrid Control

Code samples are included where appropriate, to illustrate how to define entity
classes and type-safe collections, and to show how to bind them to Web server
controls.

Note: For simplicity in this example, the application does not validate the details entered by
the user.

Data Binding an Entity Object to Simple Controls
This section describes how to data bind entity objects to simple controls on a Web
Form, such as labels and text boxes.

This section includes the following topics:
● Defining an Entity Class for Data Binding
● Adding an Entity Object to a Web Form
● Specifying Data Binding Expressions for a Control
● Performing Data Binding at Run Time

A simple entity class and ASP.NET Web Form are presented to demonstrate the key
points in this section.

Design and Implementation Guidelines for Web Clients172

Defining an Entity Class for Data Binding
If you want to data bind entity objects to Web server controls, it is a good idea for
your entity class to inherit from System.ComponentModel.Component. This
enables Visual Studio .NET to display entity objects in the Components Tray in the
Designer window, to simplify design-time usage of the entity objects.

When you define a class that inherits from System.ComponentModel.Component,
Solution Explorer displays the class with a “UI control” icon by default. If you
double-click the icon, Visual Studio .NET displays the class in design view instead
of code view. To suppress this unwanted behavior, annotate your class with the
[System.ComponentModel.DesignerCategory(“Code”)] attribute. Solution
Explorer then displays the class with a “code” icon, and double-clicking the icon
opens the class in code view.

The following code sample shows an entity class named CustomerEntity to
illustrate these points.

using System;
using System.ComponentModel;

[System.ComponentModel.DesignerCategory("Code")]
public class CustomerEntity : Component
{
 // Customer ID
 public int ID
 {
 get { return _id; }
 set { _id = value; }
 } int _id = 0;

 // Customer first name
 public string FirstName
 {
 get { return _name; }
 set { _name = value; }
 } string _name = "";

 // Customer last name
 public string LastName
 {
 get { return _lastName; }
 set { _lastName = value; }
 } string _lastName = "";

 // Customer date created
 public DateTime DateCreated
 {
 get { return _dateCreated; }
 set { _dateCreated = value; }
 } DateTime _dateCreated = DateTime.Now;
}

Appendix B: How To Samples 173

The CustomerEntity class inherits from System.ComponentModel.Component for
design-time support in Visual Studio .NET. Also, the class is annotated with the
[System.ComponentModel.DesignerCategory(“Code”)] attribute as described
previously. CustomerEntity defines four public properties, to get and set private
fields defined in the class.

Adding an Entity Object to a Web Form
When you define a class that inherits from System.ComponentModel.Component,
you can add instances of the class directly to a Web Form in Visual Studio .NET.
There are two ways to do this:
● Add the entity class to the Toolbox, and then drag an instance of the class onto

the form.
● Create an entity object programmatically in the code-behind class for the Web

Form. In this approach, you must declare a protected variable and initialize it in
the InitializeComponent method. The following code sample illustrates this
approach.

public class SimpleBinding : System.Web.UI.Page
{
 // Declare a protected instance variable, to refer to an entity object
 protected CustomerEntity customer;

 private void InitializeComponent()
 {
 // Create an entity object, and assign it to the instance variable
 this.customer = new CustomerEntity();

 // Plus other component-initialization code...
 }

 // Plus other members in the Web Form...
}

When you create the entity object using one of these two approaches, the entity
object appears in the Component Tray in the Visual Studio .NET Designer.

Specifying Data Binding Expressions for a Control
This section describes how to specify data binding expressions for a control to bind
a particular property on the control to a specific property on an entity object.

Design and Implementation Guidelines for Web Clients174

The sample form shown in Figure B.2 has four labels that can be bound to the ID,
FirstName, LastName, and DateCreated properties of a CustomerEntity object.
The form also has buttons to allow the user to navigate backward and forward
through a collection of CustomerEntity objects:

Figure B.2
Web Form containing simple controls, which can be data bound to an entity object

� To specify a data binding expression for a control
1. Select the control that you want to perform data binding on.
2. In the Properties window, locate the (DataBindings) property and click the

ellipsis button (…).
3. In the DataBindings property editor, select one of the control’s bindable proper-

ties. Then use either simple binding or complex binding to bind the property as
appropriate.

When you bind a property on a control, Visual Studio .NET adds a binding expres-
sion to the .aspx file to describe the data binding. For example, the following code
sample shows how an <asp:label> control can be data-bound to the DateCreated
property on a customer component.

<asp:label
 id="lblDateCreated"
 runat="server"
 Text='<%# DataBinder.Eval(customer, "DateCreated", "{0:d}") %>'>
</asp:label>

The next section describes how and when the binding expressions are evaluated at
run time.

Performing Data Binding at Run Time
To evaluate a binding expression at run time, call the DataBind method on the
control. You can also call the DataBind method at the page level, which conve-
niently causes the call to be applied recursively to all controls on the page.

This section shows a sample implementation for the Web Form introduced earlier to
illustrate how to perform data binding. The form creates some sample
CustomerEntity objects in its static constructor and inserts them into an ArrayList.

Appendix B: How To Samples 175

The form also has an integer variable to indicate the index of the currently-bound
CustomerEntity object:

public class SimpleBinding : System.Web.UI.Page
{
 // CustomerEntity component (as defined earlier), which is bound to controls
 protected CustomerEntity customer;

 // Collection of sample CustomerEntity objects
 private static ArrayList CustomerList = new ArrayList();

 // Index of currently-bound CustomerEntity object
 private int current = 0;

 // Static constructor, to create CustomerEntity objects and add to collection
 static SimpleBinding()
 {
 // Set customers on the list
 CustomerEntity tempCustomer = new CustomerEntity();
 tempCustomer.ID = 5;
 tempCustomer.FirstName = "Guy";
 tempCustomer.LastName = "Gilbert";
 tempCustomer.DateCreated = new DateTime(1948, 3, 9);
 CustomerList.Add(tempCustomer);

 tempCustomer = new CustomerEntity();
 tempCustomer.ID = 11;
 tempCustomer.FirstName = "Kendall";
 tempCustomer.LastName = "Keil";
 tempCustomer.DateCreated = new DateTime(1974, 9, 4);
 CustomerList.Add(tempCustomer);

 // Plus other sample entities...
 }

 // Plus other members...
}

The form’s OnPreRender method persists the current index in the page ViewState,
so that the current index is available in a postback.

public class SimpleBinding : System.Web.UI.Page
{
 protected override void OnPreRender(EventArgs e)
 {
 ViewState["Index"] = current;
 base.OnPreRender (e);
 }

 // Plus other members...
}

Design and Implementation Guidelines for Web Clients176

The form’s Page_Load method retrieves the current index from the ViewState. The
method sets the “customer” variable to refer to the current CustomerEntity object in
the ArrayList, and then calls DataBind to bind all the controls on the form. This
causes the data-bound labels on the form to display the details for the current
customer. This causes the form to display the details for the newly selected
CustomerEntity object.

public class SimpleBinding : System.Web.UI.Page
{
 private void Page_Load(object sender, System.EventArgs e)
 {
 if (IsPostBack)
 {
 current = (int)ViewState["Index"];
 }

 customer = CustomerList[current] as CustomerEntity;
 DataBind();
 }

 // Plus other members...
}

The form also has event handler methods for the previous button (<) and next
button (>) on the form.

public class SimpleBinding : System.Web.UI.Page
{
 private void btnPrev_Click(object sender, System.EventArgs e)
 {
 if (—current <= 0)
 {
 current = 0;
 }
 customer = CustomerList[current] as CustomerEntity;
 DataBind();
 }

 private void btnNext_Click(object sender, System.EventArgs e)
 {
 if (++current >= CustomerList.Count)
 {
 current = CustomerList.Count - 1;
 }
 customer = CustomerList[current] as CustomerEntity;
 DataBind();
 }

 // Plus other members...
}

Appendix B: How To Samples 177

When the user clicks the previous or next buttons, the current index is decreased or
increased as appropriate. The DataBind method causes the data binding expressions
to be re-evaluated for each control on the form, to display the details for the newly
selected CustomerEntity object.

Data Binding a Collection of Entity Objects to a DataList Control
This section describes how to bind a collection of entity objects to a DataList control.
This allows the user to view all the entity objects at the same time, and to edit and
delete entity objects in the collection.

This section includes the following topics:
● Defining a Typed Entity Collection Class
● Adding an Entity Collection Object to a Web Form
● Designing Item Templates for a DataList Control
● Specifying Data Binding Expressions for a DataList Control
● Performing Data Binding at Run Time

This section uses the CustomerEntity class from the previous section, but it uses a
new ASP.NET Web Form to illustrate data binding techniques for a DataList control.

Defining a Typed Entity Collection Class
A DataList control can be bound to a collection object; the DataList displays each of
the collection’s items in a separate row.

You can either bind a DataList to a generic collection type such as ArrayList, or to
a typed collection class that works with a particular type of entity object. The latter
approach is recommended, because it enables Visual Studio .NET to expose the
entity’s properties when you define data binding expressions at design time.

The following code sample shows a typed collection class named
CustomerCollection to hold a collection of CustomerEntity objects.

using System;
using System.ComponentModel;
using System.Collections;

[System.ComponentModel.DesignerCategory("Code")]
public class CustomerCollection : CollectionBase, IComponent
{
 // Default constructor
 public CustomerCollection()
 {}

 // Add a CustomerEntity object to the collection
 public int Add(CustomerEntity customer)
 {
 return base.InnerList.Add(customer);
 }

Design and Implementation Guidelines for Web Clients178

 // Remove a CustomerEntity object from the collection
 public void Remove(CustomerEntity customer)
 {
 base.InnerList.Remove(customer);
 }

 // Access a CustomerEntity object by its index in the collection
 public CustomerEntity this[int index]
 {
 get { return base.InnerList[index] as CustomerEntity; }
 set { base.InnerList[index] = value; }
 }

 // Implement the IComponent members
 public event System.EventHandler Disposed;
 ISite IComponent.Site
 {
 get { return _site; }
 set { _site = value; }
 } ISite _site = null;

 // Implement the IDisposable members (IComponent inherits from IDisposable)
 public event System.EventHandler Disposed;

 void IDisposable.Dispose()
 {
 // We've nothing to dispose explicitly
 if (Disposed != null)
 Disposed(this, EventArgs.Empty);
 }
}

CustomerCollection inherits from System.Collections.CollectionBase and provides
type-safe methods to add, remove, and access items in the collection.
CustomerCollection also implements the IComponent interface, to allow
CustomerCollection objects to be treated as components in the Visual Studio .NET
Designer.

Adding an Entity Collection Object to a Web Form
There are two ways to add an entity collection object to a Web Form in Visual Studio
.NET:
● Add the entity collection class to the Toolbox, and then drag an instance of the

class onto the form.
● Create an entity collection object programmatically in the code-behind class for

the Web Form. In this approach, you must declare a protected variable and
initialize it in the InitializeComponent method. The following code sample
illustrates this approach.

Appendix B: How To Samples 179

public class DataListBinding : System.Web.UI.Page
{
 // Declare an instance variable to refer to an entity collection object
 protected CustomerCollection customers;

 private void InitializeComponent()
 {
 this.customers = new CustomerCollection();

 // Plus other component-initialization code...
 }

 // Plus other members in the Web form...
}

When you create the entity collection object using one of these two approaches, the
object appears in the Component Tray in the Visual Studio .NET Designer.

Designing Item Templates for a DataList Control
This section describes how to design item templates for a DataList control to govern
how entity objects are displayed and edited in the DataList control.

� To create and configure a DataList control in a form
1. Drag a DataList control from the Toolbox and drop it onto your Web Form.
2. Right-click the DataList control. In the shortcut menu, point to Edit Template

and then click Item Templates.
3. In the ItemTemplate section, add simple controls (such as Label controls) to

display each of the properties of an entity object.
4. Add two buttons to the ItemTemplate section to enable the user to delete or edit

the entity object. Set the buttons’ CommandName properties to Delete and Edit
respectively, so that the buttons raise DeleteCommand and EditCommand
events on the DataList control.

5. In the EditItemTemplate section, add editable controls (such as Textbox controls)
to edit each of the properties of an entity object.

6. Add two buttons to the EditItemTemplate section to enable the user to save or
cancel edits on the entity object. Set the buttons’ CommandName properties to
Update and Cancel respectively, so that the buttons raise UpdateCommand and
CancelCommand events on the DataList control.

7. Right-click the DataList control, and then click End Template Editing in the
shortcut menu.

Design and Implementation Guidelines for Web Clients180

Figure B.3 shows sample Item Templates to display and edit CustomerEntity objects.

Figure B.3
Designing item templates for a DataList control

The ItemTemplate section in Figure B.3 has four Label controls, to display the ID,
FirstName, LastName, and DateCreated properties for a CustomerEntity object.
There are also two ImageButton controls to delete or edit the entity object.

The EditItemTemplate section in Figure B.3 has four Textbox controls, to edit the
ID, FirstName, LastName, and DateCreated properties for a CustomerEntity object.
There are also two ImageButton controls to save or cancel the edits.

Specifying Data Binding Expressions for a DataList Control
Before you can specify data binding expressions for a DataList control, you must
bind the DataList control to a data source.

� To bind the DataList control to a data source
1. Select the DataList control that you want to perform data binding on.
2. In the Properties window, set the DataSource property to the entity collection

object that you want to bind to (for example, the “customers” collection object
created previously).

This causes Visual Studio .NET to add a datasource attribute to the <asp:datalist>
tag in the .aspx file.

<asp:datalist id="dlCustomers" runat="server" datasource="<%# customers %>" >
</asp:datalist>

Appendix B: How To Samples 181

After you bind the DataList control to an entity collection object, you must define
data binding expressions to specify how the DataList control displays and edits
entity objects in each row.

� To define data binding expressions
1. Open the ItemTemplate for the DataList control.
2. Specify data binding expressions for each of the bindable controls in the

ItemTemplate, as follows:
a. Select a bindable control (such as the lblDateCreated control) in the template.
b. Open the DataBindings property editor on the bindable control.
c. Select one of the control’s properties and bind it to a property on the entity

object.
3. Repeat steps 1 and 2 for the EditItemTemplate for the DataList control.

The DataBindings property editor makes it easy for you to bind to specific proper-
ties on your entity class. The entity’s properties are listed in the Container.DataItem
node because you are using a typed collection class.

When you define data binding expressions for controls in a DataList template,
Visual Studio .NET adds code such as the following to your .aspx file.

<asp:label
 id="lblDateCreated"
 runat="server"
 Text='<%# DataBinder.Eval(Container,
 "DataItem.DateCreated",
 "{0:dd-MM-yyyy}") %>'>
</asp:label>

The next section describes how and when the binding expressions are evaluated at
run time.

Performing Data Binding at Run Time
This section describes how a Web Form can bind a DataList control to
CustomerEntity objects held in a CustomerCollection object. The code-behind class
for the Web Form has a static constructor to create the CustomerEntity objects and
insert them into a static CustomerCollection object.

public class DataListBinding : System.Web.UI.Page
{
 // CustomerCollection component (as defined earlier), bound to a DataList
 protected CustomerCollection customers;

 // Static collection of CustomerEntity objects
 private static CustomerCollection CustomersList = new CustomerCollection();

Design and Implementation Guidelines for Web Clients182

 // Create CustomerEntity objects and add to static collection
 static DataListBinding()
 {
 CustomerEntity tempCustomer = new CustomerEntity();
 tempCustomer.ID = 5;
 tempCustomer.FirstName = "Guy";
 tempCustomer.LastName = "Gilbert";
 tempCustomer.DateCreated = new DateTime(1948, 3, 9);
 CustomersList.Add(tempCustomer);

 tempCustomer = new CustomerEntity();
 tempCustomer.ID = 11;
 tempCustomer.FirstName = "Kendall";
 tempCustomer.LastName = "Keil";
 tempCustomer.DateCreated = new DateTime(1974, 9, 4);
 CustomersList.Add(tempCustomer);

 // Plus other sample entities...
 }

 // Plus other members...
}

The form’s Page_Load method performs data binding the first time the page is
displayed. Note that the Page_Load method does not perform data binding on
subsequent postbacks; this task is performed by the other event handler methods,
described later.

public class DataListBinding : System.Web.UI.Page
{
 private void Page_Load(object sender, System.EventArgs e)
 {
 if (!IsPostBack)
 {
 // Set the "customers" instance variable to refer to the
 // static CustomerCollection object, "CustomersList"
 customers = CustomersList;

 // Re-evaluate all the data binding expressions on this page
 DataBind();
 }

 lblMessage.Visible = false;
 }

 // Plus other members...
}

Appendix B: How To Samples 183

The form defines event handler methods for the DeleteCommand, EditCommand,
UpdateCommand, and CancelCommand events on the DataList control as follows:
● DeleteCommand event handler method – This method removes the currently

selected entity from the collection, and rebinds the collection to the DataList
control.

private void dlCustomers_DeleteCommand(
 object source,
 System.Web.UI.WebControls.DataListCommandEventArgs e)
{
 // Remove the item, and rebind
 customers = CustomersList;
 customers.RemoveAt(e.Item.ItemIndex);
 DataBind();
}

● EditCommand event handler method – This method sets the EditItemIndex
property on the DataList control, to tell the DataList control which entity in the
collection is to be edited.

private void dlCustomers_EditCommand(
 object source,
 System.Web.UI.WebControls.DataListCommandEventArgs e)
{
 // Set the edit index
 dlCustomers.EditItemIndex = e.Item.ItemIndex;

 // Rebind
 customers = CustomersList;
 DataBind();
}

● UpdateCommand event handler method – This method updates the currently
selected entity object with the new values entered by the user while in edit mode.

private void dlCustomers_UpdateCommand(
 object source,
 System.Web.UI.WebControls.DataListCommandEventArgs e)
{
 // Find the TextBox controls for the current item on the DataList
 TextBox id = e.Item.FindControl("txtId") as TextBox;
 TextBox fname = e.Item.FindControl("txtFirstName") as TextBox;
 TextBox lname = e.Item.FindControl("txtLastName") as TextBox;
 TextBox date = e.Item.FindControl("txtDateCreated") as TextBox;

 // Get the appropriate entity and update values
 CustomerEntity customer = CustomersList[e.Item.ItemIndex];

Design and Implementation Guidelines for Web Clients184

 // Set the new values
 if (id != null && fname != null && lname != null && date != null)
 {
 try
 {
 customer.ID = Int32.Parse(id.Text);
 customer.FirstName = fname.Text;
 customer.LastName = lname.Text;
 customer.DateCreated = DateTime.Parse(date.Text);
 }
 catch (Exception ex)
 {
 lblMessage.Text = "Incorrect data: " + ex.Message;
 lblMessage.Visible = true;
 }

 // Switch back to view mode
 dlCustomers.EditItemIndex = -1;

 // Rebind
 customers = CustomersList;
 DataBind();
 }
 else
 {
 throw new Exception("Invalid page structure");
 }
}

● CancelCommand event handler method – This method sets the EditItemIndex
property on the DataList control to -1, to tell the DataList control that no entity is
to be edited. This causes the DataList to redraw the entity in view mode instead
of edit mode.

private void dlCustomers_CancelCommand(
 object source,
 System.Web.UI.WebControls.DataListCommandEventArgs e)
{
 // Reset the edit index
 dlCustomers.EditItemIndex = -1;

 // Rebind
 customers = CustomersList;
 DataBind();
}

These event handler methods enable the user to view, edit, and delete
CustomerEntity objects by using the DataList control on the Web Form.

Appendix B: How To Samples 185

Data Binding a Collection of Entity Objects to a DataGrid Control
This section describes how to bind a collection of entity objects to a DataGrid
control. This allows the user to view all the entity objects in a grid on the Web page,
and to edit and delete entity objects.

This section includes the following topics:
● Performing Simple Data Binding to a DataGrid Control
● Performing Custom Data Binding to a DataGrid Control

This section uses the CustomerEntity and CustomerCollection classes introduced in
the earlier sections of this chapter.

Performing Simple Data Binding to a DataGrid Control
This section describes the default data binding support provided by the DataGrid
control.

� To perform simple data binding to a DataGrid control
1. Write code in your form to create the data that you want to be displayed in the

DataGrid control. For example, the following code creates an ArrayList object
and populates it with sample CustomerEntity objects.

public class GridBinding : System.Web.UI.Page
{
 // Customer list to be bound
 private ArrayList customerList = new ArrayList();

 // Populate the customer list
 private void SetupSources()
 {
 CustomerEntity tempCustomer = new CustomerEntity();
 tempCustomer.ID = 11;
 tempCustomer.FirstName = "Kendall";
 tempCustomer.LastName = "Keil";
 tempCustomer.DateCreated = new DateTime(2003, 10, 10);
 customerList.Add(tempCustomer);

 tempCustomer = new CustomerEntity();
 tempCustomer.ID = 22;
 tempCustomer.FirstName = "Jennifer";
 tempCustomer.LastName = "Riegle";
 tempCustomer.DateCreated = new DateTime(2003, 10, 10);
 customerList.Add(tempCustomer);

 // Plus other sample entities...
 }
}

Design and Implementation Guidelines for Web Clients186

2. Drag a DataGrid control from the Toolbox and drop it onto your Web Form.
3. Write code in the Page_Load method to bind the DataGrid control to your data.

public class GridBinding : System.Web.UI.Page
{
 // DataGrid control
 protected System.Web.UI.WebControls.DataGrid dgMain;

 private void Page_Load(object sender, System.EventArgs e)
 {
 // Populate the customer list
 SetupSources();

 // Bind the DataGrid to the customer list
 dgMain.DataSource = customerList;
 dgMain.DataBind();
 }
}

Figure B.4 shows how the DataGrid control appears when it is rendered in the
browser.

Figure B.4
Simple data binding for a DataGrid control

The DataGrid control has an AutogenerateColumns property, which is true by
default. This causes the DataGrid control to perform default formatting for the
columns when the control is rendered.

Appendix B: How To Samples 187

Performing Custom Data Binding to a DataGrid Control
This section describes how to perform custom formatting for a DataGrid control to
improve its visual appearance when it is rendered.

� To perform custom data binding to a DataGrid control
1. In the Designer, select the DataGrid control.
2. Right-click the DataGrid control, and then click Property Builder on the shortcut

menu.
3. In the Property Builder dialog box, customize the appearance of the DataGrid

control as required. For example:
● Click the General tab in the navigation pane, and then specify the data source,

headers and footers, and sorting capabilities of the DataGrid control.
● Click the Columns tab in the navigation pane, and then choose the properties

of the entity object that you want to display in the DataGrid control. You can
change the formatting string for these properties to specify how values are
formatted in the columns. Alternatively, you can click the Convert this col-
umn into a Template Column link to use the templating feature described for
the DataList control earlier in this chapter.

● Click the Paging tab in the navigation pane to allow paging in the DataGrid
control. You can also define the number of rows per page, and customize how
the user moves between pages.

● Click the Format tab in the navigation pane to specify fonts, colors, and other
formatting characteristics for the columns, headers, and footers on the
DataGrid control.

● Click the Borders tab in the navigation pane to specify cell margins and
borders on the DataGrid control.

The Property Builder dialog box also allows you to add Delete, Edit, Update, and
Cancel buttons to the DataGrid control to enable the user to edit data directly in the
DataGrid control.

� To add Edit, Update, Cancel, and Delete buttons to the DataGrid control
1. In the Property Builder dialog box, click the Columns tab in the navigation pane.
2. In the Available columns list, expand Button Columns, select Edit, Update,

Cancel, and click the > button. This adds the Edit, Update, Cancel button column
to the Selected columns list.

3. In the Available columns list, expand Button Columns, click Delete, and then
click the > button. This adds the Delete button column to the Selected columns
list.

You must then define event handler methods for the DeleteCommand,
EditCommand, UpdateCommand, and CancelCommand events on the DataGrid

Design and Implementation Guidelines for Web Clients188

control as follows. (These methods are similar to the corresponding DataList meth-
ods shown earlier in this chapter.)

private void grdCustomers_DeleteCommand(
 object source,
 System.Web.UI.WebControls.DataGridCommandEventArgs e)
{
 customers = CustomersList;
 customers.RemoveAt(e.Item.ItemIndex);
 DataBind();
}

private void grdCustomers_EditCommand(
 object source,
 System.Web.UI.WebControls.DataGridCommandEventArgs e)
{
 customers = CustomersList;
 dgCustomers.EditItemIndex = e.Item.ItemIndex;
 DataBind();
}

private void grdCustomers_UpdateCommand(
 object source,
 System.Web.UI.WebControls.DataGridCommandEventArgs e)
{
 // Find the updated controls
 TextBox id = (TextBox) e.Item.Cells[0].Controls[0];
 TextBox fname = (TextBox) e.Item.Cells[1].Controls[0];
 TextBox lname = (TextBox) e.Item.Cells[2].Controls[0];
 TextBox date = (TextBox) e.Item.Cells[3].Controls[0];

 // Get the appropriate entity and update values
 CustomerEntity customer = CustomersList[e.Item.ItemIndex];

 // Set the new values
 try
 {
 customer.ID = Int32.Parse(id.Text);
 customer.FirstName = fname.Text;
 customer.LastName = lname.Text;
 customer.DateCreated = DateTime.Parse(date.Text);
 }
 catch (Exception ex)
 {
 lblMessage.Text = "Incorrect data: " + ex.Message;
 lblMessage.Visible = true;
 }

 // Switch back to view mode
 dgCustomers.EditItemIndex = -1;

Appendix B: How To Samples 189

 // Rebind
 customers = CustomersList;
 DataBind();
}

private void grdCustomers_CancelCommand(
 object source,
 System.Web.UI.WebControls.DataGridCommandEventArgs e)
{
 dgCustomers.EditItemIndex = -1;
 customers = CustomersList;
 DataBind();
}

The DataGrid control now allows the user to edit the properties in an entity object,
as shown in Figure B.5.

Figure B.5
Custom data binding for a DataGrid control

When the user clicks the Edit link on a row in the DataGrid control, text boxes
appear in each column to enable the user to edit the values; the user can click
Update or Cancel to save or cancel these changes to the underlying entity object.
Alternatively, the user can click Delete to delete an entity object.

Design and Implementation Guidelines for Web Clients190

How To: Design Data Maintenance Forms to Support Create,
Read, Update, and Delete Operations

This section describes how to design and implement Web Forms to support Create,
Read, Update, and Delete (“CRUD”) operations on data in a data store.

This section includes the following topics:
● Defining Business Entities
● Defining Data Access Logic Components
● Defining Business Components
● Designing CRUD Web Forms

The examples in this section are based on three business entities: Customer, Order,
and OrderItem. Figure B.6 shows the relationships between these business entities.

Figure B.6
Relationships between business entities

As shown in Figure B.6, each customer can have many orders, and each order can
have many order items.

Defining Business Entities
There are several ways to represent business entities as they are passed internally
between the components and layers in a distributed application, including:
● Data set
● Typed data set
● Data reader

Appendix B: How To Samples 191

● XML
● Custom “business entity” objects

This example uses typed data sets because they are straightforward to create and
maintain. Additionally, typed data sets can be easily bound to DataGrids and other
controls on a Web Form.

You can either define a single data set that encompasses all the business entities or
create a separate typed data set for each business entity. The latter approach is
preferred because it is easier to add new typed data sets if the business model grows
in the future.

� To define a typed data set for a business entity
1. Open a Visual Studio .NET project.
2. In Solution Explorer, right-click the project. On the shortcut menu, point to Add,

and then click Add New Item.
3. In the Add New Item dialog box, select the Data Set template. Enter a name for

the new data set, such as CustomerDS.xsd, and then click OK.
4. Open Server Explorer in Visual Studio .NET, and then locate the database table

that you want to create a data set for.
5. Drag the database table onto the Designer surface. Visual Studio .NET creates an

XML schema to represent the columns in the database table.
6. Right-click the Designer surface, and make sure there is a check mark next to the

Generate Dataset menu item.
7. Save the new file. Visual Studio .NET creates a typed data set class (for example,

CustomersDS.cs), based on the information in the XML schema.

To view the typed data set class, click the Show all Files icon in the toolbar in
Solution Explorer and expand the XML schema file (for example, CustomerDS.xsd).
This reveals the typed data set class file (for example, CustomerDS.cs). The class has
properties and methods to provide named and type-safe access to the fields in the
business entity.

Defining Data Access Logic Components
Data access logic components encapsulate access to the underlying data in the data
store. Data access logic components typically have methods to perform the follow-
ing tasks:
● Create a new entity in the data store
● Update an existing entity in the data store
● Delete an existing entity in the data store
● Get a single entity in the data store
● Get all entities in the data store

Design and Implementation Guidelines for Web Clients192

For simplicity and maintainability, it is a good idea to define a separate data access
logic component for each business entity. You can define a common base class to
hold any behavior or properties that are the same across the data access logic com-
ponents. For example, the BaseDalc class shown in the following code sample
defines common features for the CustomerDalc, OrderDalc, and OrderItemDalc
subclasses. BaseDalc retrieves the “ConnectionString” setting from the application
configuration file (Web.config), and stores this setting in an instance variable named
connectionStr. This setting contains the connection string that all data access logic
components use when they want to access the database.

using System;
using System.Configuration;
using System.Reflection;
using System.Resources;
using System.Runtime.InteropServices;

namespace CRUDSample.DataAccessComponent
{
 // Base class for all Data Access Logic Components
 [ComVisible(false)]
 public class BaseDalc
 {
 // Database connection string
 protected string connectionStr;

 // Retrieve the resource file corresponding to this assembly
 protected static ResourceManager ResMgr =
 new ResourceManager(typeof(BaseDalc).Namespace + ".DalcMessages",
 Assembly.GetExecutingAssembly());

 // Default constructor
 public BaseDalc()
 {
 connectionStr = ConfigurationSettings.AppSettings["ConnectionString"];
 if (connectionStr == null)
 {
 throw new ConfigurationException(
 ResMgr.GetString("ConfigurationException.ConnectionStringNotFound"));
 }
 }

 // Get the resource file corresponding to this assembly
 protected ResourceManager ResourceMgr
 {
 get { return ResMgr; }
 }
 }
}

Appendix B: How To Samples 193

To implement the data access logic component for a particular business entity,
follow these guidelines:
● It is a good idea to write stored procedures to perform CRUD operations for a

particular business entity in the database. Stored procedures give you an oppor-
tunity to centralize data access logic in the database and to achieve reuse.

● Devise a consistent naming convention for your CRUD stored procedures. For
example, the CRUD stored procedures for the “customer” business entity might
be named Customer_Insert, Customer_Update, Customer_Delete,
Customer_SelectByID, and Customer_SelectAll.

● Evaluate using the Data Access Application Block for optimized data access code
that helps you call stored procedures and issue SQL text commands against a
SQL server database. The Data Access Application Block is available on MSDN
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/daab-rm.asp).

The following code shows a sample implementation for the CustomerDalc data
access logic component. CustomerDalc inherits from BaseDalc, and provides CRUD
methods relating to the “customer” business entity; these methods make use of the
Data Access Application Block for efficiency.

using System;
using System.Data;
using System.Data.SqlClient;
using Microsoft.ApplicationBlocks.Data;
using System.Runtime.InteropServices;

using CRUDSample.BusinessEntity;

namespace CRUDSample.DataAccessComponent
{
 [ComVisible(false)]
 public class CustomerDalc : BaseDalc
 {
 // Default constructor
 public CustomerDalc() : base()
 {}

 // Create a new customer record in the data store
 public int Create(string companyName, string contactName,
 string address, string city, string region,
 string postalCode, string country, string email)
 {
 try
 {
 // Execute the "insert" stored procedure
 int customerId = (int)SqlHelper.ExecuteScalar(this.connectionStr,
 "Customer_Insert",
 companyName, contactName,
 address, city, region,
 postalCode, country, email);

Design and Implementation Guidelines for Web Clients194

 // Return the customer id
 return customerId;
 }
 catch (SqlException e)
 {
 throw new TechnicalException(
 this.ResourceMgr.GetString("TechnicalException.CantCreateCustomer",
 System.Globalization.CultureInfo.CurrentUICulture), e);
 }
 }

 // Update an existing customer record in the data store
 public void Update(int customerId, string companyName, string contactName,
 string address, string city, string region,
 string postalCode, string country, string email)
 {
 try
 {
 // Execute the "update" stored procedure
 SqlHelper.ExecuteNonQuery(this.connectionStr,
 "Customer_Update", customerId,
 companyName, contactName,
 address, city, region,
 postalCode, country, email);
 }
 catch (SqlException e)
 {
 throw new TechnicalException(
 this.ResourceMgr.GetString("TechnicalException.CantUpdateCustomer",
 System.Globalization.CultureInfo.CurrentUICulture), e);
 }
 }

 // Delete an existing customer record in the data store
 public void Delete(int customerId)
 {
 try
 {
 // Execute the "delete" stored procedure
 SqlHelper.ExecuteNonQuery(this.connectionStr,
 "Customer_Delete",
 customerId);
 }
 catch (SqlException e)
 {
 throw new TechnicalException(
 this.ResourceMgr.GetString("TechnicalException.CantDeleteCustomer",
 System.Globalization.CultureInfo.CurrentUICulture), e);
 }
 }

Appendix B: How To Samples 195

 // Return the customer with the specified ID
 public CustomerDs.Customer GetById(int customerId)
 {
 try
 {
 CustomerDs customer = new CustomerDs();

 // Execute the "select single entity" stored procedure
 using (SqlDataReader reader = SqlHelper.ExecuteReader(
 this.connectionStr,
 "Customer_SelectByID",
 customerId))
 {
 // Populate the dataset with reader rows
 SQLHelperExtension.Fill(reader,
 customer,
 customer.Customers.TableName,
 0, 1);
 }

 // Return the first row
 return customer.Customers[0];
 }
 catch (SqlException e)
 {
 throw new TechnicalException(
 this.ResourceMgr.GetString("TechnicalException.CantGetCustomer",
 System.Globalization.CultureInfo.CurrentUICulture), e);
 }
 }

 // Return all customers, as a typed data set object
 public CustomerDs GetAll()
 {
 try
 {
 CustomerDs customer = new CustomerDs();

 // Execute the "select all entities" stored procedure
 using (SqlDataReader reader = SqlHelper.ExecuteReader(
 this.connectionStr,
 "Customer_SelectAll"))
 {
 SQLHelperExtension.Fill(reader,
 customer,
 customer.Customers.TableName,
 0, 0);
 }

 // Return the customer data set
 return customer;
 }

Design and Implementation Guidelines for Web Clients196

 catch (SqlException e)
 {
 throw new TechnicalException(
 this.ResourceMgr.GetString("TechnicalException.CantGetAllCustomers",
 System.Globalization.CultureInfo.CurrentUICulture), e);
 }
 }
 }
}

The OrderDalc and OrderItemDalc data access logic components follow a similar
pattern to the CustomerDalc data access logic component; OrderDalc provides
CRUD methods for “order” business entities, and OrderItemDalc provides CRUD
methods for “order item” business entities.

Defining Business Components
The general purpose of business components is to encapsulate business rules in a
distributed application. Business components shield other parts of the application,
such as the presentation layer, from direct interactions with data access logic
components.

In CRUD applications, there are usually few business rules that need to be encapsu-
lated by the business components. Therefore, the methods in a business component
typically act as simple wrappers for the underlying methods in the data access logic
component.

The following code shows a sample implementation for the CustomerBc business
component. Each method in CustomerBc calls the corresponding method in the
CustomerDalc data access logic component.

using System;
using System.Runtime.InteropServices;
using CRUDSample.BusinessEntity;
using CRUDSample.DataAccessComponent;

namespace CRUDSample.BusinessComponent
{
 [ComVisible(false)]
 public class CustomerBc : BaseBc
 {
 // Default constructor
 public CustomerBc() : base()
 {}

 // Create a new customer
 public int Create(string companyName, string contactName,
 string address, string city, string region,
 string postalCode, string country, string email)
 {

Appendix B: How To Samples 197

 // Create the DALC component
 CustomerDalc customerDalc = new CustomerDalc();

 // Create a new customer using the DALC component
 int customerId = customerDalc.Create(companyName, contactName,
 address, city, region,
 postalCode, country, email);
 // Return the customer id
 return customerId;
 }

 // Update an existing customer
 public void Update(int customerId, string companyName, string contactName,
 string address, string city, string region,
 string postalCode, string country, string email)
 {
 // Create the DALC component
 CustomerDalc customerDalc = new CustomerDalc();

 // Update an existing customer using the DALC component
 customerDalc.Update(customerId, companyName, contactName, address,
 city, region, postalCode, country, email);
 }

 // Delete an existing customer
 public void Delete(int customerId)
 {
 // Create the DALC component
 CustomerDalc customerDalc = new CustomerDalc();

 // Delete an existing customer using the DALC component
 customerDalc.Delete(customerId);
 }

 // Return the customer with the specified ID
 public CustomerDs.Customer GetById(int customerId)
 {
 // Create the DALC component
 CustomerDalc customerDalc = new CustomerDalc();

 // Get the specified customer using the DALC component
 return customerDalc.GetById(customerId);
 }

 // Return all customers, as a typed dataset object
 public CustomerDs GetAll()
 {
 // Create the DALC component
 CustomerDalc customerDalc = new CustomerDalc();

 // Get all customers using the DALC component
 return customerDalc.GetAll();
 }
 }
}

Design and Implementation Guidelines for Web Clients198

The OrderBc and OrderItemBc business components follow a similar pattern to the
CustomerBc business component.

Designing CRUD Web Forms
This section describes how to design CRUD Web Forms to enable users to create,
read, update, and delete customer records, order records, and order item records in
the data store. There are six Web Forms in this sample scenario:
● CustomerList.aspx – Displays a list of customer records in a DataGrid control and

allows the user to delete a customer record.
● EditCustomer.aspx – Enables the user to create a new customer record and edit an

existing customer record.
● OrderList.aspx – Displays a list of a customer’s order records in a DataGrid

control and allows the user to delete an order record.
● EditOrder.aspx – Enables the user to create a new order record and edit an exist-

ing order record.
● OrderItemList.aspx – Displays a list of order item records in a DataGrid control

and allows the user to delete an order item record.
● EditOrderItem.aspx – Enables the user to create a new order item record and edit

an existing order item record.

The following sections describe each of these Web pages, focusing on the CRUD
operations performed by each Web page.

Defining the CustomerList.aspx Web Page
The CustomerList.aspx Web page displays customer records in a DataGrid control,
as shown in Figure B.7.

Figure B.7
Customer list Web page

Appendix B: How To Samples 199

Notice the following features in CustomerList.aspx:
● The Web page contains a DataGrid control that displays a page of customers, one

customer per row. The arrows at the bottom of the DataGrid enable the user to
page backward and forward through customer records in the data store; this is an
important feature in CRUD forms, where there might be many records to display.

● The DataGrid shows a subset of information for each customer, instead of dis-
playing all the fields. It is a good idea to display a subset of information in CRUD
forms, because there may be too many fields to display neatly in a single
DataGrid.

● The first column in the DataGrid contains a hyperlink to a details Web page
(EditCustomer.aspx), where the user can display and edit full details for an
individual customer.

● Each row in the DataGrid has a “Delete” hyperlink, to delete an existing cus-
tomer in the data store. Each row also has a “View orders” hyperlink, which
redirects the user to another Web page (OrderList.aspx) to display the orders for
this customer.

● The “New” hyperlink at the bottom of CustomerList.aspx redirects the user to the
details Web page (EditCustomer.aspx), where the user can enter details for a new
customer.

� To implement these features in the CustomerList.aspx Web page
1. In Visual Studio .NET, drag a DataGrid control from the Toolbox onto the Web

page.
2. Right-click the DataGrid control and select Property Builder from the shortcut

menu.
3. In the Property Builder dialog box, click the Columns tab in the navigation pane.
4. Design the first (hyperlink) column as follows:

● In the Available columns list, select HyperLink Column.
● Click the > button to add the HyperLink Column to the Selected columns list.
● In the Text field text box, enter “CompanyName” so that the hyperlink text

displays the company name.
● In the URL field text box, enter “CustomerID” so that the CustomerID prop-

erty is used to generate the URL of the hyperlink.
● In the URL format string text box, enter “EditCustomer.aspx?CustomerId={0}”

so that the hyperlink redirects the user to EditCustomer.aspx to edit the
current customer.

5. Design the “Company” column as follows:
● In the Available columns list, select Bound Column.
● Click the > button to add the Bound Column to the Selected columns list.

Design and Implementation Guidelines for Web Clients200

● In the Header text text box, enter “Company” as the header text for this
column.

● In the Data Field text box, enter “CompanyName” so that the column is
bound to the CompanyName property on the customer record.

6. Repeat step 5 for the “Contact,” “Email,” and “Address” columns. Bind the
columns to the ContactName, Email, and Address properties on the customer
record.

7. Design the “Delete” column as follows:
● In the Available columns list, select Template Column.
● Click the > button to add the Template Column to the Selected columns list.

Note: After you finish using the Property Builder, you must add a “Delete” link button
control into this template column to perform the “delete” command. To add a “Delete”
link button control, edit the template for the DataGrid control; in the ItemTemplate
section for this column, drag a LinkButton control from the Toolbox, and set its
CommandName property to Delete.

8. Design the “View orders” column as follows:
● In the Available columns list, select HyperLink Column.
● Click the > button to add the HyperLink Column to the Selected columns list.
● In the Text text box, enter “View orders” as the fixed text for the hyperlink.
● In the URL field text box, enter “CustomerID” so that the CustomerID prop-

erty is used to generate the URL of the hyperlink.
● In the URL format string text box, enter “OrderList.aspx?CustomerId={0}” so

that the hyperlink redirects the user to OrderList.aspx to display the orders for
the current customer.

9. Specify paging behavior for the DataGrid control, as follows:
● Click the Paging tab in the navigation pane of the Property Builder dialog

box.
● Place a check mark in the Allow paging check box.
● Enter a suitable number in the Page size text box (for example, 10).
● Place a check mark in the Show navigation buttons check box, and configure

the page navigation details as you require.

The CustomerList.aspx Web page also has a “New” hyperlink to enable the user to
create new customer records in the data store.

Appendix B: How To Samples 201

� To add this hyperlink to the Web page
1. View the HTML for the Web page.
2. Add an <a> HTML element as follows, to define a hyperlink to the

EditCustomer.aspx Web page.

New

Note that EditCustomer.aspx is the same Web page that is used to edit existing
customer records, but the absence of a customer ID in the URL indicates that a
new customer record is to be created.

The next task is to write code in the code-behind class for CustomerList.aspx.

� To implement the functionality of the Web page
1. Add code to the Page_Load method to bind the DataGrid control to the customer

records in the data store. The following code uses a helper method named
LoadCustomers, because the task of loading customers will be needed elsewhere
in the Web page. The LoadCustomers method creates a CustomerBc business
component and calls the GetAll method to return all the customer records as
a typed data set. The DataGrid control is then bound to the Customers table in
the typed data set.

using CRUDSample.BusinessComponent;
using CRUDSample.BusinessEntity;

namespace CRUDSample.WebUI
{
 [ComVisible(false)]
 public class CustomerList : System.Web.UI.Page
 {
 // DataGrid to display a list of customers
 protected System.Web.UI.WebControls.DataGrid dgCustomers;

 private void Page_Load(object sender, System.EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 LoadCustomers();
 }
 }

 private void LoadCustomers()
 {
 // Create a "customer" business component
 CustomerBc customerBc = new CustomerBc();

 // Get all customers
 CustomerDs customer = customerBc.GetAll();

Design and Implementation Guidelines for Web Clients202

 // Bind the DataGrid control to the "Customers" table in the dataset
 dgCustomers.DataSource = customer.Customers;
 dgCustomers.DataBind();
 }
 // Plus other members...
 }
}

2. Define an event handler for the ItemCreated event on the DataGrid. The event
handler method adds client-side script to the Delete button for the new item. The
client-side script displays an “Are you sure?” confirmation message when the
user tries to delete the item to give the user an opportunity to cancel the deletion.

namespace CRUDSample.WebUI
{
 [ComVisible(false)]
 public class CustomerList : System.Web.UI.Page
 {
 private void customersGrid_ItemCreated(object sender,
 DataGridItemEventArgs e)
 {
 if (e.Item.ItemType == ListItemType.Item ||
 e.Item.ItemType == ListItemType.AlternatingItem)
 {
 // Add an "Are you sure?" confirmation dialog box to the Delete button
 LinkButton deleteButton =
 e.Item.FindControl("lnkDelete") as LinkButton;
 if (deleteButton != null)
 deleteButton.Attributes.Add(
 "onclick",
 "return window.confirm('Are you sure ?');");
 }
 }
 // Plus other members...
 }
}

3. Define an event handler to delete the selected customer record from the data
store.

namespace CRUDSample.WebUI
{
 [ComVisible(false)]
 public class CustomerList : System.Web.UI.Page
 {
 // Handle "item" events from the DataGrid control
 private void customersGrid_ItemCommand(object source,
 DataGridCommandEventArgs e)
 {
 // Is it the "Delete" command?
 if (e.CommandName == "Delete")
 {

Appendix B: How To Samples 203

 // Get the CustomerID of the selected customer
 int customerId = (int)dgCustomers.DataKeys[e.Item.ItemIndex];

 // Delete the selected customer
 CustomerBc customerBc = new CustomerBc();
 customerBc.Delete (customerId);

 // Update the page index
 if (dgCustomers.Items.Count == 1 && dgCustomers.CurrentPageIndex > 0)
 {
 dgCustomers.CurrentPageIndex -= 1;
 }

 // Rebind
 LoadCustomers();
 }
 }
 // Plus other members...
 }
}

4. Define an event handler method for the PageIndexChanged event on the
DataGrid control. Implement the event handler method as follows to support
paging behavior in the DataGrid control.

namespace CRUDSample.WebUI
{
 [ComVisible(false)]
 public class CustomerList : System.Web.UI.Page
 {
 private void customersGrid_PageIndexChanged(
 object source,
 DataGridPageChangedEventArgs e)
 {
 // Adjust the current page index
 dgCustomers.CurrentPageIndex = e.NewPageIndex;

 // Rebind
 LoadCustomers();
 }
 // Plus other members...
 }
}

The preceding code samples show how to display a collection of “customer” busi-
ness entities in a DataGrid control, and how to incorporate hyperlinks that enable
the user to create new customers, edit existing customers, and delete existing cus-
tomers in the data store.

Design and Implementation Guidelines for Web Clients204

Defining the EditCustomer.aspx Web Page
The EditCustomer.aspx Web page allows the user to edit details for an existing
customer record and to enter details for a new customer record. EditCustomer.aspx
is shown in Figure B.8, with some sample data entered by the user.

Figure B.8
Edit customer Web page

Notice the following features in EditCustomer.aspx:
● The Web page contains a series of text boxes, one for each field in the “customer”

business entity.
● If the user invokes the Web page to edit an existing customer record, the text

fields are populated with the customer’s current details. However, if the user
invokes the Web page to create a new customer record, the text fields are blank
initially.

● When the user clicks the Ok button, the Web page either updates an existing
record or creates a new record, depending on whether the user is editing an
existing customer or creating a new customer. The user is then redirected back to
the CustomerList.aspx Web page to view the customer list.

● When the user clicks the Cancel button, the user is immediately redirected back
to CustomerList.aspx without any modifications to the data store.

To design this Web page, add Label, TextBox, and Button controls to the form as
shown in Figure B.8. There are no special user interface issues that you must take
into account for this Web page.

Appendix B: How To Samples 205

� To implement the functionality for the EditCustomer.aspx Web page
1. Add code to the Page_Load method to populate the text boxes on the form if the

user is editing an existing customer record; in this scenario, the query string
contains a CustomerId parameter to identify the current customer. The customer
ID must be stored in the ViewState, so that it is available in subsequent
postbacks.

using CRUDSample.BusinessComponent;
using CRUDSample.BusinessEntity;

namespace CRUDSample.WebUI
{
 [ComVisible(false)]
 public class EditCustomer : System.Web.UI.Page
 {
 private void Page_Load(object sender, System.EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 // Is the user editing an existing customer record?
 if (Request.QueryString["CustomerId"] != null)
 {
 // Add customerID to ViewState, so that it is available in postbacks
 ViewState.Add("CustomerId",
 int.Parse(Request.QueryString["CustomerId"]));

 // Create a "customer" business component
 CustomerBc customerBc = new CustomerBc();

 // Get the specified customer's details from the data store
 CustomerDs.Customer customer =
 customerBc.GetById((int)ViewState["CustomerId"]);

 // Populate the form controls with customer details
 txtCompany.Text = customer.CompanyName;
 txtContact.Text = customer.ContactName;
 txtAddress.Text = customer.Address;
 txtCity.Text = customer.City;
 txtRegion.Text = customer.Region;
 txtPostal.Text = customer.PostalCode;
 txtCountry.Text = customer.Country;
 txtEmail.Text = customer.Email;
 }
 }
 }
 // Plus other members...
 }
}

Design and Implementation Guidelines for Web Clients206

2. Define an event handler method for the OK button-click event. If the ViewState
contains a CustomerId value, update the current customer record in the data
store; otherwise, create a new customer record in the data store. Finally, redirect
the user back to the CustomerList.aspx Web page.

namespace CRUDSample.WebUI
{
 [ComVisible(false)]
 public class EditCustomer : System.Web.UI.Page
 {
 private void btnOk_Click(object sender, System.EventArgs e)
 {
 if (!Page.IsValid)
 return;

 // Create a "customer" business component
 CustomerBc customerBc = new CustomerBc();

 // If the ViewState contains a CustomerID value, we are in "edit mode"
 if (ViewState["CustomerId"] != null)
 {
 // Update the specified customer record in the data store
 customerBc.Update((int)ViewState["CustomerId"],
 txtCompany.Text, txtContact.Text,
 txtAddress.Text, txtCity.Text, txtRegion.Text,
 txtPostal.Text, txtCountry.Text, txtEmail.Text);
 }
 else
 {
 // Create a new customer record in the data store
 customerBc.Create (txtCompany.Text, txtContact.Text,
 txtAddress.Text, txtCity.Text, txtRegion.Text,
 txtPostal.Text, txtCountry.Text, txtEmail.Text);
 }

 // Redirect the user back the "customer list" Web page
 Response.Redirect("CustomerList.aspx");
 }
 // Plus other members...
 }
}

3. Define an event handler method for the Cancel button-click event to redirect the
user back to the CustomerList.aspx Web page.

namespace CRUDSample.WebUI
{
 [ComVisible(false)]
 public class EditCustomer : System.Web.UI.Page
 {
 private void btnCancel_Click(object sender, System.EventArgs e)
 {
 Response.Redirect("CustomerList.aspx");
 }

Appendix B: How To Samples 207

 // Plus other members...
 }
}

The preceding code samples show how to edit an existing customer record in the
data store, and how to create a new customer record in the data store.

Defining the OrderList.aspx Web Page
The OrderList.aspx Web page displays orders for a particular customer. This Web
page is displayed when the user clicks the “View orders” hyperlink on the
CustomerList.aspx Web page; the customer’s ID is appended to the query string for
OrderList.aspx to identify the current customer.

OrderList.aspx displays the order records in a DataGrid control, as shown in Figure B.9.

Figure B.9
Order list Web page

There are many similarities between the OrderList.aspx Web page and the
CustomerList.aspx Web page introduced earlier:
● OrderList.aspx contains a DataGrid control that displays a page of orders, one

order per row. The DataGrid supports paging, in case there are many orders to
display.

● The first column in the DataGrid contains a hyperlink to a details Web page
(EditOrder.aspx), where the user can display and edit full details for a particular
order.

● Each row in the DataGrid has a “Delete” hyperlink to delete an existing order in
the data store. Each row also has a “Browse items” hyperlink, which redirects the
user to another Web page (OrderItemList.aspx) to display the order items in a
particular order.

● The “New” hyperlink at the bottom of OrderList.aspx redirects the user to the
details Web page (EditOrder.aspx), where the user can enter details for a new order.

● The “Back to customers” hyperlink at the bottom of OrderList.aspx redirects the
user back to the CustomerList.aspx Web page, to redisplay the list of customers.

Design and Implementation Guidelines for Web Clients208

To design the visual interface for the OrderList.aspx Web page, follow the general
guidelines presented earlier in this chapter for the CustomerList.aspx Web page.
Note the following points:
● The “Id” column is a hyperlink column in the DataGrid property builder. The

URL field is OrderID, and the URL format string is EditOrder.aspx?OrderId={0}.
● The “Date,” “Shipped,” and “Freight” columns are bound columns in the

DataGrid property builder. These columns are bound to the OrderDate,
ShippedDate, and Freight properties on the order record.

● The “Delete” column is a template column in the DataGrid property builder. This
template column contains a LinkButton control, whose CommandName prop-
erty is DeleteCommand.

● The “Browse items” column is a hyperlink column in the DataGrid property
builder. The URL field is OrderID, and the URL format string is
OrderItemList.aspx?OrderId={0}.

● The “New” hyperlink beneath the DataGrid control is a HyperLink control. The
NavigateUrl property is EditOrder.aspx?CustomerId={0}, to create a new order
for the current customer.

● The “Back to customers” hyperlink beneath the DataGrid control is a HyperLink
control. The NavigateUrl property is CustomerList.aspx, to redirect the user back
to the “customer list” page.

� To implement the functionality for the OrderList.aspx Web page
1. Add code to the Page_Load method, to bind the DataGrid control to the order

records for the current customer. Retrieve the customer’s ID from the query
string, and store it in the ViewState so that it is available in subsequent
postbacks. In the following code sample, the task of loading orders and binding
them to the DataGrid control is performed in a helper method named
LoadOrders.

using CRUDSample.BusinessEntity;
using CRUDSample.BusinessComponent;

namespace CRUDSample.WebUI
{
 [ComVisible(false)]
 public class OrderList : System.Web.UI.Page
 {
 private void Page_Load(object sender, System.EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 // Add customerID to the ViewState, so it is available in postbacks
 ViewState.Add("CustomerId",
 int.Parse(Request.QueryString["CustomerId"]));

Appendix B: How To Samples 209

 // Rebind the DataGrid control
 LoadOrders();

 // Append the customerID to the "New" hyperlink,
 // to identify the current customer in the hyperlink
 lnkNew.NavigateUrl =
 String.Format(System.Globalization.CultureInfo.CurrentUICulture,
 lnkNew.NavigateUrl,
 ViewState["CustomerId"]);
 }
 }

 private void LoadOrders()
 {
 // Create an "order" business component
 OrderBc orderBc = new OrderBc();

 // Get all orders for the current customer
 int customerId = (int)ViewState["CustomerId"];
 OrderDs order = orderBc.GetByCustomer(customerId);

 // Bind the DataGrid control to the data set
 dgOrders.DataSource = order.Orders;
 dgOrders.DataBind();
 }
 // Plus other members...
 }
}

2. Define an event handler for the “item created” event on the DataGrid. The event
handler method adds client-side script to the Delete button for the new item. The
client-side script displays an “Are you sure?” confirmation message when the
user tries to delete the item to give the user an opportunity to cancel the deletion.

namespace CRUDSample.WebUI
{
 [ComVisible(false)]
 public class OrderList : System.Web.UI.Page
 {
 private void ordersGrid_ItemCreated(object sender,
 DataGridItemEventArgs e)
 {
 if (e.Item.ItemType == ListItemType.Item ||
 e.Item.ItemType == ListItemType.AlternatingItem)
 {
 // Add an "Are you sure?" confirmation dialog box to the Delete button
 LinkButton deleteButton =
 e.Item.FindControl("lnkDelete") as LinkButton;

 if (deleteButton != null)
 deleteButton.Attributes.Add(
 "onclick",
 "return window.confirm('Are you sure ?');");
 }
 }

Design and Implementation Guidelines for Web Clients210

 // Plus other members...
 }
}

3. Define an event handler method for to delete the selected order record from the
data store.

namespace CRUDSample.WebUI
{
 [ComVisible(false)]
 public class OrderList : System.Web.UI.Page
 {
 // Handle "item" events from the DataGrid control
 private void ordersGrid_ItemCommand(object source,
 DataGridCommandEventArgs e)
 {
 // Is it the "Delete" command?
 if (e.CommandName == "Delete")
 {
 // Get the OrderID of the selected order
 int orderId = (int)dgOrders.DataKeys[e.Item.ItemIndex];

 // Delete the selected order
 OrderBc orderBc = new OrderBc();
 orderBc.Delete(orderId);

 // Update the page index
 if (dgOrders.Items.Count == 1 && dgOrders.CurrentPageIndex > 0)
 {
 dgOrders.CurrentPageIndex -= 1;
 }

 // Rebind
 LoadOrders();
 }
 }
 // Plus other members...
 }
}

4. Define an event handler method for the PageIndexChanged event on the
DataGrid control. Implement the event handler method as follows, to support
paging behavior in the DataGrid control.

namespace CRUDSample.WebUI
{
 [ComVisible(false)]
 public class OrderList : System.Web.UI.Page
 {
 private void ordersGrid_PageIndexChanged(object source,
 DataGridPageChangedEventArgs e)
 {

Appendix B: How To Samples 211

 // Adjust the current page index
 dgOrders.CurrentPageIndex = e.NewPageIndex;

 // Rebind
 LoadOrders();
 }
 // Plus other members...
 }
}

The preceding code samples show how to display a collection of “order” business
entities in a DataGrid control, and how to incorporate hyperlinks that enable the
user to create new orders, edit existing orders, and delete existing orders.

Defining the EditOrder.aspx Web Page
The EditOrder.aspx Web page allows the user to edit details for an existing order
record, and to enter details for a new order record. EditOrder.aspx is shown in
Figure B.10 with some sample data entered by the user.

Figure B.10
Edit-order Web page

The EditOrder.aspx Web page is visually and functionally equivalent to the
EditCustomer.aspx Web page, except that it works with “order” records instead of
“customer” records. For a description of the mechanisms and techniques used to
implement both of these Web pages, see “Defining the EditCustomer.aspx Web
Page” earlier in this chapter.

The code-behind class for EditOrder.aspx is shown in the following code sample.
This code follows a similar pattern to the code-behind class for EditCustomer.aspx.

using CRUDSample.BusinessComponent;
using CRUDSample.BusinessEntity;

Design and Implementation Guidelines for Web Clients212

namespace CRUDSample.WebUI
{
 [ComVisible(false)]
 public class EditOrder : System.Web.UI.Page
 {
 private void Page_Load(object sender, System.EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 // Is the user editing an existing order record?
 if (Request.QueryString["OrderId"] != null)
 {
 // Add orderID to the ViewState, so that it is available in postbacks
 ViewState.Add("OrderId", int.Parse(Request.QueryString["OrderId"]));

 // Create an "order" business component
 OrderBc orderBc = new OrderBc();

 // Get the specified order's details from the data store
 OrderDs.Order order = orderBc.GetById((int)ViewState["OrderId"]);

 // Populate the form controls with order details
 txtDate.Text = order.OrderDate.ToString("yyyy/MM/dd");
 txtShipped.Text = order.ShippedDate.ToString("yyyy/MM/dd");
 txtFreight.Text = order.Freight.ToString();

 // Also add the customerID to the ViewState
 ViewState.Add("CustomerId", order.CustomerID);
 }
 else
 {
 // This is a new order, so get the customer's ID from the Query String
 // and add it to the ViewState
 ViewState.Add("CustomerId",
 int.Parse(Request.QueryString["CustomerId"]));
 }
 }
 }

 private void btnOk_Click(object sender, System.EventArgs e)
 {
 // Create an "order" business component
 OrderBc orderBc = new OrderBc();

 // If the ViewState contains an OrderID value, we are in "edit" mode
 if (ViewState["OrderId"] != null)
 {
 int orderId = (int)ViewState["OrderId"];

 // Update the specified order record in the data store
 orderBc.Update(orderId,
 (int)ViewState["CustomerId"],
 DateTime.Parse(txtDate.Text),
 DateTime.Parse(txtShipped.Text),
 decimal.Parse(txtFreight.Text));
 }

Appendix B: How To Samples 213

 else
 {
 // Create a new order record in the data store
 orderBc.Create((int)ViewState["CustomerId"],
 DateTime.Parse(txtDate.Text),
 DateTime.Parse(txtShipped.Text),
 decimal.Parse(txtFreight.Text));
 }

 // Redirect the user back to the "order list" Web page for this customer
 Response.Redirect("OrderList.aspx?CustomerId=" +
 ViewState["CustomerId"].ToString());
 }

 private void btnCancel_Click(object sender, System.EventArgs e)
 {
 Response.Redirect("OrderList.aspx?CustomerId=" +
 ViewState["CustomerId"].ToString());
 }
 }
}

The preceding code samples show how to edit an existing order record in the data
store, and how to create a new order record in the data store.

Defining the OrderItemList.aspx Web Page
The OrderItemList.aspx Web page displays the order items that comprise a particu-
lar order. This Web page is displayed when the user clicks the “Browse items”
hyperlink on the OrderList.aspx Web page; the order ID is appended to the query
string for OrderItemList.aspx to identify the order.

OrderItemList.aspx displays the order item records in a DataGrid control, as shown
in Figure B.11.

Figure B.11
Order-item list Web page

Design and Implementation Guidelines for Web Clients214

The OrderItemList.aspx Web page is visually and functionally equivalent to the
OrderList.aspx Web page, except that it works with “order item” records instead of
“order” records. For a description of the mechanisms and techniques used to imple-
ment both of these Web pages, see “Defining the OrderList.aspx Web Page” earlier in
this chapter.

Defining the EditOrderItem.aspx Web Page
The EditOrderItem.aspx Web page allows the user to edit details for an existing
order item record and to enter details for a new order item record.
EditOrderItem.aspx is shown in Figure B.12, with some sample data entered by
the user.

Figure B.12
Edit order-item Web page

The EditOrderItem.aspx Web page is visually and functionally equivalent to the
EditOrder.aspx Web page, except that it works with “order item” records instead of
“order” records. For a description of the mechanisms and techniques used to imple-
ment both of these Web pages, see “Defining the EditOrder.aspx Web Page” earlier
in this chapter.

Appendix B: How To Samples 215

How To: Execute a Long-Running Task in a Web Application
This example shows how to create threads to perform long-running tasks in an
ASP.NET Web application.
In this example, the user enters credit card details in a “payment” Web page
(Payment.aspx). When the user submits the details, the payment page creates a
worker thread to authorize the credit card details as a background task. In the
meantime, the user is redirected to a “result” Web page (Result.aspx). The result
page continually refreshes itself until the worker thread has completed the credit
card authorization task.

There are four classes in this example:
● Payment – This is the code-behind class for the payment Web page.
● CCAuthorizationService – This is a service agent class that sends credit card

transactions to a credit card authority.
● ThreadResults – This is a helper class that stores the credit card authorization

results from the worker threads.
● Result – This is the code-behind class for the result Web page.

The following sections describe these classes.

Note: For simplicity in this example, the application does not validate the details entered by
the user.

Defining the Payment Class
The Payment class is the code-behind class for the Payment.aspx Web page. This
Web page asks the user to enter payment details, as shown in Figure B.13.

Figure B.13
Credit card payment page

Design and Implementation Guidelines for Web Clients216

The Payment class has three important members:
● RequestId field – This is a globally unique identifier (GUID) that identifies each

credit card authorization task. Every time the user submits credit card details to
the payment Web page, a new GUID will be generated.

● Page_Load method – This method is called when the payment Web page is first
displayed, and on each subsequent postback. This method performs the follow-
ing tasks:
● When the payment Web page is first displayed, Page_Load initializes the

controls on the page.
● On subsequent postbacks, Page_Load creates a new request ID, and then calls

the AuthorizePayment method in a worker thread. In the meantime, the user
is redirected to the result Web page, Result.aspx. The request ID is appended
to the query string for Result.aspx to identify the worker thread that the result
Web page is waiting for.

● AuthorizePayment method – This method synchronously calls the Authorize
method in the CCAuthorizationService class to authorize the credit card details.
When the authorization is complete, the Authorize method returns an authoriza-
tion ID. The authorization ID is added to the ThreadResults collection to indicate
to the result Web page that the authorization is complete.

The following is the code for the Payment class.

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Threading;

public class Payment : System.Web.UI.Page
{
 // GUID, holds a unique ID for this authorization request
 protected Guid RequestId;

 private void Page_Load(object sender, System.EventArgs e)
 {
 if (Page.IsPostBack)
 {
 // This is a postback, so authorize the credit card details...

 // Create a new request id
 RequestId = Guid.NewGuid();

 // Create and start a worker thread, to process the credit card details
 ThreadStart ts = new ThreadStart(AuthorizePayment);
 Thread workerThread = new Thread(ts);
 workerThread.Start();

 // Redirect to the "result page" (append the requestId to the query string)
 Response.Redirect("Result.aspx?RequestId=" + RequestId.ToString());
 }

Appendix B: How To Samples 217

 else
 {
 // This is not a postback, so initialize the Web UI controls
 int currentYear = DateTime.Now.Year;

 // Populate the expiration date dropdown lists
 for (int index = currentYear; index < currentYear + 6; index++)
 cmbExpDateYear.Items.Add(new ListItem(index.ToString(),
 index.ToString()));

 for (int index = 1; index < 13; index++)
 cmbExpDateMonth.Items.Add(new ListItem(index.ToString(),
 index.ToString()));

 for (int index = 1; index < 32; index++)
 cmbExpDateDay.Items.Add(new ListItem(index.ToString(),
 index.ToString()));
 }
 }

 // Send an authorization request to the credit card authority.
 // This method is executed by the worker thread.
 private void AuthorizePayment()
 {
 // Send the request
 int authorizationId = CCAuthorizationService.Authorize(
 cmbCCType.Items[cmbCCType.SelectedIndex].Value,
 txtCCNumber.Text,
 DateTime.MaxValue,
 Double.Parse(txtAmount.Text));

 // Add the authorization id to the result collection
 ThreadResults.Add(RequestId, authorizationId);
 }
 // Plus other members...
}

Defining the CCAuthorizationService Class
The CCAuthorizationService class interacts with a back-end credit card agency to
authorize the user’s credit card details. The exact mechanism for credit card authori-
zation is irrelevant; the important point is that the authorization task is likely to take
several seconds (or minutes) to complete.

The following code shows a mock-up implementation for the
CCAuthorizationService class. The Authorize method waits for 5 seconds, and then
returns a random authorization ID.

using System;
using System.Threading;

Design and Implementation Guidelines for Web Clients218

public sealed class CCAuthorizationService
{
 public static int Authorize(string ccType,
 string ccNumber,
 DateTime expDate,
 double amount)
 {
 // Wait for the credit card authority...
 Thread.Sleep(new TimeSpan(0, 0, 0, 7, 0));

 // Return the authorization id
 return new Random(0).Next(100);
 }
}

Defining the ThreadResults Class
The ThreadResults class holds a collection of results from worker threads, so that
the result page can access the result of each credit card authorization task when it is
complete.

ThreadResults holds the results in a hash table. The keys in the hash table are the
request IDs, and the values in the hash table are the corresponding authorization
IDs. The ThreadResults class provides methods to insert, query, and remove items
in the hash table.

The following is the code for the ThreadResults class.

using System;
using System.Collections;

public sealed class ThreadResults
{
 private static Hashtable results = new Hashtable();

 public static object Get(Guid itemId)
 {
 return results[itemId];
 }

 public static void Add(Guid itemId, object result)
 {
 results[itemId] = result;
 }

 public static void Remove(Guid itemId)
 {
 results.Remove(itemId);
 }

 public static bool Contains(Guid itemId)
 {
 return results.Contains(itemId);
 }
}

Appendix B: How To Samples 219

Defining the Result Class
The Result class is the code-behind class for the Result.aspx Web page. This Web
page displays a “wait” message while the credit card authorization is taking place as
shown in Figure B.14.

Figure B.14
The result page displays a “wait”’ message while the long-running task is taking place

When the credit card authorization is complete, the Result.aspx Web page displays
the authorization ID as shown in Figure B.15.

Figure B.15
The result page displays the authorization ID when the long-running task is complete

Design and Implementation Guidelines for Web Clients220

The Page_Load method in the Result class retrieves the RequestId parameter from
the HTTP query string and tests whether the worker thread has completed authoriz-
ing this request:
● If the authorization request is not yet complete, a Refresh header is added to the

HTTP response. This causes the Web page to reload itself automatically in 2
seconds.

● If the authorization request is complete, the authorization ID is retrieved from the
ThreadResults class and is displayed on the Web page.

The following is the code for the Result class.

using System;

public class Result : System.Web.UI.Page
{
 protected System.Web.UI.WebControls.Label lblMessage;

 private void Page_Load(object sender, System.EventArgs e)
 {
 // Get the request id
 Guid requestId = new Guid(Page.Request.QueryString["RequestId"].ToString());

 // Check the thread result collection
 if(ThreadResults.Contains(requestId))
 {
 // The worker thread has finished

 // Get the authorization id from the thread result collection
 int authorizationId = (int)ThreadResults.Get(requestId);

 // Remove the result from the collection
 ThreadResults.Remove(requestId);

 // Show the result
 lblMessage.Text = "You payment has been sent succesfully. " +
 "The authorization id is " + authorizationId.ToString();
 }
 else
 {
 // The worker thread has not yet finished authorizing the payment details.
 // Add a refresh header, to refresh the page in 2 seconds.
 Response.AddHeader("Refresh", "2");
 }
 }
 // Plus other members...
}

Appendix B: How To Samples 221

How To: Use the Trusted Subsystem Model
The trusted subsystem model enables middle-tier services to use a fixed identity to
access downstream services and resources. The security context of the original caller
does not flow through the service at the operating system level, although the appli-
cation may choose to flow the original caller’s identity at the application level. It
may need to do so to support back-end auditing requirements or to support per-user
data access and authorization.

You can define multiple trusted identities if necessary, based on the role membership
of the caller. For example, you might have two groups of users, one who can per-
form read/write operations on a database, and the other who can perform read-only
operations. In such a scenario, you can map each role to a different trusted identity
in the underlying system.

The main advantages of using he trusted subsystem model are scalability, simple
back-end ACL management, and protection of data from direct access by users.

To make use of the trusted subsystem model, you need to make the following
configuration changes in IIS and ASP.NET on the Web server:
● Configure IIS authentication – Configure IIS so that it authenticates the original

user. You can use Windows authentication (Basic, Digest, Integrated Windows, or
Certificate authentication), Forms authentication, or Passport authentication.

● Configure ASP.NET authentication – Edit Web.config for the ASP.NET Web
application so that it specifies which authentication mechanism to use for this
application. Add an <authentication> element that specifies the authentication
mode (“Windows,” “Forms,” or “Passport”).

<authentication mode="Windows"/> -or-
<authentication mode="Forms"/> -or-
<authentication mode="Passport"/>

You must also ensure impersonation is disabled. Impersonation is a mechanism
whereby the user’s original security context is passed on to downstream applica-
tions so that they can perform their own authentication and authorization tests
on the user’s real credentials. Impersonation is disabled by default in ASP.NET,
unless you have an <identity impersonate=”true”/> element. To explicitly
disable impersonation, add the following element to Web.config.

<identity impersonate="false"/>

Design and Implementation Guidelines for Web Clients222

How To: Use Impersonation/Delegation with
Kerberos Authentication

In the impersonation/delegation model, the ASP.NET Web application authenticates
and authorizes the user at the first point of contact as before. These credentials are
flowed to downstream applications, to enable the downstream applications to
perform their own authentication and authorization tests using the real security
credentials of the original user.

To enable impersonation/delegation with Kerberos authentication, you must make
the following configuration changes in IIS and ASP.NET on the Web server:
● Configure IIS authentication – Configure IIS for the Web application’s virtual

root, so that it uses Integrated Windows authentication (that is, Kerberos authen-
tication).

● Configure ASP.NET authentication – Edit Web.config for the ASP.NET Web
application. You must set Windows authentication as the authentication mecha-
nism and enable impersonation.

<authentication mode="Windows"/>
<identity impersonate="true"/>

Note: Impersonation/delegation with Kerberos authentication and delegation is feasible only if
all computers are running Windows 2000 or later. Furthermore, each user account that needs
to be impersonated must be stored in Active Directory and must not be configured as “Sensi-
tive and cannot be delegated.”

Appendix B: How To Samples 223

How To: Use Impersonation/Delegation with Basic or Forms
Authentication

In the impersonation/delegation model, the ASP.NET Web application authenticates
and authorizes the user at the first point of contact as before. These credentials are
flowed to downstream applications, to enable the downstream applications to
perform their own authentication and authorization tests using the real security
credentials of the original user.

To enable impersonation/delegation with Basic authentication or Forms authentica-
tion, you must make the following configuration changes in IIS and ASP.NET on the
Web server:
● Configure IIS authentication – Configure IIS for the Web application’s virtual

root so that it uses Basic authentication or Forms authentication.
● Configure ASP.NET authentication – Edit Web.config for the ASP.NET Web

application so that it uses either Basic authentication or Forms authentication.

<authentication mode="Basic"/> -or-
<authentication mode="Forms"/>

You must also enable impersonation.

<identity impersonate="true"/>

You must also write code in your ASP.NET Web application to obtain the user’s
name and password:
● If you use Basic authentication, get the user’s name and password from HTTP

server variables.

string username = Request.ServerVariables["AUTH_USER"];
string password = Request.ServerVariables["AUTH_PASSWORD"];

● If you use Forms authentication, get the user’s name and password from fields in
the HTML logon form. For example, if the logon form has text fields named
txtUsername and txtPassword, you can get the user name and password as
follows.

string username = txtUsername.Text;
string password = txtPassword.Text;

Design and Implementation Guidelines for Web Clients224

How To: Localize Windows Forms
In Windows Forms-based applications, you can use the Visual Studio .NET Forms
Designer to create localized versions of your form.

� To create localized versions of your form
1. Design your form in the usual manner, laying out all the necessary controls. Any

text labels you assign at this stage will be used by your application’s default
culture.

2. After you design the form, set the form’s Localizable property to True.
3. For each alternative culture that your application will support, create a localized

version of the form as follows:
a. Set the form’s Language property to the culture you want to work with.
b. Modify each of the controls on your form to comply with the culture you are

working with. For example, change labels on the form to display text in the
appropriate natural language for the culture.

As you add cultures to your form, new .resx files are created for the form. To view
the .resx files, make sure you have selected the Show All Files option in Solution
Explorer. The .resx files appear beneath your form file; for example, if you add
support for French (fr-FR) to a form named MyForm, Visual Studio. NET will create
MyForm.fr-FR.resx.

When you run the application, the run time uses the most appropriate resource file
to render the user interface based on the Thread.CurrentThread.CurrentUICulture
setting. In general, you want to specify a culture so that every part of the
application’s user interface is appropriate to that culture; therefore, you must set the
culture before the InitializeComponent method is called. The following code
sample sets the current culture and current UI culture in the constructor of the
MyForm class.

using System.Windows.Forms;
using System.Threading;
using System.Globalization;

public class MyForm : System.Windows.Forms.Form
{
 // Constructor
 public MyForm()
 {
 // Set the culture and UI culture before InitializeComponent is called
 Thread.CurrentThread.CurrentCulture = new CultureInfo("fr-FR");
 Thread.CurrentThread.CurrentUICulture = new CultureInfo("fr-FR");

 // Initialize components, using the specified culture and UI culture
 InitializeComponent();

Appendix B: How To Samples 225

 // Perform any additional initialization, as appropriate
 // ...
 }
 // Plus other members...
}

For additional information about how localize Windows Forms, see “Let Your Apps
Span the Globe with Windows Forms and Visual Studio .NET” on MSDN (http://
msdn.microsoft.com/msdnmag/issues/02/06/internat/toc.asp).

Design and Implementation Guidelines for Web Clients226

How To: Define a Catch-All Exception Handler in Windows
Forms-based Applications

In Windows Forms-based applications, you can define a catch-all exception handler
method to catch all un-trapped thread exceptions. In the exception handler method,
you can take appropriate recovery actions — usually to display a user-friendly error
message.

� To define a catch-all exception handler
1. Implement an event handler method for the ThreadException event of the

System.Windows.Forms.Application class.
2. Add the event handler method to the Application.ThreadException event.

The best place to do this is in the Main method of your application.

The following code sample implements a catch-all event handler method that
publishes exceptions using the Microsoft Exception Management Application Block.

using System.Windows.Forms;
using System.Threading;
using Microsoft.ApplicationBlocks.ExceptionManagement;

public class MyForm : System.Windows.Forms.Form
{
 // Catch-all event handler method
 protected static void CatchAllExceptions(object Sender,
 ThreadExceptionEventArgs e)
 {
 // Publish the exception
 ExceptionManager.Publish(ex);
 }

 // Main method in the application
 public static void Main()
 {
 // Create a new ThreadExceptionEventHandler delegate instance
 // and add it to the Application.ThreadException event
 Application.ThreadException +=
 new ThreadExceptionEventHandler(CatchAllExceptions);

 // Run the Windows Forms application
 Application.Run(new MyForm());
 }
}

For more information about the Microsoft Exception Management Application
Block, see MSDN (http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnbda/html/emab-rm.asp).

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

About Microsoft patterns & practices

Microsoft patterns & practices guides contain specific recommendations illustrating how to design,
build, deploy, and operate architecturally sound solutions to challenging business and technical
scenarios. They offer deep technical guidance based on real-world experience that goes far beyond
white papers to help enterprise IT professionals, information workers, and developers quickly
deliver sound solutions.

IT Professionals, information workers, and developers can choose from four types of patterns &
practices:

● Patterns—Patterns are a consistent way of documenting solutions to commonly occurring
problems. Patterns are available that address specific architecture, design, and implementation
problems. Each pattern also has an associated GotDotNet Community.

● Reference Architectures—Reference Architectures are IT system-level architectures that
address the business requirements, LifeCycle requirements, and technical constraints for
commonly occurring scenarios. Reference Architectures focus on planning the architecture
of IT systems.

● Reference Building Blocks and IT Services—References Building Blocks and IT Services are
re-usable sub-system designs that address common technical challenges across a wide range
of scenarios. Many include tested reference implementations to accelerate development.
Reference Building Blocks and IT Services focus on the design and implementation of sub-
systems.

● Lifecycle Practices—Lifecycle Practices provide guidance for tasks outside the scope of
architecture and design such as deployment and operations in a production environment.

Patterns & practices guides are reviewed and approved by Microsoft engineering teams, consultants,
Product Support Services, and by partners and customers. Patterns & practices guides are:

● Proven—They are based on field experience.

● Authoritative—They offer the best advice available.

● Accurate—They are technically validated and tested.

● Actionable—They provide the steps to success.

● Relevant—They address real-world problems based on customer scenarios.

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Patterns & practices guides are designed to help IT professionals, information workers, and
developers:

Reduce project cost
● Exploit the Microsoft engineering efforts to save time and money on your projects.

● Follow the Microsoft recommendations to lower your project risk and achieve predictable
outcomes.

Increase confidence in solutions
● Build your solutions on proven Microsoft recommendations so you can have total confidence in

your results.

● Rely on thoroughly tested and supported guidance, but production quality recommendations and
code, not just samples.

Deliver strategic IT advantage
● Solve your problems today and take advantage of future Microsoft technologies with practical

advice.

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

patterns & practices: Current Titles
October 2003

Title Link to Online Version Book

Patterns

Enterprise Solution Patterns http://msdn.microsoft.com/practices/type/Patterns
using Microsoft .NET /Enterprise/default.asp

Microsoft Data Patterns http://msdn.microsoft.com/practices/type/Patterns
/Data/default.asp

Reference Architectures

Application Architecture for http://msdn.microsoft.com/library/default.asp?url=
.NET: Designing Applications /library/en-us/dnbda/html/distapp.asp
and Services

Enterprise Notification http://msdn.microsoft.com/library/default.asp?url=
Reference Architecture for /library/en-us/dnentdevgen/html/enraelp.asp
Exchange 2000 Server

Improving Web Application http://msdn.microsoft.com/library/default.asp?url=
Security: Threats and /library/en-us/dnnetsec/html/ThreatCounter.asp
Countermeasures

Microsoft Accelerator http://www.microsoft.com/technet/treeview
for Six Sigma /default.asp?url=/technet/itsolutions/mso/sixsigma

/default.asp

Microsoft Active Directory http://www.microsoft.com/technet/treeview
Branch Office Guide: /default.asp?url=/technet/prodtechnol/ad
Volume 1: Planning /windows2000/deploy/adguide/default.asp

Microsoft Active Directory http://www.microsoft.com/technet/treeview
Branch Office Series /default.asp?url=/technet/prodtechnol/ad
Volume 2: Deployment and /windows2000/deploy/adguide/default.asp
Operations

Microsoft Content Integration http://msdn.microsoft.com/library/default.asp?url=
Pack for Content Management /library/en-us/dncip/html/cip.asp
Server 2001 and SharePoint
Portal Server 2001

Microsoft Exchange 2000 Online Version not available
Server Hosting Series
Volume 1: Planning

Microsoft Exchange 2000 Online Version not available
Server Hosting Series
Volume 2: Deployment

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Title Link to Online Version Book

Microsoft Exchange 2000 http://www.microsoft.com/technet/treeview
Server Upgrade Series /default.asp?url=/technet/itsolutions/guide
Volume 1: Planning /default.asp

Microsoft Exchange 2000 http://www.microsoft.com/technet/treeview
Server Upgrade Series /default.asp?url=/technet/itsolutions/guide
Volume 2: Deployment /default.asp

Microsoft Solution http://www.microsoft.com/technet/treeview
for Intranets /default.asp?url=/technet/itsolutions/mso

/msi/Default.asp

Microsoft Solution for http://www.microsoft.com/downloads
Securing Wireless LANs /details.aspx?FamilyId=CDB639B3-010B-47E7-B23

4-A27CDA291DAD&displaylang=en

Microsoft Systems http://www.microsoft.com/technet/treeview
Architecture— /default.asp?url=/technet/itsolutions/edc
Enterprise Data Center /Default.asp

Microsoft Systems http://www.microsoft.com/technet/treeview/
Architecture— default.asp?url=/technet/itsolutions/idc/default.asp
Internet Data Center

The Enterprise Project http://www.microsoft.com/technet/treeview
Management Solution /default.asp?url=/technet/itsolutions/mso/epm

/default.asp

UNIX Application http://msdn.microsoft.com/library/default.asp?url=
Migration Guide /library/en-us/dnucmg/html/ucmglp.asp

Reference Building Blocks and IT Services

.NET Data Access http://msdn.microsoft.com/library/default.asp?url=
Architecture Guide /library/en-us/dnbda/html/daag.asp

Application Updater http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnbda/html/updater.asp

Asynchronous Invocation http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnpag/html/paiblock.asp

Authentication in ASP.NET: http://msdn.microsoft.com/library/default.asp?url=
.NET Security Guidance /library/en-us/dnbda/html/authaspdotnet.asp

Building Interoperable Web http://msdn.microsoft.com/library/default.asp?url=
Services: WS-I Basic /library/en-us/dnsvcinter/html/wsi-bp_msdn_
Profile 1.0 landingpage.asp

Building Secure ASP.NET http://msdn.microsoft.com/library/default.asp?url=
Applications: Authentication, /library/en-us/dnnetsec/html/secnetlpMSDN.asp
Authorization, and Secure
Communication

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Title Link to Online Version Book

Caching Application Block http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnpag/html/Cachingblock.asp

Caching Architecture Guide for http://msdn.microsoft.com/library/default.asp?url=
.Net Framework Applications /library/en-us/dnbda/html/CachingArch.asp?frame=

true

Configuration Management http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnbda/html/cmab.asp

Data Access Application Block http://msdn.microsoft.com/library/default.asp?url=
for .NET /library/en-us/dnbda/html/daab-rm.asp

Designing Application-Managed http://msdn.microsoft.com/library/?url=/library
Authorization /en-us/dnbda/html/damaz.asp

Designing Data Tier Components http://msdn.microsoft.com/library/default.asp?url=
and Passing Data Through Tiers /library/en-us/dnbda/html/BOAGag.asp

Exception Management http://msdn.microsoft.com/library/default.asp?url=
Application Block for .NET /library/en-us/dnbda/html/emab-rm.asp

Exception Management http://msdn.microsoft.com/library/default.asp?url=
Architecture Guide /library/en-us/dnbda/html/exceptdotnet.asp

Microsoft .NET/COM Migration http://msdn.microsoft.com/library/default.asp?url=
and Interoperability /library/en-us/dnbda/html/cominterop.asp

Microsoft Windows Server http://www.microsoft.com/downloads/
2003 Security Guide details.aspx?FamilyId=8A2643C1-0685-4D89-B655-

521EA6C7B4DB&displaylang=en

Monitoring in .NET Distributed http://msdn.microsoft.com/library/default.asp?url=
Application Design /library/en-us/dnbda/html/monitordotnet.asp

New Application Installation http://www.microsoft.com/business/reducecosts
using Systems Management /efficiency/manageability/application.mspx
Server

Patch Management using http://www.microsoft.com/technet/treeview/
Microsoft Systems Management default.asp?url=/technet/itsolutions/msm/swdist/
Server - Operations Guide pmsms/pmsmsog.asp

Patch Management Using http://www.microsoft.com/technet/treeview/
Microsoft Software Update default.asp?url=/technet/itsolutions/msm/swdist/
Services - Operations Guide pmsus/pmsusog.asp

Service Aggregation Application http://msdn.microsoft.com/library/default.asp?url=
Block /library/en-us/dnpag/html/serviceagg.asp

Service Monitoring and Control http://www.microsoft.com/business/reducecosts
using Microsoft Operations /efficiency/manageability/monitoring.mspx
Manager

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Title Link to Online Version Book

User Interface Process http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnbda/html/uip.asp

Web Service Façade for http://msdn.microsoft.com/library/default.asp?url=
Legacy Applications /library/en-us/dnpag/html/wsfacadelegacyapp.asp

Lifecycle Practices

Backup and Restore for http://www.microsoft.com/technet/treeview/default.asp
Internet Data Center ?url=/technet/ittasks/maintain/backuprest/Default.asp

Deploying .NET Applications: http://msdn.microsoft.com/library/default.asp?url=
Lifecycle Guide /library/en-us/dnbda/html/DALGRoadmap.asp

Microsoft Exchange 2000 http://www.microsoft.com/technet/treeview/default.
Server Operations Guide asp?url=/technet/prodtechnol/exchange/exchange

2000/maintain/operate/opsguide/default.asp

Microsoft SQL Server 2000 http://www.microsoft.com/technet/treeview
High Availability Series: /default.asp?url=/technet/prodtechnol/sql/deploy
Volume 1: Planning /confeat/sqlha/SQLHALP.asp

Microsoft SQL Server 2000 http://www.microsoft.com/technet/treeview
High Availability Series: /default.asp?url=/technet/prodtechnol/sql/deploy
Volume 2: Deployment /confeat/sqlha/SQLHALP.asp

Microsoft SQL Server 2000 http://www.microsoft.com/technet/treeview
Operations Guide /default.asp?url=/technet/prodtechnol/sql/maintain

/operate/opsguide/default.asp

Operating .NET-Based http://www.microsoft.com/technet/treeview
Applications /default.asp?url=/technet/itsolutions/net/maintain

/opnetapp/default.asp

Production Debugging for http://msdn.microsoft.com/library/default.asp?url=
.NET-Connected Applications /library/en-us/dnbda/html/DBGrm.asp

Security Operations for http://www.microsoft.com/technet/treeview
Microsoft Windows 2000 Server /default.asp?url=/technet/security/prodtech

/win2000/secwin2k/default.asp

Security Operations Guide for http://www.microsoft.com/technet/treeview
Exchange 2000 Server /default.asp?url=/technet/security/prodtech

/mailexch/opsguide/default.asp

Team Development with Visual http://msdn.microsoft.com/library/default.asp?url=
Studio .NET and Visual /library/en-us/dnbda/html/tdlg_rm.asp
SourceSafe

This title is available as a Book

	Front Cover
	Contents
	Chapter 1: The Presentation Layer
	Introduction
	How To Use This Guide
	Defining the Presentation Layer
	Defining User Interface Components
	Defining User Interface Process Components
	Additional Information

	Summary

	Chapter 2: Using Design Patterns in the Presentation Layer
	In This Chapter
	Benefits of Using Design Patterns
	Using Design Patterns for the Presentation Layer
	Choosing Design Patterns
	Frequently Used Presentation Layer Patterns

	Implementing Design Patterns by Using the User Interface Process Application Block
	Design of the User Interface Process Application Block
	Benefits of Using the User Interface Process Application Block
	Building Applications with the User Interface Process Application Block

	Summary

	Chapter 3: Building Maintainable Web Interfaces with ASP.NET
	In This Chapter
	Creating New Web Server Controls
	Creating and Using Web User Controls
	Creating and Using Web Custom Controls

	Defining Common Page Layouts
	Using a Common Set of Controls
	Using Customizable Regions
	Using Page Inheritance

	Summary

	Chapter 4: Managing Data
	In This Chapter
	Accessing and Representing Data
	Choosing the Representation Format for Data Passed Between Application Layers
	Working with Transactions in the Presentation Layer
	Determining Which Layers Should Access Data

	Presenting Data Using Formatters, Data Binding, and Paging
	Formatting Data
	Data Binding
	Paging Data

	Supporting Data Updates from the Presentation Layer
	Batching Updates
	Using Optimistic Concurrency
	Designing Data Maintenance Forms to Support Create, Read, Update, and Delete Operations
	Implementing Separate Forms for the List and Entity Display

	Validating Data in the Presentation Layer
	Why Validate?
	Choosing a Validation Strategy
	Using Validation Controls
	Handing Validation Errors

	Summary

	Chapter 5: Managing State in Web Applications
	In This Chapter
	Understanding Presentation Layer State
	Determining State Lifetime
	Determining State Scope
	Determining State Type

	Planning State Management for Web Applications
	Storing State in the Session Object
	Storing State in Cookies
	Storing State in Hidden Form Fields
	Storing State in Query Strings (URL fields)
	Storing State in ViewState
	Storing State in the Application Object

	Serializing State
	Caching State
	Summary

	Chapter 6: Multithreading and Asynchronous Programming in Web Applications
	In This Chapter
	Multithreading
	Using the Thread Pool
	Synchronizing Threads
	Troubleshooting

	Using Asynchronous Operations
	Using the .NET Framework Asynchronous Execution Pattern
	Using Built-In Asynchronous I/O Support

	Summary

	Chapter 7: Globalization and Localization
	In This Chapter
	Understanding Globalization and Localization Issues
	Additional Information

	Using Cultures
	Identifying the Current Culture
	Using an Alternative Culture

	Formatting Data
	Localizing String Data
	Localizing Numeric Data
	Localizing Date and Time Data

	Creating Localized Resources
	Creating Custom Resource Files

	Summary

	Appendix A: Securing and Operating the Presentation Layer
	In This Appendix
	Securing the Presentation Layer
	Achieving Secure Communications
	Performing Authentication
	Performing Authorization
	Using Code Access Security
	Implementing Security Across Tiers
	Auditing

	Performing Operational Management
	Managing Exceptions in the Presentation Layer
	Monitoring in the Presentation Layer
	Managing Metadata and Configuration Information
	Defining the Location of Services
	Deploying Applications

	Summary

	Appendix B: How To Samples
	In This Appendix:
	How To: Define a Formatter for Business Entity Objects
	Defining the ReflectionFormattable Class
	Defining the CustomerEntity Class
	Defining the CustomFormatting Class

	How To Perform Data Binding in ASP.NET Web Forms
	Data Binding an Entity Object to Simple Controls
	Data Binding a Collection of Entity Objects to a DataList Control
	Data Binding a Collection of Entity Objects to a DataGrid Control

	How To: Design Data Maintenance Forms to Support Create, Read, Update, and Delete Operations
	Defining Business Entities
	Defining Data Access Logic Components
	Defining Business Components
	Designing CRUD Web Forms

	How To: Execute a Long-Running Task in a Web Application
	Defining the Payment Class
	Defining the CCAuthorizationService Class
	Defining the ThreadResults Class
	Defining the Result Class

	How To: Use the Trusted Subsystem Model
	How To: Use Impersonation/Delegation with Kerberos Authentication
	How To: Use Impersonation/Delegation with Basic or Forms Authentication
	How To: Localize Windows Forms
	How To: Define a Catch-All Exception Handler in Windows Forms-based Applications

	Additional Resources

