

Application Interoperability:
Microsoft .NET and J2EE

Information in this document, including URL and other Internet Web site references,
is subject to change without notice. Unless otherwise noted, the example companies,
organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious, and no association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is
intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission
of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing of
this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

© 2003 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Windows Server, Active Directory, BizTalk,
IntelliSense, MSDN, Visual Basic, Visual Studio, and Win32 are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Contributors

The team that produced Application Interoperability: Microsoft .NET and J2EE came
from a wide range of areas within Microsoft and from many of our partner
organizations.

The following people made a substantial contribution to the writing, developing, and
testing of this content.

Development
Peter Laudati, Microsoft Consulting Services
William Loeffler, Microsoft Platform Architecture Group
David Aiken, Arkitec Ltd
Keith Organ, Arkitec Ltd
Anthony Steven, Content Master Ltd
Mike Preradovic, Intrinsyc Software
Wayne Citrin, JNBridge, LLC
Peter Clift, VMC Consulting Corporation

Test
Chris Sfanos, Microsoft Platform Architecture Group
Sameer Tarey (Infosys Technologies Ltd)
Prashant Bansode (Infosys Technologies Ltd)
Manish Mendiratta (Infosys Technologies Ltd)
Rohit Sharma (Infosys Technologies Ltd)
Nancy Fabiana K. (Infosys Technologies Ltd)
Paresh Gujar (Infosys Technologies Ltd)
Sameer Aras (Infosys Technologies Ltd)

Edit
RoAnn Corbisier, Microsoft Platform Architecture Group
Tina Burden, Entirenet

Review
Gianpaolo Carraro, Microsoft Corporation
Simon Guest, Microsoft Corporation
Sandy Khaund, Microsoft Corporation
Arvindra Sehmi, Microsoft Corporation

Contents

Chapter 1
Introduction 1

Welcome. 1
Who Should Read This Book . 2
Prerequisites . 2
Document Conventions . 3
How to Use This Book . 3

Chapter 2: “Understanding Enterprise Platforms” . 3
Chapter 3: “Interoperability Fundamentals” . 4
Chapter 4: “Interoperability Technologies: Point to Point” . 4
Chapter 5: “Interoperability Technologies: Data Tier” . 4
Chapter 6: “Implementing Interoperability Design Elements”. 4
Chapter 7: “Integrating .NET in the Presentation Tier”. 4
Chapter 8: “Integrating .NET in the Business Tier” . 4
Chapter 9: “Implementing Asynchronous Interoperability” . 5

What Is Microsoft .NET? . 5
What Is Java 2 Enterprise Edition? . 5
Identifying the Business Need for Interoperability . 6

Achieving Reuse of Existing Systems . 7
Implementing Proof of Concept Studies . 7
Migrating to Microsoft .NET . 8
Achieving Lower Project Costs . 8

Defining Interoperability . 9
Understanding Interoperability Scenarios . 10
Listing Interoperability Technologies . 14
Linking Interoperability Technologies to Business Scenarios 15

Introducing the Sample Application . 15
Summary . 16
References . 16

Chapter 2
Understanding Enterprise Platforms 17

Introduction . 17
Microsoft .NET Fundamentals for J2EE Developers . 18

Comparing .NET to J2EE . 18
Investigating the .NET Framework. 19
Building a .NET-based Application . 27
Understanding Attributes . 30
Creating Web Applications . 31

vi Application Interoperability: Microsoft .NET and J2EE

Microsoft .NET Fundamentals for J2EE Developers (continued)
Hosting Components. 31
Supporting Web Services. 32
Connecting to Databases . 33
Implementing Collections . 33
Accessing Directory Services . 34
Reflection . 35

J2EE Fundamentals for .NET Developers . 35
Understanding the Java Platform . 37
Implementing the Java SDK . 38
Building a Java Application. 38
Locating and Sharing Classes . 39
Implementing Other Environment Variables. 40
Using Java Integrated Design Environments . 40
Creating Web Applications . 41
Hosting Components. 42
Building Enterprise JavaBeans . 43
Deploying Applications. 44

Comparing .NET and J2EE Features . 45
Summary . 46
References . 46

Chapter 3
Interoperability Fundamentals 49

Introduction . 49
Facing Interoperability Challenges . 49
Using Serialization. 51

Understanding Binary Serialization . 52
Understanding XML Serialization . 52

Using XML Schemas to Ensure Type Compatibility. 58
Understanding XML Schema Documents . 58
Mapping XSD Types. 62

Data Exchange Recommendations . 63
Linking New Applications . 63
Linking a New Application to an Existing Application . 63
Linking Existing Applications . 64

Summary . 65
References . 65

Chapter 4
Interoperability Technologies: Point to Point 67

Using .NET Remoting for Connectivity . 67
Understanding .NET Remoting . 68
Implementing .NET Remoting . 69

 Contents vii

Implementing Runtime Bridges . 73
Evaluating Ja.NET . 74
Evaluating JNBridgePro . 81

Connecting with Web Services . 89
Understanding Web Services . 90
Web Services Interoperability Organization . 93
Implementing Web Services. 95
Creating Web Services in J2EE. 101
Securing Web Services . 104
Using Universal Description, Discovery, and Integration . 105
Implementing Web Services Interoperability Best Practices 107
Comparing .NET Remoting to Web Services . 108

Summary . 110
References . 111

Chapter 5
Interoperability Technologies: Data Tier 113

Introduction . 113
Linking through a Shared Database . 113

Connecting with JDBC . 114
Connecting with ADO.NET . 116
Sharing Data Between ADO.NET and JDBC . 119

Implementing Asynchronous Interoperability . 122
Connecting with Web Services Using Asynchronous Calls 123
Using Message Queues for Asynchronous Interoperability 125

Using Host Integration Server 2000 . 149
Bridging MSMQ and WebSphere MQ with HIS 2000 . 150
Implementing the MSMQ-MQSeries Bridge . 152

Summary . 153
References . 153

Chapter 6
Implementing Interoperability Design Elements 157

Introduction . 157
Understanding the XBikes Sample Application . 157
Reviewing .NET Framework and J2EE Application Architecture 159

Implementing Presentation Tier Elements. 161
Implementing Business Tier Elements . 162
Implementing Data Access Logic Tier Components . 169
Implementing Message Queuing Services . 171
XBikes Application Architecture for .NET Framework and J2EE 172
Linking to the Reference Design . 174

Implementing Interoperability . 176
Describing Interoperability Connection Points . 177
Interoperability Layers and Components. 178

viii Application Interoperability: Microsoft .NET and J2EE

Implementing Interoperability in XBikes . 184
Adding J2EE Presentation to Business Tier Interoperability 184
Adding J2EE Business to Data Tier Interoperability . 188
Adding .NET Framework Presentation to Business Tier Interoperability 192
Adding .NET Framework Business to Data Tier Interoperability 196

Summary . 200
References . 201

Chapter 7
Integrating .NET in the Presentation Tier 203

Introduction . 203
Determining Data Exchange Formats and Types . 204
Designing and Building the Service Interface . 204
Designing and Building the Interoperability Adapters . 205

Using Web Services for Interoperability. 206
Deciding on a Data Format . 206
Building the Service Interface in J2EE . 206
Creating the Interoperability Adapters in .NET . 213

Using JNBridgePro for Interoperability . 218
Deciding on a Data Format . 218
Building the Service Interface for JNBridgePro. 218
Building the Interoperability Adapters using JNBridgePro . 221

Using Ja.NET for Interoperability. 226
Deciding on a Data Format . 226
Building the Service Interface for Ja.NET . 226
Building the Interoperability Adapters using Ja.NET . 227

Summary . 233
References . 233

Chapter 8
Integrating .NET in the Business Tier 235

Introduction . 235
Determining Data Exchange Formats and Types . 236
Designing and Building the Service Interface . 236
Designing and Building the Interoperability Adapters . 237

Using Web Services for Interoperability. 237
Deciding on a Data Format . 237
Building the Service Interface in .NET Framework . 238
Creating the Interoperability Adapters in J2EE. 245

Using Ja.NET for Interoperability. 251
Deciding on a Data Format . 251
Building the Service Interface for Ja.NET . 252
Creating the Interoperability Adapters using Ja.NET. 258

Summary . 260

 Contents ix

Chapter 9
Implementing Asynchronous Interoperability 261

Introduction . 261
Determine Data Exchange Formats and Data Types. 262
Designing and Building the Service Interface . 262
Designing and Building the Asynchronous Interoperability Adapters 263
Using the MSMQ-MQSeries Bridge . 264

Configuring the Message Queues. 265
Selecting a Data Format . 266
Creating the Message Consumer . 266
Creating the Interoperability Adapter . 268

Using JNBridgePro. 269
Deciding on a Data Format for JNBridgePro. 270
Creating the Message Consumer for JNBridgePro . 271
Creating the Asynchronous Interoperability Adapter for JNBridgePro. 271

Using Ja.NET. 272
Configuring the Message Queues. 273
Deciding on a Data format for Ja.NET. 273
Creating the Message Consumer for Ja.NET . 274
Creating the Ja.NET Asynchronous Interoperability Adapter 274

Summary . 275
References . 275

Appendix A
Installing XBikes on J2EE 277

Introduction . 277
Deploying XBikes on WebSphere Application Developer Studio 5.0 278

Configuring IBM WebSphere MQ 5.3 . 278
Creating the XBikesQ Queue . 280
Installing the XBikes Sample Code. 280
Configuring the JMS Queues . 281
Running XBikes. 282
Using WebSphere Studio Application Developer 5.1 with XBikes 283

Deploying XBikes on WebSphere Application Server 5.0 on a Single Computer. 285
Installing WebSphere Application Server 5.0. 285
Installing and Configuring IBM WebSphere MQ 5.3 . 287
Creating the XBikesQ Queue . 289
Installing the XBikes Sample Code. 289
Running the XBikes Application . 290

Deploying XBikes on WebSphere Application Server 5.0 on Multiple Computers 290
Data Tier Computer Setup . 290
Installing XBikes into the Data Tier. 291
Business Tier Computer Setup. 291
Presentation Tier Computer Setup . 292

x Application Interoperability: Microsoft .NET and J2EE

Deploying XBikes on WebSphere Application Server 5.0 on Multiple Computers (continued)
Configuring the XBikes Application . 293
Running the XBikes Application . 294

Changing Interoperability Methods . 294
Using Web Services Adapters . 294
Using Ja.NET Adapters. 297
Using Message Queue Adapters . 299

Manual Installation Instructions . 299
Manually Configuring XBikes on IBM Application Server . 299
Preparing XBikes for Multi-Tier Deployment . 306
Deploying XBikes on the Presentation Tier Computer. 307
Deploying the Business Tier Components . 309
Configuring the Data Tier Computer . 312

Appendix B
Installing XBikes on .NET 317

Introduction. 317
Deploying XBikes on a Single Computer . 317

Installing the XBikes Application. 318
Configuring the XBikes Web Application . 318
Running XBikes on a Single Tier . 320

Deploying XBikes on Multiple Computers . 320
Identifying Requirements for Each Computer. 320
Running XBikes on Multiple Computers . 325

Changing Interoperability Methods . 326
Using Web Service Adapters . 326
Using Ja.NET Adapters. 329
Using JNBridgePro Adapters. 333

Uninstalling XBikes . 335

Index 341

Additional Resources 361

1
Introduction

Welcome
Welcome to Application Interoperability: Microsoft .NET and J2EE. This book gives you
the best information available about how to ensure that enterprise applications based
on Java 2 Platform, Enterprise Edition (J2EE) work in harmony with components
based on Microsoft® .NET and vice versa. If you are developer with responsibility for
implementing interoperability between these two platforms in an enterprise
environment, this book is for you.

The information in this book is both practical and prescriptive. Rather than discuss
every possible interoperability technique in detail, it focuses on the three most likely
scenarios and shows how to solve those specific challenges. If you want more
in-depth discussions of the concepts behind this material, refer to resources such as
Simon Guest’s book Microsoft .NET and J2EE Interoperability Toolkit, Microsoft Press,
ISBN 0-7356-1922-0.

The focus is very much on enterprise or data center environments, where scalability,
throughput, reliability, and security are the main operating requirements. It is not
intended as a manual for how to write .NET or J2EE applications, but how to get
these components to work together while minimizing any compromises to
operational effectiveness.

This book includes material from consultants working in the field and from early
implementers of interoperability solutions. It contains current best practices for
running Microsoft .NET applications alongside J2EE components. We hope you enjoy
reading this book and that you find the material contained in it helpful, informative,
and interesting.

2 Application Interoperability: Microsoft .NET and J2EE

Who Should Read This Book
This book is aimed at developers who are responsible for creating and implementing
enterprise level business applications based on either Microsoft .NET or on J2EE and
where interoperability between the two platforms is a requirement.

Prerequisites
Because of the dual audience for this book, there are different prerequisites for each
group:
● The sections targeted at .NET developers assume an understanding of the

development process for distributed applications and familiarity with the
Microsoft Visual Studio® .NET programming tools. The sample applications are in
C# (C Sharp), so development experience in this language is essential. Experience
with the .NET Framework SDK and the MSDN® Library are also of benefit.

● The sections targeted at Java developers assume a familiarity with Java
programming methods and tools, in particular Enterprise Java Beans (EJB) and
Java APIs such as Java Naming and Directory Interface (JNDI) and the Java
Messaging Service (JMS).

Note: Whether you are a .NET developer or a Java developer, an appreciation of the other platform
would be beneficial so that you can understand the interoperability techniques between the two
platforms.

Both audiences need to be familiar with cross-platform open standards, such as
eXtensible Markup Language (XML) syntax and methods, SOAP, Web Services
Description Language (WSDL) and TCP/IP. This book also assumes knowledge
of distributed enterprise application concepts, such as multi-tiered architectures,
caching, asynchronous messaging, request routing, and buffering. For
.NET developers, you can find this information in Application Architecture for
.NET: Designing Applications and Services on MSDN; and for Java developers,
the equivalent information is available on the Sun Web Site. See the References
section at the end of the chapter for further details.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp

 Chapter 1: Introduction 3

Document Conventions
This book uses the style conventions and terminology shown in Table 1.1.

Table 1.1: Document Conventions

Element Meaning
bold font Characters that you type exactly as shown, including commands and switches.

Programming elements, such as methods, functions, data types, and data
structures appear in bold font (except when part of a code sample, in which
case they appear in monospace font). User interface elements are also bold.

Italic font Variables for which you supply a specific value. For example, Filename.ext could
refer to any valid file name for the case in question. New terminology also
appears in italic on first use.

Monospace font Code samples.

%SystemRoot% The folder in which Windows is installed.

How to Use This Book
This book consists of nine chapters. The eight other chapters are:
● Chapter 2: “Understanding Enterprise Platforms”
● Chapter 3: “Interoperability Fundamentals”
● Chapter 4: “Interoperability Technologies: Point to Point”
● Chapter 5: “Interoperability Technologies: Data Tier”
● Chapter 6: “Implementing Interoperability Design Elements”
● Chapter 7: “Integrating .NET in the Presentation Tier”
● Chapter 8: “Integrating .NET in the Business Tier”
● Chapter 9: “Implementing Asynchronous Interoperability”

The following sections describe the contents of each chapter.

Chapter 2: “Understanding Enterprise Platforms”
Chapter 2 consists of two parts. The first part looks at .NET from the perspective of
an experienced J2EE developer. It links .NET concepts to principles that you already
understand, showing where the two platforms differ and where they are similar. The
second part of this chapter is the mirror image, providing equivalent information but
for the experienced .NET developer. It introduces you to the enterprise features of
J2EE and explains how Java applications work in distributed environments.

4 Application Interoperability: Microsoft .NET and J2EE

Chapter 3: “Interoperability Fundamentals”
Chapter 3 looks at the fundamentals of connecting .NET and Java-based applications,
concentrating on the exchange of data between the two technologies. The main focus
is on ensuring that both platforms agree on data types, particularly with complex
data types.

Chapter 4: “Interoperability Technologies: Point to Point”
Chapter 4 concentrates on the point to point communication methods of XML Web
services and .NET Remoting. Topics include binary communication and routing,
together with the use of third-party runtime bridges for integrating Java and .NET.

Chapter 5: “Interoperability Technologies: Data Tier”
This chapter continues on from Chapter 4 to concentrate on techniques that apply
to the Data or Resource tier. Techniques covered include shared databases and
asynchronous message queuing. Finally, this chapter briefly covers other
asynchronous techniques such as using the MSMQ-MQSeries Bridge in Microsoft
Host Integration Server.

Chapter 6: “Implementing Interoperability Design Elements”
Chapter 6 takes the concepts from Chapters 4 and 5 and describes how you can
implement these ideas in an enterprise-class application. It looks at best practices in
both J2EE and .NET programming, emphasizing the role of abstraction layers in
applications. The chapter moves on to show how you would implement abstraction
layers such as service interfaces and interoperability adapters in your design. Finally,
it details how the sample application implements interoperability using these
elements.

Chapter 7: “Integrating .NET in the Presentation Tier”
Chapter 7 uses the XBikes example to illustrate the scenario where you want to
integrate ASP.NET Presentation tier components while keeping the existing J2EE
Business tier. This allows an organization to preserve its existing investment in
J2EE and take advantage of the enriched client experience that ASP.NET provides.

Chapter 8: “Integrating .NET in the Business Tier”
Chapter 8 shows how the XBikes example can integrate new .NET Business tier
components, while preserving the same JavaServer Pages (JSP)-based front end.
This solution is appropriate for companies that want to maintain the same client
experience but modify the Business tier. Adding .NET components allows for rapid
development of business logic components or allows the use of third-party .NET
Framework applications.

 Chapter 1: Introduction 5

Chapter 9: “Implementing Asynchronous Interoperability”
The final chapter looks at interoperability using messaging components in the Data
tier. Using the XBikes sample code, it shows how you can use Messaging components
such as Microsoft Message Queuing or Java Messaging Service implementations to
connect to message queues, providing asynchronous operation and support for
transactions and long running operations.

What Is Microsoft .NET?
Microsoft .NET is the term that covers Microsoft’s latest programming and
development environment for creating distributed enterprise applications. The main
component of this is the .NET Framework, which consists of an array of elements
designed to simplify and strengthen this process. The .NET Framework includes
components such as the common language runtime (CLR), ASP.NET, ADO.NET,
enterprise services, and .NET Remoting.

Other components of Microsoft .NET include:
● Visual Studio .NET development system
● Windows Server™ 2003 family of operating systems
● Active Directory® directory services
● Windows Server system components such as SQL Server 2000 and Exchange

Server 2003

Microsoft .NET supports open standards, such as SOAP, Web Services Description
Language (WSDL), Universal Description Discovery and Integration (UDDI), and
XML. Microsoft provides full support for the .NET Framework and there are versions
of the Framework that run on most versions of Windows. Chapter 2 provides an
introduction to Microsoft .NET for the experienced J2EE programmer.

What Is Java 2 Enterprise Edition?
The J2EE specification describes a multi-tiered application model together with a set
of APIs that you can use to create distributed enterprise applications. With J2EE, you
can build multi-tiered applications consisting of reusable elements within a unified
security model.

The J2EE standard is the intellectual property of Sun Microsystems. A consortium of
vendors and manufacturers endorse this standard, with Sun taking the preeminent
role in promoting J2EE. Additionally, a number of vendors and enthusiasts provide
support for J2EE. J2EE runs on a range of operating systems, including Windows,
Sun Solaris, UNIX, and Linux.

6 Application Interoperability: Microsoft .NET and J2EE

The elements making up J2EE include:
● JavaServer Pages (JSP) and servlets
● Enterprise JavaBeans (EJB)
● J2EE containers and modules
● J2EE Software Development Kit
● Java Naming and Directory Interface (JDNI), Java Message Service (JMS), and Java

Database Connectivity (JDBC) APIs

The current version of J2EE (v1.3) supports open standards such as SOAP, WSDL,
UDDI, and XML through third party implementations. J2EE v1.4 (currently at Beta 2)
supports these protocols natively. Chapter 2 provides an introduction to J2EE for the
experienced .NET programmer.

Identifying the Business Need for Interoperability
Many organizations already operate large enterprise environments based on either
Java or Microsoft .NET. Hence if the company perceives a need for a new application
or addition to their current architecture, the automatic tendency is to start thinking
in terms of the currently implemented environment. This is sometimes referred to as
Technology Aligned Environment, where decisions about enhancing the current
environment are more closely attuned to what you already have running rather than
on the basis of which provides the best platform.

Designing enterprise systems using either J2EE or Microsoft .NET is an expensive
business, but there are often sound business reasons for organizations to implement
a mixed environment that has elements of each platform. This section looks at these
factors.

Interoperability is a key requirement for many enterprises, allowing internal systems
to work together and enabling businesses to connect to customers, external partners,
and suppliers. With ever increasing requirements for efficiency, responsiveness, and
cost cutting, interoperability is a key demand for the modern IT environment.

Effective interoperability projects take the approach that an organization should
use the best technology for the job at hand. If a company creates the majority of its
applications in-house, there may be more factors pushing in the direction of staying
with the current environment. However, if you need to implement a third-party
solution or want to make use of features that, for example, only .NET offers,
interoperability offers an effective mechanism for ensuring that the two environments
work together.

 Chapter 1: Introduction 7

Delving further into the business needs for interoperability produces the following
areas where interoperability is a major factor:
● Achieving reuse of existing systems.
● Implementing proof of concept studies.
● Migration to Microsoft .NET.
● Achieving lower project costs.

Achieving Reuse of Existing Systems
Reusing existing systems is usually highest on the list of considerations for why you
might want to implement an interoperability project. Organizations often have large
investments in their current infrastructure and want to preserve this investment.
However, changing requirements may highlight areas within the current system
that cannot adapt to cope with new demands. In this scenario, you might be able to
implement the new functionality using an alternative technology, and use
interoperability to integrate it with the current infrastructure.

For example, you might want to add a new ASP.NET Web tier to existing J2EE-based
Business and Data tiers. Rather than replace the functioning tiers, you can integrate
the J2EE environment with the new Presentation tier components. The new .NET
components can then increase and extend the value of the existing systems,
providing integration between the original applications and newer additions in a
changing network environment.

Interoperability techniques can also extend the life and value of software assets,
such as Business tier applications running on proprietary hardware. Again, if the
application and the hardware function acceptably, there is no immediate need to
replace it. Simply adding a Web service interface can extend the operational life of
this equipment and give the flexibility to integrate it with newer applications.

Many organizations see retaining and using current skill sets as one of the most
important factors. Investment in staff training and development is likely to reflect the
money put into the application infrastructure. .NET offers competitive development
times compared to Java, but you still need to provide continuing support for the
current architecture. Because you are likely to have skilled staff trained on your
current environment, you can continue to support those areas.

Implementing Proof of Concept Studies
Proof of concept or pilot studies allow the dynamic company to try out new business
approaches and technologies at minimal risk. For example, if you want to implement
a new cell phone-based interface, you can use .NET to prototype this very rapidly.
You can then enable the new interface to operate alongside your existing
environment with no changes to the original code. Hence adding new functionality
does not entail ripping out and replacing everything that you worked so hard to
create.

8 Application Interoperability: Microsoft .NET and J2EE

The language-neutral development environment in Microsoft .NET provides
companies with increased technical agility and the ability to get solutions to market
very rapidly. Interoperability techniques ensure that these newly deployed additions
operate seamlessly with your current infrastructure.

Migrating to Microsoft .NET
If your organization is considering migration from J2EE to Microsoft .NET,
interoperability significantly reduces the risk inherent in any such migration project
and can smooth the transition between one environment and the other. A migration
plan that exploits interoperability allows you to migrate each application tier
independently, which can reduce project dependencies, cope with scheduling
constraints and minimize downtime.

Migration is rarely an overnight process, so an interoperability migration plan might
consist of creating a new .NET Presentation tier and switching over to that tier. After
you are happy that this new component functions correctly, you then start replacing
individual components in the Business tier. Finally, you migrate the back-end
database to SQL Server.

Using interoperability techniques lets you plan, implement, and correctly execute
a migration from J2EE to Microsoft .NET. Even just planning migration can have
business value, because it can put you in a stronger negotiating position with your
current vendors. It also enables you to react more quickly in a situation where your
current vendor no longer meets your requirements.

Achieving Lower Project Costs
Labor costs are the dominant factor in overall project costs involving custom
line-of-business applications. .NET has the potential to deliver lower overall project
costs, primarily based on higher productivity reducing the labor factor. The sources
of higher productivity from using .NET are the following:
● High productivity development tools such as Visual Studio .NET, which allow

developers to rapidly translate ideas into applications.
● A broad, well factored, easy to use, class library in the .NET Framework. This class

library encapsulates a wide range of programming tasks and techniques that have
historically been difficult for many developers to achieve.

● Multi-language support, allowing developers to use the skills they already have.
You can write .NET-based applications in any language supported by the .NET
Framework, such as Visual Basic® .NET, C++, C# or, for Java programmers, the
syntactically identical J#. .NET also supports a number of third-party
programming languages, such as COBOL and FORTRAN. The chances are that if
you now program in a mainstream development language, there is a .NET version
either published or nearing readiness.

 Chapter 1: Introduction 9

Reduced application development time combined with multi-language compatibility
help to minimize the cost of developing applications. Developers can write in
whichever .NET language they know best, and the ease of creating components such
as Web services in Visual Studio .NET increase productivity and reduce deployment
time. However, multi-language support must be balanced against the potential risk of
higher maintenance costs.

Presentation tier applications particularly benefit from the features in ASP.NET,
allowing programmers to create fully-featured Web sites from a minimum of code
using the language of their choice. Separation of the scripting elements from the
HTML code makes for more efficient debugging, removing the requirement to scroll
through HTML to identify coding errors.

Note: The JavaServer Faces specification should allow the J2EE platform to provide similar facilities
to ASP.NET, although it is not part of the current release of J2EE. For more information about
JavaServer Faces, see the JavaServer Faces Web page at http://java.sun.com/j2ee/javaserverfaces/.

Reducing development time significantly improves the chance of your organization
being the first to get its solution into the marketplace. Careful selection of the right
environment and use of appropriate interoperability techniques can accelerate the
successful deployment of enterprise applications and new features, reducing the time
to market and cutting development costs.

Defining Interoperability
This book defines Interoperability as follows:

The ability to communicate or transfer data between functional units running on different
platforms, implemented in different technologies, using industry standard or widely accepted
data description and communication protocols.

For.NET/J2EE interoperability, this process consists of ensuring that applications
built on one platform connect to those created on the other. Figure 1.1 shows the J2EE
and .NET equivalent components in an enterprise application environment, and
highlights the opportunity and need for interoperability at different tiers in the
architecture.

http://java.sun.com/j2ee/javaserverfaces/

10 Application Interoperability: Microsoft .NET and J2EE

Client

Enterprise JavaBeans

Message
Queue

Broker
Database

C
lien

t
T

ier
P

resen
tatio

n
T

ier
B

u
sin

ess
T

ier
D

ata
T

ier
ASP.NET

.NET Serviced
Components

JSP Servlets

Figure 1.1
J2EE and.NET equivalent components in an enterprise application environment

Organizations benefit from the greater flexibility of being able to choose the best from
either enterprise application environment to suit their business needs. However, this
interoperability should come with minimal performance overhead or reduction in
functionality.

Understanding Interoperability Scenarios
Interoperability comes in a range of guises, with certain scenarios more likely than
others, and some combinations either not possible or highly unlikely. This book
concentrates on three main interoperability scenarios. These are the following:
● Integrating .NET components at the Presentation tier.
● Integrating .NET components at the Business tier.
● Implementing asynchronous interoperability.

Chapters 4 and 5 show the interoperability techniques you can use in these scenarios.
Chapter 6 describes how to apply these techniques in an enterprise class application
and summarizes the implementation strategies used in the XBikes sample
application. Chapters 7, 8, and 9 work through each interoperability technique at the
code level.

 Chapter 1: Introduction 11

Integrating .NET Components in the Presentation Tier
Presentation tier to Business tier interoperability is a very common scenario,
accounting for a large slice of all .NET/J2EE interoperability projects. Usually,
interoperability between these two tiers involves replacing JSP elements with an
ASP.NET-based front end to achieve a richer client experience. Figure 1.2 shows how
such an implementation would look.

Client

Enterprise JavaBeans

Message
Queue

Broker
Database

C
lien

t
T

ier
P

resen
tatio

n
T

ier
B

u
sin

ess
T

ier
D

ata
T

ier

ASP.NET

Figure 1.2
.NET Presentation tier linked to J2EE Business tier

The challenge with this first scenario is in getting the ASP.NET components to
interact with the J2EE middle tier elements, as Figure 1.2 shows.

12 Application Interoperability: Microsoft .NET and J2EE

Integrating .NET Components in the Business Tier
The next scenario preserves the existing JSP front end but integrates .NET
components in the Business tier. This approach allows developers to create programs
and assemblies in .NET using any language that the .NET Framework supports.
Reasons for implementing .NET Business tier components might include the need to
respond to rapid changes in business practice or to make use of third party products.
Figure 1.3 shows how such an implementation would look.

Client

.NET Serviced
Components

Message
Queue

Broker
Database

C
lien

t
T

ier
P

resen
tatio

n
T

ier
B

u
sin

ess
T

ier
D

ata
T

ier

JSP Servlets

Figure 1.3
Integrating .NET Business tier components into a J2EE architecture

Here you have the challenge of two interfaces between .NET and J2EE — one from
Presentation tier to Business tier and one from Business tier to Data tier. Chapter 8
gives a detailed example of how to do this.

 Chapter 1: Introduction 13

Implementing Asynchronous Interoperability
This last major interoperability scenario covers the situation where you need to use
transactional support, cope with long running transactions, or provide resilience to
network outages. You provide these services by addressing an asynchronous resource
or message queue component, such as Microsoft Message Queuing (also known as
MSMQ) or IBM WebSphere MQ. Figure 1.4 shows this implementation.

Client

.NET Serviced
Components

Message
Queue

Broker SQL
Server

Database

C
lien

t
T

ier
P

resen
tatio

n
T

ier
B

u
sin

ess
T

ier
D

ata
T

ier

ASP.NET

Figure 1.4
Business tier to Data tier interoperability

An example of this scenario might be a link to an order queue that manages and
monitors the production of a bespoke bicycle. The application can check items in
the queue or can receive notification when a particular operation finishes. After the
bicycle is complete, a message can go to the purchaser telling him or her that it is on
its way.

Chapter 9 covers this scenario in detail.

14 Application Interoperability: Microsoft .NET and J2EE

Listing Interoperability Technologies
There are a number of ways in which you can implement J2EE to .NET
interoperability. Each has particular advantages and disadvantages, and each works
in some circumstances but not others. These technologies are the following:
● XML Web services.
● Runtime bridges.
● Message orientated middleware.
● Shared database.
● Integration brokers.

Web services define applications that deliver a service (usually by exposing a
programmatic interface) where you can either fulfill client requests directly or
integrate the provider service with other Web services using Internet standards.
External consumers or applications communicate with Web services by means of
XML formatted messages, usually using XML over HTTP. Both .NET-based and
J2EE-based applications can implement XML Web services.

Runtime bridges are third-party solutions that provide interoperability between
J2EE and .NET, so that Java classes appear as .NET classes and vice-versa. This allows
you to use .NET Remoting as a communication method, with the Runtime Bridge
handling the calls to the Java side. This book looks at two products in this area,
JNBridgePro from JNBridge and Ja.NET from Intrinsyc. Chapter 4 provides more
information about these products.

Messaging offers an asynchronous mechanism for communicating between tiers,
often based on MSMQ or IBM MQSeries. Messaging enables loosely coupled
operation, particularly where you need more than just a one-to-one linkage between
application components and Web services are not suitable. Messaging also supports
transactions, security (encryption and authentication), tolerance for network outages,
and recorded message delivery. However, messaging does not offer any form of
synchronous operation and can cause issues with port assignments and firewall
operation.

Shared database techniques often involve using some form of database independent
connectivity API, such as Open Database Connectivity (ODBC) or Java Database
Connectivity (JDBC) to provide a level of abstraction from the database itself (usually
SQL Server or Oracle). However, challenges with this technique involve generating
an appropriate database schema that all applications can address.

 Chapter 1: Introduction 15

Integration brokers go beyond point-to-point connections to provide end-to-end
integration of applications, enabling the automation of critical business processes
across an entire distributed application or enterprise. Typically built on a messaging
framework, integration brokers are particularly important in environments that use
trading partners within the application solution. Integration brokers also provide
prefabricated application adapters, allowing multiple external components such as
mainframe or third-party applications to interact with the integration broker as either
provider or consumer or both. Some leading integration broker products include IBM
MQSeries Integrator, CommerceBroker, and Microsoft BizTalk® Server 2004.

Note: Chapters 4 and 5 expand on all of these technologies except for integration brokers.

Linking Interoperability Technologies to Business Scenarios
Table 1.2 shows the possible interoperability permutations along with technologies
that can provide solutions for each combination. The check marks indicate which
techniques are appropriate for each scenario.

Table 1.2: Interoperability Scenarios

 Presentation to
Presentation

Presentation to
Business

Business to
Business

Business to Data

XML Web Services ✓ ✓ ✓

Runtime Bridges ✓ ✓ ✓

Messaging ✓ ✓

Shared Database ✓ ✓

Integration Brokers ✓ ✓

The recommended procedure wherever possible is to implement your
interoperability solution using XML Web services. For a detailed discussion of the
advantages and disadvantages of each interoperability technology, see Chapters 4
and 5 later in this book.

Introducing the Sample Application
This book uses a sample application to illustrate the three interoperability scenarios
that Chapters 7 to 9 describe. This application is XBikes, an e-commerce application
through which you can simulate ordering fantastically expensive bicycles in a variety
of “go faster” colors. There are two separate implementations of XBikes, one for the
.NET platform and the other version on J2EE.

16 Application Interoperability: Microsoft .NET and J2EE

Note: XBikes is not a demonstration of how to write a perfect application in either architecture. It is
also not how you would write a secure Web site to sell bikes, but it provides a framework for
demonstrating how to get J2EE and .NET applications to interoperate.

XBikes provides a framework and sample code for you to understand the following
approaches to interoperability:
● Replace individual parts of the J2EE architecture with the equivalent .NET

elements one at a time.
● Show how J2EE components can co-exist with .NET elements indefinitely.
● Demonstrate a migration path for the entire environment from J2EE to .NET.

Chapter 6 explains the XBikes application architecture in detail. The XBikes sample
code is on the companion CD to this book.

Summary
This chapter introduced the structure of this book and the contents of the chapters.
It looked at J2EE and .NET interoperability from a broad perspective, and then it
covered the various interoperability scenarios. It reviewed several interoperability
techniques and introduced the XBikes sample application.

To ensure developers familiar with either .NET or J2EE are at the same technical level
of understanding, you should now read the relevant section of Chapter 2.

References
Guest, Simon, Microsoft .NET and J2EE Interoperability Toolkit, Microsoft Press,
ISBN 0-7356-1922-0

For information about distributed enterprise application concepts, such as
Presentation, Business, and Data tiers on .NET:
Application Architecture for .NET: Designing Applications and Services
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp

For the equivalent information about Java, see the Sun J2EE Web site:
http://java.sun.com/j2ee/

For general information about XML Web services, see the following Web sites:
● .NET XML Web Services Repertory, at http://www.xmlwebservices.cc/
● Web Services Developer Home, at http://msdn.microsoft.com/webservices

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp
http://java.sun.com/j2ee/
http://www.xmlwebservices.cc/
http://msdn.microsoft.com/webservices

2
Understanding Enterprise Platforms

Introduction
This chapter provides background briefings for developers experienced on one
platform who have not had exposure to the alternate technology. It is not a training
manual, but it should help you understand the fundamental concepts of one
environment by linking them into what you already know about the other.

The rivalry between the Microsoft and Sun platforms is as entrenched as that
between supporters of the Apple user interface and proponents of Windows.
However, the growing reality of corporate operations is that organizations implement
components using the platform that best suits their needs, rather than remain
wedded to one particular ideology or another.

It is increasingly rare that as a J2EE developer, you have no exposure to Microsoft
.NET during your career. Indeed, the ability to work both with .NET and J2EE is an
attractive proposition for employers. Similarly, if you are a .NET developer and have
not worked with Java, the second part of the chapter helps you understand the
functionality and capabilities of the J2EE platform. Again, this is not intended as a
reference book but attempts to correlate concepts from the J2EE world to what you
already know about .NET.

Note: If you are an experienced Microsoft .NET developer, go to the section on “J2EE Fundamentals
for .NET Developers.”

At the end of this chapter is a summary table that lists the equivalent components
from .NET and J2EE.

18 Application Interoperability: Microsoft .NET and J2EE

Microsoft .NET Fundamentals for J2EE Developers
Microsoft .NET is a designation that reflects Microsoft’s realignment towards Internet
operation and distributed applications. Microsoft .NET consists of three main
components:
● A language-independent application environment optimized for distributed

operations — the .NET Framework.
● A development environment for programming in several Microsoft languages —

Visual Studio .NET.
● The operating system that supports distributed environments and the

.NET Framework — the Windows Server System.

The unifying vision behind the .NET initiative comprises the following:
● Language-independent programming.
● Enterprise-level scalability and reliability.
● Integrated security.
● Ease of implementation.
● Distributed operation.
● Support for open standards.
● Robust operation and manageability.
● Powerful debugging facilities.

Comparing .NET to J2EE
To seasoned Java developers, .NET may seem similar to the J2EE platform; both
provide a structured way to create applications, both have languages that compile
to intermediate code, and both provide a large library of APIs for application
development. Indeed, many commentators from the Java world have noted that the
conceptual jump from J2EE to .NET seems less than that from Windows DNA to
.NET. However, .NET has at its core a different set of goals than the J2EE platform.

Java comprises the Java platform (runtime and APIs) and the Java language. The
purpose of the Java platform is to support applications written in the Java language
and compiled to Java bytecode. Although there have been attempts to compile other
languages to Java bytecode, these have largely been academic exercises. The idea of
Java has always been a single language on multiple operating systems.

.NET comprises the .NET Framework (runtime and APIs) and multiple supported
programming languages. The purpose of the .NET Framework is to support
applications written in any language and compiled to Microsoft Intermediate
Language (MSIL). The goal of .NET is a single platform shared by multiple languages.

http://msdn.microsoft.com/netframework/
http://msdn.microsoft.com/vstudio/
http://www.microsoft.com/windowsserversystem/default.mspx

 Chapter 2: Understanding Enterprise Platforms 19

Investigating the .NET Framework
It is fundamental that you understand the .NET Framework and the services it
provides for .NET-based applications.

Note: .NET-based applications or .NET Framework-based applications are applications that use the
.NET Framework. This book uses .NET-based applications for brevity.

The .NET Framework includes class libraries that provide support for a wide range of
tasks, including data access, security, file I/O, XML manipulation, messaging, class
reflection, XML Web services, ASP.NET, and Microsoft Windows services.

Note: There are occasional comparisons between the .NET Framework and the Java 2 SDK, but the
two are not directly equivalent.

A central part to this is the support for XML Web services. This technology is both a
methodology and transport layer for passing information between components on
different computers, different networks, and different operating systems.

Figure 2.1 shows the key features of the .NET Framework.

JScriptC#VB J#

Common Language Specification

ADO.NET & XML

Base Class Library

Common Language Runtime

Operating System

ASP.NET
Web Forms Web Services

Windows
Forms

Managed
C++

Figure 2.1
.NET Framework components showing reliance on CLR

20 Application Interoperability: Microsoft .NET and J2EE

The .NET Framework is available as a freely redistributable component containing
the tools, classes, and API support to run .NET-based applications. You must install
the .NET Framework on any computer on which you want .NET-based applications
to run.

Windows XP Service Pack 1 includes the .NET Framework version 1.0 and
Windows Server 2003 comes with .NET Framework 1.1 as part of the operating
system. For earlier versions of Windows, you can download the .NET Framework
from the MSDN Web site. You can also install the .NET Framework from the
Windows Update Service.

Note: The .NET Framework SDK includes the .NET Framework redistributable package.

There are multiple ways of installing the .NET Framework onto client computers.
You can extract the .NET Framework redistributable package as an .msi file, so you
(or your network administrator) can then distribute it using Active Directory Group
Policy. Alternatively, larger enterprises can use Systems Management Server to
deliver the package. Smaller organizations can opt for Software Update Services
(SUS) to deploy the .NET Framework onto Windows 2000 clients. Developers can
include the redistributable package in a build output from Visual Studio .NET,
adding routines that detect for the presence of the framework on the client and
installing or updating it if necessary.

Common Language Runtime
The common language runtime (CLR) is the core component of the .NET Framework.
The CLR provides central functions for the hosting and operation of .NET-based
applications. The main functions of the CLR are the following:
● Just-in-time (JIT) compilation to native code.
● Cross language integration.
● Memory management and garbage collection.
● Managed code operation.
● JIT debugging.
● Exception handling.
● Security.
● Runtime type safety checks.
● Thread management.

Note: Although there are some differences, you can compare the CLR to the role of a Java Virtual
Machine (JVM).

http://msdn.microsoft.com/netframework/downloads/howtoget.aspx#section3
http://windowsupdate.microsoft.com/

 Chapter 2: Understanding Enterprise Platforms 21

JIT Compilation to Native Code

When you deploy and run your application, the JIT complier carries out a quick
check of the platform specification. For example, it will look at areas like processor
type and numbers, memory, and so on. The JIT compiler then compiles the
application to generate the machine code for that execution environment. This is the
JIT compilation process.

Note: The JIT process in the .NET Framework is similar to the JVM runtime compiler.

Versions of Windows later than Windows NT 4.0 support only the x86 environment,
which often leads people to wonder why they need to bother with the MSIL step and
just compile directly for the x86 platform. However, not all x86-based computers are
the same, and the MSIL route gives the maximum flexibility for future operating
system developments.

JIT compilation takes into account the fact that an application may not call all the
program code during execution. Rather than use processor time and memory to
convert all the MSIL in a portable executable (PE) file to native code, it converts
the MSIL as needed during execution and stores the resulting native code so that
subsequent calls can access it. The loader creates and attaches a stub to each of a
type’s methods when the type is loaded. On the initial call to the method, the stub
passes control to the JIT compiler, which converts the MSIL for that method into
native code and modifies the stub to direct execution to the location of the native
code. Subsequent calls of the JIT-compiled method proceed directly to the native code
that was previously generated, reducing the time it takes to JIT compile and run
the code.

The effect of the JIT operation is that the first time an application executes, it takes
marginally longer to start up. However, second and subsequent executions that call
the JIT method are faster than a pre-compiled application, because the JIT component
returns the previously generated native code, properly optimized for that computer.

The runtime supplies another mode of compilation called install-time code
generation. The install-time code generation mode converts MSIL to native code just
as the regular JIT compiler does, but it converts larger units of code at a time, storing
the resulting native code for use when the assembly subsequently loads and runs.
With install-time code generation, installing the application converts the entire
assembly into native code, taking into account what is known about any currently
installed assemblies. The resulting file loads and starts more quickly than it would
have if it were being converted to native code by the standard JIT option.

22 Application Interoperability: Microsoft .NET and J2EE

Cross Language Integration

You might be surprised to learn that the CLR works with only one type of code.
What, you may say, of the claim for language independence on the previous page?
The answer is that the CLR works only with MSIL. The clever bit is that any
programming language that supports .NET can create output in MSIL. This is where
the language independence comes from. You can create .NET-based applications in
one or more of the following languages:
● Managed C++ (no surprises here)
● C# (C Sharp — similarities to Java and C++)
● Visual Basic .NET
● J# (J Sharp — allows you write Java code for the .NET platform)
● FORTRAN
● Pascal
● COBOL
● PERL
● Python
● Eiffel

C# has proved a popular choice for both experienced Java developers and those new
to the .NET platform, because it has many similarities to the Java programming
language. J# provides a subset of the Java language that you can compile into MSIL
and run on the CLR. However, regardless of the language you use, after you write
your code, the compiler turns it into MSIL.

Note: If you are a glutton for punishment (or if you simply enjoy programming in machine code), you
can write directly in MSIL. However, because MSIL is a pseudo-machine code, this is not an entirely
intuitive process.

Memory Management and Garbage Collection

Memory management in the CLR centers on the process of garbage collection, which
is similar to the equivalent process in Java. Garbage collection is a background
operation that reviews objects committed to memory and recovers those that are
no longer needed. Garbage collection acts on three generations, recovering short,
medium, and long duration objects, known as Gen 0, Gen 1, and Gen 2 respectively.

All new objects start in the Gen 0 heap. The garbage collection algorithm works by
checking to see if there are any objects in the heap that applications are not using.

Note: Many classes create temporary objects for their return values, temporary strings, and assorted
other utility classes like enumerators and the like.

 Chapter 2: Understanding Enterprise Platforms 23

If there is not enough free memory in the heap to allocate to a new object, a garbage
collection cycle commences on Gen 0 objects. If there is still not enough memory, a
garbage collection cycle occurs on the Gen 1 objects, and then on Gen 2. A full pass
garbage collection cycle is when the garbage collection processes all generations.

When a garbage collection cycle runs, it promotes all surviving objects to the next
generation. Objects survive a garbage collection cycle because they are either still in
use (reachable) or awaiting finalization. Surviving objects from Gen 0 go to Gen 1,
and surviving objects from Gen 1 move to Gen 2. The garbage collection process
then compacts and moves any freed memory to preserve contiguous space and to
minimize memory fragmentation. Each generation garbage collection cycle typically
occurs on a 1:10 ratio compared to the generation below it, for example, 10 Gen 0
collections occur to every Gen 1, and 10 Gen 1 to every Gen 2.

Note: Higher level garbage collections are more expensive in terms of system resources — the
garbage collectors expect a bigger tip.

Managed Code Operation
The forth major function of the .NET Framework is managed code operation.
The definition of managed code is fairly simple — managed code uses the CLR,
unmanaged code does not. To tighten up on this definition, managed code executes
completely within the CLR. Calls to unmanaged components (serviced components,
COM, or DCOM objects) come outside the remit of the CLR. Hence CLR garbage
collection and other functions do not operate against unmanaged code or unmanaged
code components.

Just-In-Time Debugging
Just-in-time (JIT) debugging is a technique for debugging a program that you start
outside Visual Studio. If you have enabled JIT debugging, the program brings up a
dialog box when a crash occurs. This dialog box asks if you want to debug the
program and which debugger you want to use.

JIT debugging gives you the flexibility of choosing a debugger when an exception
occurs. It also lets you debug on clones of your production computers, which helps
identify programming issues more quickly.

Exception Handling

The CLR handles exceptions in .NET Framework applications, but it also
provides functions for exception management. The main ones of these are the
Try/Catch/__Finally blocks you can use to catch both managed and unmanaged
exceptions. The basic approach is to use a Try clause when you are about to carry out
a risky operation paired with a Catch clause if the function in the Try statement
causes an exception. The __Finally clause should run whether the exception occurred
or not.

24 Application Interoperability: Microsoft .NET and J2EE

Security

The CLR enforces security with executing applications either through the use of
XML formatted configuration files or through the Runtime Security Policy node of
the .NET Framework 1.1 Configuration Tool (Mscorcfg.msc). Security configuration
files contain information about the code group hierarchy and permission sets
associated with a policy level.

The .NET Framework Configuration tool shows the three main security configuration
levels of Enterprise, Machine, or User. These levels correspond to the three security
configuration files (Enterprisesec.config, and two separate Security.config files for the
computer and user levels).

The .NET Framework Configuration tool lets you manage permission sets (for
example, FullTrust, LocalIntranet, Everything, and so on) and code groups, such as
My_Computer_Zone, LocalIntranet_Zone, Trusted_Zone, and so on. Each code group
has a related permission set, for example, the Trusted_Zone maps to the Internet
permission set.

Assemblies that meet the code group’s membership condition receive the associated
permissions from the permission set. A permission set might include whether the
application can access the File Open dialog box, whether it can print, or what sort of
user interface it can display.

Although you can edit the security configuration files directly, it is strongly
recommended that you use the .NET Framework Configuration tool or Code Access
Security Policy tool (Caspol.exe) to modify security policy. This ensures that policy
changes do not corrupt the security configuration files.

Runtime Type Safety Checks

The .NET Framework also enforces security through runtime type safety checks. With
type safe code, the common language runtime can completely isolate assemblies from
each other. This isolation helps ensure that assemblies cannot adversely affect each
other and it increases application reliability. Type-safe components can execute safely
in the same process even if they are trusted at different levels.

Type-safe code accesses only the memory locations it is authorized to access. For
example, type-safe code cannot read values from another object’s private fields.
It accesses types only in well-defined, allowable ways.

Although verification of type safety is not mandatory to run managed code, type
safety plays a crucial role in assembly isolation and security enforcement. When code
is not type safe, unwanted side effects can occur. For example, the runtime cannot
prevent unsafe code from calling into native (unmanaged) code and performing
malicious operations. When code is type safe, the runtime’s security enforcement
mechanism ensures that it does not access native code unless it has permission to
do so.

 Chapter 2: Understanding Enterprise Platforms 25

During JIT compilation, an optional verification process examines the metadata and
MSIL of a method to be JIT-compiled into native machine code to verify that they are
type safe.

Thread Management

The common language runtime provides support for multithreaded applications,
mainly through the ThreadPool class. ThreadPool provides automatic thread
creation and management mechanism for most tasks.

Common Type System
The common type system (CTS) defines how applications and the .NET Framework
can declare, use, and manage types within the runtime, and is also an important part
of the runtime’s support for cross-language integration. It is the CTS that allows large
teams of developers to work on an application, each programming in any of the
many languages that the .NET Framework supports.

The CTS performs the following functions:
● Establishes a framework that enables cross-language integration, type safety, and

high performance code execution.
● Provides an object-oriented model that supports the complete implementation of

many programming languages.
● Defines rules that languages must follow, which helps ensure that objects written

in different languages can interact with each other.

Managed code operation implements type safety through CTS, so the CTS ensures
that all .NET-based application components are self-describing. The .NET Framework
then handles the references between managed code components.

The Global Assembly Cache
Installing the .NET Framework creates a machine-wide code cache called the global
assembly cache. The global assembly cache stores assemblies (executable or library
files) specifically designated for sharing by several applications on the computer.
In conjunction with the Strong Name Tool, it also enables you to run two or more
versions of an assembly with the same name. This gives greater control over
assembly selection at runtime than with the CLASSPATH statement.

There are two versions of the global assembly cache — MSCORWKS is the
workstation version that runs on Windows XP and any desktop operating system on
which you can install the .NET Framework. MSCORSVR is an integral part of the
Windows 2003 Server family and installs as a component of the .NET Framework on
Microsoft’s other server operating systems. MSCORWKS functions best with single
user .NET-based applications whereas MSCORSVR works in large, multiprocessor,
multi-user environments.

26 Application Interoperability: Microsoft .NET and J2EE

Normally, you place an application’s assemblies in the application installation
directory. However, you may want more than one application to use the same
assembly, so rather than copy it into two separate directories, you can place the
assembly into the global assembly cache.

Note: You must sign assemblies with the Strong Name Tool before placing them in the global
assembly cache.

There are several ways to deploy an assembly into the global assembly cache:
● Use an installer designed to work with the global assembly cache. This is the

preferred method.
● Use a developer tool called the Global Assembly Cache tool (Gacutil.exe), part of

the .NET Framework SDK.
● Use Windows Explorer to drag the assemblies into the cache.

For more information about best practices for deploying assemblies into the global
assembly cache, see Deploying .NET Framework-based Applications, on MSDN.

Strong Names
The .NET Framework enhances security by letting you digitally sign each code
component with the Strong Name Tool (SN.exe). Strong-named assemblies consists
of the assembly’s identity — its simple text name, version number, and culture
information (if provided) — together with a public key and a digital signature.

By creating strong-named assemblies you can support multiple DLLs with the same
name in the global assembly cache. Applications then only use the DLL version that
they installed, addressing the common issue of DLL conflicts. The use of strong-
named assemblies makes it possible for you to install new versions of an assembly
side-by-side with an older version of the assembly without conflicts occurring.

Note: To avoid dependencies on assemblies that do not have strong names, strong-named
assemblies can only reference other strong-named assemblies.

.NET Remoting

.NET Remoting is Microsoft’s new communication mechanism for distributed
applications built on the .NET Framework. NET Remoting is similar in function
to Remote Method Invocation (RMI) in J2EE.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/DALGRoadmap.asp

 Chapter 2: Understanding Enterprise Platforms 27

.NET Remoting enables you to build widely distributed applications easily, whether
application components are all on one computer or spread out across the entire
world. With .NET Remoting, you can build client applications that use objects in
other processes on the same computer or on any other computer that is reachable
over its network. You can also use .NET Remoting to communicate with other
application domains in the same process.

.NET Remoting provides an abstract approach to interprocess communication that
separates the remotable object from a specific client or server application domain and
from a specific mechanism of communication. As a result, it is flexible and easily
customizable. You can replace one communication protocol with another or one
serialization format with another without recompiling the client or the server. In
addition, the remoting system assumes no particular application model. You can
communicate from a Web application, a console application, a Windows Service —
from almost anything you want to use. Remoting servers can also be any type of
application domain. Any application can host remoting objects and provide its
services to any client on its computer or network.

To use .NET Remoting to build an application in which two components
communicate directly across an application domain boundary, you need to build only
the following:
● A remotable object.
● A host application domain to listen for requests for that object.
● A client application domain that makes requests for that object.

You can think of .NET Remoting in this way even in a complex, multiclient/
multiserver application. You must also configure the host and the client application
to link into the remoting infrastructure and you must understand the lifetime and
activation issues that the remoting infrastructure introduces.

Building a .NET-based Application
There are several ways in which you can write and build .NET-based applications.
The main ones are the following:
● Use Visual Studio .NET to write and build the application.
● Use your favorite development environment and the command-line compiler.
● Use a text editor and the command-line compiler.

28 Application Interoperability: Microsoft .NET and J2EE

Using Visual Studio .NET 2003
Visual Studio .NET 2003 is the latest release of Microsoft’s application development
environment, which installs along with the MSDN Library for Visual Studio .NET.
Visual Studio .NET is fully in tune with the language neutral approach, making it
very easy to create interoperating projects in different languages. It provides built-in
templates for different projects, depending on the language you want to use. Project
types include the following:
● Windows Forms-based applications.
● ASP.NET Web applications.
● ASP.NET Web services.
● Class libraries.
● Console applications.
● Windows services.

Additionally, Visual Studio lets you package applications for distribution, creating
Windows Installer packages, CAB files, and setup routines.

Using Command Line Compilers
You may be pleased to know that there is no requirement to use Visual Studio .NET
to create .NET-based applications. The alternative is to use the command line
compilers in the .NET Framework SDK in a similar fashion to how you would use
JAVAC and the J2SE SDK.

You can download the English version of the .NET Framework SDK v1.1 from the
SDK Web site.

When you install the .NET Framework SDK, this creates the %WINDIR%
\Microsoft.NET\Framework\versionnumber directory, where versionnumber is
v1.0.3705 for .NET Framework version 1.0 and v1.1.4322 for version 1.1. Within that
directory, you find the following command line compilers:
● CSC.EXE for C# applications.
● VBC.EXE for Visual Basic.
● JSC.EXE for J#.

Running the compiler with the correct command line switches produces one or more
assemblies that the CLR can then execute. Assemblies are usually .exe or .dll files.

Note: To examine the contents of an .exe or .dll file, use the Ildasm.exe disassembler tool included
with the .NET Framework (SDK).

http://www.microsoft.com/downloads/details.aspx?familyid=9b3a2ca6-3647-4070-9f41-a333c6b9181d&displaylang=en

 Chapter 2: Understanding Enterprise Platforms 29

.NET assemblies include descriptive metadata, such as the Windows Portable
Executable Header, assembly dependencies, and version information. However, there
is no direct comparison to an assembly in Java. The closest comparison is to a JAR
file, which contains classes storing metadata and can cross reference information to
other JAR files without requiring a CLASSPATH value.

Locating Assemblies with the Global Assembly Cache
The .NET Framework does not use a variable like CLASSPATH, but instead uses the
global assembly cache mentioned earlier. The global assembly cache exists on each
computer and is both a folder and a database of registered components. The folder is
under %WINDIR%\ASSEMBLY, and you register an assembly with Gacutil.exe.

Note: When you create installation packages in Visual Studio .NET, you include the registration
process as part of the installation.

To view the global assembly cache, complete the following steps.

� To inspect the global assembly cache

1. Click Start, point to All Programs, point to Administrative Tools, and then click
Microsoft .NET Framework 1.1 Configuration (or 1.0). The .NET Configuration
1.1 (or 1.0) management console appears.

2. Double-click the Assembly Cache node in the left pane.
3. In the right pane, click the View List of Assemblies in the Assembly Cache link.

A list of registered assemblies appears.
4. Right-click an assembly, and then click Properties. The Assemblyname Properties

dialog box appears.

The Version value allows multiple versions to coexist and to let a component such as
an executable call a specific DLL. Version numbers are of the form:

MajorVersion.MinorVersion.BuildNumber.Revision

For example, 7.0.5000.0 is a common version number for the Microsoft.VSDesigner
assembly.

The Public key token is a result of the code signing process that uniquely identifies
each assembly. This ensures that an application only loads the correct assembly,
preventing malicious or unintentional substitution of an application component.

30 Application Interoperability: Microsoft .NET and J2EE

Understanding Attributes
Attributes are a feature of most Microsoft software components, such as Interface
Definition Language (IDL) interfaces in COM, so it should not be a surprise that these
appear in the .NET Framework. Current versions of the Java 2 SDK do not include
support for attributes, although the proposed Java 2 SDK 1.5 declares support for
attribute-like structures. For more details see:
● JSR 175: A Metadata Facility for the Java Programming Language
● New Language Features for Ease of Development in the Java 2 Platform,

Standard Edition 1.5: A Conversation with Joshua Bloch

An attribute in the .NET Framework has both keyword and tag-like elements to it.
You use tags to document types, fields, document classes, and methods at design
time. The assembly metadata contains the attribute information. Many of the
standard namespaces in the .NET Framework contain attributes, and developers
can implement their own custom attributes if necessary.

An example of an attribute is WebMethod. This attribute indicates that you can call a
method within a class as an XML Web service. If you place the WebMethod tag at the
start of the method, the compiler then generates additional information that exposes
the method as an XML Web service.

The following lines of code show the simplest demonstration of this.

[WebMethod]
public String HelloWorld()
{
 …
}

Attributes can accept parameters as part of the tag. This is similar to a constructor
class.

[WebMethod(Namespace="http://www.microsoft.com/Interoperability")]

This assigns the namespace property of the WebMethod attribute to the
specified URL.

Note: The CLR supports attributes in any language, although the development language syntax
controls how you prefix a tag.

http://www.jcp.org/en/jsr/detail?id=175
http://java.sun.com/features/2003/05/bloch_qa.html
http://java.sun.com/features/2003/05/bloch_qa.html

 Chapter 2: Understanding Enterprise Platforms 31

Creating Web Applications
In Java, you create Web applications using JSP pages and servlets. In .NET, you
use the latest evolution of Active Server Pages (ASP) named ASP.NET. Normally,
ASP.NET applications would run on Internet Information Services (IIS), but this is
not a strict requirement. For example, you can also run ASP.NET applications on
platforms such as Apache 2.0-based Enterprise Ready Server.

ASP.NET provides enhanced functionality over JSP, with features such as code-
behind and event driven Web controls. To implement equivalent functionality in JSP,
you need both the scripting language and a set of additional tools. The experience of
developers familiar with both Java and .NET is that ASP.NET is more powerful than
JSP, which is itself better than the earlier ASP. The introduction of JavaServer Faces is
expected to level the playing field between ASP.NET and JSP.

ASP.NET applications tend to have graphical front ends, so developers tend to prefer
using Visual Studio .NET to create and edit ASP.NET pages. An alternative free
integrated development environment (IDE) is Web Matrix, available for download
from the ASP.NET Web site.

You can create ASP.NET Web applications in any language that the .NET Framework
CLR supports. This gives you the flexibility to work in any programming language,
or even create a Web site by combining elements built in different languages by a
team of developers.

Hosting Components
The .NET Framework does not have a direct equivalent to EJBs. However, there are
three main techniques you can use to provide hosted components for enterprise
applications:
● Run as a Windows service.
● Host on IIS.
● Use component services.

Running as a Windows Service
Windows services (or NT services) are system level processes that run on a computer
regardless of the logged in user. Typical services include functions of the operating
system, schedulers, virus scanners, database engines, and network components.

You can use templates from within Visual Studio .NET to take a .NET assembly and
run it as a service. This generates an application that runs as long as the computer is
running.

Note: Applications running as a service need to deal with their own networking arrangements. In
particular, they should run under a domain account, not the local machine account. This is because
the local machine account only has rights on the local computer.

http://www.asp.net/webmatrix

32 Application Interoperability: Microsoft .NET and J2EE

Hosting through IIS
Internet Information Services provides a framework for hosting Presentation and
Business tier components. Using a configuration file associated with the assembly,
you can configure support within IIS for the following:
● Deploying assemblies.
● Handling incoming connections.
● Supporting protocols.
● Implementing connection pooling.
● Configuring security.

The alternative approach would be to build your own custom framework to host
assemblies. However, this would be a time-consuming and cumbersome task.

Using Component Services
Hosting an assembly in IIS is easy and convenient, but it does not provide the full
functionality that EJBs enjoy. Component services (or COM+) provide the additional
features, such as:
● Recycling
● State management
● Transaction support
● Method-level security
● Logging
● Impersonation
● Message queue support

A .NET developer can address COM+ properties either through the component
services administration tool or using programmatic attributes.

Note: There is no equivalent of container managed persistence (CMP), container managed
relationships or EJB-QL in .NET, although there are a number of third party implementations.
Visual Studio .NET has tools for auto-generating SQL statements and dragging and dropping
database tables into the IDE.

Supporting Web Services
One area where Microsoft has invested considerable effort is in supporting Web
services. ASP.NET Web services are the preferred technology for implementing
Web services based on the .NET Framework.

 Chapter 2: Understanding Enterprise Platforms 33

ASP.NET Web services support service requests using SOAP over HTTP. ASP.NET
Web services automatically generate WSDL and discovery (.disco) files for Web
services. You can use ASP.NET Web services to implement a Web service listener
that accesses a business façade implemented as a COM component or managed class.
The .NET Framework SDK also provides tools to generate proxy classes that client
applications can use to access Web services.

Connecting to Databases
The .NET Framework provides ADO.NET (formerly ActiveX Data Objects) as a
framework for connecting to databases. From an architect’s perspective, ADO.NET
represents the abstract design concepts that you can use to build the data access
classes within the .NET Framework. From a developer’s perspective, ADO.NET
represents the concrete implementation of classes inside the .NET Framework that
the Framework then uses for data access.

Note: ADO.NET provides functions similar to those implemented in JDBC and JDO.

There are several main design goals to ADO.NET:
● Explicit and factored object model — ADO.NET is a simple-to-use object model

in which the developer has complete control over how to control data source
connectivity, command execution, and data manipulation.

● Disconnected data cache model — N-tier programming and XML Web service
architecture require that applications can participate in a disconnected, loosely
coupled manner. ADO.NET provides a comprehensive caching data model for
marshalling data between applications or services and then updating the original
data sources or source optimistically.

● XML support — XML is the key to building interoperable applications and more
robust data processing models. XML support is directly included into the .NET
Framework and ADO.NET uses this implementation by providing a seamless
interaction with XML in either a relational manner or in a native XML manner.

You can divide the ADO.NET architecture into two logical pieces: command
execution and caching. Command execution requires features like connectivity,
execution, and reading of results and the .NET data providers enable these features.
The DataSet function handles caching of results.

Implementing Collections
A collection is a set of similarly typed objects that you can group together. These are
the equivalent of java.util.collections on the J2EE platform.

You can group objects of any type into a single collection of the type Object to take
advantage of constructs inherent in the programming language. For example, the
C# foreach statement expects all objects in the collection to be of a single type.

34 Application Interoperability: Microsoft .NET and J2EE

However, in a collection of type Object, additional processing, such as boxing and
unboxing or conversions, affects the performance of the collection. Boxing and
unboxing typically occur when storing or retrieving a value type in a collection of
type Object.

Strongly typed collections, such as StringCollection, avoid these performance hits,
if the type of the element is the type that the collection is intended for (for example,
storing or retrieving strings from a StringCollection). In addition, strongly typed
collections automatically perform type validation of each element added to the
collection.

You can categorize collections classes into three types:
● Generic collections — The common variations of data collections, such as hash

tables, queues, stacks, dictionaries, and lists.
● Bit collections — Collections whose elements are bit flags. They behave slightly

differently from other collections.
● Specialized collections — Collections with highly specific purposes, usually to

handle a specific type of element, like the StringDictionary.

Accessing Directory Services
Accessing directory services under .NET usually means connecting to Active
Directory, either using Lightweight Directory Access Protocol (LDAP) or Active
Directory Service Interface (ADSI), the equivalent of JNDI.

Microsoft implements the LDAP API in Wldap32.dll — also referred to as “LDAP C”
or “C-binding LDAP.” Applications written in LDAP are compatible only with LDAP
directory services, although Active Directory also fully supports the LDAP APIs for
directory access.

The primary and recommended API for Active Directory is ADSI. ADSI sits on top of
LDAP and also provides the easiest access to Active Directory through LDAP. Native
ADSI allows access to Active Directory by exposing objects stored in the directory as
COM objects. You then manipulate directory objects using the methods on one or
more COM interfaces.

ADSI providers contain the implementation of ADSI objects for a particular
namespace, with the main one being the ADSI LDAP provider. By implementing the
required interfaces, ADSI providers translate these interfaces to the API calls of a
particular directory service.

The ADSI LDAP provider operates on the ADSI client to provide access to Active
Directory or to other LDAP directory services. The ADSI LDAP provider works with
any LDAP server that supports LDAPv2 or later.

For more information about the LDAP API and about programming in LDAP, see the
Microsoft Platform SDK link on the Web Resources page.

http://windows.microsoft.com/windows2000/reskit/webresources

 Chapter 2: Understanding Enterprise Platforms 35

Reflection
Reflection allows you to write code that can dynamically examine a data type or an
object at run time. You can get a list of its methods, its interfaces, and even its class-
level variables. Reflection even allows you to interact with an object by calling those
dynamically discovered methods or putting values in those dynamically discovered
variables.

Using Reflection, you can create object browsers, applications that list and document
methods, or even highly configurable metadata driven applications that create objects
and invoke methods based on instructions from a table or XML file. These are
powerful capabilities that you can use in .NET-based applications.

You should be aware that Reflection also gives you the power to perform potentially
dangerous operations. You can use Reflection to call methods that are Private in
scope. You can also put values directly into an object’s variables without calling any
business logic. Reflection provides you with the tools to misuse objects in very
dangerous ways. However, you can use these capabilities to create very powerful
code, such as code to load data from a DataSet into an object based on metadata that
matches the object’s variable name to a column name in a table.

J2EE Fundamentals for .NET Developers
This is where you should start if you are a .NET developer and you want to
understand the components and functions of the J2EE platform.

Sun Microsystems developed Java as both a platform and a programming language.
There are currently three editions of the Java platform:
● J2SE (Java 2 Standard Edition)
● J2EE (Java 2 Enterprise Edition)
● J2ME (Java 2 Micro Edition)

Note: The term “Java” mostly refers to functionality available within J2SE. Areas that require the
Enterprise Edition include the term J2EE.

Java 2 Platform, Enterprise Edition or J2EE is a set of linked specifications that allow
developers to create multitier server-based applications. Hence unlike Microsoft
.NET, J2EE is a standard, not a product. The J2EE specification consists of a series of
downloadable Adobe PDF files that describe application agreements and the makeup
of the containers in which these applications run.

36 Application Interoperability: Microsoft .NET and J2EE

Like .NET, J2EE makes it easier to write distributed enterprise applications by letting
you focus on writing business logic rather than the enterprise framework itself. J2EE
provides the “plumbing” that allows the application to run and would otherwise be
tedious and time consuming to write.

Note: At the time of publication, J2EE v1.3 is the latest released version and v1.4 is in final draft.

Hence the J2EE platform is similar in vision to Microsoft .NET, with common themes
that run through both platforms. However, it is important that you understand the
fundamental differences. Java and Microsoft .NET differ in three main ways,
which are:
● Operating system support
● Language support
● Execution method

From the beginning, Java was designed to work with as wide a range of operating
systems as possible. Hence Java code runs in multiple environments, such as:
● Windows
● UNIX
● Linux
● MacOS
● BeOS

However, Microsoft .NET runs only on Windows.

Note: Rotor is a version of the .NET Framework that runs on FreeBSD. However, this is more of an
academic exercise than a practical implementation scenario.

Language support covers the language, syntax, and grammar that you use to create
your programs. You write Java applications only in the Java Programming Language.
With .NET, you have the choice of any language that supports the .NET Framework.

There is also a major difference between the two platforms at application run time.
When you build a project based on a .NET language, the output consists of MSIL
code that the JIT compiler compiles at runtime.

To deploy a Java program, you compile the application to create Java bytecode. The
JVM running on the target operating system then interprets this bytecode to produce
the relevant instructions.

Note: There are also Java JIT compilers that work in a similar fashion to the .NET Framework
component.

 Chapter 2: Understanding Enterprise Platforms 37

Understanding the Java Platform
There are two main components of the Java platform. These are:
● The Java Runtime Environment (JRE)
● The Java Language and syntax (API)

The main component of the JRE is the Java Virtual Machine or JVM. The role of the
JVM is to interpret Java bytecode into native instructions for the operating system.
However, the JVM also provides a number of functions that make it similar to the
.NET CLR. The JRE also includes the Java class libraries.

Within the J2EE framework there are additional components that have evolved over
the past decade. These include:
● Java Server Pages (JSPs)
● Server side APIs or servlets
● Enterprise Java Beans (EJBs)
● Java Naming and Directory Interface (JNDI)
● Java Message Service (JMS)
● Java API for XML-based RPC (JAX-RPC)
● J2EE Connector Architecture
● J2EE Management Model
● J2EE Deployment API
● Java Management Extensions (JMX)
● J2EE Authorization Contract for Containers
● Java API for XML Registries (JAXR)
● Java Transaction API (JTA)
● Common Object Request Broker Architecture (CORBA)
● JDBC data access API

Many of these components map to equivalents within the .NET Framework or in
Windows. For example, JMS provides support for message-based transactions, and
maps to the System.Messaging namespace.

Because J2EE is a specification, rather than a product, numerous vendors have
created their own implementations under license from Sun. These vendors include:
● Sun (Sun ONE Application Server)
● IBM (WebSphere)
● BEA (WebLogic)

There are also several open source implementations, with JBoss being the most
recognizable. For more information, see the JBoss Web site at http://www.jboss.org/

http://www.jboss.org/

38 Application Interoperability: Microsoft .NET and J2EE

Implementing the Java SDK
Like the .NET Framework, Java has a software development kit to assist you in
creating and compiling Java applications. The Java SDK has been through several
revisions, and you can download the Java 2 SDK, Standard Edition 1.4 from Sun’s
Java site.

Other vendors have produced their own implementations of the Java SDK under
license. Like the J2EE Application Servers, these vendors include IBM and BEA,
together with open source implementations. Up until version 1.1.4, Microsoft also
had an implementation.

The Java 2 SDK contains the class libraries you can use when creating your own Java
source code as well as the compiler and binaries for building and executing these
applications. The bin directory of the SDK contains Javac.exe which you use to
compile Java source code (*.java files) into Java Byte Code (*.class files). However, like
with .NET applications, only the most die-hard conservatives work entirely from the
command line, and most use a GUI-based IDE to create and build Java applications.

Building a Java Application
When you compile Java classes with the Java compiler, each class in Java generates a
separate .class file, which is the standard unit of compilation. The JVM can then
execute the .class file using the following syntax:

java myapp.class

However, .class files are not directly equivalent to .NET assemblies, because
.NET assemblies are both units of execution and distribution. To create distributable
applications containing multiple .class files, Java developers use Java Archive (JAR)
files. A basic JAR file is a collection of compiled Java classes, although JAR files can
contain files of any type and have an internal directory structure, like a ZIP file. You
use Jar.exe, from the \bin directory of the SDK to add, list or extract .class files from
a JAR file.

You can execute a JAR file with the JVM Java.exe. The syntax is:

java –jar myapp.jar

If you really want to, you can build and deploy a complete J2EE application using
only native operating system commands and the basic tools supplied with the Java 2
SDK. However, this method can be tedious and prone to errors. Instead, developers
often make use of build tools such as ANT, part of the Apache Jakarta project. ANT is
a platform independent build tool that automates the compilation, packaging and
deployment of applications. It makes use of XML build files to determine the tasks
required to compile and deploy a project.

http://java.sun.com/j2ee/
http://java.sun.com/j2ee/

 Chapter 2: Understanding Enterprise Platforms 39

For more information about ANT, see the Apache ANT Web site.

Locating and Sharing Classes
The Java platform does not include an equivalent to the global assembly cache.
However, applications may still need to refer to or share other classes. In Java, you do
this using an environment variable named CLASSPATH. This is similar to the PATH
statement in the Autoexec.bat startup file or the System Profile property in
Windows.

The default class path is the current directory. You can set the CLASSPATH
environment variable to one or more different directories if you want; when you do
this, you must explicitly include the path to the main Java 2 SDK tools JAR and to the
current directory. Hence, a simple CLASSPATH statement in release 1.3 of the Java
SDK running on Windows would look like this:

SET CLASSPATH = .;%J2EE_HOME%\LIB\J2EE.JAR;

If your application requires other classes or JAR files, you then amend the
CLASSPATH variable before running the application. You do this by referring to the
current CLASSPATH variable as follows:

SET CLASSPATH = %CLASSPATH%;C:\OTHERAPP\RESOURCES.JAR;C:\OTHERAPP\CLASSES

This appends the new directories to the existing CLASSPATH so that when a Java
application loads and asks for a class, it also searches any class in the directory
C:\OtherApp\Classes or the JAR file C:\OtherApp\Resources.jar.

Both the Javac.exe compiler and the Java.exe execution tool can accept parameters to
include or modify the CLASSPATH variable. Java IDEs also allow you to include
CLASSPATH statements. You can also add libraries to the class search sequence
automatically without setting CLASSPATH by installing them as extensions in
the JRE.

Note: If a Java application generates a ClassNotFoundException, you can almost guarantee that this
is because the required libraries are not in the CLASSPATH statement.

http://ant.apache.org/

40 Application Interoperability: Microsoft .NET and J2EE

Implementing Other Environment Variables
Java applications tend to use environmental variables more than .NET-based
applications. This is because Java applications can run on multiple operating systems,
so they need to be able to cope with differing environments. Environmental variables
provide an easy way to ensure consistency for setting and controlling configuration
and application execution paths.

Table 2.1: Common Environmental Variables

Variable Name Function
JAVA_HOME Installation location of the Sun Java SDK

J2EE_HOME Installation location of the Sun J2EE SDK

ANT_HOME The ANT home directory

PATH As for the Windows PATH statement

Using Java Integrated Design Environments
Several vendors produce IDE packages to assist with creating and editing, ranging
from beefed up text editors to full blown packages that resemble Visual Studio .NET.
Some are commercial packages, others are free. Examples include:
● Sun One Studio
● JCreator
● Borland JBuilder
● Java GUI Builder
● JPad Pro
● CodeGuide
● NetBeans
● AnyJ

Note: Although you can create and edit Java applications using Visual J# from Visual Studio .NET,
J# IntelliSense® technology only works for Java API classes up to release 1.1.4 of the Java SDK and
you need to build the application from the command line using Javac.exe.

All the IDE packages allow you to build applications from within the IDE
environment. Alternatively, like Visual Studio, you can build applications from the
command line.

 Chapter 2: Understanding Enterprise Platforms 41

Creating Web Applications
For Presentation tier components, Java implements JSP where you would use
ASP.NET in the .NET architecture. JSP provides a server side technology for
developing Web applications and JSP pages are a mixture of HTML and Java code.

Java-based Web applications use the concept of dynamically compiled JSP pages and
servlets. A servlet is a Java programming language class that extends the capabilities
of computers hosting applications accessed through request-response programming
models. You can also think of Java servlets as portable components that provide
dynamic content to user requests.

At first glance, JSP and servlets appear very similar, with both producing dynamic
content. You create any scripting elements within the JSP pages or the servlets in the
Java programming language. Additionally, the JVM compiles JSPs into servlets at run
time and therefore both use the same engine. However, developing a servlet entails
writing a Java class and therefore requires stronger programming skills than are
needed to develop a JSP. You can think of a servlet as Java code wrapping up HTML
content.

Like servlets, JSPs provide dynamic content to users but at a higher level abstraction
of servlets. You can think of JSPs as static HTML wrapping up dynamic Java code.

You can host both JSP and servlets on a number of environments. These include free
offerings such as Apache Tomcat up to the large commercially available and vendor-
supported implementations.

To implement a JSP-based application, you design the application using a Java IDE.
Several IDEs include facilities for real-time editing of JSP pages, with previews
showing the effect of any changes to the graphics or the controls.

Note: The current JSP specification is release v1.2 and the servlet API is v2.3.

To deploy Web applications, you package them up into a single deployable unit
called a Web Application Archive (or WAR) file. This is similar to how you package
Java applications into JARs. You can then easily deploy the WAR file onto the Web
server.

42 Application Interoperability: Microsoft .NET and J2EE

Hosting Components
The main function of JSP pages and servlets is to interact with the user through the
browser in the Presentation tier. However, executing business rules in the Business
tier uses components called Enterprise Java Beans (EJBs). EJBs are the equivalent of
COM+ components or managed code components, and can provide the following
services:
● Maintaining state
● Transactional support
● Method level security
● Logging
● Impersonation
● Message queue support

EJBs come in three forms:
● Session beans
● Entity beans
● Message-driven beans.

Session beans host business logic, such as the rules defining the operation of a
customer relationship management system. Session beans can be stateless or can
maintain state, tying the client to the session bean for the object’s lifetime. Typically
a session bean provides some sort of service, such as performing a task, such as
authentication, for clients.

Entity beans represent an object in persistent storage. Each instance of an entity bean
corresponds to a row of data from a database table. There are two types of entity
bean: container managed persistence (CMP) beans, which are managed by the container;
and bean managed persistence (BMP) beans, which manage their own persistence.

With CMP entity beans, the container manages the mapping between bean and
database fields using a mapping file. This mapping file usually stores these mappings
as XML deployment descriptors. The container manages all the communications with
the database. CMP has the following advantages compared to BMP:
● Easier to configure
● Easier to maintain
● Requires no database code

The main disadvantage of CMP can be that of performance, due to greater abstraction
levels. However, newer features of the J2EE specification have introduced features
such as virtual accessors, which have improved the performance of beans using CMP.

 Chapter 2: Understanding Enterprise Platforms 43

With BMP entity beans, the developer is responsible for writing all the JDBC code for
transferring data between a bean and the data store. BMPs require the developer to
write much more data-related code than CMPs, but nevertheless there are several
good reasons for using BMPs:
● Greater flexibility
● Better performance
● Ability to connect to multiple database sources

A Java developer would use CMP for connecting to standard databases such as
Oracle or where the number of transactions per second is low. BMP comes into its
own with high data access rates or where the developer needs the flexibility to
connect to a non-standard database such as an LDAP directory.

You would use message-driven beans (MDB) in conjunction with the JMS API
to process messages asynchronously. Message-driven beans are JMS message
consumers. Clients do not access MDBs directly; they send a JMS message to a
destination where there is a listening MDB. This enables reuse of the MDB, and
also means that the developer does not have to worry about where to go to get the
message.

The two main benefits of using MDBs are that MDBs enable parallel processing of
user requests, which provides a faster response compared to serial invocation using
non-message based entity Java beans, and that an MDB implementation can
guarantee user response times when searching multiple data sources.

Building Enterprise JavaBeans
When building an Enterprise JavaBean, a developer must create the bean’s
implementation class and a number of interfaces. Clients access session and entity
beans through the methods that the developer defined in the bean’s interfaces. The
interfaces determine how the client can communicate with the EJB. Message-driven
beans differ from entity and session beans in that they do not have interfaces; they
contain only a bean implementation class.

The interfaces defined on an entity or session bean are dependent on one key factor:
Is the bean going to be accessed remotely or locally?

A remote client is:
● An application or component that runs in a separate JVM from the client

(although the application does not necessarily have to run in a separate JVM.)
● An application or component executing on a different computer.
● A Web component such as a servlet, a client application, or another EJB.
● Where the client does not know (or need to know) the location of the EJB.

44 Application Interoperability: Microsoft .NET and J2EE

If an EJB services remote clients, the developer must create two interfaces: a remote
interface and a home interface. The remote interface defines the business methods
specific to the bean, for example, AuthenticateCustomer. The home interface defines
methods that manage instances of the bean. For example, session beans have
methods to create and remove instances of the beans. Entity beans also include finder
methods. Finder methods allow clients to locate entity beans, for example,
findByPrimaryKey.

A client is local if:
● The client component or application executes in the same JVM as the EJB.
● The client could be a Web component or EJB.
● The location of the EJB is not transparent to the client.

If an EJB is required to service local client, it is also necessary to create two interfaces,
a local interface and a local home interface. The local interface defines the bean’s
business methods in a similar fashion to a remote interface. The local home interface
is similar to the remote home interface in that it defines methods for manipulating
instances of the bean and defining finder methods.

It is usually more efficient for a local client to invoke methods on the local interfaces
than through remote invocation. In a typical J2EE application, a session bean
provides remote client access, whereas entity beans normally provide local client
access. Entity beans that use CMP almost always employ local access.

Deploying Applications
Building and deploying a J2EE application involves a number of steps to ensure that
you deploy everything required for the application to function. In addition to JAR
files containing EJBs or other classes, your application may need WAR files. WAR
files are JARs with the required structure for a Web application. Finally, Enterprise
Archive files (EARs) can contain WARs and JARs stuffed with EJBs and other content.

You configure deployment settings using deployment descriptors, which are XML
files with a defined structure. Deployment descriptors specify settings such as
security, transactional support, and logging that tell the application server how to
deploy and support the components in the application. Again, these settings correlate
to those in component services. Some deployment descriptor settings are part of the
J2EE specification, whereas others relate to the application server and are vendor-
specific.

 Chapter 2: Understanding Enterprise Platforms 45

Comparing .NET and J2EE Features
Table 2.2 shows a comparison of features and functions in .NET and J2EE. However,
differences in the background makeup of each platform make direct comparisons
between .NET and J2EE not always applicable. For example, MSMQ is a product
whereas JMS is an API. Therefore you cannot simply rip out one component and
replace it with the equivalent from the other platform.

Table 2.2: Comparison Between .NET and J2EE Functionality

Feature or Service

Microsoft
.NET Element

J2EE Element

Comments

Technology Type Product Standard

Middleware Vendors Microsoft and partners 50+ vendors

Client Side GUI Windows Forms
Environment

AWT/SWING SWING/AWT are part of
J2SE

Web GUI ASP.NET JSP

Web Scripting ISAPI

HttpHandler
HttpModule

Servlet

Filter

Web Application
Hosting

Internet Information
Server

Multiple (depends on
vendor implementation)

J2EE examples include
Apache Tomcat

Interpreter CLR JRE

Server Side Business
Logic Component

.NET Class or Serviced
Component (COM+)

EJB Session Beans

Server Side Data
Components 1

Serviced Component
with DB Logic

EJB with Bean
Managed Persistence

Server Side Data
Components 2

ADO.NET Data Set EJB with Container
Managed Persistence

Only an approximate
equivalence

Directory Access Active Directory
Services Interface
(ADSI) through LDAP

Java Naming and
Directory Service (JNDI)
through LDAP

LDAP compatibility
makes switching
between directory
services very easy.

Remote Invocation .NET Remoting RMI-IIOP

Data Access ADO.NET JDBC, SQL/J, JDO

(continued)

46 Application Interoperability: Microsoft .NET and J2EE

Table 2.2: Comparison Between .NET and J2EE Functionality (continued)

Feature or Service

Microsoft
.NET Element

J2EE Element

Comments

Messaging Microsoft Message
Queuing

JMS Microsoft Message
Queuing is a product.
JMS is a specification,
and therefore requires
an underlying
implementation.

Transactional Support COM+/Distributed
Transaction Controller
(DTC)

JTA

Summary
This chapter provided an overview into .NET for Java developers and an overview
of Java for .NET developers. It compared and contrasted the features from each
platform and showed the equivalence of components in the different environments.
It also showed how the different platforms deal with common programming issues
and the solutions that each employ.

References
For information about the.NET Framework
http://msdn.microsoft.com/netframework/

For information about a development environment for programming in any
supported language — Visual Studio .NET
http://msdn.microsoft.com/vstudio/

For information about the operating system that supports distributed environments
and the .NET Framework — the Windows Server System
http://www.microsoft.com/windowsserversystem/default.mspx

To download version 1.1 of the .NET Framework
http://msdn.microsoft.com/netframework/downloads/howtoget.aspx#section3

- or -

From the Windows Update Service
http://windowsupdate.microsoft.com/

http://msdn.microsoft.com/netframework/
http://msdn.microsoft.com/vstudio/
http://www.microsoft.com/windowsserversystem/default.mspx
http://msdn.microsoft.com/netframework/downloads/howtoget.aspx#section3
http://windowsupdate.microsoft.com/

 Chapter 2: Understanding Enterprise Platforms 47

For more details about Java 2 SDK 1.5 support for attribute-like structures
JSR 175: A Metadata Facility for the Java Programming Language
http://www.jcp.org/en/jsr/detail?id=175

- or -

New Language Features for Ease of Development in the Java 2 Platform,
Standard Edition 1.5: A Conversation with Joshua Bloch
http://java.sun.com/features/2003/05/bloch_qa.html

For more information about best practices for deploying assemblies into the global
assembly cache
Deploying .NET Framework-based Applications
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/DALGRoadmap.asp

To download the English version of the .NET Framework SDK v1.1 from the SDK
Web site
http://www.microsoft.com/downloads/details.aspx?familyid=9b3a2ca6-3647-4070-9f41
-a333c6b9181d&displaylang=en

To download Web Matrix, an alternative free integrated development environment
From the ASP.NET Web site
http://www.asp.net/webmatrix

For more information about the LDAP API and about programming in LDAP
Microsoft Platform SDK link on the Web Resources page
http://windows.microsoft.com/windows2000/reskit/webresources

To download the Java 2 SDK, Standard Edition v 1.4
See Sun’s Java site
http://java.sun.com/

For more information about ANT
See the Apache ANT Web site
http://ant.apache.org/

http://www.jcp.org/en/jsr/detail?id=175
http://java.sun.com/features/2003/05/bloch_qa.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/DALGRoadmap.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/DALGRoadmap.asp
http://www.microsoft.com/downloads/details.aspx?familyid=9b3a2ca6-3647-4070-9f41-a333c6b9181d&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=9b3a2ca6-3647-4070-9f41-a333c6b9181d&displaylang=en
http://www.asp.net/webmatrix
http://windows.microsoft.com/windows2000/reskit/webresources
http://java.sun.com/
http://ant.apache.org/

3
Interoperability Fundamentals

Introduction
Chapter 2, “Understanding Enterprise Platforms,” shows many similarities
between Microsoft .NET and J2EE. However, although the two platforms share
certain concepts that appear equivalent, a detailed examination shows significant
differences. These differences are particularly important when you look at how the
two platforms describe data at the most basic level.

This chapter covers the basics of interoperability techniques. It focuses on a
discussion of interoperability fundamentals, mainly concerning the exchanging
of data types and formats between J2EE and .NET. Without this understanding,
you cannot expect either platform to consume data from the other platform.

The chapter then moves on to discuss ways to enable interoperability by
standardizing on data types. Finally, it describes recommendations for overcoming
the challenge of exchanging data.

Facing Interoperability Challenges
At the most basic level, implementing interoperability between application platforms
involves the exchange of data. When implementing a .NET and J2EE interoperability
project, you confront three main data exchange challenges. The three challenges are:
● Primitive data type mappings
● Non-existent data types
● Complex data types

Note: Primitive data types are components based on the underlying type system for .NET or Java,
for example, Integer, Strings, Doubles, and so on.

All challenges involve type compatibility and have the potential to hinder or prevent
data transfer.

50 Application Interoperability: Microsoft .NET and J2EE

These three challenges break down as follows:
● Primitive data type mappings — You may know that the type “String” exists

in both the CLR and in Java. However, this does not mean that java.lang.String
in Java maps exactly to System.String in .NET. If your sample exposes
java.lang.String, how do you go about mapping this to its equivalent in the CLR?

● Non-existent data types — How do you map data types on one platform
that don’t exist in the other? For example,
System.Collections.Specialized.HybridDictionary is a documented data type
in the CLR, but nothing in Java resembles it in the slightest. Java contains similar
examples that are not in .NET, such as Java.util.Vector.

● Complex data types — Your application may expose complex data types, made
up of numerous or even nested primitive data types. Here you need to expose the
complex data type so that the other platform can use it.

Consider the example of integrating an ASP.NET Presentation tier with a J2EE
Business tier as Figure 3.1 shows. In this example, an EJB in the J2EE Business tier
exposes a method that the ASP.NET Presentation tier then calls. In a production
application, this returned data is unlikely to be a simple “Hello World” string, and
would probably contain complex elements.

Client

Enterprise JavaBeans

Message
Queue

Broker
Database

C
lien

t
T

ier
P

resen
tatio

n
T

ier
B

u
sin

ess
T

ier
D

ata
T

ier

ASP.NET

Figure 3.1
ASP.NET Presentation tier linked to J2EE Business tier

 Chapter 3: Interoperability Fundamentals 51

Luckily, a number of possibilities exist that allow applications to exchange data types
from one platform to the other, and Chapters 4 and 5 cover these options in detail.
However, before you can make the connection between the two platforms, you have
to ensure that both sides understand a particular data type before they attempt to
exchange it, and also that you have a means of making the transfer that both sides
can use. This next section looks at how you can use serialization to make the transfer.

Using Serialization
Serialization is the process of encoding an object or class into a persistent or
transportable state. This allows you to take a complex data type, then encode, save,
transfer, and decode it, with the possibility that a separate process handles the
decoding.

There are two main serialization types:
● Binary serialization — Takes the data type and converts it into a binary stream.
● XML serialization — Converts the data type into an XML stream which you can

then convert to an XML document.

You can take the output from either serialization type and store it in memory, place it
into a file, or pass it across a network connection. For example, your application may
have a defined CustomerData complex data type which stores information about a
customer (such as name, address, telephone number, and so on). You can use
serialization to convert the CustomerData data type into a binary or XML stream that
you can then transport across process boundaries or save to a file for later use. The
object is serialized when it is in the binary or XML format.

De-serialization is the process of converting a serialized object back to its original
form. Generally, you de-serialize objects back into their original type. Hence, if you
serialize the CustomerData data type as a binary stream or as an XML document,
you de-serialize it back to the data type CustomerData and not to the data type
OrderData.

Both .NET and J2EE use serialization to exchange data between applications within
the same platform. You can also use serialization to exchange data between
applications on different platforms by passing serialized objects for de-serialization
on the alternate platform. The next sections examine how to implement binary and
XML serialization on .NET and Java.

52 Application Interoperability: Microsoft .NET and J2EE

Understanding Binary Serialization
Binary serialization is the process of taking a complex data type (or object) and
encoding it into a binary stream, changing to a persistent state, transporting, and then
decoding (de-serialize) back into the original complex data type.

Both Java and .NET include a binary serializer that can convert any serializeable data
type into a byte stream. The classes that perform this serialization are similar in each
platform and simple to implement.

For binary serialization in both .NET and Java, you must first apply a label to indicate
that you want to serialize a type. In .NET, you can use the [Serializable] attribute or
implement the ISerializable interface. In Java, the equivalent approach is to make the
class implement java.io.serializable.

Unfortunately, the .NET and Java serializers are incompatible. Hence, you cannot
stream the serialized version of the CustomerData object output from the Java
serializer straight into the .NET version and vice versa. Even if you could, you would
still face the challenge of getting the .NET Framework application to understand the
CustomerData object that the Java serializer produced. The .NET side may not have
an equivalent CustomerData data type to accept the de-serialized CustomerData
object from the Java side.

You can use binary serialization for linking .NET to Java as long as the same formatter
performs the serialization and de-serialization of an object. The format that creates
the byte stream from the data type must match exactly the format that receives the
byte stream and reconstructs the object.

There are two approaches that you can use to circumvent the incompatibility of the
default J2EE and .NET binary serializers. These are:
● Create a custom serializer sharing the same formatting options on both Java

and .NET.
● Use a third-party product that works with the binary formatter in the .NET

Framework, such as Ja.NET or JNBridgePro.

For more information about implementing binary serialization with Ja.NET and
JNBridgePro, see Chapter 4, “Interoperability Technologies: Point to Point.”

Understanding XML Serialization
XML serialization is the process of taking a complex data type (or object) and
encoding it into an XML stream. You can then make this XML stream into a
persistent state in the form of an XML document, transport it, and then later decode
(de-serialize) it back into the original complex data type (or object).

 Chapter 3: Interoperability Fundamentals 53

In order to understand the process of XML serialization, you need to have a basic
understanding of XML. XML is text-based document markup language that contains
structured and extensible data. XML is text-based, so you can read it like normal text
and because it is extensible, you can use it to describe almost any type of information.
Hence XML documents can contain:
● Text
● Pictures
● Program settings
● Data schemas
● Annotations
● Inserts

XML documents may also contain instructions about how to use the data within the
document itself.

For more information about XML, see the Microsoft XML Web site.

In the “Understanding Binary Serialization” section, you saw how the binary
serializers of the .NET and Java platforms are not compatible with each other.
However, XML is platform independent. If you can serialize an object or data type
from one platform into an XML document, it should be relatively easy to read,
understand, and de-serialize this document back into an object or data type on the
other platform. Unfortunately, this is not always the case, but XML serialization does
provide an interoperability route in most situations.

Parsing XML Documents
There are several different ways to read, write, and edit XML documents within
.NET and J2EE. This process is XML parsing and both platforms have stable and
mature XML parsers. Using a parser, you can write code within your application that
reads data from an XML document manually and then inserts it into a complex data
type object. For example, you could use parsing to read data from an XML document
that a J2EE application generates, and then insert the data into a .NET data type.
Parsing allows the exchange of data between .NET and J2EE.

Parsers for reading and writing XML documents tend to fall into three main types:
● Document Object Model (DOM) on both platforms
● Simple API for XML (SAX) on Java only
● Pull model parsing on .NET only

DOM XML parsers load the entire document into memory, which has some
advantages and disadvantages. With the whole document in memory, you can
traverse the XML hierarchy quickly and easily, but large documents affect
performance and responsiveness due to memory usage.

http://msdn.microsoft.com/library/default.asp?url=/nhp/default.asp?contentid=28000438

54 Application Interoperability: Microsoft .NET and J2EE

SAX reads sections of the XML file as required. This affects performance less due
to reading the file on demand, but it reduces flexibility by preventing backwards
parsing.

Pull model parsing uses a forward-only, read-only XmlReader cursor. XMLReader
provides fast, non-cached stream access to the input data, allowing you to pull data
and to skip records that are of no interest. Because XmlReader is pull mode,
applications can pull nodes from the reader as necessary. The pull model provides
advantages such as state management, multiple input streams, extra string copy
avoidance, and selective processing. For more information about using XmlReader,
see “Reading XML with the XmlReader,” on MSDN.

The System.Xml namespace provides the XmlDocument and XmlElement classes to
allow you to parse XML in .NET. They also provide methods that let you add to and
modify elements within XML documents and to traverse those documents.

In Java, you can use Document and Element classes to achieve similar results.

Limitations of Parsing XML
There are some limitations to XML parsing that you need to understand. Parsing
works well when you access and read distinct data elements from an XML document.
However, manipulating information within the document itself can rapidly become
unwieldy. Also, there is no intrinsic way of using a parser to map objects in the XML
document to classes either in Java or in .NET. Mapping data in an XML document to
application objects and classes requires XML serialization.

XML parsing can be considered an inefficient way of implementing XML serialization
and is not the recommended way for exchanging XML data between .NET and Java.
Both .NET and J2EE have XML serializers that include parsing functionality.

XML serialization provides significant enhancements when creating XML documents.
It frees you from the tedium of the XML parsing process, letting you concentrate on
developing the application itself and associated data types. XML serialization
simplifies the task of taking an object in .NET, converting it to an XML document
and enabling a Java application to read it, and vice versa.

Implementing XML Serialization on the .NET Platform
The.NET Framework provides numerous classes and APIs for XML serialization.
The main one of these is the System.Xml.Serialization.XmlSerializer class. This
class allows the serialization of .NET Framework types to an XML document and
back again. XML serialization converts (serializes) only the public fields and
properties of an object into an XML stream whereas binary serialization converts
the object’s public and private fields and the name of the class together with the
assembly containing the class into a stream of bytes.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconreadingxmlwithxmlreader.asp

 Chapter 3: Interoperability Fundamentals 55

You can use the [Serializable] attribute to indicate that you want to serialize a type,
just like with binary serialization. Alternatively, you can have your data type class
implement the ISerializable interface.

XML serialization uses different rules from binary serialization. For example, you do
not need to label .NET data types with the [Serializable] attribute, although this is
still recommended practice. However, .NET data types must have a valid default
public constructor.

Serializing .NET Objects into XML

The following example demonstrates how you can use XMLSerializer in .NET to
convert an instance of the CustomerData class, called custData, into an XML stream.
This example assumes your .NET Framework application already has a defined
CustomerData data type class which you marked as serializable.

XmlSerializer serializer = new XmlSerializer(typeof(CustomerData));
serializer.Serialize(fileStream, custData);

The Serialize method of the XMLSerializer class serializes the contents of the
CustomerData object, custData, and generates the output as a file stream. This
stream points to a file, which is an XML document representing the serialized version
of the CustomerData object, custData.

Deserializing Objects from XML to .NET

This next example demonstrates how you can use the XMLSerializer in .NET to
return an instance of a CustomerData object, custData, from an XML document
stored as a file.

XmlSerializer serializer = new XmlSerializer(typeof(CustomerData));
CustomerData custData = (CustomerData)serializer.Deserialize(fileStream);

Here you use the Deserialize method of the XmlSerializer class to return a
CustomerData object, custData, from an XML document passed to the serializer
as a stream.

Note: The Deserialize method returns an object with a type of System.Object. Ensure that you cast
the returned object appropriately before assigning it to the target type.

56 Application Interoperability: Microsoft .NET and J2EE

Serialization can fail for a number of reasons:
● The XML document under de-serialization contains fields the serializer cannot

process.
● The object cannot be serialized, such as any object that implements the

IDictionary interface.
● Objects are not declared as public.
● Objects do not contain a valid no-argument constructor.

Note: Attempting to serialize an object that fits into one of the previous four categories generates
a System.InvalidOperationException from XmlSerializer. When debugging XML serialization, you
should check for and resolve any instances of this exception.

Implementing XML Serialization for the Java Platform
XML serialization of objects is not part of the core specifications for either J2SE or
J2EE. Hence, you need to use a third party serializer, of which there are several to
choose from:
● Electric XML
● Apache Cocoon
● Open XML Framework (OXF)
● Java Architecture for XML Binding (JAXB)

Many serializers form part of a larger Web services package, although you do not
need to be using Web services to use the XML serialization features. Java serializers
use a combination of reflection and mapping to write the object’s data into the correct
XML format. Reflection is a technique for inspecting the structure of an object, and
mapping is like an Extensible Stylesheet Language Transformations (XSLT)
document, mapping the fieldnames in the object to elements or attributes in the
XML document.

To make a Java class serializable, you need to implement the Serializable interface.
Hence the class declaration for CustomerData would be the following.

public class CustomerData implements java.io.Serializable

A serializable class must also have a no argument constructor. You can also use the
serialPersistentFields member to declare explicitly which fields can be serialized,
or the transient keyword to indicate fields that cannot be serialized. Examples of
non-serializable fields might be ones that include sensitive data.

Classes that you have marked for serialization in Java may also implement the
readObject and writeObject methods for controlling saving, and reading
information, together with the writeReplace and readResove methods to designate
replacement objects.

 Chapter 3: Interoperability Fundamentals 57

You may also implement Externalizable instead of Serializable for complete control
of class serialization. When using Externalizable, you have to implement the
writeExternal and readExternal methods to write, not only the contents of the data,
but also the data format and associated metadata.

The next two examples use Electric XML to demonstrate how to serialize and
deserialize a Java object. Here you see that Electric XML handles the serialization
and deserialization processes in a similar fashion to .NET.

Serializing Java Objects into XML

The following example assumes that your Java application defines a serializable
OrderData data type class which implements java.io.serializable. It demonstrates
how you can use the Electric XML serializer in J2EE to convert a named instance of
this class, order, into an XML document.

electric.xml.io.IWriter writer = new LiteralWriter(xmlNameSpace,OrderData);
writer.writeObject(order);
electric.xml.Document document = writer.getDocument();

In this example, you first create an instance of type electric.xml.io.IWriter, passing
in the XML namespace of the XML document you want to create, and the object type
(OrderData) as parameters. The writeObject method of the IWriter object serializes
the contents of the OrderData object, order. Finally, the getDocument method of the
IWriter object retrieves the XML document containing the serialized contents of the
OrderData object. You can then write this document to a stream.

Deserializing Objects from XML to Java

This next example demonstrates how you can use the Electric XML serializer in J2EE
to return an instance of an OrderData object, order, from an XML document named
xmlDocument.

electric.xml.io.IReader reader = new LiteralReader(xmlDocument);
OrderData order = (OrderData)reader.readObject(OrderData.class);

Here you use the readObject method of the IReader class to return an OrderData
object, order, from an XML document which you pass to the reader as a parameter.

Note: The readObject method returns a generic object of type java.lang.Object. You must cast this
returned object appropriately before assigning it to the target type.

For an additional example of XML Serialization on the Java platform, see Chapter 7,
“Integrating .NET in the Presentation Tier.”

58 Application Interoperability: Microsoft .NET and J2EE

Using XML Schemas to Ensure Type Compatibility
You have now seen how you can use XML serialization to serialize objects into an
XML format on one platform, and then de-serialized them back into the original
object type in the alternate environment. However, XML serialization alone does
not solve the issue of exchanging data between .NET and Java.

A major consideration when using serialization techniques is to ensure that when you
generate an XML document from one platform, the document is compatible with the
other. You should not take this compatibility for granted. The XML Schema provides
the interoperability contract that specifies the format for XML documents. It is this
component that provides the template for successfully linking .NET and Java.

By itself, an XML document does not define the data types within the document.
Hence a value of 4.56 could be a string, a double, or a float. This makes it difficult for
the receiving platform to import the value correctly. Similarly, both platforms could
implement the type OrderData, but the .NET version could be totally unrelated to the
identically named type in Java.

For example, if you serialize the OrderData object on the .NET platform into an XML
document and pass it to the Java application for consumption, you need to answer
the following questions:
● How will the Java application know how to de-serialize the OrderData object?
● Is there an OrderData data type in Java equivalent to the OrderData data type

in .NET?
● What if the OrderData data type in Java has nothing in common with the

OrderData data type in .NET?

These questions all point to data type compatibility issues that you need to resolve
to enable the exchange of data between .NET and J2EE.

Understanding XML Schema Documents
The XML Schema provides a linking framework through the XML Schema Document
(XSD) that assists in exchanging data between .NET and J2EE by defining the format
of an XML document. An XSD file specifies an XML Schema, and the XSD file itself is
simply another XML document with a set structure. Nodes and elements within the
XSD define the elements and data types in the related XML document(s). An XSD
also contains any constraints for each element with the XML document.

Within the XSD file, you can specify the definition of a data type stored in the XML
format. For example, when defining the OrderData data type in an XSD, you can
specify the names and number of fields within the object, such as orderID,
itemDescription, and price. You can also specify that the value of the price field
(4.56) in your OrderData object is of type double.

 Chapter 3: Interoperability Fundamentals 59

XSDs allow you to define XML namespaces. XML namespaces allow you to declare
unique types and also let you identify different data types that may have the same
name.

One essential component in the XSD is the common namespace. This lets you declare
elements such as xs:complexType as unique for the document. For more information
about the XSD namespace, see the W3Consortium Web site.

Visual Studio .NET includes an XML Designer tool that allows you to design XML
schemas easily. The XML Designer lets you switch modes between a graphical
representation of your schema or the XSD document that represents that XML
Schema. XML Designer creates platform independent XSDs that conform to the W3C
standards. For more information about generating schemas in Visual Studio .NET,
see Visual Studio .NET Help.

IBM Websphere Studio Application Developer 5.0 also contains a tool that allows
you to design XML Schemas easily. The XSD designer allows you to switch modes
between a graphical representation of the schema you are designing to the actual
XSD document representing the XML schema. XSDs designed in IBM WebSphere
Studio Application Designer are also platform independent and conform to the W3C
organization’s XSD standards.

Using XSDs to Ensure Class Compatibility
You saw in the previous section how you can implement an XML Schema in an XSD
to define the format of an XML document. You can use this knowledge to complete
the final piece of the data exchange puzzle.

The fact is that the .NET and Java platforms are highly unlikely ever to agree on data
types. However, using XSDs, the two platforms can agree on the format of an XML
document. If interoperability was like international diplomacy, this would be hailed
as a major milestone toward world peace.

Both .NET and Java have tools that allow you to map a class to a defined XML
Schema and vice versa. When you map a class to an XML Schema, the XML
document that you generate by serializing an instance of that class matches the XML
format that the XSD defines. By mapping classes on each platform to a common XML
Schema, you can ensure that each platform can exchange XML data with the other.

For example, you map a CustomerData class in both .NET and Java to a common
XML Schema file, CustomerData.xsd. You should then be able to serialize an instance
of the Java CustomerData class into an XML document, and de-serialize it back into
an instance of the .NET CustomerData class.

http://www.w3.org/2001/XMLSchema

60 Application Interoperability: Microsoft .NET and J2EE

With the XML Schema mapping tools in .NET and Java, you have two main
approaches for developing a common format for exchanging data:
● Start with a common XML Schema, and then generate data type classes on both

platforms. This approach guarantees that you build data types and a schema in
a platform independent format.

● Start from an existing data type class (from either platform), generate an XML
Schema from it, and then generate a corresponding data type class for the other
platform from the resulting XML Schema.

Note: The first technique is best if the classes do not already exist on either platform. If they do
exist on one or other, then you must use the second method.

For each of these approaches, the technique differs, depending on whether you are
working on the Java or .NET platform.

Mapping XSDs and Classes in .NET
The .NET Framework provides an XML Schema Definition tool, Xsd.exe, which
you can use to map .NET classes to XML Schemas and back again. Using this tool,
you can:
● Generate a .NET class from an XSD.
● Generate an XSD from a .NET class.

For example, if you define an XML Schema document ProductsData.xsd for a data
type named ProductsData, you can use Xsd.exe to generate a serializable .NET class
named ProductsData. Serializing an instance of the .NET ProductData class produces
an XML document that matches the XML format defined in the XML Schema
document, ProductsData.xsd.

Alternatively, if you define a serializable ProductsData class in .NET, you can use
Xsd.exe to generate an XML Schema, ProductsData.xsd defining the format of an XML
document containing a serialized version of the ProductsData object.

Note: Xsd.exe only allows you to manipulate XML Schemas that follow the World Wide Web
Consortium’s implementation of the XML Schema definition language.

For more information about the XML Schema Definition tool, see XML Schema
Definition Tool on MSDN.

For additional examples of how to use the XML Schema Definition tool, see Chapter 3
of Simon Guest’s book Microsoft .NET and J2EE Interoperability Toolkit.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpconxmlschemadefinitiontoolxsdexe.asp?frame=truev
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpconxmlschemadefinitiontoolxsdexe.asp?frame=truev

 Chapter 3: Interoperability Fundamentals 61

Mapping XSDs and Classes in Java
On the Java platform, there are multiple tools you can use to map Java classes to
XML Schemas and vice versa. Examples are:
● schema2java and java2schema from Electric XML
● Java Architecture for XML Binding (JAXB)

Note: Most of the XML serialization tool vendors produce equivalent utilities to schema2java and
java2schema. However, the examples in this book use the Electric XML versions.

The schema2java and java2schema tools provide functionality very similar to
Xsd.exe in .NET. With Electric XML tools you can:
● Use schema2java to generate a Java class from an XSD.
● Use java2schema to generate an XSD from a Java class.

You can use the schema2java tool with the same XML Schema file, ProductsData.xsd
that you defined for a data type named ProductsData in the.NET example to
generate a serializable Java class named ProductsData. Just as in .NET, serializing
an instance of the Java ProductData class generates an XML document that exactly
matches the XML Schema from the ProductsData.xsd document.

The java2schema tool allows you to perform the reverse process. If you define a
serializeable ProductsData class in Java, you can use java2schema to generate an
XML Schema, ProductsData.xsd. This document defines the format of an XML
document containing a serialized version of the Java ProductsData object.

Note: You can only generate XSDs from compiled classes, not source code.

For more information about schema2java and java2schema, see Package
electric.xml.io.tools in the References section at the end of this chapter.

For an example of how to use the Electric XML tools to map Java classes and
XML Schemas, see Microsoft .NET and J2EE Interoperability Toolkit, Chapter 3,
pages 70–80.

In both the .NET and Java examples in the earlier section, because the same
ProductsData.xsd is the source for both the Java ProductsData class and the
.NET ProductsData class, both classes serialize into the same XML format. Hence
you can serialize an instance of the ProductsData class on one platform into an
XML document, then de-serialize it back into an instance of the ProductData class
on the other platform.

Generating types using XSDs is very powerful, and it goes a long way to providing
cross-platform interoperability. XSDs are also a foundation element in WSDL.
Understanding the structure of XSDs is very helpful when looking at data type
transportation in XML Web services.

62 Application Interoperability: Microsoft .NET and J2EE

Mapping XSD Types
The previous section described how to map classes and XSDs in both .NET and Java.
However, there are limitations when using this technique to create a common format
for exchanging data. In most cases, the complex data types you use to store data in
both .NET and Java consist of primitive types. Unfortunately, not all primitive types
have a direct mapping between .NET and Java.

The XSD common namespace defines a set of data types that XML can represent.
Both .NET and Java have mappings to the XML data types defined in the XSD
common namespace.

Note: When designing complex data types, you are recommended to use only the platform data
types that map directly to XML data types.

Table 3.1 shows the mapping between XML data types, .NET data types, and J2EE
data types using the serializer in Electric XML.

Table 3.1: XML to .NET and Electric XML Data Type Mappings

XML Data Type .NET Data Type Electric XML Data Type
anyURI System.Uri java.net.URL

base64Binary Byte(Array) byte(Array)

boolean Boolean Boolean

byte SByte Byte

dateTime DateTime Java.util.Date

decimal Decimal Java.math.BigDecimal

double Double Double

float Single Float

hexBinary Byte(Array) electric.util.Hex

Int Int32 Int

long Int64 Int

negativeInteger System.Decimal Int

nonNegativeInteger System.Decimal Int

nonPositiveInteger System.Decimal Int

short Int16 short

string String java.lang.String

unsignedInt UInt32 int

 Chapter 3: Interoperability Fundamentals 63

Data Exchange Recommendations
You should now understand the techniques for using XML serialization in
conjunction with XML Schemas to exchange data between .NET and Java in a
common format. This section discusses the recommendations for exchanging data
between .NET and J2EE successfully in different enterprise environment scenarios.

In enterprise environments, there are three interoperability scenarios that frequently
occur when developing a common format for exchanging data between .NET and
J2EE. These are:
● Linking new applications.
● Linking a new application to an existing application.
● Linking two (or more) existing applications.

Unfortunately, the first scenario is the easiest but least common, whereas the last is
the most difficult and the most common.

Linking New Applications
In this scenario, you are developing applications on different platforms that need to
exchange data with each other. Here the assumption is that you are building each
application from scratch and your developers have decided on a common data
format for each application before development.

The best practice recommendations for this scenario are:
● Use XSD to define common or shared types and then generate platform-specific

code from those shared types.
● Create a central XSD repository for your development teams to provide for

consistency in generating types across applications.
● Avoid exposing elements that XSD does not define — always use types that are

published in XSD.
● Test data types with test utilities before writing your application.

Linking a New Application to an Existing Application
In this second scenario, you have an existing application on either platform and you
need to implement interoperability between this existing application and a new
application on the opposite platform.

Note: This scenario assumes you do not have the ability to change the data types in the existing
application.

64 Application Interoperability: Microsoft .NET and J2EE

For example, you may have an existing multi-tier J2EE application that uses several
defined complex types, such as CustomerData or OrderData. You now have to
develop a new ASP.NET Presentation tier that must interoperate with this existing
J2EE application. You need to exchange data in the CustomerData and OrderData
data types with the new .NET Presentation tier application. However, .NET has no
corresponding data types to match the Java CustomerData and OrderData data
types.

In this scenario, the best practice recommendations are:
● Generate XSDs from the data types that the existing application exposes.
● Use these XSDs to generate corresponding data type classes in the new

application’s platform.
● Follow the recommendations from the first scenario.

Linking Existing Applications
This is the most common scenario in enterprise environments, and, unfortunately,
the most difficult. Here you have two or more existing applications on different
application platforms and you need to implement interoperability between these
applications. You also have limited or no ability to change the data types in any of the
existing applications. You will have to adapt or convert the data in at least one of the
applications into a different format in order to exchange data.

There are several solutions to this scenario. The two most common are:
● Use a common format and a single adapter:

1. Select one application’s data type as a common format for exchanging data.
2. Implement an adapter layer on the other application to convert its data type to

the common format.
● Use a common XML Schema and adapters for each application:

1. Design a common canonical XML Schema based on the business requirements
of the exchanged data.

2. Generate platform-specific types from the common schema.
3. Implement adapters on all applications to convert their data types to the

common data type.

For example, you have an existing .NET Framework application that needs to talk
to an existing J2EE application. The applications need to exchange data about
customers. The J2EE application has a Customer class and the .NET Framework
application also has a Customer class. Unfortunately, neither the .NET nor J2EE
Customer classes derive from the same schema. Interoperability was not a factor
when the developers created these applications, so the classes are incompatible.

 Chapter 3: Interoperability Fundamentals 65

You could design a common XML Schema for CustomerData, and then generate
platform-specific CustomerData data types for exchanging data based on that
common XML Schema. However, you may not have the ability to replace the
platform-specific Customer class used throughout each application with the new
CustomerData classes that the common schema generates. This approach would
also not be consistent with application best practice.

To resolve this issue, add a new interoperability layer (or adapter) to each application
that converts the existing Customer type to the new common CustomerData data
type. This adapter copies the field values of the Customer native type into the new
CustomerData common type (or vice versa, depending on the direction of data
exchange). You can then use the new CustomerData classes in both .NET and Java
to exchange data between the two applications through each application’s adapter.

Summary
This chapter described the factors behind implementing interoperability. You saw
the importance of ensuring class consistency and methods for implementing
serialization. You also looked at basic type mappings between XML data types,
.NET data types, and Electric XML data types. Finally, you examined the three most
common interoperability scenarios and the best practice recommendations to deal
with each of these. With this information, you can now move on to examine the
different interoperability mechanisms in detail in Chapters 4 and 5.

References
For more information about XML
See the Microsoft XML Web site
http://msdn.microsoft.com/library/default.asp?url=/nhp/default.asp?contentid=28000438

For more information about using XmlReader
”Reading XML with the XmlReader”
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconreadingxmlwithxmlreader.asp

For more information about the XSD namespace
http://www.w3.org/2001/XMLSchema

For more information about the XML Schema Definition tool
XML Schema Definition Tool
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html
/cpconxmlschemadefinitiontoolxsdexe.asp?frame=true

http://msdn.microsoft.com/library/default.asp?url=/nhp/default.asp?contentid=28000438
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconreadingxmlwithxmlreader.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconreadingxmlwithxmlreader.asp
http://www.w3.org/2001/XMLSchema
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpconxmlschemadefinitiontoolxsdexe.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpconxmlschemadefinitiontoolxsdexe.asp?frame=true

66 Application Interoperability: Microsoft .NET and J2EE

For additional examples of how to use the XML Schema Definition tool, see Chapter 3
of Microsoft .NET and J2EE Interoperability Toolkit by Simon Guest, Microsoft Press,
2003, ISBN: 0735619220.

For more information about schema2java and java2schema
Package electric.xml.io.tools
http://www.themindelectric.com/docs/exml/api/electric/xml/io/tools/package-summary.html

For an example of how to use the Electric XML tools to map Java classes and
XML Schemas, see Microsoft .NET and J2EE Interoperability Toolkit, Chapter 3, pp 70–80.

http://www.themindelectric.com/docs/exml/api/electric/xml/io/tools/package-summary.html

4
Interoperability Technologies:
Point to Point

Designing an effective interoperability solution requires a detailed understanding
of the techniques used to connect Java and .NET Framework systems. This chapter
looks at the means you can employ to link the two platforms in point to point
scenarios, where one application interoperates synchronously with another.

The technologies that allow .NET Framework and Java to interoperate on a point
to point basis fall into two main categories:
● .NET Remoting
● XML Web services

.NET Remoting is the first technology covered; it provides advantages such as greater
performance and easy implementation in a pure .NET Framework environment.
However, Java applications cannot connect using .NET Remoting directly; they
require the implementation of a runtime bridge. This chapter investigates two of
the most popular runtime bridge offerings, Ja.NET and JNBridgePro.

Web services are increasingly fashionable whenever developers and system architects
start discussing interoperability. Web services certainly promise ubiquity and the
freedom from having to describe methods explicitly, but they are not always the best
interoperability solution.

Using .NET Remoting for Connectivity
In Chapter 2, “Understanding Enterprise Platforms,” you learned that .NET
Remoting is Microsoft’s communication and data transfer mechanism for distributed
applications built on the .NET Framework. While primarily designed for
communication between .NET Framework applications, .NET Remoting provides an
extensible communication framework that you can build on and customize to enable
connectivity with Java applications.

68 Application Interoperability: Microsoft .NET and J2EE

To use .NET Remoting for interoperability with Java applications, you must
implement a runtime bridge, and you look at two of these, Ja.NET from Intrinsyc and
JNBridgePro from JNBridge, Inc. later in this chapter. Before you learn about runtime
bridges, you need to have a solid understanding of .NET Remoting.

Understanding .NET Remoting
At its fundamental level, .NET Remoting allows two processes within the same
or different application domains to communicate with each other in a client-server
relationship. In this basic scenario, the server component is a remotable object.

.NET Remoting implements interprocess communication by separating the remotable
object from a specific client, server application domain, or particular communication
mechanism. As a result, .NET Remoting is flexible and easily customizable.

This abstraction works through the use of two main concepts:
● Channels — Channels provide the transport between remote components.

The default channels are TCP and HTTP.
● Formatters — Formatters convert (serialize) objects into a common format the

other process (or, in the case of interoperability, platform) can understand.
The default formatters are binary and SOAP.

Note: Later sections in this chapter discuss SOAP.

In Chapter 3, “Interoperability Fundamentals,” you learned about binary serialization
and XML serialization. The binary formatter performs binary serialization on data
objects; the SOAP formatter performs XML serialization on data objects. However,
the SOAP formatter wraps the serialized XML document with extra SOAP-related
XML tags.

By specifying a channel and a formatter, you can define how you establish
communications between a remotable object and its client. The channels specify
the communication protocol. The formatters then act as serializers, serializing and
de-serializing the data objects that pass between the remotable object and the client.
The ability to customize these channels and formatters is what allows you to use
.NET Remoting for connectivity between .NET Framework applications and Java
applications.

.NET Remoting provides more than just communication between processes; you can
also use it for links between two or more application components that are in different
application domains. To do this, just change the configuration of .NET Remoting to
exchange data between the separate application domains. This gives you flexibility to
build an application that runs on just one computer but that you can then extend to
run in a distributed environment with minimal adjustment to the code.

 Chapter 4: Interoperability Technologies: Point to Point 69

.NET Remoting also supports two ways for passing data between application
components. These are:
● Pass by value (PBV)
● Pass by reference (PBR)

Pass by value involves returning of the data from a remote system call to the client.
Pass by reference returns a pointer or reference to the data and the remote server
maintains the data’s state.

Each method has advantages and disadvantages. The method you choose depends
on the type of application you are developing, the data that you want to pass, and the
network environment the application must function in.

Passing by reference can offer performance benefits when exchanging large data
objects or with distributed systems where network latency slows down pass by value
communication. However, if you pass a data object by reference, this makes a remote
call to the referenced data object on the server each time the client accesses another
field on the object.

For example, if you pass a CustomerData object, named custData, to a client by
reference, each time the client accesses a field, such as custData.Name or
custData.Address, this makes a remote call to the server. This can result a tightly
coupled and chatty application.

Note: In service oriented applications, loose coupling between application components is more
desirable, and you should use pass by value.

Implementing .NET Remoting
A typical .NET Remoting implementation, in which two components communicate
directly, consists of the following items:
● A remotable application object or server component.
● A host application that listens for client requests to the remotable application

component.
● A client application component that makes requests to the remotable application

component.

70 Application Interoperability: Microsoft .NET and J2EE

Figure 4.1 shows an example of a .NET Remoting framework connection between
a client and server.

Channel –
HTTP or TCP

Host application
(IIS, COM+, Windows Service)

Client
application
component

Remotable
application
component

.NET
Remoting client
configuration file

.NET
Remoting server
configuration file

Figure 4.1
A typical .NET Remoting implementation

Implementing .NET Remoting involves the following phases:
● Determining the host application or environment.
● Creating the server component.
● Creating the client.
● Editing the configuration files.

The following sections provide an overview of the steps necessary to implement
.NET Remoting. For more information about .NET Remoting, see the References
section at the end of this chapter. For coding examples in the XBikes sample
application, see Chapters 7 to 9.

Determining the Host Application or Environment
.NET Remoting server components require hosting in an application domain that
can listen for incoming requests for that object. You have four choices for hosting
a remoting server component:
● ASP.NET on IIS
● Component Services (COM+)
● A Windows system service
● A Windows application (console or Windows forms based)

 Chapter 4: Interoperability Technologies: Point to Point 71

You can host .NET Remoting objects as ASP.NET components running on IIS. This
brings many advantages, including built-in support for security and easy scalability.
With this configuration, you can use either the binary or SOAP formatter but you can
only use the HTTP channel, which is slower than TCP.

You can host a remoting object in Component Services as a COM+ Serviced
Component on either Windows XP Professional SP1 or Windows Server 2003.
This configuration provides the enterprise features of Component Services such
as integrated security, transactions, pooling, and activation.

You can host remoting objects in any managed Windows service. Hosting a remoting
object in a Windows service provides the flexibility to use any channel or formatter
configuration you choose, including the highest performing combination of binary
over TCP. However, .NET Remoting does not have a built-in security model. Hence
if you host a remotable object in a Windows service, you need to build your own
authentication and authorization mechanisms.

Finally, you can host a remoting server component in a Windows application.
However, applications run in the context of the logged on user, and therefore require
user logon to execute. They also run in the security context of that user, which might
not be appropriate for your environment. It is preferable to host the remote server
component in a Windows service.

Note: When hosting a component in a Windows Forms application, a Windows Service or some other
application type, it is up to the programmer to specify the port. For non-ASP.NET hosts, remoting can
listen on any unused port.

In general, you should use IIS to host your remoting objects because of the security
and performance advantages it provides. For more information about hosting a
remotable object in IIS, see the References section at the end of this chapter. For
examples of using Ja.NET in conjunction with .NET Remoting in the XBikes sample
application, see Chapters 7 and 8.

Creating the Server Component
The server component is the service provider, providing methods that client
applications call by reference or data that clients send and receive by value.
Server component classes need to inherit from the MarshalByRefObject class to
communicate over .NET Remoting. Any data that the server component passes
by value must be serializable.

72 Application Interoperability: Microsoft .NET and J2EE

Creating the Client Component
To enable .NET Remoting on the client, you do not need to implement any additional
interfaces. However, the client must have a reference to the server component or
interface. The client uses this reference to interrogate the server component for any
methods or data types that the server component exposes. The client also needs to
load the remoting configuration, either from its own code or from a configuration file.

Editing the Configuration Files
The following .NET Remoting items are configurable:
● References to remote systems
● Channels
● Formatters

You can configure each of these items through settings that you can either store
in the application code or access them at run time from a configuration file. It is
recommended that you store your configuration settings in a configuration file so
that you can change them without having to recompile the application. This method
is much more flexible in production systems, allowing you to implement changes
without recompiling and redeploying the application.

Both the server component and the client component in a .NET Remoting scenario
must have access to configuration information. Assuming you have stored the
configuration settings a file, the contents and locations of these files differ for the
server and client.

.NET Remoting configuration files are XML formatted text files. You can edit these
in Notepad or the text editor of your choice.

Server Component Configuration

On the server side, you must register all remote objects with the .NET Remoting
environment before clients can access them. During this registration process, you
must provide the .NET Remoting framework with all the information required to
activate and manage the lifetime of the object. The most important pieces of
information required for registration are:
● Object type
● Object location (URL)
● Activation requirements for managing the object lifetime
● Channels for connecting to the object

 Chapter 4: Interoperability Technologies: Point to Point 73

The location of the remoting configuration file for the server depends on the host
application you use. For example:
● For IIS-hosted applications, you store the remoting configuration in the

Web.config file located in the application virtual root.
● For Component Services hosted applications, the remoting configuration would be

in a file that you create named Dllhost.exe.config file in the \System32 directory.
This is because the server component runs as part of the COM+ process,
Dllhost.exe.

● For a Windows service, the remoting configuration information is in the
application configuration file of the Windows service. For example, if the
Windows service is named Myservice.exe, the remoting configuration is in the
file Myservice.exe.config.

Client Component Configuration

The client side must also have the same configuration settings loaded as the
server. You store client configuration settings in a file that you create named,
for example, Remoting.config. The client application loads this file by calling
RemotingConfiguration.Configure with the configuration file name as a parameter.
The location of the Remoting.config file depends on the type of application the client
component belongs to. For example:
● For ASP.NET-based clients, the Remoting.config file lives in the application’s virtual

root. These configuration settings must load in the Application_Start method of
the Global.asax file.

● For COM+ Serviced Components clients, the Remoting.config file lives in the
\system32 directory.

● With any other client, the Remoting.config file should be in the same directory
as the client executable file.

Now that you understand the basics of .NET Remoting, the next section looks at how
you can use this technology to connect to Java applications.

Implementing Runtime Bridges
There are several vendors that enable interoperability between .NET Framework
applications and Java applications with .NET Remoting as the underlying connecting
protocol. Runtime bridges expose Java objects and methods in a way that enables you
to address them with .NET Remoting and vice versa. Two of the main products in
this category are Ja.NET from Intrinsyc and JNBridgePro from JNBridge, Inc.

Note: Ja.NET and JNBridgePro differ in that JNBridgePro allows calls from a .NET Remoting client to
Java objects and classes whereas Ja.NET also works in the opposite direction. This difference does
not affect the scenarios that this book covers.

74 Application Interoperability: Microsoft .NET and J2EE

Evaluating Ja.NET
Ja.NET provides a two-way implementation of the .NET Remoting stack for Java.
Using Ja.NET, you can generate Java proxies that expose or consume components
using the .NET Remoting protocol.

Because Ja.NET is a bi-directional bridge, accessing Java from .NET generates a set
of C# proxies. Similarly, accessing .NET from Java generates a set of Java proxies.

If you examine the generated proxies, you should notice how the by value class
contains all its fields, and the remote by reference class only a shell that defines the
class definitions. Ja.NET needs these for compile definitions, and then again at run
time for the _TransparentProxy class to mimic the remote server. If you attempt to
create a local copy of this class, this generates an exception. You can only have a
remote instance of this class. The proxies use no custom code, just pure .NET
Remoting.

If you look at the Java proxies generated when analyzing a .NET assembly, you
should see a lot of code for marshalling and un-marshalling the call parameters to the
Ja.NET runtime. When accessing .NET from Java, you need custom code to initialize
the Ja.NET runtime, as well as any remote send or receive classes. However, the .NET
side still does not require any special code, as Ja.NET follows the .NET rules for
remotable objects.

Ja.NET enables Java components to appear as CLR components, and CLR
components appear as Java components. In addition, the Ja.NET Janetor tool expands
upon this functionality by generating the Java proxies within a WAR file. You can
then host this WAR file on a Web server, enabling access to EJBs from .NET
Framework — again with all of the communication based on .NET Remoting.

 Chapter 4: Interoperability Technologies: Point to Point 75

Accessing a .NET Framework Server from Java
The simplest implementation is when the Ja.NET runtime lets a Java client access a
.NET Framework server, in this case, implemented in Visual Basic .NET. Figure 4.2
shows how to do this.

VB.NET
serverBinary over TCP/IP

Java Platform .NET Platform

JA.NET
runtime

JA.NET
proxies

Java
Client

Figure 4.2
Connecting Ja.NET to a VB.NET Server component

Figure 4.2 shows the Java platform hosting the Ja.NET runtime component.

76 Application Interoperability: Microsoft .NET and J2EE

Accessing IIS Components from Java
Java clients can also use the Ja.NET runtime to access a remote CLR component as
if it is a local Java component. Figure 4.3 illustrates this method.

Java Platform

JA.NET
runtime

JA.NET
proxies

Java
Client

.NET Platform

CLR
component

.N
ET Remotin

g ove
r H

TTP

Internet Information Server
(IIS)

Figure 4.3
Connecting Ja.NET to a .NET component hosted on IIS

Figure 4.3 shows the Ja.NET proxies that handle communication between the Java
client and the Ja.NET runtime. In this example, IIS is hosting the .NET Framework
application.

 Chapter 4: Interoperability Technologies: Point to Point 77

Accessing an EJB from .NET Framework
The third method deploys a WAR file containing the Ja.NET runtime onto any
Web server that supports servlets. The CLR client (written in any supported
.NET Framework language) can access the EJBs as if accessing local CLR components.
Figure 4.4 shows an example of this arrangement.

.NET Platform Application server
with Web server

(any operating system)

.NET
proxies

CLR
Client

JA.NET
WAR file.NET remoting over HTTP

EJB

Figure 4.4
Connecting .NET Clients to an EJB using Ja.NET

In addition, the Ja.NET runtime lets you:
● Write clients for EJBs in any language supported by .NET.
● Access .NET Framework components from any Java object or EJB.
● Reuse components from either platform with the other environment.

Note: Because .NET Remoting is an extensible protocol from both the transport and data formatting
perspective, Ja.NET supports HTTP and TCP/IP transport protocols together with SOAP and binary
data formatting and can support future transports and formatters.

Ja.NET Toolset
There are six main parts that make up the Ja.NET toolset. These are:
● GenService — The GenJava and GenNet tools use GenService to provide access

to .NET Framework assemblies for development. You require only GenService to
generate the proxies, so you do not have to install it in the production
environment.

● GenNet — GenNet generates the .NET Framework proxies that access the Java
classes through the Ja.NET runtime.

78 Application Interoperability: Microsoft .NET and J2EE

● GenJava — GetJava generates Java proxies that access .NET Framework
assemblies through the Ja.NET runtime.

● Janetor — The Janetor tool allows you to view and modify the Ja.NET runtime
configuration settings. You can also use the Janetor to generate WAR files to assist
with deploying the Ja.NET runtime onto a Web server. Janetor includes licensing
for the Ja.NET product, locally shared and remotely accessed objects.

● Ja.NET TCP server — Ja.NET TCP server provides standalone hosting for Java
classes through the Ja.NET runtime where the classes are not hosted on a J2EE
server. The Ja.NET runtime includes this component.

● Ja.NET runtime — Ja.NET runtime is the main collection of classes that hosts the
tools. The Janet.jar file contains the runtime components.

Linking Types between .NET Framework and Java
When linking .NET Framework to Java using Ja.NET, you need to understand the
links between data types in the .NET Framework and data types in Java. Table 4.1
shows this information.

Table 4.1: .NET Framework to Java data type mappings

.NET Framework Data Type Java Data Type
System.Boolean boolean

System.Char char

System.String java.lang.String

System.Single float

System.Double double

System.Int8 byte

System.Int16 short

System.Int32 int

System.Int64 long

System.Byte byte

System.UInt16 short

System.UInt32 int

System.UInt64 Long

System.Object java.lang.Object

System.DateTime Java.util.Date

 Chapter 4: Interoperability Technologies: Point to Point 79

Table 4.2 shows how you can use Ja.NET to map collections between Java and the
.NET Framework.

Table 4.2: Ja.NET Collection Mappings between Java and the .NET Framework

Java Collection Class .NET Framework Collection Class
java.util.ArrayList System.Collections.IList

Java.util.LinkedList System.Collections.IList

Java.util.Vector System.Collections.IList

Table 4.3 shows the opposite mapping from the .NET Framework to Java.

Table 4.3: Ja.NET Collection Mappings between the .NET Framework and Java

.NET Framework Collection Class Java Collection Class
System.Collections.ArrayList java.util.List

For more information about type and collection mappings, see the Ja.NET
documentation.

Understanding Ja.NET Events and Exceptions
There are a few more concepts that you need to understand to appreciate the
complete range of .NET Remoting options. These include the following:
● Events — Ja.NET provides event support through the ability to extend

java.util.EventListener to system events in the .NET Framework. This provides
a major advantage in that the server component can now implement a callback
to the client through this event model. Events are particularly useful where you
want to implement asynchronous operations or transactions with long run times.

● Exception handling — Ja.NET provides exception handling facilities, reporting
back exceptions on one platform to the alternative platform. Java server exceptions
map back to the System.Runtime.Remoting.RemotingException function in
.NET Framework and exceptions on .NET Framework map back to
com.instrinsyc.janet.RemoteException.
Usually, these derived exceptions contain the text from the original. To deal with
these exceptions, trap the resultant exception and then search the text within the
embedded exception to obtain more information.

● Support for strong naming — Ja.NET supports the use and creation of strong-
named assemblies. You can then register these assemblies in the global assembly
cache for use with serviced components (COM+).

80 Application Interoperability: Microsoft .NET and J2EE

● Ease of configuration — Because Ja.NET is a pure Java implementation of the
.NET Remoting protocol, the .NET Framework side requires no special runtime
libraries. Configuration on the .NET Framework side is the same as with a normal
implementation of .NET Remoting, requiring only a simple DLL that contains
class and interface definitions. Anything that you can make remotable in the
.NET Framework (derived from MarshallByRefObject), you can also make
remotable in Ja.NET. You can also send serialized classes by value, as in
.NET Framework-only implementation.

Implementing Ja.NET Best Practices
There are several best practices that you should implement when using Ja.NET.
These issues include performance, design, and deployment factors. For example:
● Upgrade to version 1.5.
● Use binary protocol for .NET Remoting.
● Deploy WAR packages on the application server to access EJBs and JMS.
● Understand .NET Remoting to facilitate good design practice.
● Comprehend the differences between pass by reference (PBR) and pass by

value (PBV).

Upgrade to Version 1.5

You are strongly recommended to upgrade to Ja.NET version 1.5, which is free for
users of earlier versions of Ja.NET. Version 1.5 contains many important new features,
including some that are necessary to run the examples in this book. Some of the new
features include the following:
● Support for strong-named assemblies.
● Improved type mappings between .NET Framework and Java types.
● Significant performance increases.
● Improved serialization capabilities for pass by value classes for both platforms.
● Integral Web server for non-enterprise level remoting access with HTTP.
● Improved SDK.
● Runtime support for .NET Framework versions 1.0 and 1.1.
● Integral .NET Framework proxy for JMS.
● Stability and performance enhancements.

 Chapter 4: Interoperability Technologies: Point to Point 81

Use Binary Protocol for .NET Remoting

This chapter describes the benefits of using .NET Remoting rather than SOAP.
Although Ja.NET also supports SOAP connections, .NET Remoting provides better
performance, with TCP/binary providing the fastest connection. However, if you
need to traverse firewalls, want to use the security infrastructure of IIS, or easily
deploy components inside an application server, HTTP/binary is the preferred
protocol.

Note: HTTP/binary is still significantly faster than HTTP/SOAP.

Deploy WAR Packages on the Application Server to Access EJBs and JMS

The fastest way to access an EJB is from within the application server itself. The
easiest deployment scenario is to create a WAR file that contains the Ja.NET runtime
JAR, the EJB client JARs, and a configuration file. You can use the Ja.NET Janetor
tool to create the WAR file easily, which you can then immediately deploy to the
application server. Because the WAR file resides in the same process space as the
application, access to the EJBs is much faster than accessing it from an external
process with RMI.

Understand .NET Remoting to Facilitate Good Design Practice

Because Ja.NET is a pure Java implementation of the .NET Remoting protocol, the
same rules for .NET Remoting best practice apply to Ja.NET. Make sure you read
the current literature about .NET Remoting to understand how best to employ it in
conjunction with Ja.NET.

Comprehend the Differences between PBR and PBV

In a PBR class, every method call results in a request for data. However, if you send a
PBV class, this serializes the entire class, including fields of the super class or classes.
If you PBV a very large object with numerous fields that contain significant amounts
of data, this may generate a sizeable about of network traffic. In this case, it may be
better to use PBR. Similarly, if you have a small class, consider using PBV to send
a copy of the class, rather than making a call to the network to access each field.
Understanding the differences between PBR and PBV reduces network traffic and
improves performance.

Evaluating JNBridgePro
JNBridgePro is a point-to-point bridging solution that links Java components to
.NET Framework. The Java code runs in an ordinary Java Virtual Machine (JVM)
or J2EE application server and the .NET Framework code runs in a normal .NET
Framework CLR. JNBridgePro then manages the communication between the
two sides.

82 Application Interoperability: Microsoft .NET and J2EE

Proxies make Java classes and objects appear as ordinary .NET Framework classes
and objects. .NET Framework components interact with those proxies just like
normal local .NET Framework function calls, but the proxy objects transparently
redirect the calls to the Java side. The Java components process the method calls and
field accesses and return the values or data to the proxies. The proxies then present
the results back to the .NET Framework components.

An application using JNBridgePro to perform Java/.NET Framework interoperation
contains JNBridgePro’s .NET Framework-side and Java-side runtime components,
which manage inter-platform communication and object lifecycles, and a .NET
Framework assembly (a DLL) containing the proxies for the Java classes exposed to
the .NET Framework. Developers generate the proxies using the JNBridgePro toolkit.

Figure 4.5 shows the architecture of JNBridgePro.

.NET CLR JVM

JNBProxy
Proxy generator

Java runtime
component

.NET
classes

Generated
proxies

Runtime
component

SOAP or binary communications

SOAP or b
inary

communicatio
ns

call inherit

Object
Reference Table

Java
classes

Figure 4.5
Internal architecture of JNBridgePro Runtime Bridge

Figure 4.5 shows the runtime component and proxies on the .NET Framework side.
Compare this with Figure 4.3.

Integrating JNBridgePro with .NET Remoting
JNBridgePro employs .NET Remoting to implement the communication between
the .NET Framework and Java sides. Because .NET Remoting is an extensible
architecture, you can change communications channels as required. JNBridgePro uses
this extensible architecture to support both SOAP and binary communications.

 Chapter 4: Interoperability Technologies: Point to Point 83

.NET Remoting also includes concepts alien to conventional “local” object-oriented
development, such as leasing, well-known objects, and client-activated and server-
activated objects. JNBridgePro can encapsulate these concepts and conceal them from
the user. Hence JNBridgePro interoperation between Java and .NET Framework code
appears to the developer as local development.

JNBridgePro builds additional capabilities on top of .NET Remoting. For example,
basic .NET Remoting can access members of actual objects, but it cannot access static
members of classes that are not members of actual instances of the class. JNBridgePro
provides the ability to access those static class members.

Understanding JNBridgePro Features
JNBridgePro allows access to Java classes and objects through calls to the
corresponding JNBridgePro proxies. JNBridgePro supports access to both static
and instance members, in addition to supporting access requests to fields and calls
to methods. You can make explicit calls from .NET Framework to Java by having
the .NET Framework code call .NET Framework proxies for Java classes and objects,
and you can make implicit calls from Java to .NET Framework by having the .NET
Framework code register a callback object and having the Java code access the
callback object through its implemented listener interface.

The Java side components can reside in a standalone JVM or in a J2EE application
server. Communication between the .NET Framework and Java sides can use either
SOAP or the faster binary protocol.

JNBridgePro supports transactions, giving you the ability to make a sequence of calls
from .NET Framework to Java as part of the same transaction. If the transaction fails,
the entire sequence rolls back to the start point. This prevents application calls from
hanging between the .NET Framework and the Java side. JNBridgePro can also create
.NET Framework proxies for dynamically generated Java classes at execution time.
Such dynamically generated classes frequently appear in J2EE applications,
particularly when linking to JNDI and EJB components.

JNBridgePro also supports the following:
● Mapping between .NET Framework and Java primitives.
● Strings.
● Collections.
● Support for pass by value (PBV) and pass by reference (PBR).
● Connections to Java-based messaging servers.

84 Application Interoperability: Microsoft .NET and J2EE

Selecting JNBridgePro
Choose JNBridgePro for J2EE and .NET Framework interoperability if your
application requires synchronous, point-to-point communication between .NET
Framework and Java objects, and has one or more of the following requirements:
● High performance — Your application requires a high performance

interoperability mechanism with a very low overhead, where the Java platform
and the .NET Framework are located on the same local area network or intranet,
or on the same machine.

● Expose a rich object-oriented Java API to .NET Framework interface — Your
application requires that Java exposes a large number of Java class APIs to .NET
Framework applications, or the Java API returns custom Java objects or requires
custom Java objects as parameters.

● “Chatty” interaction — Your application performs frequent fine-grained calls
between Java and the .NET Framework. Web services work better with less
frequent and more coarse-grained “chunky” interaction.

● Desire to stay with “local,” object-oriented development model — Your
application architects decide that they will not implement a service-oriented
model that exposes the APIs of a few classes as services. Instead, they want the
.NET Framework code to construct new Java objects using the new operator,
employ cross-platform garbage collection, and provide a conventional “local”
object-oriented model.

Implementing JNBridgePro Best Practices
There are a number of best practices that you should implement with JNBridgePro,
regardless of the interoperability scenario. Performance-related best practices include
increasing the speed of the communications channel, or reducing the number of
inter-platform round trips, thereby improving the apparent execution speed of the
application.

Upgrade to Version 1.3

If you are using JNBridgePro version 1.2 or earlier, you should consider upgrading
to version 1.3, particularly if your .NET Framework and Java components reside
on different computers. Version 1.3 or later provides a significant performance
enhancement when using binary communications to connect over a network. Some
implementations demonstrate a reduction in the time to access an EJB from
200 milliseconds to 2.3 milliseconds.

In addition to the network communications performance improvement, version 1.3
supports value objects and directly mapped collections, both of which can improve
performance.

 Chapter 4: Interoperability Technologies: Point to Point 85

To take advantage of this improvement, download and install version 1.3, and then
regenerate your proxies using the version 1.3 proxy generation tool. Replace the old
copies of Jnbshare.dll and Jnbcore.jar in your application with the version 1.3 files.

Use the Binary Communications Protocol

Binary/TCP communication is over an order of magnitude faster than SOAP/HTTP.
Use SOAP/HTTP only when using the Internet to link the .NET Framework and Java
sides and the communication path traverses firewalls.

To use the binary/TCP communications channel, make sure that the setting in the
Jnbproxy.config remoting configuration file uses the JTCP: protocol instead of the
HTTP: protocol. Also, set the servertype property in the Java-side configuration file
Jnbcore.properties to TCP, not HTTP.

Place the Java-side Component inside the J2EE Application Server

If you are using JNBridgePro to access EJBs running inside a J2EE application server,
deploy the JNBridgePro Java side inside the application server. These components
comprise the WAR file containing Jnbcore.jar, the JAR files containing the EJB stubs,
and the associated configuration files. Figure 4.6 shows this in place.

Desktop J2EE Application Server

.NET Client

WAR file
jnbridge: SOAP or binary

jnbcore.jar

EJB stubs

EJBs

Figure 4.6
Java-side component in J2EE application server

This arrangement ensures that Jnbcore.jar, which performs the EJB calls, bypasses
RMI and makes direct calls to the EJBs.

86 Application Interoperability: Microsoft .NET and J2EE

Place Java-side and .NET Framework-side Components on the Same Computer

If a single .NET Framework client accesses the Java classes, place the Java-side
component, including the Java classes, on the same computer as the .NET
Framework-side component, if possible. This minimizes the communication
overhead. Figure 4.7 shows this in operation.

Desktop J2EE Application Server

RMI

JVM

jnbcore.jar

EJB stubs

.NET Client

EJBs

jnbridge

Figure 4.7
Java-side component on the computer running the .NET Framework component

Any increase in round trip time and latency for the communication link affects the
overall responsiveness of the platform interface.

Reduce Round Trips

One of the best ways to improve JNBridgePro performance is to reduce the number
of round trips from the .NET Framework side to the Java side and back by reducing
the number of calls to proxies. One example of how to do this is when a number
of proxy calls are necessary to obtain information from which another value is
calculated. To reduce the number of proxy calls, create a Java façade class that
performs the calls, does the calculation, and returns the value. Then, create a proxy
for this class. The value can now be obtained through a single proxy call.

Implement Return Arrays

JNBridgePro offers full access to Java APIs, so there is a great temptation to use the
full API functionality. For example, if you have a Java-side Vector object, you should
extract an array from the vector and return that array by value. .NET Framework
then represents that array natively, removing the need for iterations to extract further
values from the original Vector object.

 Chapter 4: Interoperability Technologies: Point to Point 87

Some Java APIs support stateful objects that you may want to call repeatedly to
obtain additional information. The JDBC class ResultSet, for example, represents the
results of a query and can contain multiple rows through which you have to scroll.
Again, this can result in multiple round trip calls to ResultSet.

To improve performance, create a Java wrapper class that returns an array of objects
with each containing one row of results. If there is a chance that the results array is
very large, and that returning its entire contents will take a long time, modify the
wrapper class to return a limited number of results at a time (for example, no more
than 50).

Use Value Objects

The default setting for object calls from .NET Framework to Java are as pass by
reference (PBR) results. The called object remains on the Java side, and only the
reference to that object returns to .NET Framework. References are much smaller than
the actual object, helping performance, but they involve a trip back to the Java side to
extract any useful information. Even getting a field value requires a round trip to
obtain the data. If you are performing multiple queries on an the object’s fields for
data or using accessor methods to look up data on an EJB, you would be better to
designate objects of that class as value objects.

A value object is a snapshot of an object from the Java side then copied back to the
.NET Framework side. Depending on the kind of value object it is, this copies either
the values of its public fields, or in the case of a Java Bean value object, the values of
its accessor (get) methods. This process does not copy the object’s methods other than
get methods for a Java Bean value object, because it is problematic to translate the
meanings of Java methods to .NET Framework automatically.

Consider using value objects when the object is really just a large package of data that
you want to access in many different ways. For example, an object representing a
customer’s bank account might have fields for the customer’s account number, first
name, last name, address, current balance, previous balances, and the date the owner
opened the account.

The default setting is that the account object userAcct passes by reference, resulting in
each field access in userAcct generating a round trip. However, if you set up Account
to pass by value, this copies the data in userAcct from the Java side to the .NET
Framework side and each subsequent field access is a local call.

Whether it is advisable to pass an object by value or by reference depends on the size
of the object and how much of its data you want to access. For example, in the bank
account example, if the only data you access in the account is the current balance, it is
probably not worthwhile to pass this object by value. In this case, the time taken to
copy all the data to the .NET Framework side outweighs the time savings that result
by making all field accesses local to .NET Framework.

88 Application Interoperability: Microsoft .NET and J2EE

The code is the same regardless of whether the object is passed by reference or by
value; the only difference is whether the object’s class is designated as a value object
or a reference object. Ideally, the decision on whether to pass the object by value or by
reference depends on observed measurements within the pilot environment rather
than the developer’s judgment.

Note: Individual objects cannot be designated as pass by reference or pass by value; all objects of a
given class have the designation.

For more information about value objects and reference objects in JNBridgePro, see
the JNBridgePro Users’ Guide.

Use Directly Mapped Collections

Directly mapped collections return certain object collections from the Java side and
automatically convert them to native .NET Framework collections on the Java side.
You can then access these elements quickly after conversion without a round trip.

JNBridgePro supports a variety of directly mapped collections. Java Vectors, array
lists, linked lists, and hash sets map directly to .NET Framework array lists. Java hash
tables and hash maps map to .NET Framework hash tables. You can also use directly
mapped collections to pass parameters from .NET Framework to Java. For more
information, see the JNBridge Users’ Guide.

As with value objects, directly mapped collections take longer to pass between Java
and .NET Framework than reference objects, but you can then access their elements
faster. Deciding whether to use a directly mapped collection depends on the size of
the collections being transferred, the number and frequency of accesses, and tests in
the pilot environment.

Each exposed class results in the generation of a proxy of the same name. The
generated proxy’s members (including constructors, methods, and fields) correspond
to the members of the Java class underlying the proxy.

Generate All Supporting Proxies

When generating proxies, generate all the supporting proxies for each specifically
requested proxy class. It is often possible to omit generating supporting proxies
(such as proxies for the classes of all parameters, return values, thrown exceptions,
implemented interfaces, and superclasses); however, it is never harmful to generate
such supporting classes and it may be harmful to leave them out. In addition,
creating proxies for supporting classes ensures that you can call methods and access
fields requiring proxies for those additional classes without having to regenerate the
proxy assemblies.

Note: An additional problem with not generating all supporting proxies is that in some situations,
applications throw an exception if you do not do so.

 Chapter 4: Interoperability Technologies: Point to Point 89

Depending on the side of the original set of seed proxies, generating all supporting
proxies adds about 200–300 additional proxy classes to the original set. Typically this
takes no more than five minutes to generate the additional proxies.

With care, it is possible, in many cases, to avoid generating supporting classes.
However, it is never harmful to generate such classes, and doing so may avoid
various issues in the future, even when the lack of supporting classes does not
represent a problem now.

Connecting with Web Services
In the previous section, you saw how you can use .NET Remoting to connect the Java
platform and .NET Framework with runtime bridges. However, .NET Remoting is
closely linked to the .NET Framework and you may need an interoperability solution
that is platform neutral.

There is currently a lot of interest in the computer industry around Web services, and
Web services offer you additional choices as part of an interoperability solution. It is
worth looking at what Web services are and what they offer.

A high-level definition of a Web service would be a programmable application
component accessible through standard Internet protocols. Many more detailed
definitions of Web services exist, and they all seem to contain the following elements
in the description:
● Web services expose useful functionality through standard Internet protocols.

In most cases, this protocol is SOAP over HTTP.
● Web services describe their interfaces in enough detail to allow a user to build a

client application to talk to them. An XML document named a Web Services
Description Language (WSDL) document contains this description.

● Users can search for available Web services in some form of registration database.
Universal Description, Discovery and Integration (UDDI) is the most common
way to implement this.

Because Web services are standards-based and platform independent, they provide a
natural fit when it comes to getting applications in different platforms to interoperate
with each other. This partially explains the alacrity with which so many vendors have
endorsed the Web services standards. From this book’s perspective, Web services can
provide a useful mechanism for connecting the .NET Framework and J2EE.
Specifically, Web services address three main interoperability issues:
● Protocol standards — HTTP and HTTPS are the most common implementations,

but Web services have the flexibility to use any transport protocol.
● Type definitions — Web services always expose strongly typed data, so if a Web

service exposes a type, another Web service can understand and consume that
type regardless of the underlying language or platform.

90 Application Interoperability: Microsoft .NET and J2EE

● Multiple levels of support — The ability to implement Web services in any
language on any platform and using any vendor’s toolkit, hence a consumer does
not need to be aware of the platform that a particular service runs on.

Both .NET Framework and Java offer implementations of Web services, with varying
degrees of integration into the underlying platform. In fact, one of the central tenets
of the .NET Framework is its high degree of integration with Web services. Web
services are well-suited to providing a wide variety of services over the Internet,
and they are a promising technology for enterprise application integration.

However, while Web services provide a very powerful technology, they are not
suitable for all applications and interoperability scenarios. Because SOAP is
text-based, Web service calls may be too slow for applications that require frequent,
fast, and fine-grained communications.

Service-oriented interfaces such as Web services are also unsuited for conventional
object-oriented models. Although you can think of a service as a single persistent
server activated object, client-activated objects such as ones that the new operator
constructs, and access requests to static methods are not generally supported.
Similarly, if your application needs to access a wide variety of objects and classes,
a Web service is not generally suitable. Again, if you need to link to a rich object-
oriented set of Java APIs from .NET Framework, Web services are probably not the
solution.

In addition to the preceding issues, Web services do not support callbacks in the
same manner as local object-oriented architectures. Finally, there may be problems
returning rich custom Java objects to .NET Framework through a Web service. In
such cases, look at alternatives to Web services such as JNBridgePro and Ja.NET.

Understanding Web Services
In a typical Web services scenario, a client application can learn about what
functionality a Web service provides and how to call this functionality by querying
the service’s WSDL file. Next, the client sends a request to the service at its given
URL using the SOAP protocol over HTTP. The service receives the request, processes
it, and returns a response. The request and the response are XML formatted using the
SOAP protocol.

 Chapter 4: Interoperability Technologies: Point to Point 91

It is worth examining the protocols and specifications (or stack) that make Web
services possible. The Web services stack consists of five layers, as Figure 4.8
illustrates.

Discovery (UDDI)

Description (WSDL)

Standard Structure (SOAP)

Encoding (XML)

Transport (HTTP)

Figure 4.8
The five-layer model of the Web services stack

These layers consist of the following elements:
● Transport (HTTP)
● Encoding (XML)
● Standard structure (SOAP)
● Description (WSDL)
● Discovery (UDDI)

The next sections describe each of these elements.

Transport (HTTP)
At the lowest level, two components in a distributed architecture must agree on a
common transport mechanism. Because of the near universal acceptance of port 80
as a less risky route through a firewall, HTTP became the standard for the transport
layer. However, Web services implementations can run on other transport protocols
such as FTP and SMTP, or even other network stacks, such as Sequenced Packet
Exchange (SPX) or non-routable protocols such as NetBEUI. Changing from the
dependence on HTTP or HTTPS (for encrypted connections) is possible within the
bounds of the current specification.

92 Application Interoperability: Microsoft .NET and J2EE

Encoding (XML)
After agreeing on the transport, components must deliver messages as correctly
formatted XML documents. This XML dependence ensures the success of the transfer,
because both provider and consumer know to parse and interpret the XML standard.

Standard Structure (SOAP)
Although XML defines message encoding, it does not cover the structure and format
of the document itself. To guarantee interoperability, both provider and consumer
must know what to send and what to expect. SOAP is a lightweight, message-based
protocol built on XML (XSD version 2) and standard Internet protocols, such as HTTP
and SMTP. The SOAP protocol specification defines an XML structure for messages
(the SOAP envelope), data type definitions, and a set of conventions that implement
remote procedure calls and the format of any returned data (the SOAP body).

Description (WSDL)
The description layer provides a mechanism for informing interested parties of the
particular bill of fare that a Web service offers. Web Services Description Language
(WSDL) provides this contract, setting out for each exposed component:
● Component name
● Data types
● Methods
● Parameters

This WDSL description enables a developer for a remote component to query your
Web service and find out what the service can do and how to get it to do it. The
WSDL file is an XSD-based XML document that defines the details of your Web
service. It also stores your Web service contract. The WSDL file is usually the first
point of entry for any client attaching to your Web service so that the client knows
how to use it.

Discovery (UDDI)
Discovery attempts to answer the question “Where.” If you want to connect to a Web
service at an Internet location (for example, www.nwtraders.msft/services
/WeatherService.aspx), you can enter the URL manually. However, URLs are
somewhat unwieldy and not very user friendly, so it would be better if you could just
request the NWTraders Weather Web Service. To do this, NWTraders could publish
their weather service on a Universal Description, Discovery and Integration (UDDI)
server. Finding their weather service is now just a question of connecting to the UDDI
server using an agreed message format to locate the URL for the service.

 Chapter 4: Interoperability Technologies: Point to Point 93

Figure 4.9 shows the how the basic architectural elements of a typical Web service
work together.

WSDL
proxy

invoke

Machine A Machine B

Web Service

WSDL
stub

WDSL

XML
request

response
1 HTTP+SOAP

WDSL

WDSL

WDSL

4 UDDI Server

3

2

1 Communications protocol
2 Message format
3 Description language
4 Discovery mechanism

Figure 4.9
Typical architectural elements from a Web service

Now that you understand the individual parts of a Web service, it is easier to create
a more precise definition. Hence a Web service is an application component that does
the following:
● Communicates using open protocols (such as HTTP and SMTP).
● Processes SOAP framed XML messages.
● Describes its messages through the XML Schema.
● Uses WSDL to provide a service description.
● Enables discovery through UDDI.

Web Services Interoperability Organization
The protocols Web services depend on are platform independent. This suggests that
interoperability between Web services on different application platforms should be
automatic. Unfortunately, this is not necessarily the case.

While most of these protocols are generally accepted specifications, many of the
Web services draft standards have not received full ratification from any of the
common Web standards bodies, such as the World Wide Web Consortium (W3C)
or Organization for the Advancement of Structured Information Standards (OASIS).
Not surprisingly, many vendors have their own implementations of these
specifications. As a result, interoperability between different vendors’ Web services
is not guaranteed.

94 Application Interoperability: Microsoft .NET and J2EE

Because many vendors were so enthusiastic about Web services, it became imperative
to start an independent organization dedicated to maintaining standards and
providing direction. Without this body, it would be impossible to ensure that Web
services implementations were truly interoperable. From this requirement arose the
Web Services Interoperability Organization (WS-I). The initial membership was 170,
consisting of vendors, enterprise customers, system integrators and independents all
working together to define the implementation of Web services.

Any organization or individual who wants to contribute to supporting and
furthering the cause of Web services interoperability can join the WS-I. The WS-I
targets developers and provides a framework and guidelines for the following areas:
● Profiles — These are specifications that define technology standards.
● Samples — These highlight interoperability concepts and demonstrate the features

of the profiles.
● Implementation guidelines — These show a best practices approach to design

solutions that require interoperability with Web services.
● Tools — These include a sniffer and analyzer to monitor and log interactions with

Web services, including identifying errors and warnings for implementations that
do not meet the profile guidelines.

For more information about the WS-I, see the Web Services Interoperability
Organization Web site (http://www.ws-i.org/).

Implementing the Web Services Basic Profile
The most important publication to date from the WS-I is the Basic Profile 1.0. This
profile provides a group of named Web services specifications, together with a series
of recommendations for implementing each standard. Basic Profile 1.0 covers four
areas:
● Messaging (HTTP, XML 1.0, XSD 1.0, SOAP 1.1)
● Description (WSDL 1.1)
● Discovery (UDDI 2.0)
● Security (HTTPS)

Note: WS-I does not control the individual specifications within Basic Profile 1.0, so it acts as a
unifying intermediary for Web services. The XBikes sample application does not fully support the
WS-I Basic Profile 1.0.

http://www.ws-i.org/

 Chapter 4: Interoperability Technologies: Point to Point 95

Implementing Web Services
Implementing Web services in .NET Framework and on the J2EE platform are
different processes, due to the levels of support that each provides. Because
.NET Framework includes built-in support for Web services, you do not require
any additional components. Visual Studio .NET lets you create Web services
implementations from a project template. With J2EE, you currently need to add
a third-party Web services implementation.

Whether you implement your Web service in .NET Framework or in Java, there are
certain common architectural elements, as Figure 4.9 shows.

There are two main stages to implementing Web services:
● Creating the Web service.
● Creating the Web service client.

The following two sections look at how you do this on the two platforms.

Creating Web Services in .NET Framework
Web services are tightly integrated into the .NET Framework. This makes it very
easy to use the Visual Studio .NET IDE to design and create a Web service in .NET
Framework. The .NET Web services implementation uses the same page framework
as ASP.NET, consisting of the following:
● An addressable Web service entry point (.asmx file).
● The code that implements the Web service’s functionality (typically kept in a

.asmx.cs code-behind file).

To create Web services using Visual Studio .NET, your developer workstation needs
access to a Web server configured for ASP.NET applications. If your server is running
a version of Windows Server 2003, you must install IIS from the Application Server
options and include support for ASP.NET applications.

Note: The Windows Server 2003 family does not include IIS in a default installation. This is a
change from Windows 2000.

Visual Studio .NET lets you create an ASP.NET Web service project in any of the
supported Visual Studio languages using the Web service project templates. After
you create the Web service project in Visual Studio, the Component Designer appears.
The Component Designer is the design surface for your Web service. You can use the
Design view to add components to your Web service, and the Code view to view and
edit the associated code.

96 Application Interoperability: Microsoft .NET and J2EE

When you create an ASP.NET Web service project in Visual Studio, it constructs a
Web application project structure on the Web server and a Visual Studio solution file
on your local computer. The solution file (.sln) contains the configuration and build
settings and keeps a list of files associated with the project. In addition, Visual Studio
automatically creates the necessary files and references to support a Web service.
When completed, Visual Studio displays the .asmx file in Design view.

By default, Visual Studio uses code-behind files, such as Service1.asmx.vb (for Visual
Basic) or Service1.asmx.cs (for C#), when you create a Web service using one of the
ASP.NET Web service project templates. The code-behind file contains the code that
implements the functionality of the Web service. In this file, you implement the
methods you want your Web service to expose.

Note: By default, Solution Explorer hides the code-behind file. When you look at the .asmx file in
Code view, you see the contents of this code-behind file. The .asmx file itself contains a processing
directive, WebService, which indicates where to find the implementation of the XML Web service.

You implement the Web service’s functionality the same as you would with any other
class in the .NET Framework. To make a method available through the Web service,
you mark the method with a [WebMethod] attribute before its public declaration.
Private methods cannot serve as the entry point for a Web service, although they can
be in the same class and the Web service code can call them.

When you build a Web service, ASP.NET automatically provides the infrastructure
and handles the processing of Web service requests and responses, including the
parsing and creation of SOAP messages. The compiled output is a .dll file in the
project’s Bin folder.

Chapters 7 and 8 of this book show detailed examples of how to implement Web
services in the .NET Framework as part of the XBikes sample application. For
additional reading on Web services, see the References section at the end of this
chapter.

Exposing an Existing Class as a Web Service

A common scenario is where you want to expose the functionality of an existing
.NET Framework class as a Web service so that other applications (such as Java
applications) can access it. To do this, you can create a new Web service that acts as
a service interface to the existing class. The new Web service should implement the
same interface as the existing class, with each of its methods simply calling the
methods of the existing class. This solution is known as the Service Interface pattern.

For more information about the Service Interface pattern, see the References section
at the end of this chapter.

 Chapter 4: Interoperability Technologies: Point to Point 97

Component Services for Windows Server 2003 can use the built-in SOAP activation
feature to expose a ServicedComponent through a SOAP endpoint which you can
then access through a WSDL document. SOAP activation involves the automatic
generation and hosting of a SOAP endpoint through IIS. This SOAP endpoint can
then accept SOAP requests over HTTP.

It could be argued that because you can access this SOAP endpoint through a WSDL
document, it is a Web service. Unfortunately, this may not always be the case because
although you used SOAP, HTTP, and WSDL to build the endpoint, the WSDL
document generated from the SOAP activation is not XSD compliant and contains
.NET Remoting-specific data types.

Only clients that understand .NET Remoting can access SOAP-activated
ServicedComponents. Therefore, by default, non-.NET Framework Web service
clients cannot connect. To overcome this, you can do the following:
● Use a Java client with a runtime bridge installed to consume any exposed methods

from the ServicedComponent’s SOAP endpoint. This works because the runtime
bridges understand .NET Remoting.

● Create a new Web service to accept incoming Web service requests and pass them
on to the ServicedComponent as in the Service Interface pattern described earlier
in this chapter.

Whichever technique you chose, you should now have a functioning Web service and
can look at creating a client application.

Creating the Web Services Client
After you create your Web service, you then need to have client applications to access
it. There are several ways of doing this, depending on the protocols that your Web
service supports.

If your Web service supports the HTTP-GET protocol, you can access it from a Web
browser. By default, Web services that you create in Visual Studio using the ASP.NET
Web service project template support HTTP-GET, HTTP-POST, and HTTP-SOAP
commands.

Note: The WS-I Basic Profile 1.0 does not support the HTTP-GET and HTTP-POST protocols. It is
recommended that you disable the use of HTTP-GET and HTTP-POST to make your Web service
WS-I Basic Profile 1.0 compliant.

.NET Framework provides two Help techniques for when you do not know how to
address a Web service. Calling the Web service’s .asmx file directly from a browser
without parameters generates a Help page, as shown in the following example.

http://localhost/WebService1/Service1.asmx

98 Application Interoperability: Microsoft .NET and J2EE

The other way to discover information about the Web service is to query its WSDL
properties. You can do this by calling the Web service’s .asmx file directly from a
browser with “?WSDL” appended as a parameter.

http://localhost/WebService1/Service1.asmx?WSDL

These built-in Help systems can assist you both in the design and debugging phases
of creating a Web services client.

Implementing a .NET Framework Web Service Client
A Web service client is any component or application that references and uses a Web
service. This does not necessarily need to be a client-based application — in many
cases your Web service clients might be other Web applications, such as Web Forms
or even other Web services.

When accessing Web services in managed code, a proxy class and the .NET
Framework handle all of the infrastructure coding. The proxy class implements the
interface Web service’s interface and handles all communication between the Web
service client and the Web service. Figure 4.10 shows the relationship of the proxy
class to the Web service client and the Web service itself.

Channel –
HTTP

Web Service
Proxy Class

IIS

Web Service

Web Service
Client

Figure 4.10
Web service client using a proxy class to communicate with a Web service

Note: You can create and manage proxy classes manually, or you can let Visual Studio .NET manage
them for you through the automated Web References feature. The recommended approach is to use
Web References.

 Chapter 4: Interoperability Technologies: Point to Point 99

� To access a Web service from managed code in Visual Studio .NET

1. Add a Web reference to your project for the Web service you want to access. The
Web reference creates a proxy class with methods that serve as proxies for each
exposed method of the Web service.

2. Add the namespace for the Web reference.
3. Create an instance of the proxy class, and then access the methods of that class like

you access the methods of any other class.

After you build the project, you should then be able to access the referenced Web
service.

Locating an XML Web Service and Adding a Web Reference
Sometimes you may be both the provider and consumer of a Web service. In this case,
you probably know the location and function of the Web service. At other times, you
may be accessing a Web service provided by someone else. When this occurs, you
may not even know if a Web service that suits your purposes in fact exists.

To simplify the coding model, applications written in managed code use a Web
reference to represent each Web service locally. You add a Web reference to your
project by using the Add Web Reference dialog box. To access the Add Web
Reference dialog box, right-click the Web References folder in Visual Studio .NET’s
Solution Explorer, and then click Add Web Reference. This dialog box makes it
possible for you to browse your local server, the Microsoft UDDI Directory, and the
Internet for Web services.

The Add Web Reference dialog box uses the process of Web service discovery to
locate eligible Web services on Web sites that you navigate to in the dialog box.
For a particular address, it interrogates the Web site using an algorithm designed
to locate Discovery of Web service (DISCO) documents and ultimately, Web service
description documents that adhere to the grammar of the Web Services Description
Language (WSDL).

Generating a Proxy Class
After you locate a Web service for your application to access by using the Add Web
Reference dialog box, clicking the Add Reference button instructs Visual Studio to
download a copy of the service description to the local computer and then generate
a proxy class for accessing the chosen Web service. The proxy class contains methods
for calling each exposed Web service method both synchronously and
asynchronously.

Note: This technique works only when the computer running Visual Studio has access to the Web
service.

100 Application Interoperability: Microsoft .NET and J2EE

Alternatively, you can manually generate a proxy class using the same tool (Web
services Description Language Tool, WSDL.exe) that Visual Studio uses to create a
proxy class when adding a Web reference. This is necessary when you cannot access
the Web service from the computer that Visual Studio is installed on, such as when
the Web service is located on a network that the client is unable to access until run
time. To generate a proxy file manually, run WSDL.exe from the command prompt
with the URL of the target Web service’s WSDL file as a parameter. You then
manually add the file that the tool generates to your application project.

Using the Proxy Class
The generated proxy class has its own namespace associated with it, and you must
add that namespace to your client application before you can create an instance of the
proxy class. As with any other class, you must first create an instance of it before you
can call any of its methods. This process does not differ at all from creating an
instance of any other class.

When using a proxy class that Visual Studio generated directly from the service
description of a Web service, accessing a Web service in managed code is a relatively
simple process. To access a Web service method, your client application invokes
either the corresponding synchronous method or asynchronous methods of the proxy
object. These methods do the necessary work to remote the call over the wire to call
the desired Web service method. By default, the proxy class uses SOAP to access the
Web service method because SOAP supports the richest set of data types of the three
supported protocols (HTTP-GET, HTTP-POST, and HTTP-SOAP).

The proxy class that the Add Web Reference process generates derives from the
System.Web.Service.Protocols.SoapHttpClientProtocol class, which contains several
properties that you can use to control or customize the behavior of how this class
accesses a Web service. For more information about the properties available in the
SoapHttpClientProtocol class, see the .NET Framework SDK.

Note: When you update a Web reference, Visual Studio .NET automatically generates a new proxy
file. The new file overwrites the old one, removing any customization you may have added to the
original proxy file. Keep a backup copy of any customized proxy files to guard against this possibility.
This does not happen if you manually generate a proxy file with the WSDL.exe tool.

Referencing with Dynamic and Static URLs
A Web reference can use either a static URL or a dynamic URL. The Web Reference
URL property specifies the location of the Web service. By default, this property is the
URL of the Web service you selected, which is a static URL.

 Chapter 4: Interoperability Technologies: Point to Point 101

If you leave the URL Behavior property set to the default value of Static, a hard-
coded URL sets the proxy class’s URL property when you create an instance of that
class. If you set the URL Behavior property of the Web reference to Dynamic, the
application obtains the URL at run time from the <appSettings> section of your
application’s configuration file.

<appSettings>
 <add key="myApplication.myServer.Service1"
 value="http://myServer/myXmlWebService/Service1.asmx"/>
</appSettings>

When you create an instance of a proxy object, you can also programmatically set the
URL property of the object in your application. Regardless of which URL the proxy
uses, it must be for a Web service that conforms to a WSDL that matches the one you
used when adding the Web reference. Otherwise, the proxy class that you generated
earlier will not work with it.

Calling Web Service Methods
After adding a Web reference to a Web service, you can invoke the exposed methods
of that Web service and access the results just as you would any other method of a
component.

For examples of how to implement these techniques in the XBikes sample
application, see Chapters 7 and 8.

Creating Web Services in J2EE
Implementing Web services in Java is currently not as straightforward as with
Microsoft .NET Framework. At the time of this writing, the latest released version of
the J2EE specification is version 1.3, and version 1.4 is currently in beta. In version 1.3
there is no native implementation of Web services. For example, there is no
java.webservices package that you can import and use with the Java syntax.

However, there is considerable drive within the Java community to define and
implement Web services. The Java Community Process defines the following Java
Specification Requests (JSRs) that cover Web services:
● JSR 109 — Implementing Enterprise Web Services
● JSR 93 — Java API for XML Registries 1.0 (JAXR)
● JSR 67 — Java APIs for XML Messaging
● JSR 101 — Java APIs for XML based RPC

JSR 109 defines the Web services for J2EE architecture. It uses the J2EE component
architecture to provide a familiar, portable, scalable and interoperable client and
server programming model. JSR 109 builds upon JSR 67, JSR 93 and JSR 101.

102 Application Interoperability: Microsoft .NET and J2EE

Note: If a Java vendor’s Web services implementation complies with JSR-109, other JSR-109
compliant implementations should be able to interoperate with it.

JSR 93 defines how Java applications connect to XML registries, such as JNDI, ebXML
and UDDI. This JSR provides mechanisms so that Web services can publish their
interfaces and client applications can then discover these interfaces.

JSR 101 concentrates on XML RPC and the Java language. These include the
following:
● Representing XML based interface definitions in Java.
● Defining interfaces with XML based interface definition languages such as SOAP.
● Implementing marshalling.

JSR 67 provides similar definitions for XML messaging.

Java Web Services Stacks
Currently, Web services support on the Java platform requires a Web services stack,
of which there are several from which to choose. The most popular implementations
are the following:
● Apache Axis is an open source implementation of Web services from the Apache

Software Foundation.
● IBM has several Web service stacks available, such as WebSphere Application

Server, Web Services Developer Kit (WSDK), and the Emerging Technologies
Toolkit (ETTK). IBM also offers a UDDI Registry and Server product.

● WASP from Systinet provides a Web services stack for both C/C++ and Java
Environments. Systinet also provide a separate UDDI Server.

● GLUE from The Mind Electric is a popular Web services stack. The Mind Electric
(recently aquired by webMethods, Inc.) also provides a UDDI Server.

● WebLogic application server from BEA also has a Web service stack.

The decision on which Web stack you select is likely to reflect organizational
preferences as well as technical requirements.

Creating a Web Service in Java
Creating a Web service in Java differs depending on which Web services stack you
choose, and to some degree, which Java IDE you use. All vendors provide tutorials
on how to build Web services in their documentation. However, the main steps for
building a Web service are the same.

 Chapter 4: Interoperability Technologies: Point to Point 103

First, you need to identify which functionality you want to expose. With that
information, you either need to create a new class exposing this functionality or
identify an existing class that already does the job. Many Web service stacks allow
you to expose an existing class or EJB as a Web service. From an architectural point
of view, you should create a new class, even if it simply calls an existing one. This
provides some protection against changes in the application.

After you decide the class you want to expose, you have to configure your Web
service stack to expose this class. Most Java Web service implementations run as
a servlet inside an application server.

Note: Some stacks, such as GLUE and WASP, provide their own container if an application server is
not available.

You configure these servlets using various configuration files. To deploy a Web
service, you need only modify these configuration files. Many vendors also supply a
way of exposing Web services dynamically using an API, but this hard coding should
be avoided.

For example, GLUE requires that you create an XML configuration file for your Web
service. To expose this Web service, you just add your class to the configuration file.
The GLUE servlet parses this file when it loads and creates the appropriate WSDL
and schema documents based on the class.

For more information about how to create a Web service using GLUE, see the
GLUE documentation. The XBikes sample application provides an example of
implementing Web services for interoperability in Chapter 7, “Integrating .NET in
the Presentation Tier.”

Consuming a Web Service in Java
Despite there being many different Java Web services vendors, consuming a Web
service is a fairly simple task in nearly all vendor implementations. You can use a tool
named WSDL2Java against a local or remote WSDL document, which then creates
a Java proxy implementation. This is similar to the way in which .NET Framework
consumes Web services, except the Java tools simply create an interface rather than an
actual class. WSDL2Java usually creates a helper class, which creates an object based
upon the URL endpoint. This object implements the interface that the WSDL2Java
creates, which you can then use in your client application.

Chapters 7 and 8 provide examples of consuming a Web service on the Java platform.

104 Application Interoperability: Microsoft .NET and J2EE

Securing Web Services
Applications running in production environments usually require some form of
authentication and authorization. This enables tracking of the users of a service and
keeps their data separate from others.

The easiest way to implement authentication is to use the infrastructure built into
HTTP to provide user names, passwords, and domains to the Web service. Web
services published from .NET Framework can use HTTP authentication. Although
this identifies a user, it is not secure, because HTTP packets are not safe from
interception. Basic authentication sends user names and passwords in clear text,
making it possible for an electronic eavesdropper to identify user names and
passwords.

More advanced authentication methods such as Kerberos, NTLM, or Digest provide
for encrypted authentication methods but these methods provide encryption for only
the authentication process itself. Your Web service implementation may require a
completely secure process with encryption applied to all client to server transactions.
To do this, you have a choice of approaches:
● Transport level security.
● Application level security.
● Web Services Security (WS-Security).

Transport level security such as Secure Sockets Layer (SSL) encryption over HTTPS
works at the protocol level and encrypts all the packets between the start point and
endpoint of an individual Web service call. This works fine from the client (for
example, an ASP.NET application in the Presentation tier) to a Web service in the
Business tier. After the packets arrive at the Business tier, this is the SSL endpoint and
the Business tier Web service decrypts the packets.

There is a problem when you want to keep the packets encrypted until they reach the
Database tier, which stores the user names and passwords. Because SSL is a point to
point encryption method, it is not suitable for keeping your data encrypted across
multiple Web service calls in multi-tier environments.

Application level security involves developing some sort of custom security
implementation. Although this technique can avoid the point to point issues with
SSL by providing end to end encryption, it requires coding that would work only
with clients that implement that custom security implementation. In Web services,
this is counter to the idea of promoting accessibility.

The third option, WS-Security, provides application level security using a published
specification. As long as the clients understand WS-Security, they can connect
securely to the Web service.

 Chapter 4: Interoperability Technologies: Point to Point 105

WS-Security defines XML structures for security tokens, and clients use these security
tokens as proof of identity. WS-Security tokens would typically include a user name,
binary, and security token reference. WS-Security uses standard components, such as
X.509 certificates, to endorse the identity of the client. WS-Security also provides
encryption, either for the body of a SOAP message, the header, or both.

You control WS-Security settings through policy files, which are XML files with a
.wsse file name extension. Implementing WS-Security involves creating the policy file
and associating the file with your Web service. The Web service then checks both
incoming and outgoing messages against the policy to ensure that they comply with
the settings in force.

To access a secured Web service, you create a security policy file and associate it with
the Web service control. The client policy settings must match those on the server.

Although the WS-Security standard is not fully ratified, a number of vendors have
produced their own implementations, including the following:
● WSE (Web Services Enhancements) from Microsoft.
● IBM Web Services Toolkit from IBM.
● Weblogic Workshop from BEA Systems.

For more information about implementing WS-Security and WSE, see the References
section at the end of this chapter.

Using Universal Description, Discovery, and Integration
UDDI is a standard specification for publishing and locating Web services. To
implement UDDI, set up a UDDI server, and then register Web services URLs and
descriptions with the service. You can think of UDDI as similar to Internet Locator
Services (ILS), but dealing in Web services rather than people. Like ILS, UDDI
servers can be public (a UDDI Business Registry or UBR), private (intranet based),
or semi-private, for use between business partners. You can also compare UBR
servers to telephone directories, with white pages listing businesses by name,
yellow pages organizing them by function, and green pages describing the services
they provide.

UDDI overcomes the issue that a simple URL is rarely very revealing. For example,
it does not tell you very much about the service offering. Also, URLs have a habit of
morphing into other URLs, preventing clients from connecting. UDDI uses a publish
and subscribe model to enable consistency in connecting to Web services,
independent of the vagaries of URL strings.

The UDDI directory database stores URLs or access points, associating them with
the service offerings and the businesses involved. Business information can include
contact details and the market sector in which the business operates, enabling flexible
and efficient searches.

106 Application Interoperability: Microsoft .NET and J2EE

Major IT vendors such as Microsoft, IBM, SAP, Veritas, and NTT UDDI are part of
the UDDI initiative, which is now at release 3.0. These five vendors also maintain the
public UBR registries. For more information about UDDI, including details on white
papers and best practices, see the UDDI Web site (http://www.uddi.org/).

Interoperability Benefits Using UDDI
UDDI provides major benefits for interoperability projects that involve Web services.
Any Java or .NET Framework client that needs to make dynamic lookups for service
offerings can make good use of UDDI. Other benefits include the following:
● Common Web service publication — UDDI provides a platform-independent

view of Web services.
● Dynamic configuration — Any client application can use UDDI to configure

a Web service proxy dynamically, removing the need for a hard coded URL.
Additionally, dynamic rebinding allows multiple URL instances for a Web service.
Similar to round-robin DNS, if one link fails to respond, applications can request
another service instance from the same provider through UDDI.

● Web service re-use — Large organizations may have multiple departments
working on development projects, often resulting in duplicated Web service
offerings. UDDI lets development teams browse through a list of already
published Web services, preventing departments from wasting time and money
on providing a service that is already available.

● Location specific Web services — Improves performance and reduces network
traffic by allocating a location to a Web service, enabling clients to bind to the
closest service instance.

UDDI Registries
The central component of UDDI is the registry, which enables organizations to
publish location information on available services. However, you do not have
produce Web services for public consumption to benefit from UDDI.

Note: Microsoft, IBM, and SAP host test public registries that allow developers to test registration
and publication processes.

Several vendors have implemented UDDI services on the latest operating systems:
● Microsoft includes UDDI as a core service in Windows 2003
● IBM have added a UDDI registry to WebSphere
● The Mind Electric package a UDDI server with GLUE

Note: If implementing UDDI internally, check for support of the 3.0 standard.

http://www.uddi.org/

 Chapter 4: Interoperability Technologies: Point to Point 107

UDDI promises to be a major growth area in the future and offers significant benefits
when implementing Web services. This next section considers a number of best
practice recommendations to assist Web services and interoperability.

Implementing Web Services Interoperability Best Practices
Web services is still an emerging technology. The protocol specifications that Web
services are based on are not yet officially ratified standards, so different vendors’
implementations may not be interoperable with each other. The WS-I Basic Profile
should help improve Web services interoperability in the future. However, to give
yourself the best chance of implementing Web services when interoperating between
.NET Framework and Java, follow these best practice guidelines:
● Define data types first — If you plan to use complex data types over Web services,

design your data types from a common XML schema using some of the strategies
outlined in Chapter 3, “Interoperability Fundamentals.”

● Test your data types — Before you start to code your main application, use test
applications that simply pass your data types back and forth in a proof of concept
pilot that show your interoperability solution working.

● Use simple data types whenever possible — If you can implement a simpler data
type, do so. Implement complex data types only for sound business reasons,
rather than because you enjoy the challenge.

● Base all data types on XSD data types — This is especially important if you
implement complex data types. As described in Chapter 3, “Interoperability
Fundamentals,” this ensures that the data types in your complex data objects
map to types in .NET Framework and Java.

● Store all data types centrally — Separating out the data types from the proxy file
and storing them in a separate location is particularly useful when the .NET and
Java assemblies require a single XML namespace for all types.

● Comply with WS-I Basic Profile 1.0 — This is an overriding factor if making your
service publicly available. Make sure you keep up to date with revisions and new
releases of the WS-I profile.

● Standardize on document/literal style rather than combinations involving
SOAP or RPC encoding — Implementing SOAP encoding prevents validation
against a schema and RPC encoding tends to be tightly coupled into the service
and interface-driven.

Note: WS-I Basic Profile 1.0 actively promotes document/literal style.

● Use the latest Java Web services distribution — In the fast-moving world of Java
distributions and associated tools, using the most recent distribution keeps you
working with the latest specifications, improves reliability, and provides consistent
interoperability.

108 Application Interoperability: Microsoft .NET and J2EE

● Use UDDI to discover Web services — UDDI is a powerful and effective way
of discovering Web services either within an organization or as part of a public
service offering.

● Apply abstraction through Interoperability Adapter/Service Interface patterns
— This lets you add functionality to a Web service call without modifying the
caller logic. The abstraction layer might be between the business logic and the
ASP.NET Presentation tier making the call. Implementing an Interoperability
Adapter/Service Interface pattern keeps the ASP.NET code clean of additional
overhead, such as working out a URL from the UDDI registry. For more
information about Interoperability Adapter/Service Interface patterns and
example implementations, see Chapter 6, “Implementing Interoperability
Design Elements.”

As with all best practice recommendations, there may be occasions when you need to
implement a different solution. However, keeping to these guidelines should assist
you to enable your applications to work together with the minimum of fuss.

Comparing .NET Remoting to Web Services
.NET Remoting with runtime bridges and Web services provide different approaches
to application platform interoperability that provide flexibility in specifying the
communication method between application components. Although sharing some
similarities, .NET Remoting and Web services differ in a number of details. Table 4.4
summarizes the similarities and differences.

Table 4.4: Feature comparison between .NET Remoting and Web services

Feature .NET Remoting Web services
HTTP Channel ✓ ✓

SOAP over HTTP ✓ ✓

TCP Channel ✓ ✘

XML Formatter ✓ ✓

Binary Formatter ✓ ✘

Pass by Value ✓ ✓

Pass by Reference ✓ Difficult to implement

Storing Session State Easy More complicated

Invoke single method on a stateless object ✓ ✓

Invoke multiple methods on a stateful object ✓ ✘

(continued)

 Chapter 4: Interoperability Technologies: Point to Point 109

Table 4.4: Feature comparison between .NET Remoting and Web services (continued)

Feature .NET Remoting Web services
All clients can invoke methods on same server side
object

✓ ✘

Traverse Firewalls ✓ ✓

Use IIS as host ✓ ✓

Use custom host ✓ ✘

Retrieve complete copy of complex object ✓ ✘

Because there is considerable industry momentum behind Web services at present,
you might be inclined to implement Web services as a matter of course. However,
Table 4.4 shows that there are several areas where .NET Remoting shows notable
advantages.

Because .NET Remoting incorporates a TCP channel, this removes the need
for HTML headers. Combining this with a binary formatter usually provides
a significant performance boost for large traffic volumes.

Implementing pass by value and pass by reference are possible for both methods, but
they are significantly more difficult to implement in Web services. Also, session state
management in .NET Remoting is less complicated than with Web services.

Other advantages of .NET Remoting over Web services include the following:
● Guaranteed interoperability.
● Support for client activation and lifetime control of remote objects (similar

to DCOM).
● Support for callbacks and events.
● Support for additional context information specific to .NET Framework. In the

future, such information will enable additional features such as distributed
transactions and additional security levels.

● Support for type system fidelity, which means that there is a one-to-one mapping
between the class and type hierarchy. Web services and SOAP do not support such
an object-oriented mechanism for accessing remote objects.

Implement .NET Remoting within a tightly coupled intranet environment where you
expect high transaction volumes and you control both sides of the communication.
Use Web services for more loosely coupled systems, particularly those connecting
across the Internet, or where you do not have control of both ends of the
conversation.

110 Application Interoperability: Microsoft .NET and J2EE

Web services have advantages over .NET Remoting, mainly in the following areas:
● Platform independence — Web services use open and ubiquitous standards such

as XML, SOAP, HTTP, and WSDL. Consequently, Web services offer genuine
platform independence; you can invoke a Web service from any client platform,
irrespective of the server platform or implementation technology of the Web
service.

● Security — IIS is the standard host of choice for ASP.NET components, so Web
services applications created using ASP.NET can automatically take advantage
of the security features in IIS, such as support for Windows authentication,
Secure Sockets Layer (SSL) encryption and logging. You can use IIS to host .NET
Remoting components, in which case they can make use of the same security
mechanisms. However, if you do not host your .NET Remoting components in IIS,
you must implement authentication, authorization, and privacy mechanisms
yourself.

● Caching — Hosting ASP.NET components in IIS also adds IIS caching support
for Web services. Effective caching can significantly reduce the performance
advantages of .NET Remoting, depending on the type of data that you want to
cache. Caching is most effective for repeatedly requested public data, and
decreases in effectiveness when caching private data or with dynamic data.
.NET Remoting has no built in support for caching, even when IIS hosts the
remoting components. Hence, like security, you have to build caching support
manually.

● Ease of creation — Visual Studio .NET makes it easy to create and consume
Web services. To create a Web service, create an ASP.NET Web service project
and implement methods decorated with the [WebMethod] attribute. To consume
a Web service, create any kind of project in Visual Studio .NET and add a Web
reference to a Web service of your choice; Visual Studio .NET generates a
client-side proxy that simplifies access to the Web service.

If these factors are important to you, Web services might be a better choice than
.NET Remoting to achieve point-to-point interoperability.

Summary
This chapter described the methods for providing point to point interoperability
between .NET Framework and Java. It covered .NET Remoting and how you can use
runtime bridges such as JNBridgePro and Ja.NET to link .NET Framework and Java.
It then investigated the rapidly evolving world of Web services and described how
emerging standards such as UDDI and XML can simplify the process of linking Java
and .NET Framework components. In the next chapter, you examine interoperability
techniques based on message queuing.

 Chapter 4: Interoperability Technologies: Point to Point 111

References
For more information about XML Web Services, see:

Chapters 5 and 6 of Simon Guest’s book, Microsoft .NET and J2EE Interoperability
Toolkit, Microsoft Press, ISBN 0-7356-1922-0

Scott Short’s book, Building XML Web Services for the Microsoft .NET Platform,
Microsoft Press, ISBN 0-7356-1406-7

For more information on JNBridgePro from JNBridge, see
http://www.jnbridge.com

For more information about the JSR specifications
See the Java Community Process Web site
http://www.jcp.org/en/jsr/all

For more information about Apache Axis
http://ws.apache.org/axis/

For information about IBM’s Web services implementations
see the developerWorks Web site
http://www-106.ibm.com/developerworks/webservices/

For more information about Systinet’s Web services implementation
http://www.systinet.com/products/wasp_jserver/overview

For more information about GLUE from The Mind Electric
http://www.themindelectric.com/

For more information about Web services on the .NET Framework
http://msdn.microsoft.com/webservices/

For more information about how to implement Web services on the .NET Framework
“Creating XML Web Services in Managed Code”
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html
/vbconWebServicePublishing.asp

For more information about .NET Remoting
“Microsoft .NET Remoting: A Technical Overview”
http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dndotnet/html/hawkremoting.asp

For more information about .NET Remoting configuration files
“Format for .NET Remoting Configuration Files”
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html
/remotingconfig.asp

http://www.jnbridge.com/
http://www.jcp.org/en/jsr/all
http://ws.apache.org/axis/
http://www-106.ibm.com/developerworks/webservices/
http://www.systinet.com/products/wasp_jserver/overview
http://www.themindelectric.com/
http://msdn.microsoft.com/webservices/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbconWebServicePublishing.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbconWebServicePublishing.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/hawkremoting.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/hawkremoting.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/remotingconfig.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/remotingconfig.asp

112 Application Interoperability: Microsoft .NET and J2EE

For more information about hosting remotable objects in IIS
“Hosting Remote Objects in Internet Information Services (IIS)”
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconhostingremoteobjectsininternetinformationservicesiis.asp

For more information about security in Web services
“Security” in the Web Services Developer Center
http://msdn.microsoft.com/webservices/building/security/default.aspx

For more information about implementing service interfaces
“Enterprise Solution Patterns: Implementing Service Interface in .NET”
http://msdn.microsoft.com/practices/type/patterns/enterprise/impserviceinterfaceinnetwasp/

For more information about implementing WSE, see the following articles on MSDN:
“Web Service Enhancements 1.0 and Java Interoperability, Part 1”
http://msdn.microsoft.com/webservices/building/wse/default.aspx?pull=/library/en-us
/dnwebsrv/html/wsejavainterop.asp

- and -

“Web Service Enhancements 1.0 and Java Interoperability, Part 2”
http://msdn.microsoft.com/webservices/building/wse/default.aspx?pull=/library/en-us
/dnwebsrv/html/wsejavainterop2.asp

For more information about UDDI services on the IBM platform
“Understanding UDDI” on the IBM Web site
http://www-106.ibm.com/developerworks/webservices/library/ws-featuddi
/#What%20is%20UDDI?

For equivalent information about GLUE
See the GLUE UDDI Web site
http://www.themindelectric.com/docs/glue/guide/uddi/index.html

To install UDDI on Windows Server 2003, see the topic “Using UDDI Services” in
Windows Server 2003 Family Help.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconhostingremoteobjectsininternetinformationservicesiis.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconhostingremoteobjectsininternetinformationservicesiis.asp
http://msdn.microsoft.com/webservices/building/security/default.aspx
http://msdn.microsoft.com/practices/type/patterns/enterprise/impserviceinterfaceinnetwasp/
http://msdn.microsoft.com/webservices/building/wse/default.aspx?pull=/library/en-us/dnwebsrv/html/wsejavainterop.asp
http://msdn.microsoft.com/webservices/building/wse/default.aspx?pull=/library/en-us/dnwebsrv/html/wsejavainterop.asp
http://msdn.microsoft.com/webservices/building/wse/default.aspx?pull=/library/en-us/dnwebsrv/html/wsejavainterop2.asp
http://msdn.microsoft.com/webservices/building/wse/default.aspx?pull=/library/en-us/dnwebsrv/html/wsejavainterop2.asp
http://www-106.ibm.com/developerworks/webservices/library/ws-featuddi/#What%20is%20UDDI?
http://www-106.ibm.com/developerworks/webservices/library/ws-featuddi/#What%20is%20UDDI?
http://www.themindelectric.com/docs/glue/guide/uddi/index.html

5
Interoperability Technologies:
Data Tier

Introduction
Chapter 4, “Interoperability Technologies: Point to Point,” describes implementing
point to point interoperability techniques, such as .NET Remoting and Web services.
This chapter covers technologies that can help you implement connectivity between
.NET Framework and Java applications at the Data tier such as database connectivity
and asynchronous connectivity through message queuing.

One interoperability scenario is where you have an existing data repository that you
now want to access from both .NET Framework and Java applications. This chapter
considers the implications of such a setup together with best practice
recommendations for creating shared databases.

.NET Remoting and Web services provide the ability to link either tightly or loosely
coupled systems on intranets or across the Internet. However, these techniques
cannot cope with environments that must withstand very high latency levels or
non-permanent connections, for example, the increasing use of handheld devices
connected through some form of wireless link. Asynchronous methods can overcome
issues of non-permanent links.

Linking through a Shared Database
You may have the situation where you have two applications, on different platforms,
that you want to share the same underlying database. This configuration addresses
the issue of maintaining multiple data stores. Sharing a database between .NET
Framework and J2EE applications is a simple and effective means of implementing
interoperability between the two environments.

114 Application Interoperability: Microsoft .NET and J2EE

.NET
Framework

Components

Database

Presentation
Tier

Business
Tier

JSP and
Servlets EJBs

.NET

J2EE

ASP.NET or
Smart Client

(WinForms/
Pocket PC/

Mobile Device)

Figure 5.1
.NET Framework and J2EE applications sharing a common database

The technologies that enable you to do this are not new. Both platforms have had
mechanisms to implement database connectivity since they started. The existence of
database drivers makes it easy for you to link Business tier applications to a common
back-end storage and share tables, records, and fields between platforms.

Both platforms provide links into multiple databases, such as Microsoft SQL
Server™, Oracle, Informix, MySQL and DB2. This section discusses the ways that
both .NET Framework and Java applications connect to databases, as well as some
best practices for sharing databases.

Before you can learn how to share databases, you need to appreciate how each
platform connects to a database. Each platform has a built-in data access API:
● ADO.NET in the .NET Framework.
● JDBC in Java.

For the majority of implementations, your choice of database and platform should
not be a factor.

Note: Although the samples in this section refer to SQL Server 2000, the strategies shown apply
to all databases.

Connecting with JDBC
JDBC is the API that enables J2EE applications to access tables, records, fields and
stored procedures in any compatible database. You can use JDBC to connect to almost
any tabular data, including spreadsheets and information in flat file format.

 Chapter 5: Interoperability Technologies: Data Tier 115

JDBC 3.0 represents the most recent release of the specification, which a variety of
vendors now endorse, including IBM, Hewlett-Packard, BEA, Simba, and Oracle.
Sun has recently filed JSR221, which covers the JDBC 4.0 API specification.

Note: Java 2 Platform, Standard Edition (J2SE) 1.4 includes complete support for JDBC 3.0, located
in the Java.sql and Javax.sql packages. The classes and interfaces in these packages allow Java
applications to access any database for which they have a JDBC database driver.

There are four types of JDBC database drivers:
● Type 1 (JDBC to ODBC bridge with ODBC driver) — Type 1 drivers provide JDBC

access through ODBC drivers. Sun supplies a JDBC to ODBC bridge driver in the
J2SE that you can use if no other driver is available. Type 1 drivers require native
code installation on the client computer.

● Type 2 (Native API with Java technology driver) — Type 2 drivers convert JDBC
calls into calls to the client API. As with Type 1 drivers, this implementation
requires native code installation on the client computer.

● Type 3 (Pure Java driver for database middleware) — Type 3 drivers translate the
JDBC calls into a middleware vendor’s protocol. The middleware then translates
this protocol into DBMS calls. You do not have to install any native code on the
client computer, but you must specify security configuration settings for Internet
operation.

● Type 4 (Pure Java direct to database driver) — Type 4 drivers translate JDBC calls
into DBMS calls directly, and use native protocols to access the database.

Note: Type 4 “Pure Java” drivers are the preferred option because they typically offer the best
performance.

JDBC uses the concept of ResultSets. A ResultSet is a grouping of all the rows
that satisfy the conditions within a SQL statement. You can access the data in the
ResultSet using the get method, which enables you to traverse columns in the
current row. You can also move to the next row using ResultSet.next.

Applications can execute statements and then process any number of result sets.
The statement that generates a ResultSet automatically closes it, either by closing
the statement, executing it again, or retrieving the next result from multiple result
sequences.

Note: ResultSets are similar to ADO.NET DataSets. However, ResultSets are closer to
ADO RecordSets, the pre-.NET database access API objects.

For more information about ResultSets, see “JDBC Guide: Getting Started” on the
Java Web site. For more information about using JDBC, see “JDBC Data Access API”
on the Java Web site.

http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/resultset.html
http://java.sun.com/products/jdbc/

116 Application Interoperability: Microsoft .NET and J2EE

Connecting to SQL Server 2000 with JDBC
You can access SQL Server 2000 from Java applications using any one of a range of
JDBC drivers, either free or commercial in nature. For example, Microsoft provides
the Microsoft SQL Server 2000 Driver for JDBC Service Pack 1. This is a Type 4 JDBC
driver that provides highly scalable and reliable connectivity for J2EE applications.
This driver provides JDBC access to SQL Server 2000 for any Java-enabled applet,
application, or application server.

For more information about the Microsoft SQL Server 2000 Driver for JDBC Service
Pack 1, including download information, go to the Microsoft Download Center.

Note: When connecting to SQL Server 2000 using a JDBC driver, ensure the security settings on
SQL Server use SQL Server and Windows authentication (mixed mode authentication). Also, ensure
that you set a complex (mixed case letters and numbers) password for the sa account.

For more information about connecting to SQL Server 2000 with the Microsoft JDBC
driver, see Microsoft Knowledge Base article Q313100, “HOW TO: Get Started with
Microsoft JDBC.”

Connecting with ADO.NET
Accessing data in relational databases has always been a feature with Microsoft
platforms. Before the arrival of the .NET Framework, ActiveX Data Objects (ADO)
API was the primary database access mechanism. The .NET Framework introduced
ADO.NET as the new API for connecting to databases on Microsoft platforms.

ADO.NET represents the abstract design concepts that you need to build data access
classes within the .NET Framework. ADO.NET lets you work with data irrespective
of data source, data format, or physical location. It includes a new object model and
promotes new concepts such as the DataSet and the DataReader classes.

ADO.NET improves on ADO by being less database-centric and more aligned with
modern Web service based programming. It works well in a distributed environment
and enables developers to link to data sources quickly and reliably.

There were several main design goals for ADO.NET:
● Explicit and factored object model — ADO.NET provides a simple to use object

model in which developers have complete control over how to control data source
connectivity, command execution, and data manipulation.

● Disconnected data cache model — N-tier programming and XML Web service
architectures require that applications work in a disconnected, loosely coupled
manner. ADO.NET provides a comprehensive caching data model for marshaling
data between applications or services and then updating the original data source.

http://www.microsoft.com/downloads/details.aspx?FamilyID=4f8f2f01-1ed7-4c4d-8f7b-3d47969e66ae&DisplayLang=en
http://support.microsoft.com/default.aspx?scid=kb;en-us;313100)
http://support.microsoft.com/default.aspx?scid=kb;en-us;313100)

 Chapter 5: Interoperability Technologies: Data Tier 117

● Common data representation with data combination — ADO.NET gives you the
ability to combine data from multiple and varied data sources.

● XML support — XML is a key component in building interoperable applications
and more robust data processing models. ADO.NET uses the XML support in the
.NET Framework by interacting with XML in either a relational manner or in
native XML.

● Use existing ADO knowledge — Although the ADO.NET object model differs
from the previous ADO model, the basic constructs remain the same. The
ADO.NET object model consists of a provider, connection, and command objects,
enabling current ADO developers to migrate easily to ADO.NET.

From a developer’s perspective, ADO.NET represents the concrete implementation
of classes inside the .NET Framework that you can use for data access. These classes
exist within the System.Data namespace of the .NET Framework.

Note: The ADO.NET classes in System.Data.dll are integrated with the XML classes found in
System.Xml.dll. Hence to compile code that uses the System.Data namespace, you should add
a reference to both System.Data.dll and System.Xml.dll in your Visual Studio .NET projects.

ADO.NET introduces the concepts of datasets, as provided by the DataSet class.
You can compare a dataset to a ResultSet object in JDBC, but datasets provide a
disconnected view of the data. You can take datasets offline, modify them, and then
update the database with the amended values.

ADO.NET also introduces the concept of data readers, as provided by the
SqlDataReader, OleDbDataReader, and OracleDataReader classes. A data reader
object retrieves a read-only, forward-only stream of data from a database. You can
use the data reader object to increase application performance and reduce system
overhead as only one row at a time is held in memory.

To determine whether to use a dataset or data reader when you design your
application, consider the level of functionality that you need in the application.

Use a dataset in order to do the following:
● Navigate between multiple discrete tables of results.
● Manipulate data from multiple sources (for example, a mixture of data from more

than one database, from an XML file, and from a spreadsheet).
● Exchange data between tiers or using an XML Web service. Unlike data readers,

you can pass a dataset to a remote client.
● Reuse the same set of rows to achieve a performance gain through caching

(such as when sorting, searching, or filtering the data).

118 Application Interoperability: Microsoft .NET and J2EE

● Perform a large amount of processing per row. Extended processing on each row
returned using a data reader ties up the connection serving the data reader longer
than necessary, affecting performance.

● Manipulate data using XML operations such as Extensible Style Language
Transformations (XSLT transformations) or XPath queries.

Use a data reader in your application for the following reasons:
● You do not need to cache the data.
● You are processing a set of results too large to fit into memory.
● You need to access data quickly and once only, in a forward-only and read-only

manner.

ADO.NET connects to a database through managed providers. These are database
drivers that expose APIs using classes operating from managed code. You can obtain
managed providers for SQL Server, Oracle 8i, MySQL and IBM’s DB2, as well as
several other databases.

Alternatively, managed providers can access OLEDB or ODBC-based drivers. OLEDB
and ODBC are two older database-independent connection APIs that you can use to
connect to any compliant data store. If you use the ADO.NET managed provider for
either of these APIs, you can access virtually any database with one set of code;
however, you add the overhead of another API layer.

The managed providers for each database (such as the managed provider for SQL
Server 7.0 or SQL Server 2000) link directly to the database at the binary level, giving
a substantial performance advantage. For this reason, you are recommended to use
the managed provider for the database you are connecting to instead of the more
generic OLEDB or ODBC-based drivers.

Using the managed provider for a particular database does imply that your
application is then tied to that database and switching to another database would
require rewriting the database access code. However, it is rare for an organization to
change its database, and it is certainly not something that companies do just for fun.
Hence the performance benefits are worth the minor inconvenience of dedicated
database access code.

Note: There are techniques in this chapter that cover how to enable your application to use different
databases without significant code rewriting.

 Chapter 5: Interoperability Technologies: Data Tier 119

Connecting to Microsoft SQL Server 2000 with ADO.NET
You can access SQL Server 2000 from .NET Framework applications through the SQL
Managed Provider for ADO.NET. You can find most of the APIs you need to access
the SQL Manager Provider for ADO.NET in the System.Data.SqlClient namespace.
This is the namespace that you import at the beginning of your code.

The Connection, Command, Data Reader, and Data Adapter objects provide the
core functionality of the ADO.NET data provider model. Each managed provider
provides its own implementation of these core objects prefixed with the provider
name. For example, the SQL Managed Provider for .NET Framework contains classes
such as SqlConnection and SqlCommand. ADO.NET classes prefixed with Sql
address the SQL Server managed provider and only work with SQL Server.

Using these SQL Server managed provider classes offers two major advantages over
their OLE DB provider counterparts. Firstly, these classes use the native Tabular Data
Stream (TDS) interface for maximum performance and the additional interface layers
that the OLE DB classes require no longer exist, resulting in faster database access.
Secondly, the SQL classes that these controls create have additional methods that take
advantage of features specific to SQL Server. This provides you with greater
flexibility in design and programming with SQL Server.

In a simple connection scenario, you can use objects in the following manner. First,
you define a connection to the database using the SqlConnection class. This class
builds a connection string including the computer name, database name, and
authentication details, such as user name and password. You then use the Open
method to open the connection to the database.

To fetch data from the database, you construct a SqlCommand object that contains
the relevant select statement. The ExecuteReader method called on the SqlCommand
object returns a SqlDataReader object containing the results from the select
statement. Finally, you extract the fields from the reader, index them with the
GetValue method and use them however you want within the application. For more
information about implementing these commands, see the References section at the
end of this chapter.

Sharing Data Between ADO.NET and JDBC
You have seen how both JDBC and ADO.NET provide database connectivity for
.NET Framework and J2EE applications to a range of databases. You should now
appreciate that both environments can point to a single data source to add, read,
update, and delete records. It is now time to look at some best practices for
implementing database connectivity.

120 Application Interoperability: Microsoft .NET and J2EE

Abstracting database access code from the rest of your application is best practice
in both .NET Framework and J2EE application architectures. For ease of coding and
consistency, you should implement a layer that abstracts the database code from the
business logic, as Figure 5.2 shows.

Database

Business
Tier

.NET
Framework

Components

Data
Tier

EJBs

.NET

J2EE

Presentation
Tier

JSP and
Servlets

ASP.NET or
Smart Client

(WinForms/
Pocket PC/

Mobile Device)

Data Access
Logic

Components

DAO
(Entity Beans)

Figure 5.2
The Data Access Logic Components abstract the database code from the Business tier

This abstraction pattern has different names depending on the platform. In J2EE,
this is the Data Access Object (DAO) pattern. The Application Architecture for .NET:
Designing Applications and Services guide refers to this as Data Access Logic
Components or simply Data Access Logic. The next section looks at the benefits
of implementing a Data Access Logic layer in both .NET Framework and J2EE
applications.

Note: This book refers to the Data Access Logic Components pattern for both .NET and Java
applications.

Implementing Data Access Logic Components
Regardless of the data store you choose, your application should use Data Access
Logic Components to access the database. These components abstract the semantics
of the underlying data store and data access technology (such as ADO.NET or JDBC)
and provide a simple programmatic interface for retrieving and performing
operations on the stored data.

Data access logic components usually implement a stateless design that separates
the business processing from the data access logic. Each data access logic component
typically provides methods to perform create, read, update, and delete (CRUD)
operations on a specific business entity in the application.

 Chapter 5: Interoperability Technologies: Data Tier 121

For example, in an e-commerce application, you can design a data access logic
component for handling all data interactions with the data relating to customer
orders. This data access logic component is not necessarily tied to one table in the
database; it can access any of the tables that relate to order data. Typically, this data
access logic component retrieves complex data types that represent a business entity,
in this case, an OrderData object.

For more information about implementing data access logic, see the References
section at the end of this chapter.

Taking this concept further, if you have multiple data access logic components,
it is a good idea to implement a database helper class to handle common tasks such as
database connections, execute commands, and cache parameters, and so on. The data
access logic components provide the logic to access specific business data, while the
database helper class centralizes data access API code to a specific database. This
helps to reduce code duplication.

You have already seen that if you use a managed provider class to communicate
with a database, you may need to write code that is specific to that database. When
you implement a database helper class, you can keep all database specific code
within that class. The database helper class enables you to keep your data access logic
components database independent. Changing database types means simply replacing
your database helper class with one that can communicate with the new database.
Additionally, environments with more than one database type can use multiple
database helper classes in order to access data from the different databases.

Microsoft provides the Data Access Application Block (DAAB) for the .NET
Framework, which can be used as a database helper for accessing SQL Server.
For more information about the DAAB, including download information, see
“Data Access Application Block Overview” on MSDN.

Benefits of Implementing Data Access Logic Components
Implementing Data Access Logic Components gives the following interoperability
benefits:
● Creates a common approach for accessing data from either environment, enabling

developers to write business logic code with a consistent feel regardless of the
underlying platform.

● Provides the ability to abstract access to different underlying databases.
● Enables the integration of further logic and processes for accessing databases,

such as:
● Caching for added performance.
● Authentication and authorization for user connections.
● Transaction support and locking.
● Data paging for large results sets.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/daab-rm.asp

122 Application Interoperability: Microsoft .NET and J2EE

The common approach benefit opens the door for a further interoperability scenario
where the Business tier on one platform can call the Data Access Logic tier of the
other platform. This advances the concept of sharing a database between .NET
Framework and Java applications by allowing you not only to share the database,
but also the data access logic that communicates with the database. The XBikes
sample application included in this guide provides the ability to implement this
scenario through one of its configuration options.

Database

Business
Tier

.NET
Framework

Components

Data
Tier

EJBs

.NET

J2EE

Presentation
Tier

JSP and
Servlets

ASP.NET or
Smart Client

(WinForms/
Pocket PC/

Mobile Device)

Data Access
Logic

Components

Figure 5.3
Sharing Data Access Logic Components between .NET Framework and Java applications

Implementing Asynchronous Interoperability
So far, you have looked at synchronous calls between .NET Framework and Java
applications using .NET Remoting and Web services. Synchronous calls require a
response from the provider component that returns the results to the consumer, with
the requester waiting until it receives the response. With high-speed, permanent link
WAN links, this is the preferred approach. Even in the higher latency environment of
the Internet, synchronous calls can be more than adequate.

However, what do you do if there is no guarantee that the provider application is
available? What if the link to that component is non-permanent, or other factors
(such as loading levels and queuing) prevent synchronous operation? In this case,
you can implement asynchronous communication.

 Chapter 5: Interoperability Technologies: Data Tier 123

With asynchronous communication, there is no guarantee that the provider
application is available. Hence the consumer application adds its request into a
messaging queue, and then it awaits the response when the provider can process it.
Another example might be where the provider needs to expend significant
processing resources in producing a result, possibly contacting other providers
for information before being able to formulate a response.

Asynchronous processing is ideal to use in many situations — especially on the Web,
where a user’s request could take a long time to process, but you want to provide
a response back to the user immediately. By handling the user’s request
asynchronously, your system can respond regardless of how long that request
may actually take to execute.

Operations that fall into this category include placing an order at an online store
with a credit card or making a request to a fulfillment center. Rather than keep the
user waiting while the credit card company authorizes the payment or the fulfillment
center puts the order together, the application lets the user know the order was
placed successfully. A later e-mail notification could confirm that payment was
made or the order assembled.

Asynchronous operations fall into two main types:
● Non-blocking operations — This is where the client handles the asynchronous

call. The call itself is synchronous, but the client switches the call to another
process or thread, allowing other operations to proceed uninterrupted until the
response returns.

● One-way operations — This is a true asynchronous operation, in that the client
makes the request which is handled by a separate server component. The client
can then check up on the progress of the request by looking at status information
before receiving the result of the transaction.

This next section looks at using Web services to make non-blocking asynchronous
calls between .NET Framework and Java applications. The rest of the chapter then
moves on to address the true one-way asynchronous operation support available in
message queuing products.

Connecting with Web Services Using Asynchronous Calls
Although Web services are synchronous in nature, you can use them to implement
non-blocking asynchronous connectivity. Non-blocking asynchronous calls are not
truly asynchronous, but they allow a client application to continue to function by
spawning a separate process that handles the asynchronous operation. This section
looks at the techniques for implementing non-blocking asynchronous connectivity
with Web services.

124 Application Interoperability: Microsoft .NET and J2EE

It is important to start out by differentiating the two following scenarios:
● Implementing an asynchronous call to a Web service.
● Implementing a Web service that is itself asynchronous.

In the first scenario, a client application calls a “slow” Web service asynchronously
to allow the application to continue processing while the slow Web service call is in
progress. The second scenario is where a Web service operates asynchronously on the
Web server to increase its performance. However, this second option still results in a
Web service that accepts synchronous connections. This guide discusses only the first
scenario.

When you call a Web service from a .NET Framework client application,
you can either call the method synchronously or asynchronously. In Chapter 4,
“Interoperability Technologies: Point to Point,” you saw how a Web service client
uses methods in an auto-generated proxy class to make calls to a Web service. You
create this proxy class for your client when you add a Web reference to your client
project, or when you use the Web Services Description Language tool (Wsdl.exe),
which automatically creates methods for calling the Web service method
synchronously or asynchronously. This is true even if there is only a synchronous
implementation of the XML Web service method.

For example, if the Web service exposes the method GetProductsByCategory,
the proxy file would contain three methods named GetProductsByCategory,
BeginGetProductsByCategory, and EndGetProductsByCategory. The first
method calls the Web service synchronously as normal. The second two handle the
asynchronous call. The Begin method initiates the call to the Web service, while the
End method retrieves the results. Calling the Begin method in the proxy class from
the client starts a second process that makes the synchronous call to the Web service,
allowing the client to continue while the Web service call executes.

The obvious question is how does the client know when to call the End method?
There are four main ways of doing this:
● Pass a callback function into the Begin method. The second process then calls the

callback function when the message has finished processing. This is the preferred
method as the callback functions do not block threads while awaiting the
response.

● Use one of the WaitHandle methods of the IAsyncResult.AsyncWaitHandle
object. When using the methods of the WaitHandle class, the client can also
specify a timeout after which it abandons waiting for the results.

● Poll the value of IAsyncResult.IsCompleted. When this property returns true,
the XML Web service response is available.

● Call the End method directly. This method does not return until the asynchronous
operation is complete since it uses IAsyncResult.AsyncWaitHandle.

 Chapter 5: Interoperability Technologies: Data Tier 125

Using asynchronous communication improves system usage and avoids the situation
where the client has to wait while the Web service delivers the results of an operation.
Your decision to call a Web service method synchronously or asynchronously should
be based upon performance. However, communication from the client application is
still one-way, so this is not a true asynchronous implementation.

For more information about asynchronous calls to Web services, see the References
section at the end of this chapter.

Using Callbacks in Client Applications
Implementing this “pseudo-asynchronous” operation is easy to achieve in .NET
Framework Web service client applications. You can also achieve this style of
operation in Java Web service clients, depending on the features that your Java
Web Services Toolkit provides.

However, a call to a Web service using this asynchronous technique would not
survive the client going offline and coming back online later in the week. If the
transaction takes more than a few minutes (or even seconds), the user is unlikely to
keep the connection open. Hence implement non-blocking asynchronous operation
only if the following factors are true:
● The client and Web service have permanent connectivity.
● The call to the Web service does not take too long to complete.
● The client can work on other tasks during the Web service call.

If any of these factors are not true, you should consider moving beyond the
non-blocking implementation with Web services toward true asynchronous
operation using a messaging or queuing infrastructure.

Using Message Queues for Asynchronous Interoperability
You have seen how you can call Web services to simulate non-blocking asynchronous
calls. Now, you will look at how to use message queuing to achieve true
asynchronous communication, and then how to connect .NET Framework and
Java applications.

Message queuing is a technique where processes or program instances can exchange
or pass data through an interface to a system-managed queue of messages. Messages
can have different lengths, types, and uses. You can have one process create a
message queue with which multiple processes can interact, by reading or writing
messages. For example, a client process can write messages to a message queue
which a server process can later read or vice versa.

126 Application Interoperability: Microsoft .NET and J2EE

By placing a message representing a task (for example, an order for fulfillment) into
a queue rather than processing the task synchronously, the application only has to
post the message to the queue. Any number of different applications (potentially on
different platforms) can post messages to a queue, and any number can be used to
retrieve and process those same messages, providing scalability to your application.

Figure 5.4 shows an overall view of how message queuing works between two
applications. Using a messaging API, an application creates a message with a data
payload. The message queue system, through the queue manager, takes care of
marshaling the data in the proper format to place the message in the queue. The
queue manager also takes care of locating the destination queues (there may be more
than one), whether they are on the local computer or on a remote computer on the
network.

Note: In Figure 5.4, the sender and receiver applications may be on different platforms.

ApplicationApplication

Message Queuing System

Programming Interface

Message
Queue

ApplicationApplication

Message Queuing System

Queue
Manager

Programming Interface

Message
Queue

Sender Receiver

Queue
Manager

Figure 5.4
Example of a message queuing application

Several vendors produce message queue products, including:
● Microsoft Message Queuing (also known as MSMQ)
● IBM WebSphere MQ (formerly known as MQSeries)
● Sun ONE Message Queue
● BEA Message Q

 Chapter 5: Interoperability Technologies: Data Tier 127

These message queue products typically are responsible for managing the queues
on a system. Applications typically send and receive messages from a queue using
an API.

To discuss interoperability between .NET Framework and Java applications, this
guide focuses on Microsoft Message Queuing and IBM’s WebSphere MQ. The reason
for discussing IBM’s WebSphere MQ is because it is quite popular in enterprise
environments, particularly those using Java. The next few sections look at using both
Microsoft Message Queuing and WebSphere MQ to enable interoperability between
.NET Framework and Java applications.

Using Microsoft Message Queuing
Microsoft Message Queuing (MSMQ) is a feature of the Windows operating system.
MSMQ provides an inter-application messaging infrastructure, implementing the
features for sending messages between disconnected applications. This is a crucial
requirement for using Business tier components in an application.

MSMQ has been through several releases. MSMQ 1.0 was introduced as a part of the
Windows NT 4.0 Options Pack and was also available for Windows 95 and Windows
98. MSMQ 2.0 is part of Windows 2000. The latest version, MSMQ 3.0 now ships with
Windows XP Professional and Windows Server 2003. There is also a version of
MSMQ for Windows CE.

Note: MSMQ in Windows NT 4.0 Workstation Windows 2000 Professional and Windows XP
Professional can access only local private queues.

Because it is tightly integrated with Windows, MSMQ offers several benefits, such
as the ability to utilize COM+ transactions, alignment with the Windows security
model, and clustering. MSMQ 3.0 provides some additional features such as the
ability to use HTTP as a transport, SOAP Reliable Messaging Protocol (SRMP)
support, multicast options, triggers, and a number of management and deployment
upgrades.

MSMQ fulfils a number of application requirements:
● Message transport — MSMQ handles packaging the message and transporting it

across the network to the receiving application. It uses its own IP-based protocol
as well as HTTP for transport (version 3.0 only), and COM/DCOM for object
serialization when the body includes an object.

● Resilient queues — An MSMQ queue is an in-memory or persistent store of
messages waiting for delivery. An application can view messages in the queue
without removing them, filter them, and retrieve them from the queue.

128 Application Interoperability: Microsoft .NET and J2EE

● Patient disconnection — Unless you specify otherwise, a message sits and waits in
a queue until an application comes looking for it. This means that MSMQ supports
disconnected applications, where computers are not connected to the same
physical network. After the computer reconnects, it can receive any waiting
messages.

● Transactional messages — The optional transaction features of MSMQ guarantee
that messages arrive once and only once, that multiple messages appear in a
particular order, and if anything goes wrong, the entire set of messages rolls back
to its initial state. MSMQ is a standard resource manager, so it can coordinate
activity with other resource managers, such as Microsoft SQL Server, therefore
allowing reading and writing of messages and data in the same transaction.

● Error handling and auditing — A lot can go wrong with any kind of disconnected
application, and MSMQ has to provide robust support for error and audit
conditions, such as undeliverable messages or auditing and journaling messages.

For more information about MSMQ features, see the Microsoft Message Queuing
(MSMQ) Center Web site.

MSMQ is not part of the default installation of Windows Server 2003. To install
MSMQ, add it using Add/Remove Windows Components under Add or Remove
Programs in Control Panel. Go to the Application Server section and select the
Message Queuing check box.

For detailed instructions about how to install MSMQ, see Chapter 9, “Implementing
Asynchronous Interoperability.” For more generic information, see “Installation
Overview for Message Queuing” in Windows Help.

Administering MSMQ

You can administer MSMQ through the Computer Management console. You can
use this tool to create, view, and manage queues. In this tool, you find MSMQ items
under the Message Queuing object. There are four containers:
● Outgoing Queues — Holds outgoing messages, normally for routing purposes.
● Private Queues — Lets you create a private queue to which you can send

messages.
● Public Queues — Enables you to create a queue that Active Directory publishes.
● System Queues — Contains system level queues, such as “dead letter” queues to

store messages that MSMQ could not deliver.

For more information about administering and configuring MSMQ, see
Windows Help.

http://www.microsoft.com/windows2000/technologies/communications/msmq/default.asp
http://www.microsoft.com/windows2000/technologies/communications/msmq/default.asp

 Chapter 5: Interoperability Technologies: Data Tier 129

Choosing Between Private and Public Queues

MSMQ offers the choice of creating public queues or private queues. The main
differences between public and private queues are as follows:
● Public queues appear in Active Directory and private ones do not, so you can only

access private queues by knowing the queue address.
● Private queues do not incur any overhead from the Active Directory.
● Public queues are only available in a domain environment. In a workgroup

environment, you can use only private queues.
● Private queues can operate when the Active Directory directory service is

unavailable.

Note: Unless your design is tightly bound to Active Directory authentication, use private queues.

Now that you understand the basics of MSMQ, this next section shows you how to
use it to enable asynchronous interoperability between .NET Framework and Java
applications. Chapter 3, “Interoperability Fundamentals,” described how to get .NET
Framework and Java applications to agree on a common format for exchanging data.
Assuming you have created a common data format, then in theory if you can send
and receive messages to and from MSMQ using .NET Framework as well as Java
applications, MSMQ can act as an asynchronous link between the two platforms,
as Figure 5.5 shows.

.NET
Framework
Application

MSMQ
Java

Application

Message in
common
format

Message in
common
format

Figure 5.5
Message Queuing enabling asynchronous interoperability between .NET Framework and Java
applications

Connecting to MSMQ from .NET Framework Applications
Programmatic access to MSMQ from a .NET Framework application is now a
relatively easy process, although this was not always the case. Although MSMQ is
conceptually quite simple, the original Win32® APIs involved significant low-level
programming. The first improvement was the development of a COM interface.
However, in the .NET Framework, Microsoft provides a namespace and a set of
classes that support MSMQ. The System.Messaging namespace makes programming
MSMQ consistent with programming the .NET Framework.

130 Application Interoperability: Microsoft .NET and J2EE

System.Messaging contains the set of classes that wrap the underlying MSMQ
infrastructure. From these classes, there are three classes that you find yourself using
most often when programming MSMQ:
● MessageQueue
● Message
● MessageEnumerator

The next sections describe each of these classes.

MessageQueue Class

The MessageQueue class is the primary class for interacting with message queues
on local or remote computers. You can use it to perform tasks such as enumerating
the queues on a particular computer, retrieving messages from a queue, sending
messages to a queue, and creating and deleting queues. Almost everything you do
with MSMQ in the .NET Framework starts with an instance of the MessageQueue
class.

Message Class

The Message class lets you access and manipulate individual messages in a queue,
as well as format and fine-tune a message that you add to a queue. In most cases,
you use a Message object to receive a reference to a specific message as you loop
through a collection of messages.

The Body property of the Message object stores the message data. Sending the
message serializes the contents of the Body property, using the Formatter property
you specify. This is similar to the serialization techniques discussed in Chapter 3,
“Interoperability Fundamentals.” MSMQ provides both a binary and an XML
formatter. You can find the serialized contents in the BodyStream property. You can
also set the BodyStream property directly, to perform tasks such as sending a file as
the data content of a message. You can change the Body or Formatter properties at
any time before sending the message, which serializes the data appropriately when
you call the Send method of the MessageQueue object.

MessageEnumerator Class

The MessageEnumerator class is unique in that it provides very flexible access to
the messages in a queue, as a dynamic collection of messages. It is the best means to
process multiple messages because it gives you the flexibility to peek at or to receive
messages as necessary. A MessageEnumerator object is a cursor with references to
messages in the order the messages appear in the queue, ranked according to
message priority. You can use a MessageEnumerator to step through the queue
and examine or access the messages in the order in which they appear in the queue.
However, the MessageEnumerator class provides a forward-only cursor, so you
cannot step back through the queue with MessageEnumerator.

 Chapter 5: Interoperability Technologies: Data Tier 131

Note: An enumerator does not remove the messages from the queue when it queries the queue.
It returns information about the message at the current cursor position, but it leaves the message
in the queue.

For more information about the MSMQ-related classes in the System.Messaging
namespace and how to program against MSMQ, see the “.NET Framework Class
Library” on MSDN.

Working with MSMQ Queues

You have to be able to specify a message queue before you can use it. To do this,
you need a way to describe a queue uniquely and consistently in your applications.
The .NET Framework provides three different ways to access a specific queue:
● Specify a queue by its path — A path to a queue looks like <servername>

\private$\<queuename>, netserver\private$\Orders, which specifies the
computer name (or “.” for the local server) and the full path to the queue.

● Specify a queue by format name — This option uses Format Name, which is a
string that describes the queue through some connection details and the queue’s
path, for example, DIRECT=OS:netserver\private$\Orders or using a special
GUID that uniquely identifies the message queue.

● Specify a queue by label — This method uses the queue’s label (“My Orders”),
a value that you can assign through code or through the Message Queuing
administration interface.

Using either the label or the path methods adds overhead, because MSMQ must
resolve those descriptions into the Format Name that it uses internally to describe
individual queues.

Using a Format Name directly avoids the name resolution, making it a more
efficient method; it is the only way you can refer to a queue if you want your client
application to be able to function when a queue is offline. However, specifying a
queue by its path is the only option available when creating a new queue, because
the other two reference options rely on properties of the queue that can be set only
once the queue exists.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemMessaging.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemMessaging.asp?frame=true

132 Application Interoperability: Microsoft .NET and J2EE

Sending Queue Messages

Sending a message to a MSMQ queue is a relatively straight forward process.

� To send a message to a MSMQ queue

1. Open the queue you want to send a message to by creating an instance of a
MessageQueue object and specifying the queue name as a parameter to the
constructor.

2. Set the Formatter property of the MessageQueue object to use the type of
formatter (binary or XML) you want to be used for serializing the contents of your
message on the queue. If you do not specify the Formatter property, the XML
formatter will be used.

3. Create a new Message object and set the value of its Body property to the object
you want to send to the queue. For example, an OrderData object containing the
details of an order.

4. Send the message to the queue by calling the Send method on the MessageQueue
object with the Message object as a parameter.

For a detailed example of sending a message to a MSMQ queue from a .NET
Framework client, see Chapter 9, “Implementing Asynchronous Interoperability.”

Retrieving Queue Messages

The MessageQueue class supports the MSMQ ability either to peek at or to receive
messages. Peeking means that you examine the first message in a particular queue
without removing it from the queue. This is a handy way to look at the queue and
implement logic for handling messages in a different order from the order they
appear in the queue. However, Peek allows you to see only the first message in the
queue. Because peeking does not remove that message from the queue, you cannot
then peek at subsequent messages.

Note: If you want to see all the messages in a queue without removing them from the queue,
you can use the GetAllMessages method or the GetMessageEnumerator method.

After the application peeks at a message in the queue, it can elect to receive
the message, or it can directly receive it without peeking. Receiving a message
means that the message leaves the queue, and the application can do whatever is
appropriate with the message. When an application receives a message, that message
leaves the queue permanently, unless some process returns it to the queue.

 Chapter 5: Interoperability Technologies: Data Tier 133

Retrieving a message from a MSMQ queue is also a straightforward process.

� To retrieve a message from a MSMQ queue

1. Open the queue you want to receive a message from by creating an instance of
a MessageQueue object and specifying the queue name as a parameter to the
constructor.

2. Set up the correct formatter using the MessageQueue.Formatter or
Message.Formatter properties. The formatting on the sender side must match that
on the receiver.

3. Call the Receive method of the MessageQueue object to return a Message object.
4. Cast the value of the Body property of the Message object into the type of object

you are expecting to receive.

Note: An application can peek or receive messages either synchronously or asynchronously.
The MessageQueue class provides PeekCompleted and ReceiveCompleted events you can use
to receive events asynchronously. Typically, an application using these events specifies a timeout
to limit the duration an application sits waiting for messages.

For a detailed example of retrieving a message from a MSMQ queue in a
.NET Framework application, see Chapter 9, “Implementing Asynchronous
Interoperability.”

Connecting to MSMQ from J2EE
So far, this guide has described how a .NET Framework application can implement
asynchronous connectivity by sending and receiving messages to and from MSMQ.
But what can MSMQ do for J2EE services and Java clients?

In general, enabling Java applications to interoperate with MSMQ is not an easy
thing to do. Microsoft does not currently provide an MSMQ client for Java. To access
MSMQ from a Java application, you need to implement other strategies.

At present, there are three ways of doing this:
● Using a Java to COM Bridge.
● Using a JMS Provider for MSMQ.
● Creating a Web service interface.

The following sections describe each of these techniques.

134 Application Interoperability: Microsoft .NET and J2EE

Using a Java-to-COM Bridge

Although native Java clients cannot talk direct to MSMQ, existing COM clients can
talk direct to MSMQ by using the COM API. COM clients include Microsoft Visual
Basic and C/C++ applications based on the Win32 platform. Third-party vendors
supply products that let you call the COM API from a Java client, in effect linking
Java clients to MSMQ through COM as shown in Figure 5.6.

COM
MSMQ

API
MSMQ

Java
Client

Java-to-COM
Bridge

Figure 5.6
Accessing Message Queuing through a Java-to-COM bridge

The benefits of this approach are that the MSMQ COM libraries are quite extensive
and provide a rich interface to MSMQ without requiring you to create any additional
wrapper or interface. However, one disadvantage in this approach is that the Java
client must be Windows-based to use the Java-to-COM bridge, and you must install
the COM libraries for MSMQ. This requirement rules out using Java clients running
on operating systems other than Windows.

The second issue is that network connectivity needs to use DCOM over a custom
TCP socket. DCOM does not work well in Internet-based distributed environments.

Note: Intrinsyc provides a Java-to-COM bridge called J-Integra that does not require you to use a
Windows-based Java client or to install the COM libraries for MSMQ. For more information, see the
References section at the end of this chapter.

Using a JMS Provider for MSMQ

JMS is the Java Messaging Service API and is part of the J2EE specification.
It provides an abstraction layer for several message queuing products, and all
J2EE vendors implement JMS support. To access a queue using JMS, you need a
JMS provider for that type of queue. Although this would be a good solution for
accessing MSMQ from Java, there are currently no JMS providers for MSMQ.

Creating a Web Service Interface

A more involved approach to connecting Java to MSMQ is to use a Web service
interface. In this approach, you create a .NET Framework Web service that exposes
the functionality of MSMQ. A Java client can then access MSMQ by making calls to
the Web service. Figure 5.7 shows this approach.

 Chapter 5: Interoperability Technologies: Data Tier 135

.NET
Framework
MSMQ API

Web
Service

MSMQ
Java

Client

Web
Service
Client

Figure 5.7
Accessing MSMQ using a Web service interface

For an example of a Web service interface that exposes MSMQ to Java clients, see the
section named “Creating a Web Service Interface for MSMQ” in Microsoft .NET and
J2EE Interoperability Toolkit by Simon Guest.

The Web service interface provides an interesting approach for linking J2EE to
MSMQ. Again, with interest building in Web services, there is a lot of momentum
in developing Web service interfaces for a range of components.

However, implementing a Web service interface for MSMQ does not provide all the
answers and in some areas could be viewed as a backward step. Certain functionality
that MSMQ provides would suffer from this approach, in particular:
● Reliable messaging.
● Transactional support.
● True callback.

There are new and emerging Web services specifications that offer solutions in the
first two cases, as this next section illustrates.

Reliable Messaging

The problem with reliable messaging and Web services is that Web services use HTTP
as the underlying transport protocol. Although HTTP contains features that enable
connection retries, you cannot regard it as a reliable protocol. For example, HTTP
does not report back to IIS on successful or unsuccessful message delivery. Hence if
you link to MSMQ using Web services, you sacrifice the delivery guarantee that
MSMQ provides.

The Web services reliable messaging protocol (WS-ReliableMessaging) is
a new specification for providing reliable messaging over Web services.
WS-ReliableMessaging consists of a protocol that can identify, track, and manage
message delivery between two computers. The protocol itself uses SOAP headers
and bindings to provide reliability. For more information about WS-Reliable
Messaging, see “Web Services Reliable Messaging Protocol (WS-ReliableMessaging)”
on MSDN.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-reliablemessaging.asp

136 Application Interoperability: Microsoft .NET and J2EE

Transactional Support

The Web services Basic Profile 1.0 specification does not implement support for
transactions. Transaction support involves guarantees that a set of operations or
transaction, either completes successfully or rolls back to the state before the
operations started.

The standard example is one of transferring money from one bank account to
another. This process involves reducing the balance on one account and incrementing
the balance on the other. If one operation completes and the second operation does
not, you can end up with money disappearing out of one account and not appearing
in the other. By making these two operations a transaction, you ensure that either
both complete or both roll back to the starting position, thus undoing all changes.

Implementing transaction support within a Web service is difficult, but not
impossible. The transaction process in the preceding example requires a number
of steps:
1. Create the transaction.
2. Send message requesting money from account #1.
3. Send message adding money to account #2.
4. Commit or abort the transaction.

A Web service is capable of handling only one action at a time. Also, Web service calls
are stateless, so there is no affinity between the client and the service. For example,
the Web service could send a message to a queue that requests money from the first
account, but after it completes that task, it is finished. If the client calls back again,
there is no inherent way for the server to know that it is the same client.

One approach to implementing transactional support in Web services is to store
session state information in the Web application. In the preceding example, the Web
service can hold the client requests for each of the four tasks in session state, and then
process them only after it receives the commit request. Figure 5.8 shows an example
of this scenario.

.NET
Framework
MSMQ API

Web
Service

MSMQClient
Web

Service
Client

Call #1: Begin Transaction
Call #2: Debit Checking
Call #3: Credit Share Dealing
Call #4: Commit Build and Commit

Session
State

Figure 5.8
Handling a transaction using a Web service

 Chapter 5: Interoperability Technologies: Data Tier 137

Implementing session state in a Web service is not without penalties. Storing session
state uses a lot of memory resources. This resource usage can cause limitations on
scalability. It can also make you susceptible to denial of service attacks or even simple
overload when the Web server runs out of memory due to the creation of multiple
state objects.

Web Services Transaction (WS-Transaction) is a new specification that applies
transactional support to Web services. It covers both atomic transactions and business
activities. Atomic transactions are discrete, self-contained, short-lived transactions,
whereas business activities cover transactions that take significant time to execute,
and that you cannot simply roll back to the previous state. For more information
about WS-Transaction, see “Web Services Transaction (WS-Transaction)” on MSDN.

True Callback

True callback support in MSMQ enables a messaging server to notify a client of the
arrival of a message in a queue or of other events. To do this, you provide the queue
with a callback location when connecting to the queue or sending a message. The
queue registers the callback location and then sends notifications according to the
selected criteria. Alternative approaches use UDP multicasting to notify multiple
clients immediately. MSMQ version 3.0 implements the Pragmatic General Multicast
(PGM) reliable multicast protocol.

This differs from pseudo-callback support, where the client has to poll the queue to
see what is in it. AsyncCallBack is an example of this pseudo-callback function. The
System.Messaging namespace supports AsyncCallBack through the BeginReceive
and EndReceive methods within the MessageQueue class.

Note: AsyncCallBack is not a true callback function because although the operation spawns
a second, non-blocking thread, the mechanism is still of a request-response nature.

Today’s Web services can offer only pseudo-callback support, again because the
current implementations depend on HTTP as the transport protocol. HTTP supports
only request-response type interactions; this makes notification very difficult. If Web
services become truly protocol independent (as in the Web services definition), it may
then be possible to implement a true callback function using Web services.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-transaction.asp

138 Application Interoperability: Microsoft .NET and J2EE

Using IBM WebSphere MQ
WebSphere MQ (formerly MQ Series) is IBM’s equivalent of MSMQ and has evolved
from IBM’s mainframe days. WebSphere MQ provides assured, once-only delivery of
messages. If the receiving application or the communication channel to the receiving
application is unavailable, WebSphere MQ automatically stores the message and
forwards it at a later time. You can also configure WebSphere MQ to provide
acknowledgement messages.

One of the main differences between MSMQ and WebSphere MQ is that WebSphere
MQ runs on multiple operating systems, including Linux, UNIX, AIX, HP-UX,
Sun Solaris, and Windows. It also supports messaging to more than 35 different
platforms. You enable applications to use message queuing using a programming
interface known as the MQI (Message Queue Interface). This is a cross platform API,
so application calls on one platform easily port to another. WebSphere MQ provides
both a Java and .NET Framework implementation of the MQI functionality, together
with J2EE JMS Support.

In WebSphere MQ, queue managers manage the queues. Queue managers provide
the messaging services for applications and process the Message Queue Interface
(MQI) calls from applications. The queue manager handles the placing of a message
in a queue or the routing of a message to another queue manager.

Note: Before you can do anything with WebSphere MQ, both the queue manager and queue must
have been created and be accessible to the computer running the application.

For an application to send or receive a message, it must first connect to the queue
manager. The queue manager provides a connection handle; the application uses the
connection handle for MQI calls during that session.

After the queue manager creates this connection handle, the next task is to open a
queue. You can open a queue for getting (reading) or putting (writing) a message.
The queue manager is responsible for opening the queue, and returns an object handle
if successful. Your application uses the object handle and the connection handle
whenever it gets or puts messages on the queue.

When sending a message, you must open the queue for putting. Sending a message
involves packaging the data you want to send into a data buffer and providing other
information such as destination and message type. To receive a message, the queue
must be open for getting.

Note: The maximum message size that WebSphere MQ supports is 4 MB, although not all
operating systems support this range. For example, Windows and DOS applications have a 32 KB
message size.

 Chapter 5: Interoperability Technologies: Data Tier 139

Administering WebSphere MQ

WebSphere MQ for Windows provides a Microsoft Management Console (MMC)
snap-in for managing queue managers and queue definitions. When you install
WebSphere MQ, this creates the default queue manager, which you can then
configure. You can add different queue managers, and even change the default
using the MMC tools.

Part of the function of the queue manager is to provide access to the queues. You can
use the MMC snap-in to create four types of queues:
● Local Queue — A queue that belongs to the local queue manager.
● Alias Queue — A queue definition that uses another queue for its implementation,

letting clients connect to the alias name but transferring the queue requests to
another local queue.

● Model Queue — Allows you to define a model or template that an application can
use to create queues dynamically.

● Remote Queue Definition — Lets you to provide a hook into queues configured
on different computers.

Note: You can only send messages to remote queues, not receive them.

For more information about administering WebSphere MQ, see the IBM WebSphere
MQ Web page.

Accessing WebSphere MQ from a Remote Computer

WebSphere MQ has a client component that you can install on a separate computer.
The client enables applications to communicate with queue managers residing on a
different computer, which could even run on a different platform.

Understanding the Role of JMS

In Chapter 2, “Understanding Enterprise Platforms,” you saw that Java Messaging
Service (JMS) is an API that provides application abstraction when accessing message
queues. You also saw that JMS is not a product but a service definition. The JMS
specification and API is part of J2EE, but it is up to third-party vendors to implement
the standard. For more information about the JMS standard, see “Java Message
Service API” on the Java Web site.

Several message queue vendors with a Java background have implemented JMS
providers for their products. This provider acts as a binder between the message
product and the JMS API. Ideally, this should enable portability by allowing you
to switch operating system vendors without affecting the operation of the JMS
component.

http://www-3.ibm.com/software/ts/mqseries/messaging/
http://www-3.ibm.com/software/ts/mqseries/messaging/
http://java.sun.com/products/jms/index.html
http://java.sun.com/products/jms/index.html

140 Application Interoperability: Microsoft .NET and J2EE

With JMS, you can implement two types of messaging support or messaging
domains:
● Queue-based or point to point.
● Publish/Subscribe.

Queue-based messaging is similar to that in MSMQ. Both the sender and receiver
agree on a pre-defined queue, using the JMS type javax.jms.Queue to handle
asynchronous messages. A client can send a message to MyPrivateQueue, and
the receiver receives the message back from the same queue. The receiver then
acknowledges successful processing of the message.

Note: With point-to-point messaging, each message has only one consumer.

JMS also supports the Publish/Subscribe model by categorizing queues into topics
using the javax.jms.Topic class. Publishing applications publish new messages to
the topic (or queue) and any subscribers then receive the published message. You
can create one-to-many, many-to-one, and many-to-many relationships between
subscribers and topics.

The JMS specification enables you to control how durable topic messages are and
therefore how long they remain in the topic queue after publication. Figure 5.9 shows
an example of the Publish/Subscribe model. A feed provides a continuous flow of
information, which the queue manager pushes out to subscribers. Applications, such
as a stock trading program, can consume this information and traders then use it as a
basis for buying and selling stock.

Trade
Subscriber

Trade
Subscriber

Trade
Subscriber

Trade
Subscriber

Stock
Feed

Publisher

Stock Prices

Figure 5.9
Publish/Subscribe domain in the JMS specification

 Chapter 5: Interoperability Technologies: Data Tier 141

Note: A major difference between point-to-point and Publish/Subscribe is in timing. Point-to-point
messaging works even if the client is offline. With Publish/Subscribe, clients need to be active to
consume messages. Durable subscriptions provide a workaround to this, receiving messages while
subscribers are offline.

Topic management can be an interesting challenge because clients can create and
modify topics dynamically, meaning that fixed queues cannot be guaranteed.
However, message vendors generally implement mechanisms for the management
of topics. For example, the SupportPac MA0C for WebSphere MQ uses predefined
system queues and channels.

JMS supports five message types:
● javax.jms.TextMessage — For simple string messages.
● javax.jms.BytesMessage — For sending raw bytes as messages.
● javax.jms.ObjectMessage — Sends a serializable Java object as a message.
● javax.jms.MapMessage — Sends a message that supports name/value pairs

similar to a hash table.
● javax.jms.StreamMessage — Supports the same types as MapMessage, but where

the contents of the message must be in order.

Note: These message types all implement the javax.jms.Message interface.

Connecting to WebSphere MQ from J2EE Applications
There are three ways to connect to WebSphere MQ from a J2EE application:
● Using the WebSphere MQ Classes for Java.
● Using the WebSphere MQ Classes for JMS to Achieve Point-to-Point Messaging.
● Using the WebSphere MQ Classes for JMS to Achieve Publish/Subscribe

Messaging.

The following sections discuss each technique.

Using the WebSphere MQ Classes for Java

The proprietary WebSphere MQ classes for Java allow you to connect to WebSphere
MQ server, either directly or through the WebSphere MQ client. These classes allow
Java applications, applets, and servlets to communicate with WebSphere MQ. The
WebSphere MQ classes for Java are part of a package named com.ibm.mq. You must
import this package to use classes in your Java code.

Sending and receiving messages using the WebSphere MQ classes for Java is a trivial
task. You create a connection to a queue manager, open the queue, create a message,
and then put it in the queue. The following code demonstrates this with a simple
“Hello World” message.

142 Application Interoperability: Microsoft .NET and J2EE

// Create a connection to the QueueManager
MQQueueManager queueManager = new MQQueueManager("QM_MYQM");

// Open the desired queue
MQQueue queue = queueManager.accessQueue("myQ", MQC.MQOO_OUTPUT,
 "QM_MYQM", "myQ", "");
// Create a new message
MQMessage myMessage = new MQMessage();

// Specify the message format
myMessage.format = MQC.MQFMT_STRING;

// Populate the message data buffer with the "Hello World" string
myMessage.writeString("Hello World");

// Create the default message options
MQPutMessageOptions pmo = new MQPutMessageOptions();

// Put the message into the queue
queue.put(myMessage,pmo);

In addition to placing primitive data types or strings, you can also write Java objects
out to the queue. This uses the standard Java serialization mechanism to write the
contents of your object into the message buffer.

Note: While this is great for Java-to-Java applications, other platforms, including .NET Framework,
do not understand the format of the serialized message.

If you want to use the WebSphere MQ classes for Java for interoperability, you have
several challenges ahead. First, you must be aware the MQ classes for Java are not
part of the J2EE specification, and therefore only WebSphere MQ implements these
classes. If you are using a different message queuing product, you cannot use the
com.ibm.mq package.

If you are happy using WebSphere MQ, your next problem is how to handle complex
data. The differences between the serializers in the .NET Framework and Java means
that you cannot put objects in a queue from one platform and take them out from the
other. Hence interoperability at the object level is not possible.

However, you can serialize your data as an XML string, as discussed in the section
about Web services in Chapter 4, “Interoperability Technologies: Point to Point.” Java,
the .NET Framework, and WebSphere MQ can all handle strings, so you can package
up a customer object as an XML formatted string and then place it in the queue.

 Chapter 5: Interoperability Technologies: Data Tier 143

Using the WebSphere MQ Classes for JMS for Point-to-Point Messaging

The WebSphere MQ classes for JMS implement Sun’s Java Message Service (JMS)
interfaces, allowing Java programs to access WebSphere MQ. The WebSphere MQ
classes for JMS support both the point-to-point and Publish/Subscribe models
of JMS.

This section describes the point-to-point JMS messaging model. The next section
describes the Publish/Subscribe JMS messaging model.

There are several key differences if you use the JMS classes to address WebSphere
MQ. The most important is that you do not create a connection directly, but create
a connection factory. These factory objects then exist within the JNDI namespace,
protecting the application from vendor specific details. To obtain the connection
factory, you need to retrieve the object from the JNDI namespace.

Note: If you do not have a JNDI namespace available, it is possible to create the factory at runtime.

After you have the connection factory, use the factory to create a connection that you
then start. The following code shows how to obtain the connection factory and create
the connection.

InitialContext ic = new InitialContext();
QueueConnectionFactory factory =
 (QueueConnectionFactory) ic.lookup(connectionName);
QueueConnection connection = factory.createQueueConnection();
connection.start();

After you create the connection, the next task is to create a session. The session
provides the context for creating and consuming messages as well as the methods
to create the MessageProducer object (used to send messages) and the
MessageConsumer object (used to receive messages). You can create a simple,
non-transactional, automatic acknowledgement session using the following code.

QueueSession session =
 connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

After the application obtains a session, it can create a queue and send a message
using a MessageProducer. The definition for the queue can be stored in a JNDI
namespace or created at run time. It is best practice to use JNDI to define the queues.
An application can obtain a queue using the following code.

Queue queue = (Queue) ic.lookup(queueName);

144 Application Interoperability: Microsoft .NET and J2EE

Using the queue as a parameter, you can create a MessageProducer using the
QueueSession. In the point-to-point messaging model, the MessageProducer will
be a QueueSender as the following code shows.

QueueSender sender = session.createSender(queue);

Finally, you need to create a message of the correct type. Methods on the
QueueSession object allow you to create any of the five types of JMS messages.
You can then populate this message with the data you want to send as the following
code shows.

ObjectMessage message = session.createObjectMessage(myObject);
sender.send(message);

You can use the QueueReceiver to receive a message using the MessageConsumer.
You can create this from the session in the same manner as the QueueSender. You
can then make a blocking or non-blocking call to receive a message from the queue.
The following code shows how to receive a message from the queue. The code blocks
until either a message arrives or the timeout expires.

QueueReceiver receiver = session.createReceiver(queue);
Message message = receiver.receive(1000);

The message type received is of one of the five types of supported JMS messages.
To extract the correct message payload, you must cast the returned message into the
correct message type.

Note: It is also possible to receive messages asynchronously.

JMS messages on WebSphere MQ have a different structure to that of standard
WebSphere MQ messages, and the JMS messages need mapping to the WebSphere
MQ format. However, this mapping is not important if you send a message through
JMS and the receiving application is non-JMS, because you can then configure the
queue’s target client as MQ.

Using WebSphere MQ Classes for JMS for Publish/Subscribe Messaging

The preceding section described how to use the WebSphere MQ classes for JMS
to achieve publish/subscribe messaging. This section describes how to achieve
Publish/Subscribe messaging.

When you work with Publish/Subscribe messaging, you must decide early on which
broker you want to use and configure it to run the WebSphere MQ classes for JMS.
The broker has a record of all the subscribers registered for a topic. When an
application publishes a message to a topic, the broker forwards the message to
the subscribers.

 Chapter 5: Interoperability Technologies: Data Tier 145

Note: You add Publish/Subscribe support to WebSphere MQ through a SupportPac. For information
about how to do this, see the References section at the end of this chapter.

WebSphere MQ offers three types of brokers:
● MQSeries Publish/Subscribe
● WebSphere MQ Integrator Broker
● WebSphere MQ Event Broker

Broker setup depends not only upon which broker you choose but on how you want
to use it. Each broker has its own documentation for configuration and setup.

After the broker is sorted out, you must create JMS objects similar to those used in
point-to-point messaging. Specifically, you need to obtain or create the following
objects:
● TopicConnectionFactory
● TopicConnection
● TopicSession
● Topic
● Either a TopicPublisher or TopicSubscriber

The steps are similar to those for the point-to-point technique, as the following code
sample shows.

// Create a connection
InitialContext context = new InitialContext();
TopicConnectionFactory factory = (TopicConnectionFactory) context.lookup(tcfName);
TopicConnection connection = factory.createTopicConnection();
connection.start();

// Create a session
TopicSession session =
 connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

// Create a topic
Topic topic = (Topic) context.lookup(topicName);

// Create a publisher...
TopicPublisher publisher = session.createPublisher(topic);
// ...or create a subscriber
TopicSubscriber subscriber = session.createSubscriber(topic);

Finally, you either publish messages or receive messages in the same way as in the
earlier section on point-to-point messaging.

146 Application Interoperability: Microsoft .NET and J2EE

Connecting to WebSphere MQ from .NET Framework Applications
There are two ways to connect to WebSphere MQ from .NET Framework
applications:
● Using the WebSphere MQ Classes for Microsoft .NET
● Using JMS and Third-Party Bridging Products

The following sections discuss each technique and describe the advantages and
disadvantages of each.

Using the WebSphere MQ Classes for Microsoft .NET

The WebSphere MQ classes for Microsoft .NET provide access to WebSphere MQ in
much the same way as the WebSphere MQ classes for Java. However, although they
both use the same object model, the .NET Framework version does not support
connection pools or sending messages to multiple queues or topics. Figure 5.10 shows
how a .NET Framework client can connect to WebSphere MQ using the WebSphere
MQ classes for .NET.

WebSphere
MQ

.NET
Framework

Client

WebSphere
MQ Classes

for .NET

Figure 5.10
A .NET Framework client using the WebSphere MQ Classes for .NET to connect to WebSphere MQ

You can obtain the .NET Framework classes from IBM as part of MQ v5.3 CSD05,
which stands for Corrective Service Distribution #5 (equivalent of a service
pack). This fixpack installs the Amqmdnet.dll library in the WebSphere/bin
directory. The DLL provides a set of classes that you can use with any .NET
Framework application.

Note: CSD05 is supported by IBM. You can obtain CSD05 from the IBM Web site.

Although Amqmdnet.dll exposes managed classes, you should be aware that these
classes make PInvoke calls to other MQ client libraries. Hence if your application
makes calls to classes in Amqmdnet.dll, you need to install the WebSphere MQ client
on the computer on which the application runs if you have not done so already.

Note: PInvoke enables managed code to call methods and functions on a Win32 DLL file. This
avoids using COM for interoperability, but the .NET Framework cannot provide managed code
functionality such as garbage collection for these calls.

http://www-3.ibm.com/software/integration/mqfamily/support/summary/wnt.html

 Chapter 5: Interoperability Technologies: Data Tier 147

Amqmdnet.dll exposes classes that are remarkably similar to those in the Java
environment, helping developers to port code between the two systems. Data transfer
between the Java and .NET Framework clients uses a raw format without any
packaging or serialization.

You can send and receive messages from the queue using the same object and method
calls as the Java classes, as demonstrated in the following code sample.

// Create a connection to the QueueManger
MQQueueManager queueManager = new MQQueueManager("QM_pagdal");

// Open the desired queue
MQQueue queue = queueManager.AccessQueue("XBikesQ",MQC.MQOO_OUTPUT,
 "QM_pagdal", "XBikesQ", "");
// Create a new message
MQMessage myMessage = new MQMessage();

// Specify the message format
myMessage.Format = MQC.MQFMT_STRING;

// Populate the message data buffer with the "Hello World" string
myMessage.WriteString("Hello World");

// Create the default message options
MQPutMessageOptions pmo = new MQPutMessageOptions();

// Put the message into the queue
queue.Put(myMessage,pmo);

Note: Apart from the capitalization of the methods (lowercase in Java, uppercase in .NET), this code
sample is identical to the Java version. This is a design goal of the MQI API.

Using JMS and Third-Party Bridging Products

You can use third-party bridging products such as Ja.NET or JNBridgePro to access
the WebSphere MQ JMS functionality from .NET Framework applications. You can
do this exactly like accessing JMS functionality from a Java client, with your .NET
client making calls directly to the JMS API. To do this, create .NET proxies of all the
Java classes that you require to send a message using JMS and invoke them from
.NET. The proxies manage the communication between the .NET client and
WebSphere MQ. Accessing JMS functionality through bridging has the advantage
of allowing you to use familiar JMS APIs to implement messaging from .NET. At the
same time, it makes the JMS API look like a regular .NET Framework API.

148 Application Interoperability: Microsoft .NET and J2EE

Figure 5.11 shows how a runtime bridge can allow a .NET Framework client to
connect to WebSphere MQ using JMS.

JMS
Provider for
WebSphere

MQ

JMS
WebSphere

MQ

.NET
Framework

Client

Runtime
Bridge

Proxy Class

Figure 5.11
Using a runtime bridge to access WebSphere MQ JMS functionality from .NET Framework clients

Chapter 9, “Implementing Asynchronous Interoperability,” shows a detailed example
of how to access JMS functionality in WebSphere MQ from a .NET client using both
JNBridge and JaNET.

Accessing JMS Messages from .NET Framework Clients

You have seen how .NET Framework clients can consume messages from WebSphere
MQ with the WebSphere MQ classes for Microsoft .NET or using JMS through a
third-party bridge product. However, there are some issues of which you need to be
aware when consuming messages in a .NET Framework client that are placed on a
WebSphere MQ queue using JMS.

The main issue with accessing JMS messages from WebSphere MQ is that JMS
messages have extra headers that non-JMS applications do not understand. For
example, the WebSphere MQ classes for .NET cannot un-package a JMS formatted
message. However, if you use a third-party bridging product to connect to
WebSphere MQ through JMS, this is not an issue as the bridging product handles
and translates the JMS message headers.

To enable a .NET Framework client to consume JMS messages from WebSphere MQ
using the WebSphere MQ classes for .NET, ensure that the Java application sending
the messages sets the target client in JMS to MQ. This allows the Java application to
send JMS messages without the troublesome headers. While the WebSphere MQ
classes for .NET cannot un-package a JMS formatted message, they have no trouble
un-packaging an MQ message.

Note: .NET Framework clients cannot reconstruct objects serialized from Java so any messages
must be sent as basic data types.

A major interoperability issue with the JMS Publish/Subscribe model is that it
is impossible to link in to the model with a .NET Framework client using the
WebSphere MQ classes for .NET. The only way to access the Publish/Subscribe
model from .NET is to use a bridging product that wraps the JMS calls. This is
because clients create topics in a dynamic fashion.

 Chapter 5: Interoperability Technologies: Data Tier 149

WebSphere MQ does not implement a one-to-one relationship between queues
and topics, because this restricts the number of allowed topics. The WebSphere MQ
Classes for .NET do not support accessing topics. Also, because WebSphere MQ
handles topic queues as system objects, .NET Framework clients cannot access the
queues. Even the MQQueueManager class does not enable you to associate a queue
with a topic. Hence only JMS clients can access JMS topics or act as publishers or
subscribers. This makes interoperability using direct communication from .NET
Framework clients using the WebSphere MQ classes for .NET very difficult to
achieve.

Note: You can achieve this interoperability using a bridging product, such as JNBridgePro or Ja.NET.

In the next section, you go on to see how you can use the bridging functionality
within Host Integration Server to link .NET and Java applications.

Using Host Integration Server 2000
This chapter has described how both MSMQ and IBM WebSphere MQ can enable
asynchronous interoperability between .NET Framework and Java clients and you
can connect Java clients to MSMQ or .NET Framework clients to WebSphere MQ.
However, there are several drawbacks to each technique such as the loss of reliable
operations or transactional support.

An alternative way to implement asynchronous connectivity between .NET
Framework and Java applications is by linking MSMQ and WebSphere MQ through
the use of a bridge. In this approach, the .NET Framework application connects to
MSMQ and the Java application connects to WebSphere MQ. You then use a bridge
to connect the two queues. Figure 5.12 shows a high-level view of this approach
using the MSMQ-MQSeries Bridge that is part of Microsoft Host Integration Server
(HIS) 2000.

.NET
Framework

Client

System
Messaging

HIS 2000
MSMQ-

MQSeries
Bridge

MSMQ
Java

Client
WebSphere

MQ

IBM
WebSphere
MQ Classes

for Java

Message in
common

XML format

Message in
common

XML format

Figure 5.12
Using the MSMQ-MQSeries Bridge in HIS 2000 to enable asynchronous interoperability

150 Application Interoperability: Microsoft .NET and J2EE

HIS evolved from Microsoft SNA Server and enables organizations to connect
Windows and LAN-based networking to host-based mainframe equipment. Most
importantly from the interoperability perspective, HIS provides an MSMQ-MQSeries
Bridge. By using the native message queue implementations, the bridge guarantees
reliability and transactional message queue qualities.

For more information about HIS, see the Host Information Server Web site.

Bridging MSMQ and WebSphere MQ with HIS 2000
The MSMQ-MQSeries Bridge gives HIS the capacity to exchange messages in either
direction between MSMQ and WebSphere MQ components. HIS can take messages
from MSMQ queues and deliver them to WebSphere queues and back again.

Note: The MSMQ-MQSeries Bridge works with IBM WebSphere MQ, even though the bridge product
name refers to MQSeries.

The MSMQ-MQSeries Bridge system contains two main components:
● MSMQ-MQSeries Bridge — Converts and transmits messages between the

MSMQ and MQSeries environments.
● MSMQ-MQSeries Bridge Manager — Lets you configure, monitor, and control

the messaging traffic through the MSMQ-MQSeries Bridge.

The MSMQ-MQSeries Bridge maps the fields or properties of a message to the
corresponding fields or properties of the destination message queuing system. For
example, if you send a message from WebSphere MQ to MSMQ, MSMQ-MQSeries
Bridge analyzes the fields of the WebSphere MQ message and maps each value to its
MSMQ counterpart.

In cases where one system needs an additional field that does not exist in
the other, MSMQ-MQSeries Bridge provides the field during the conversion
process. For example, suppose that a MSMQ message includes the
PROPID_M_TIME_TO_BE_RECEIVED property with a specific value.
The MSMQ-MQSeries Bridge maps this property to the MQMD.Expiry
WebSphere MQ property and multiplies the value by 10 to change the units
from seconds to tenths of seconds.

Note: The MSMQ-MQSeries Bridge does not restrict the content of a message. The message body
can contain its own internal structure, which only the sending and receiving applications recognize.
The MSMQ-MQSeries Bridge does not interpret this structure in any way.

http://www.microsoft.com/hiserver/

 Chapter 5: Interoperability Technologies: Data Tier 151

For detailed information about how the MSMQ-MQSeries Bridge maps and converts
properties from Message Queuing to WebSphere MQ and from WebSphere MQ to
Message Queuing, see the “Microsoft Host Integration Server 2000 Developer’s
Guide” on MSDN.

Formatting Messages
The MSMQ-MQSeries Bridge in HIS 2000 enables you to exchange messages
between MSMQ and WebSphere MQ. However, as Chapter 3, “Interoperability
Fundamentals,” discusses at length, mere message exchange does not guarantee
interoperability.

You now know that the MSMQ-MQSeries Bridge does not manipulate the contents
of a message as it is passes between the two queuing systems. Hence it is up to you
to ensure that messages are in a common format that both the .NET Framework and
Java applications understand.

To ensure that messages exchanged through the MSMQ-MQSeries Bridge are
in a common format, you need to understand how .NET Framework and Java
applications send and receive messages to their respective queues, starting on the
.NET Framework side.

When a .NET Framework client sends an object to a MSMQ queue, either a binary
or XML formatter serializes the contents of the object. Likewise, when a .NET
Framework client receives a message, it expects the message to be serialized in either
binary or XML format.

Java handles sending and receiving messages to or from a queue differently from the
.NET Framework. A Java client can send messages to a WebSphere MQ queue using
either the native WebSphere MQ API or JMS. If the client uses the WebSphere MQ
API, the object travels as a simple byte stream rather than in serialized form.

Note: JMS also sends the object as a byte stream, but wrapped with additional JMS header
information.

Sending Messages from .NET Framework to Java Applications

You can choose whether a .NET Framework client uses a binary or XML serializer
when sending messages to MSMQ. However, Chapter 3, “Interoperability
Fundamentals,” described how the binary serializers in the .NET Framework and
Java are incompatible. Therefore, when sending a complex data type object to MSMQ
for transferring to WebSphere MQ and a Java client, the .NET Framework client
should only use the XML formatter.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/his/htm/his_dg_devguide_intro_libd.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/his/htm/his_dg_devguide_intro_libd.asp

152 Application Interoperability: Microsoft .NET and J2EE

The message that the Java client receives from WebSphere MQ consists of a string
object containing the serialized XML representation of the original .NET Framework
object. Using the techniques described in Chapter 3, “Interoperability Fundamentals,”
the Java client must then interpret this string as XML, and de-serialize it into a
matching object in Java. This process assumes that the data type object that the
.NET Framework client side passes derives from the same common XML Schema
as the one in Java. It is up to you to de-serialize the received object in the Java client
correctly, as described in Chapter 3, “Interoperability Fundamentals.”

Sending Messages from Java to .NET Framework Applications

As discussed earlier, messages sent to a WebSphere MQ queue using JMS include
additional header information. Unfortunately, the .NET Framework does not
understand this information. Therefore, if you want to send messages to a .NET
Framework application, your Java client should use the native WebSphere MQ API
or, if using JMS, set the target client to MQ.

In addition, because the WebSphere MQ API does not serialize messages that Java
clients place into the queue, the Java client needs to serialize the object into XML
format before sending it. You can accomplish this using the techniques in Chapter 3,
“Interoperability Fundamentals.” This ensures that the .NET Framework client can
de-serialize the XML formatted message it receives back into an object.

Implementing the MSMQ-MQSeries Bridge
There are several requirements for implementing the MSMQ-MQSeries Bridge. This
section provides an overview of these requirements, and the architecture required to
set up the bridge.

Note: For detailed instructions about setting up and configuring the bridge, consult the HIS 2000
product documentation.

The MSMQ-MQSeries Bridge requires an instance of Microsoft Active Directory
to be in place to function properly. This dependency springs from how the
MSMQ-MQSeries Bridge works.

From MSMQ to WebSphere MQ, the MSMQ-MQSeries Bridge picks up messages
from public queues published in Active Directory. These queues exist in a defined
foreign site. The bridge then delivers the messages to a nominated queue on
WebSphere MQ.

The reverse path involves the bridge picking up messages from the nominated
WebSphere MQ queue and delivering them to a public MSMQ queue. Because you
can only define foreign sites and public queues in Active Directory, operation of the
bridge requires that you have Active Directory installed and configured.

 Chapter 5: Interoperability Technologies: Data Tier 153

You install the MSMQ-MQSeries Bridge on a computer running Windows 2000 or
Windows Server 2003 that acts as a connection point between the networks. You must
install a MSMQ routing server on the same computer as MSMQ-MQSeries Bridge,
and this computer must be able to connect by a TCP/IP or LU 6.2 link to an MQSeries
Queue Manager.

You must install WebSphere MQ on a Windows server to use the bridge to connect
to MSMQ. This could be seen as a complicating factor if your existing WebSphere
MQ implementation is on another operating system. One of the reasons for this
requirement is to ensure that authentication works by enabling the computer hosting
WebSphere MQ to participate in the same Active Directory forest. However, you can
work around this issue by setting up a computer running Windows and WebSphere
MQ, installing the bridge component, and configuring that computer to link
automatically to the queues in your existing non-Windows environment.

In a test environment, you could run the MSMQ-MQSeries Bridge on the same
computer as WebSphere MQ. However, this is not recommended in production. The
computer running the bridge must either be a member server in an Active Directory
domain (production environments) or a domain controller (test environments only).

Summary
This chapter first described how you can achieve interoperability by sharing a
database between two platforms. It covered the current best practice for accessing
data stores, including protecting code against changes. The second part of the chapter
covers message-based interoperability mechanisms that provide support for
transactions and for long-running operations. It described how you can use message
queuing products from either Microsoft or J2EE vendors to make connections to
Data tier components hosted either on the .NET Framework or on J2EE. With this
knowledge, you can now look at the application architecture of the XBikes Web site
and see how the developers applied the techniques in Chapters 4 and 5.

References
For more information about ResultSets
See the “JDBC Guide: Getting Started”
http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/resultset.html

For more information about using JDBC
See “JDBC Data Access API”
http://java.sun.com/products/jdbc/

For more information about the Microsoft SQL Server 2000 Driver for JDBC
Service Pack 1, including download information
http://www.microsoft.com/downloads/details.aspx?FamilyID=4f8f2f01-1ed7-4c4d-8f7b
-3d47969e66ae&DisplayLang=en

http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/resultset.html
http://java.sun.com/products/jdbc/
http://www.microsoft.com/downloads/details.aspx?FamilyID=4f8f2f01-1ed7-4c4d-8f7b-3d47969e66ae&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=4f8f2f01-1ed7-4c4d-8f7b-3d47969e66ae&DisplayLang=en

154 Application Interoperability: Microsoft .NET and J2EE

For more information about connecting to SQL Server 2000 with the Microsoft
JDBC driver
Microsoft Knowledge Base article Q313100, “HOW TO: Get Started with
Microsoft JDBC”
http://support.microsoft.com/default.aspx?scid=kb;en-us;313100

For more information about MSMQ features
http://www.microsoft.com/windows2000/technologies/communications/msmq/default.asp

For more information about the MSMQ-related classes in the System.Messaging
namespace and how to program against MSMQ
See the “.NET Framework Class Library”
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html
/frlrfSystemMessaging.asp?frame=true

For an example of a Web service interface that exposes MSMQ to Java clients
See the section about Creating a Web Service Interface for MSMQ in Microsoft .NET
and J2EE Interoperability Toolkit, by Simon Guest, Microsoft Press, ISBN 0-7356-1922-0.

For more information about J-Integra
http://j-integra.intrinsyc.com/

For details about implementing J-Integra
See “Introducing J-Integra 1.5.5”
http://www.intrinsyc.com/support/j-integra/doc/

- and -

“Java Servlet to MSMQ Example”
http://www.intrinsyc.com/support/j-integra/doc/servlet_com/ServletToMsmqExample.html

For more information about WS-Reliable Messaging
See “Web Services Reliable Messaging Protocol (WS-ReliableMessaging)”
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html
/ws-reliablemessaging.asp

For more information about WS-Transaction
See “Web Services Transaction (WS-Transaction)”
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html
/ws-transaction.asp

For more information about administering WebSphere MQ
http://www-3.ibm.com/software/ts/mqseries/messaging

For more information about the JMS standard
See “Java Message Service API”
http://java.sun.com/products/jms/index.html

You can obtain CSD05 at
http://www-3.ibm.com/software/integration/mqfamily/support/summary/wnt.html

http://support.microsoft.com/default.aspx?scid=kb;en-us;313100
http://www.microsoft.com/windows2000/technologies/communications/msmq/default.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemMessaging.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemMessaging.asp?frame=true
http://j-integra.intrinsyc.com/
http://www.intrinsyc.com/support/j-integra/doc/
http://www.intrinsyc.com/support/j-integra/doc/servlet_com/ServletToMsmqExample.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-reliablemessaging.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-reliablemessaging.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-transaction.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-transaction.asp
http://www-3.ibm.com/software/ts/mqseries/messaging
http://java.sun.com/products/jms/index.html
http://www-3.ibm.com/software/integration/mqfamily/support/summary/wnt.html

 Chapter 5: Interoperability Technologies: Data Tier 155

For more information about HIS
http://www.microsoft.com/hiserver/

For detailed information about how the MSMQ-MQSeries Bridge maps and converts
properties from Message Queuing to WebSphere MQ and from WebSphere MQ to
Message Queuing
See the “Microsoft Host Integration Server 2000 Developer’s Guide”
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/his/htm
/his_dg_devguide_intro_libd.asp

For an example of how to use the managed provider for SQL Server to connect to a
SQL Server database
See “Connecting to SQL Server Using ADO.NET”
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconconnectingtosqlserverusingadonet.asp

For an example of how to retrieve data from a database using a data reader object
See “Retrieving Data Using the DataReader”
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpcontheadonetdatareader.asp?frame=true

For more information about designing Data Access Logic Components in the
.NET Framework
See Chapter 2, “Designing the Components of an Application or Service,”
of Application Architecture for .NET: Designing Applications and Services
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp

For more information about implementing Data Access Logic Components in
.NET Framework
See the .NET Data Access Architecture Guide
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/daag.asp

For information about implementing the DAO pattern in J2EE
See Core J2EE Patterns Best Practices and Design Strategies by Deepak Alur, Dan Malks,
and John Crupi (ISBN 0-13-064884-1).

For an example of calling a Web service asynchronously in the .NET Framework
See “Communicating with XML Web Services Asynchronously”
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconinvokingwebservicesasynchronously.asp

To install MQSeries – Publish/Subscribe support
Download the SupportPac MA0C from the Business Integration Web page on the
IBM Web site
http://www.ibm.com/software/ts/mqseries/txppacs

http://www.microsoft.com/hiserver/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/his/htm/his_dg_devguide_intro_libd.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/his/htm/his_dg_devguide_intro_libd.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconconnectingtosqlserverusingadonet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconconnectingtosqlserverusingadonet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpcontheadonetdatareader.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpcontheadonetdatareader.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/daag.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconinvokingwebservicesasynchronously.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconinvokingwebservicesasynchronously.asp
http://www.ibm.com/software/ts/mqseries/txppacs

6
Implementing Interoperability
Design Elements

Introduction
The first five chapters of this book reviewed interoperability techniques in general
without considering how to implement them in a distributed application within
an enterprise environment. This chapter describes architectural patterns and
programming techniques that you can apply to enable interoperability between
.NET Framework and Java in a multi-tiered application.

This chapter refers extensively to the XBikes sample application. XBikes is a
demonstration of best practices for implementing interoperability in a typical
multi-tiered application.

This chapter starts with a high-level architectural overview of the XBikes sample
application, then it reviews the typical three-tier architecture used in many enterprise
applications, and then it introduces the new layers and components recommended
for implementing interoperability. The chapter highlights the recommended
interoperability components and compares them to those that the developers
implemented in XBikes.

Understanding the XBikes Sample Application
Chapter 1 introduced the XBikes sample application as an e-commerce enabled
Web site through which you can simulate buying bicycles and related accessories.
XBikes is a three-tier distributed application that creates the Downhill Bikes online
bicycle store.

158 Application Interoperability: Microsoft .NET and J2EE

There are two versions of the XBikes application, one built on the .NET Framework
and one built on J2EE, both of which are functionally equivalent. Two teams of
developers created these versions to demonstrate the following interoperability
scenarios:
● You have an existing J2EE application and you want to add .NET Framework

elements.
● You have an existing .NET Framework application and you want to add J2EE

elements.

The Downhill Bikes online store is loosely based on a sample application also called
Downhill Bikes, part of the original version of Visual Studio .NET and the .NET
Framework 1.0. The first implementation of Downhill Bikes was a .NET Framework
application designed to show off the features of the then new Web application
framework, ASP.NET.

Note: Although XBikes implements the user interface from Downhill Bikes, it is important to note
that both the .NET Framework and Java versions of XBikes were designed and built from scratch
to demonstrate interoperability techniques.

The reworked sample application took the name XBikes or “CrossBikes” to reflect
its new purpose in life, which is to demonstrate cross-platform interoperability.

The Java developers implemented the J2EE version of XBikes using best practice
recommendations from Sun and IBM. Likewise, the .NET Framework developers
implemented the .NET Framework version using the equivalent Microsoft patterns.
Taking the two functionally equivalent versions, the developers then re-engineered
both the .NET Framework and Java applications to implement multiple
interoperability techniques, so that application elements in one environment can
call corresponding elements on the alternate technology.

Note: XBikes illustrates multiple interoperability principles, so some design elements in XBikes show
several methods of linking J2EE and .NET Framework, whereas in a practical design, you would
select only one of these techniques.

The XBikes application design implements the pattern of use cases. Each possible
user action, such as logging in or placing an order, is a use case. This equivalence
appears in the names and breakdown of the various components within the
application. The following are the six use cases or possible user actions in XBikes:
● AuthenticateCustomer — Logs a customer into the application.
● GetCategories — Returns and displays a list of categories from the product

catalog.
● GetProductsByCategory — Returns and displays a list of products from the

catalog that belong to a specific category.

 Chapter 6: Implementing Interoperability Design Elements 159

● GetCustomerOrders — Returns and displays a list of all orders a customer has
placed.

● GetSearchResults — Returns and displays search results from a user initiated
product search.

● PlaceOrder — Places an order for selected products in the catalog.

Note: While both versions of XBikes provide the functionality of the six use cases, they do not
handle some things that are essential to a production environment, such as security. XBikes is
only a sample use case implementation to demonstrate interoperability and does not illustrate
recommended practice for implementing security in a production application.

The next few sections review architectural best practices for multi-tiered applications
in both .NET Framework and Java. These sections contain implementation references
to the overall architecture of the two XBikes applications. Chapters 7 to 9 cover the
details of how the developers implemented these interoperability components.

The companion CD to this book contains both the .NET Framework and J2EE
versions of the XBikes sample application. For information about how to install
and configure XBikes, see Appendices A and B.

Reviewing .NET Framework and J2EE Application Architecture
A central assumption in this guide is that your existing applications are designed
according to best practice recommendations for application design on each
application’s host environment, whether it is .NET Framework or J2EE.
Unfortunately, this is not always the case, because many application design
specifications have developed over time or even evolved from previous architectures.
Additionally, application designs rarely include interoperability as a factor. However,
you can still apply the interoperability strategies described in this chapter to an
existing application even if the application does not follow architectural best practice,
although this makes implementing interoperability more of a challenge.

Before describing implementing interoperability, it is important to review
recommended application architecture for multi-tier applications in both .NET
Framework and J2EE. For recommended practices for distributed and multi-tiered
.NET Framework application architecture, see Application Architecture for .NET:
Designing Applications and Services on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnbda/html/distapp.asp). Figure 6.1 is from this guide and
represents the recommended best practice for .NET Framework application design.

Note: Sun also provides best practices for J2EE application architecture, but this design applies
equally well to J2EE applications.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp

160 Application Interoperability: Microsoft .NET and J2EE

Users

Data Sources Resources

Business
Workflows

Business
Components

Business
Entities

Service Interfaces (Facades)

UI Process Components

UI Components

Data Access Logic
Components

Other
Resources

P
resen

tatio
n

T
ier

B
u

sin
ess

T
ier

D
ata

T
ier

Figure 6.1
.NET Framework application architecture best practice design

As Figure 6.1 shows, it is recommended best practice to divide multi-tiered
applications into three logical layers:
● Presentation tier
● Business tier
● Data (or Resource) tier

The following sections discuss the functions of the components within each tier and
correlate them with the components implemented in both the .NET Framework and
J2EE versions of XBikes.

 Chapter 6: Implementing Interoperability Design Elements 161

For more details about each of the elements within the recommended application
architecture, including best practices for implementing them, see Application
Architecture for .NET: Designing Applications and Services on MSDN.

Implementing Presentation Tier Elements
The Presentation tier contains the necessary elements to enable user interaction
with the application. The components of this tier can make up different types of
applications, including the following:
● Web applications — ASP.NET or JSPs and servlets.
● Desktop applications — Windows Forms or Java’s Swing or Abstract Windowing

Toolkit (AWT).
● Smart Clients — Such as Pocket PCs and mobile phones.

This chapter considers the Presentation tier as a Web application, although this may
not always be the case. However, this choice does not affect the interoperability
architecture strategies that you implement.

The Presentation tier can consist of two types of components:
● User interface (UI) components
● User interface process components

In its simplest form, the Presentation tier can contain UI components, such as an
ASP.NET Web Form or a JSP Web page. These components are only responsible for
rendering the UI and handling direct interaction with the user. For more complex
user interactions, you can design UI process components to orchestrate the user
interface elements and control the user interaction. UI process components are useful
when the user interaction follows a predictable flow of steps, such as when a user
starts a wizard to complete a task.

The Java version of XBikes implements its Presentation tier as a combination of JSPs
and Struts. Struts is part of the Apache Jakarta Project and provides a flexible control
layer based on standard Java technologies. It also gives you a framework to underpin
the Presentation tier. While the JSPs and servlets act as UI components, Struts
provides the functionality of UI process components.

The .NET Framework version of XBikes Presentation tier uses ASP.NET,
implementing a number of ASP.NET Web Forms that allow the user to interact
with the application. This interaction then causes the initiation of one or more of
the six use cases. There are no UI process components in the .NET Framework
Presentation tier.

162 Application Interoperability: Microsoft .NET and J2EE

Implementing Business Tier Elements
The Business tier contains the necessary elements to implement the business logic
and processing that the Presentation tier requests and consumes. Business tier
components can then exchange data with the Data tier or any external services.
Within the Business tier are programmatic elements that execute the business logic.

A Business tier can consist of the following elements:
● Business components
● Business workflows
● Business entities
● Service interfaces

Business Components
In a simple Business tier implementation, business components encapsulate and
implement the functionality of a particular task or use case. In J2EE, these are also
referred to as use case components or commands.

You could implement these components as classes or methods in a .NET Framework
component library, or as COM+ ServicedComponents in a .NET Framework
application. In a J2EE application, these could be plain ordinary Java objects or
Enterprise JavaBeans (EJB) session beans. A Presentation tier client can then call these
Business tier objects synchronously or asynchronously.

Using separate business components to implement individual use cases enables you
to separate the functions within the Business tier logic, allowing the updating of
individual use cases without affecting the remainder of the application. This provides
useful change protection and reduces the risk associated with making changes to
production applications. Implementing business components for each use case also
makes it easier for large software teams to collaborate when developing applications.

The Business tier of XBikes implements business components for each of the six use
cases that the application supports. To keep consistent with the functionality they
implement, both the .NET Framework and J2EE versions of XBikes refer to these
components as use case commands. These commands take the corresponding use
case names with the word “Command” as a suffix, as in the following examples:
● AuthenticateCustomerCommand
● GetCategoriesCommand
● GetProductsByCategoryCommand
● GetCustomerOrdersCommand
● GetSearchResultsCommand
● PlaceOrderCommand

 Chapter 6: Implementing Interoperability Design Elements 163

Both versions of XBikes implement the use case business components through the
Command design pattern, common in J2EE architectures. The developers of XBikes
decided to use the Command design pattern in the .NET Framework version of
XBikes to keep the interfaces for each use case consistent.

For more information about the Command design pattern, see Design Patterns:
Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides (ISBN 0-201-63361-2).

The J2EE version of XBikes implements the use case commands as plain ordinary
Java objects. The .NET Framework version of XBikes has separate .NET Framework
classes for each use case. Each use case command implements a common
IUseCaseCommand interface the developers defined as part of the Command
pattern.

Business Workflows
Business workflows are usually only a requirement if you have long-running
transactions or procedures that involve multiple steps that need to be orchestrated.
Typically, business workflows involve the use of an orchestration product such as
Microsoft BizTalk Server. Other orchestration or workflow product vendors have
equivalent products.

Note: XBikes does not implement business workflows; it is only a demonstration application and
does not require the additional functionality.

Business Entities
In multi-tier applications, data passes back and forth across the Application tiers.
Business entities are objects that represent data within the application. Entities
contain “snapshot” data, acting as an effective local cache of information. Other
Business tier or Presentation tier elements can connect to business entities.

The data that business entities represent is typically not tied to a particular database
table. A business entity usually incorporates a schema that is a de-normalization of
the underlying database schemas. They can also represent data aggregated from
many sources.

Chapter 3, “Interoperability Fundamentals,” described complex data types made
up from simple data types and used to store information about a particular business
object. An example was where you design a custom complex data type to represent
data about a customer, named CustomerData. The object can store data such as the
name, address, and zip code of a customer. This CustomerData object would be
considered a business entity component when implemented within the architecture
of a multi-tiered application.

164 Application Interoperability: Microsoft .NET and J2EE

There are many data formats that you can use for defining a business entity in both
.NET Framework and J2EE. Common formats include the following:
● An XML document.
● DataSet (.NET Framework only).
● Typed DataSet (.NET Framework only).
● Entity beans (J2EE only).
● A custom object with properties that map to data fields, and methods that perform

data modifications through data access logic components, known as the Value
Object pattern in J2EE applications.

Note: Custom business entity components are not a mandatory part of all applications. Many
solutions (especially ASP.NET applications and .NET Framework business components) do not use
custom representations of business entities; instead they use datasets or XML documents because
they provide all the required information and the development model is more task and document
oriented rather than object-oriented.

Business Entities in XBikes
Both versions of the XBikes application define the following business entities
to represent the data that the six use cases require:
● CustomerData — Contains data representing a customer.
● CategoriesData — Contains data representing product categories.
● ProductsData — Contains data representing store products.
● OrderData — Contains data representing an order and its order details.

Deciding on a data format to represent the business entities in XBikes was one of the
first tasks that the XBikes developers faced. As explained in Chapter 3, agreeing on a
common data format for exchanging data across platforms is one of the fundamental
requirements for implementing interoperability. There were several choices
considered for the data formats on both the .NET Framework and J2EE versions of
the application.

The ideal situation is where you develop both the .NET Framework and J2EE
applications from scratch. Chapter 3 described how you could generate a custom data
type object on each platform from a common XML Schema. The two environments
could then exchange the serialized XML version of these objects. However, this
situation rarely occurs.

The interoperability scenarios that Chapter 1 presents show a more realistic approach
to interoperability projects, such as the following:
● Integrating .NET Framework components at the Presentation tier.
● Integrating .NET Framework components at the Business tier.

 Chapter 6: Implementing Interoperability Design Elements 165

The first scenario integrates a new .NET Framework ASP.NET application on the
Presentation tier that communicates with the existing J2EE Business tier. The second
involves having an existing J2EE-based JSP and servlet Presentation tier communicate
with a new .NET Framework Business tier. Both scenarios share the common feature
in that a new .NET Framework application operates alongside an existing J2EE
application.

Within these scenarios, there are factors that can make it difficult to agree on a
common format for exchanging data between the platforms:
● Lack of ability to modify or change the data types used in the existing application.
● Application developers not able to work together or to establish a process for

agreeing on a common data format.
● Non-ideal data type mapping with common XML Schemas.

An example of the last case might be in .NET Framework, where using a dataset
or typed dataset is recommended over a custom data type. This is because datasets
provide richer functionality at the Presentation tier level where you can use data
binding to populate a data grid with the contents of the dataset with very little code.

Based on these factors, the XBikes developers decided to use the data format best
suited for the given platform in each version of XBikes. Hence each version of XBikes
uses data types specific to the platform on which it is built. To exchange data between
the .NET Framework and Java versions, some extra components (interoperability
adapters and service interfaces) were necessary to convert the data types into a
common format. This chapter discusses these components in a later section.

The J2EE version of XBikes uses custom Java classes to implement the four business
entities. The developers implemented these custom Java classes using the Value
Object design pattern. This design pattern is common in J2EE applications when
implementing business entity components.

For more information about the Value Object pattern, see Core J2EE Patterns
Best Practices and Design Strategies by Deepak Alur, Dan Malks, and John Crupi
(ISBN 0-13-064884-1).

The .NET Framework version of XBikes uses typed datasets to implement the four
business entities. Typed datasets are a feature of ADO.NET. A typed ADO.NET
dataset is a class with an associated XML Schema, rather than an untyped dataset
that is a class and has no associated schema. The typed dataset class derives from a
dataset class, which inherits all of the methods, events, and properties of a dataset.
This allows your application to use some of the rich features provided by a dataset,
such as data binding.

166 Application Interoperability: Microsoft .NET and J2EE

Additionally, a typed dataset provides strongly typed methods, events, and
properties meaning you can access tables and columns by name, instead of iterating
through collections. A typed dataset also incorporates table and column names into
the statement completion feature of Visual Studio. This lets you create code that is
easier to write and read. Additionally, with a typed dataset, you can catch type
mismatch errors when compiling the code rather than at run time. Creating or
modifying a typed dataset is a very easy process using the XML Schema designer
in Visual Studio .NET 2003.

For these reasons, you are recommended to use typed datasets to implement business
entity components in a .NET Framework application. For more information about
implementing typed datasets in .NET Framework, see “Creating XML Schemas and
Datasets” on MSDN.

While datasets and typed datasets are recommended for use within a .NET
Framework application, it is generally not recommended that you use them to
exchange data with Java applications. The main reason for this recommendation is
because there is no equivalent data type in J2EE to which you can map a dataset.
Also, while you can serialize datasets into XML format, this XML format is specific to
the .NET Framework, so a J2EE client cannot understand how to properly de-serialize
them.

In XBikes, the developers used Java collections on J2EE and typed datasets on .NET
Framework. This decision requires the use of interoperability layers to enable the two
platforms to exchange data.

Note: However, you can use the typed dataset’s GetXML method to generate an XML document
based on the schema associated with the typed dataset and containing data from the typed dataset.
The typed dataset’s ReadXML method takes an XML document formatted according to the XML
Schema associated with the typed dataset and populates the typed dataset with the contents of that
document. Chapter 7 and 8 show how the developers used these methods to enable cross-platform
data transfer in XBikes.

Service Interfaces
A service interface is a software element that handles mapping and transformation
services to allow communication with a service, while also enforcing a process and
a policy for communication. For example, you could have a service interface that
exposes your business functionality as a Web service.

The .NET Application Architecture best practice design covered earlier in this chapter
includes service interfaces as one of the elements in the Business tier. Service
interfaces are useful if you plan to expose your business functionality as a service.
They provide a client entry point that abstracts the implementation of your Business
tier. They can also be extremely useful for implementing interoperability.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vboriCreatingSchemasDataSets.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vboriCreatingSchemasDataSets.asp

 Chapter 6: Implementing Interoperability Design Elements 167

Note: Most application architectures implement a service interface as a façade.

Service interfaces can also act as a gatekeeper to your business components, handling
more complex tasks such as authentication, validation, or caching. However, service
interfaces should not implement business logic. Using a service interface in this
manner enables you to concentrate any policy related code, such as auditing or
validations, into one place. A simple service interface that implements the Façade
design pattern can act as a pass through class. This class then implements member
methods that call each of the underlying business components directly, aggregating
them into a single interface.

In the Web service example, you would expose your business functionality through
a Web service service interface (WS service interface). The WS service interface then
handles the implementation details of the Web service itself. However, your
interoperability scenario may require you to expose your business functionality
through different interoperability mechanisms, such as message queuing or .NET
Remoting.

Your application may also need to expose its business functionality through different
communication channels, which you should implement as a simple service interface
or façade. This service interface then aggregates your underlying business
components into a single interface. It also consolidates policy-related code so that you
can reuse this code across multiple service interfaces that handle different
interoperability mechanisms. A later section covers how you can use multiple service
interfaces in interoperability scenarios.

Using the Façade Design Pattern

Using the Façade design pattern to encapsulate Business tier functionality is a
popular and recommended practice for J2EE applications. You can apply this pattern
to both .NET Framework and J2EE applications to abstract multiple business
components within a Business tier. The Façade design pattern provides a single client
interface to access the Business tier functionality.

Note: You may see references to façades that encapsulate business functionality as service
façades.

You should implement a façade for a core set of business functionality that you want
to expose as a single interface. A simple application may have one façade that
encapsulates all of your core business functionality. Larger applications may contain
multiple façades that expose different sets of business functionality.

For more information about the Façade design pattern, see Design Patterns: Elements of
Reusable Object-Oriented Software.

168 Application Interoperability: Microsoft .NET and J2EE

Business Façades in XBikes

Both the .NET Framework and J2EE versions of XBikes implement a business façade,
named the business service façade, to encapsulate the functionality of the Business
tier into a single interface. The business service façade provides an interface for the
Presentation tier components at its front end redirecting calls from the JSP/Struts
application in J2EE or the ASP.NET application in .NET Framework to the relevant
use case command in the Business tier logic.

For example, in the J2EE version of XBikes, when the user logs on to the XBikes Web
site, the JSP Presentation tier components make a call to the business service façade,
which redirects the call to the AuthenticateCustomer use case command. The
AuthenticateCustomer use case command then makes a call to the Data tier to check
for the existence of the user’s log on name and to verify the password. The same
application flow occurs when a user logs into the XBikes Web site of the .NET
Framework version.

In the J2EE version of XBikes, the developers implemented the business service
façade as an EJB session bean. Using an EJB to implement the business service façade
provides additional enterprise functionality such as session state, caching, and object
pooling. Calls to the business service façade session bean create calls to the
underlying use case commands that are implemented as plain ordinary Java objects.

For details about how to implement a façade in J2EE, see the Session Façade design
pattern in Core J2EE Patterns: Best Practices and Design Strategies.

In the .NET Framework version of XBikes, the developers implemented the business
service façade as a COM+ ServicedComponent. This approach provides the benefits
of the enterprise features of Windows Server Component Services such as just-in-time
activation, object pooling, role-based security, and transactional support. The
business service façade ServicedComponent makes calls into the underlying use case
command classes which then run as part of the façade’s COM+ application process.

Note: In XBikes, the developers implemented the business service façade as a ServicedComponent
to demonstrate how to create a service façade in an enterprise-class application. However, XBikes
uses COM+ for demonstration purposes only and does not use the additional features.

 Chapter 6: Implementing Interoperability Design Elements 169

Implementing Data Access Logic Tier Components
Almost all applications need to access or store data in some sort of data store or
database. The Data Access Logic tier contains the elements necessary to access data
from data sources and returns it to the Business tier. In Chapter 5, “Interoperability
Technologies: Data Tier,” the section “Sharing Data between ADO.NET and JDBC”
looked at implementing a Data Access Logic layer within your application in order to
abstract the functionality accessing the Database from the Business tier. Abstracting
your database access code from the Business tier is a recommended best practice for
both .NET Framework and J2EE applications.

The Data Access Logic tier can contain the following elements:
● Data Access Logic Components
● Data Access Logic Service Façade
● Databases

The next sections describe each of these elements.

Data Access Logic Components
Data Access Logic Components provide simple access to database functionality
such as queries and data operations, and they return both simple and complex data
structures. They hide invocation and format idiosyncrasies of the data store from the
business components and user interfaces that consume them. Implementing your
Data Access Logic in Data Access Logic Components allows you to encapsulate all
the Data Access Logic for the entire application in a single, central location, making
the application easier to maintain or extend.

Chapter 5 also described how the implementation of a Data Access Logic tier is
different between .NET Framework and J2EE applications. J2EE applications use the
Data Access Object (DAO) design pattern in conjunction with Java entity beans to
implement components that encapsulate create, read, update and delete (CRUD)
database operations for a particular business entity. In .NET Framework applications,
Data Access Logic Components handle the CRUD operations for a particular business
entity, possibly with the addition of database helper classes such as the Microsoft
Data Access Application Block (DAAB) to handle direct communications with the
database.

Note: For simplicity, this book uses the term Data Access Logic Components from the .NET
Framework architecture to refer to the J2EE entity bean components that implement the DAO design
pattern.

170 Application Interoperability: Microsoft .NET and J2EE

While you implement Data Access Logic Components differently on each platform,
the principles of this abstraction layer are similar for both platforms. In general, you
should implement Data Access Logic Components to handle database operations for
each business entity.

The Java version of XBikes implements five data access logic components using entity
beans. Each of these entity beans contains the logic to call the individual areas within
the SQL Server database. These five entity beans are the following:
● CategoriesDataAdapterBean
● CustomerDataAdapterBean
● OrderDataAdapterBean
● OrderDetailsDataAdapterBean
● ProductsDataAdapterBean

An XML deployment descriptor provides the mapping between the entity beans and
the SQL database tables. These deployment descriptors refer to a JNDI name for the
database (XBikesDB).

The XBikes design uses Container Managed Persistence (CMP), so the Data Access
Logic container handles all the SQL processing. This is in contrast to bean managed
persistence (BMP), where the developer must write the SQL code. The container
configuration contains the information to connect to SQL Server. The container passes
this connection information, manages connection pooling and sends the native SQL
call to the database to retrieve the necessary data.

The .NET Framework version of XBikes implements four data access logic
components. These four components correspond to the four business entities defined
in the XBikes application, as follows:
● Customer
● Categories
● Products
● Orders

The Data Access Logic components in .NET Framework implement the interfaces
necessary to perform CRUD operations on the business entities’ data. Chapter 5
covers how you can use the Microsoft-provided DAAB for .NET Framework to
encapsulate all of the common code for accessing a database. The .NET Framework
version of XBikes uses the DAAB to provide this encapsulation. Each of the Data
Access Logic Components makes calls into the DAAB to access the database.

 Chapter 6: Implementing Interoperability Design Elements 171

Data Access Logic Service Façade
The Data Access Logic service façade handles calls from the use case commands in
the Business tier and sends them to the Data Access Logic Components or entity
beans in the Data Access Logic tier. For example, in the .NET Framework version,
the Data Access Logic service façade passes calls from the GetCustomerOrders use
case command to the OrderData Data Access Logic Component.

Implementing a façade for the Data Access Logic provides the equivalent
functionality of implementing a façade in the Business tier. You can implement a
Data Access Logic service façade to encapsulate the underlying Data Access Logic
Components in the Data Access Logic tier into a single interface that business
components in the Business tier can consume.

You should implement a Data Access Logic service façade for your Data Access
Logic tier if you intend to expose your Data Access Logic tier as a service. In most
applications, the business components within the Business tier call the Data Access
Logic components directly. However, it is not as common to expose your Data tier
functionality as a service as it is with the Business tier.

Both versions of the XBikes application implemented a Data Access Logic service
façade to support the different interoperability scenarios. The J2EE version of XBikes
implements the Data Access Logic service façade as an EJB session bean. The .NET
Framework version of XBikes implements the Data Access Logic service façade as a
regular .NET Framework component.

Databases
At the root of any application’s Data Access Logic tier is a database, normally
relational in nature. The XBikes design uses SQL Server 2000 to implement the
database for both the Java and .NET Framework versions. This sharing is possible
because both the .NET Framework and J2EE version store their application data
using the same database schema. Chapter 5 covered how you can share a database
between applications built on different platforms.

Implementing Message Queuing Services
Chapter 5 also looks at using message queuing services to implement interoperability.
Normally, you use message queuing to implement asynchronous connectivity
between components running in a single environment. Asynchronous connectivity is
desirable when you have long running transactions, or portions of your application
(particularly at the client end) that are not always online or available.

172 Application Interoperability: Microsoft .NET and J2EE

A good example of this scenario is when a user places an order at an online store.
When the user places an order, there are a number of items that need processing and
these items can take some time. Because orders directly affect the profitability of the
Web site and can be long running, you need to be able to run the order process
asynchronously, so that the user can continue with other operations while the order
process checks stock levels, authorizes payment details, and (importantly) takes other
orders.

In order to support these scenarios, you can implement asynchronous connectivity
through message queuing. When a user places an order, it goes into a queue until
the order processing application can receive it. In the meantime, the application that
placed the order on the queue can continue operating without interruption.

Both versions of the XBikes applications implement asynchronous message
queuing to support placing an order on the Web site. Although they differ in actual
implementation, the basic concepts are similar. The PlaceOrder use case command in
both the .NET Framework and J2EE Business tiers calls a message queue component
which places OrderData message objects onto a queue.

Note: While the XBikes applications implement message queuing to demonstrate asynchronous
connectivity, they do not actually do any processing with the order and orders are simply placed
onto a queue. Both applications have sample console applications that read order messages from
a queue and insert the order into the database through the Data Access Logic tier.

The J2EE version of XBikes uses IBM WebSphere MQ for message queuing services.
This design allows the developers to address the WebSphere MQ component either
using the Java Message Service (JMS) API or through IBM’s WebSphere MQ API.

Note: XBikes uses the JMS API.

The .NET Framework version of XBikes uses MSMQ for message queuing services.
MSMQ provides the equivalent asynchronous support for the .NET Framework
design.

XBikes Application Architecture for .NET Framework and J2EE
This section provides a summary of the architecture of the two XBikes applications
without considering the interoperability components. The composition of the three
tiers of the XBikes application is as follows:
● Presentation tier (JSP/Struts or ASP.NET)
● Business tier, consisting of:

● Business service façade
● Business components that implement logic for the six use cases

 Chapter 6: Implementing Interoperability Design Elements 173

● Data tier, consisting of:
● Data Access Logic service façade
● Data Access Logic Components (five in the J2EE version, and four in the .NET

Framework version)
● The DAAB (.NET Framework version only)
● SQL Server 2000 database
● IBM WebSphere MQ Queue (J2EE) or MSMQ (.NET Framework)

Figure 6.2 shows the architecture of the .NET Framework version of XBikes.

P
resen

tatio
n

T
ier

B
u

sin
ess

T
ier

D
ata

T
ier

U
se C

ase C
om

m
and

A

uthenticateC
ustom

er

U
se C

ase C
om

m
and

G

etC
ategories

U
se C

ase C
om

m
and

G

etC
ustom

erO
rders

U
se C

ase C
om

m
and

G

etP
roductsB

yC
ategoryID

U
se C

ase C
om

m
and

G

etS
earchR

esults

U
se C

ase C
om

m
and

P

laceO
rder

U
se C

ase C
om

m
and

s

SQL Server

ASP.NET Web Application

Business Service Facade

Data Access Application Block

Data Access Logic Facade

D
A

L C
om

p
onents

C
ustom

er
D

A
LC

C
ateg

ories
D

A
LC

O
rd

er
D

A
LC

P
rod

ucts
D

A
LC

MSMQ

Sample
Console

Application

Figure 6.2
Application architecture for .NET Framework version of XBikes

174 Application Interoperability: Microsoft .NET and J2EE

Compare this to Figure 6.3, which shows the architecture of the J2EE version.

P
resen

tatio
n

T
ier

B
u

sin
ess

T
ier

D
ata

T
ier

U
se C

ase C
om

m
and

A

uthenticateC
ustom

er

U
se C

ase C
om

m
and

G

etC
ategories

U
se C

ase C
om

m
and

G

etC
ustom

erO
rders

U
se C

ase C
om

m
and

G

etP
roductsB

yC
ategoryID

U
se C

ase C
om

m
and

G

etS
earchR

esults

U
se C

ase C
om

m
and

P

laceO
rder

U
se C

ase C
om

m
and

s

SQL Server

JSP/Struts Web Application

Business Service Facade

Data Access Logic Facade

D
A

L A
d

ap
ters

C
ustom

er
D

ata A
d

ap
ter

C
ateg

ories
D

ata A
d

ap
ter

O
rd

er
D

ata A
d

ap
ter

P
rod

ucts
D

ata A
d

ap
ter

WebSphere
MQ

Sample
Console

Application

Figure 6.3
Application architecture for J2EE version of XBikes

Figures 6.2 and 6.3 show how similar the application architectures are.

Linking to the Reference Design
You can now link the architectural elements from the reference design to build up
a table of component equivalence. Table 6.1 shows how the elements in the .NET
Framework architectural best practice correspond with the components in both the
.NET Framework and J2EE version of XBikes.

 Chapter 6: Implementing Interoperability Design Elements 175

Table 6.1: Comparison of.NET Framework Application Architecture and XBikes
Implementations

.NET Framework
Application
Architecture

XBikes .NET
Framework
Implementation

XBikes J2EE
Implementation

Comments

UI components/UI
process components

ASP.NET client JSP/Struts No equivalent of UI
process components

service interfaces Business service
façade (implemented
as a serviced
component)

Business service
façade (implemented
as an EJB session
bean)

None

Business workflows Not applicable Not applicable Business workflows not
implemented due to
application simplicity

Business components Use case commands
implemented as .NET
Framework components

Use case commands
implemented as
session beans

None

Business entities .NET Framework typed
datasets

Custom Java objects
(using Value Object
design pattern)

None

Data Access Logic
Components

Data Access Logic
service façade

Data Access Logic
Components

DAAB

DAO pattern

Entity beans with CMP

None

Data sources SQL Server SQL Server None

Note: There is not direct equivalence at all levels between the two architectures. However, there is
broad functional and conceptual equivalence.

The next section looks at how to implement interoperability between Java and .NET
Framework enterprise-class applications, with reference to the implementation of the
two versions of XBikes.

176 Application Interoperability: Microsoft .NET and J2EE

Implementing Interoperability
Chapter 1 described three main scenarios for interoperability between .NET
Framework and J2EE applications:
● Integrating .NET Framework components at the Presentation tier.
● Integrating .NET Framework components at the Business tier.
● Implementing asynchronous interoperability.

The interoperability architecture and implementation strategies in this guide apply to
all three scenarios. However, certain exceptions and restrictions apply, such as when
you cannot modify an existing application, regardless of whether the application runs
on .NET Framework or J2EE. The XBikes sample application takes a middle path — it
does not represent the ideal scenario, with both .NET Framework and J2EE
applications under development at the same time by the same programming teams.
However, it does not take the rigid approach where you cannot modify the existing
application at all.

Chapters 4 and 5 showed that you have several interoperability mechanisms to
choose from:
● Web services.
● .NET Remoting with runtime bridges.
● Asynchronous interoperability through a message queuing system.

Each of these mechanisms applies best in different scenarios. Web services are
best when you want to design your applications to use open standards and for
compatibility with future applications. Runtime bridges such as Ja.NET and
JNBridgePro are best for when you need high performance. Asynchronous
interoperability usually involves only Business to Data tier interaction. However,
the interoperability requirements for your application are likely to change, although
hopefully not as quickly as the Web services specifications.

Your application design should reflect the reality that the interoperability mechanism
it uses will probably change over time. Therefore, it is recommended that you
implement additional interoperability layers and components to abstract the various
connection points between your .NET Framework and Java applications.

These interoperability layers and components correspond to how you implement
a service oriented architecture. The next section details these interoperability layers,
makes recommendations for implementing them, and refers to how the developers
implemented these in the XBikes sample application.

 Chapter 6: Implementing Interoperability Design Elements 177

Describing Interoperability Connection Points
A connection point represents at a basic level, a client/server relationship where a
client component consumes the services of provider. The diagrams in Chapter 1 show
a matrix of possible connection points. Figure 6.4 demonstrates a basic connection
point.

Connection
Point

ProviderConsumer

Figure 6.4
Simple connection point example

In two multi-tiered applications, there can be multiple connection points. Figure 6.5
shows a high level diagram of the possible interoperability points between two
applications, one on J2EE, the other on .NET.

Presentation Tier Business Tier Data Tier

JSP/Struts EJBs DAO/
Entity Beans

ASP.NET .NET Serviced
Components

DAL

J2EE

.NET

Database

1

2

3

5

4

Figure 6.5
Interoperability points in multi-tiered applications

When designing your application for interoperability, consider each provider’s
connection point as a service. For example, in Figure 6.5, path 2 represents an
ASP.NET Presentation tier client connecting to a J2EE Business tier EJB. In this
example, the ASP.NET client considers the J2EE Business tier EJB to be a service. In
service-oriented architectures, applications can communicate with a service through
different channels or communication mechanisms. It is recommended that you create
an abstraction layer between a client consumer and service provider that isolates the
provider and consumer, thus masking the details of how they communicate from
each other.

178 Application Interoperability: Microsoft .NET and J2EE

The XBikes sample application design supports the interoperability paths 1, 2, 4,
and 5 in Figure 6.5. However, it does not cover the connection point that path 3
represents. This interoperability scenario depicts point-to-point connectivity between
a Business tier application in .NET Framework and a Business tier application in
J2EE. If you consider each provider end of each connection point as a service, the
Business tier component on the alternate platform appears to the calling Business tier
component as just another service. Hence the path 3 implementation is similar to that
of any of the other paths.

The next section discusses the components that make up the interoperability layer
which abstracts the details of the interoperability mechanisms for each connection
point.

Interoperability Layers and Components
When implementing interoperability, you should incorporate the ability to cope
with changes into your application architecture. The following are examples of the
changes your application must cope:
● The interoperability requirements may change, requiring a different

interoperability mechanism.
● Your application’s interoperability requirements may require different

interoperability mechanisms for distinct parts of your application at the same
time.

● The interoperability mechanism itself may change as new technology appears.

To implement change-tolerant interoperability between a .NET Framework and J2EE
application, it is recommended that you implement the following programmatic
elements:
● Service interfaces
● Interoperability adapters
● Interoperability adapter factories

 Chapter 6: Implementing Interoperability Design Elements 179

Figure 6.6 shows how these components fit in to a point-to-point interoperability
scenario.

ProviderConsumer

Adapter
Factory

Application
Platform #1

Application
Platform #2

Interoperability
Adapter

Interoperability
Adapter

Interoperability
Adapter

Service
Interface

Service
Interface

Service
Interface

Figure 6.6
Programmatic elements for point to point interoperability

The following sections examine these interoperability elements in detail.

Service Interfaces
This guide has already described that a service interface enables an application to
expose functionality to a consumer. It has also described how you can implement
a simple service interface that follows the Façade design pattern to consolidate all
policy-related code into one location. In addition, this service interface can aggregate
the methods from multiple business components into one interface. This section
explores how you can use service interfaces to enable interoperability between
application components on J2EE and .NET Framework.

A service interface handles the details of the communication mechanism between a
client and service, including mapping and transformation of data types between the
client application and the service itself. This approach allows you to decouple the
mechanism needed to communicate with the service from the service’s business logic.
It is this functionality that makes implementing service interfaces ideal for
interoperability scenarios.

When designing your application for interoperability, implement service interfaces
to handle the details of the interoperability mechanism you choose. Using service
interfaces in your application provides greater flexibility when modifying the
application later.

For example, you may have implemented a business service façade that exposes your
Business tier functionality as a single interface. You can then create additional service
interfaces to expose your business service façade through a Web service or through a
runtime bridge such as Ja.NET or JNBridge. In this example, the service interface
handles the details of the Web service or runtime bridge implementations.

180 Application Interoperability: Microsoft .NET and J2EE

Note: It is important to appreciate that the data types used on one platform are unlikely to be the
same as the data types on the alternate platform. The service interface transforms data from the
common data type that the interoperability mechanism exchanges to the native data type of the
service provider.

Consider the example where your Java Business tier interface works with custom
Java collection data types and your .NET Framework Presentation tier works with
typed datasets. Using the techniques discussed in Chapter 3, you can develop a
common data format for data exchange between the two environments. In this
scenario, the Java Business tier service interface accepts and returns data in the
common data format. The Java service interface then transforms the data from the
collection objects in the Java Business tier to the common data format the service
interface exposes. On the .NET Framework side, a similar process occurs, except
that the .NET Framework Business tier exchanges typed datasets with the service
interface. Chapter 7, “Integrating .NET in the Presentation Tier,” shows how the
XBikes developers implemented these service interfaces.

For more information about the service interfaces pattern, see “Enterprise Solution
Patterns: Service Interface” on MSDN.

Interoperability Adapters
Interoperability adapters provide the corresponding piece of the puzzle on the client
side of the interoperability scenario. An interoperability adapter enables a client to
communicate with a service provider through a specific service interface.

Interoperability adapters hide the implementation details of the interoperability
mechanism from the connected client application. Interoperability adapters are
responsible for transforming the data between the format that a client application
uses and a common data format for interoperability.

Taking the example in the “Service Interfaces” section, the .NET Framework client
uses a CustomerData typed dataset. The interoperability adapter then handles the
data mapping from the .NET Framework typed dataset to the common data format
for exchange with the Java application through one of the service interfaces.

You can compare an interoperability adapter to three established concepts:
● The service gateway pattern.
● The service agent pattern.
● A business delegate in J2EE.

http://msdn.microsoft.com/practices/type/patterns/enterprise/DesServiceInterface/
http://msdn.microsoft.com/practices/type/patterns/enterprise/DesServiceInterface/

 Chapter 6: Implementing Interoperability Design Elements 181

The closest match is to the service gateway pattern, but for terminology reasons,
this book refers to interoperability adapters. The comparison to the service agent
pattern is less strict, because interoperability adapters provide only a subset of the
functionality in a service agent. Like an interoperability adapter, a J2EE business
delegate provides an abstraction of the implementation of the business services,
reducing coupling between the Presentation and Business tiers.

You should create interoperability adapters based on the design of the service
interface and the level of fine control that you require. Taking a service that
implements the logic for one or more use cases, you may choose either to build an
interoperability adapter for each use case or a single interoperability adapter for the
service interface.

Implementing an interoperability adapter for each use case provides you with
the flexibility to use a different interoperability mechanism for each use case. For
example, you could set up your ASP.NET application so that one use case implements
a Web service interoperability adapter to communicate with the J2EE Business tier,
while another use case (requiring higher performance) connects through a runtime
bridge.

Implementing an interoperability adapter for each use case also enables a migration
scenario where you may have some uses cases running on one platform and others
on another. For example, you may have an ASP.NET Presentation tier that calls an
interoperability adapter for one use case that a J2EE Business tier implements, and
at the same time have a different interoperability adapter for another use case that
calls directly into the .NET Framework Business tier.

Interoperability Adapter Factory
An interoperability adapter factory enables dynamic selection of the correct
interoperability adapter at run time. Although not a requirement for interoperability,
the adapter factory provides the flexibility to change interoperability adapters easily.
By implementing an adapter factory, you can configure adapter selection through a
configuration file rather than by making changes to the code. An interoperability
adapter factory also provides the flexibility in your design to incorporate as yet
undeveloped interoperability mechanisms.

The interoperability adapter factory implements the Factory design pattern. The
Factory design pattern is a well known pattern that allows a client to create an object
based on predetermined settings.

182 Application Interoperability: Microsoft .NET and J2EE

You are recommended to implement one or more interoperability adapter factories
to enable flexibility in which interoperability mechanisms you can use. For example,
you may have multiple interoperability adapters that call into the same service, but
through different interoperability mechanisms. A client calls the interoperability
adapter factory to determine which interoperability adapter to use to call the service.
The interoperability adapter factory looks in the configuration settings to see which
interoperability adapter to use, and then it creates and returns an instance of the
proper adapter to the client.

The interoperability adapter factory should return objects with only one type of
interface. If you implement multiple interoperability adapters to communicate with
the same service, but through different service interfaces, each interoperability
adapter should implement the same interface.

You should implement an interoperability adapter factory for each service with
which you want you communicate. For example, your Business tier application might
communicate with both a Data Access Logic tier and a message queuing service. The
Data Access Logic tier and message queuing service do not implement the same
interfaces, so you need a separate factory to return the appropriate interoperability
adapter for each one.

For more information about the Factory design pattern, see Design Patterns: Elements
of Reusable Object-Oriented Software.

Adding Interoperability Components to a Multi-Tiered application
It is recommended to apply the following best practices when implementing
interoperability layers between each of the interoperability connection points linking
multi-tiered applications:
● Implement service interfaces that expose each tier’s façade through the

interoperability mechanisms you require.
● Create interoperability adapters either for each service interface or for each use

case, depending on the level of fine control you require.
● Implement an interoperability adapter factory to enable dynamic selection of

interoperability adapters for each service (or resource) with which your
application needs to communicate.

● Provide multiple abstraction layers to ensure maximum flexibility for future
developments.

 Chapter 6: Implementing Interoperability Design Elements 183

Figure 6.7 shows how these interoperability elements link into the elements of a
multi-tiered application from the best practices diagram in Application Architecture for
.NET: Designing Applications and Services.

P
resen

tatio
n

T
ier

B
u

sin
ess

T
ier

D
ata

T
ier

UI Components

UI Process Components

Business Service Facade

BLL Workflows BLL EntitiesBLL Components

DAL

Database (SQL)

Other Resource(s)
[Message Queue, Broker]

Interoperability Adapter Factories Use Case Interoperability Adapters

Presentation Tier Interop Layer

Service Interfaces

Business Tier Interop Layer (Presentation Facing)

Interoperability Adapter Factories Resource Interoperability Adapters

Business Interop Layer (Resource Facing)

Service Interfaces

Resource Interop Layer

In
te

ro
p

 L
ay

er
s

In
te

ro
p

 L
ay

er
s

Figure 6.7
Linking interoperability elements into a multi-tiered application

Now that the interoperability elements have been described, it is time to see how the
developers implemented these in the XBikes sample application.

184 Application Interoperability: Microsoft .NET and J2EE

Implementing Interoperability in XBikes
The development team faced several interesting and unusual challenges when they
integrated the interoperability elements to the XBikes application:
● The application should demonstrate multiple interoperability techniques.
● The application should not be over-complicated.
● The application should be simple to configure.
● The application should not incur excessive performance penalties from the

interoperability methods.

Achieving these aims involved adding interoperability components to the design of
both the .NET Framework and J2EE versions of XBikes. This next section covers these
changes at the architectural level, looking first at how the developers customized the
J2EE version, and the equivalent process in the .NET Framework version. Chapters 7
to 9 then show the details of how the developers implemented these components.

Note: The XBikes application implements multiple service interfaces and interoperability adapters
between each connection point to demonstrate how to use each interoperability mechanism.
However, in a production environment, you would probably implement only one or two between
each connection point, depending on your interoperability requirements.

Adding J2EE Presentation to Business Tier Interoperability
This section looks at the interoperability components that the developers designed
into the Presentation and Business tiers of the J2EE version of XBikes to enable
interoperability with the corresponding tiers in the .NET Framework version.
The client-facing JSP/Struts components in the Presentation tier did not change
significantly. However, the developers made significant changes to the way in which
calls from the Presentation tier pass to the Business tier. These changes involved
adding interoperability components to both the J2EE Presentation and Business tiers.

The following are components that add interoperability features to the J2EE version:
● Service interfaces in the Business tier.
● Use case interoperability adapters in the Presentation tier.
● Use case interoperability adapter factory in the Presentation tier.
● An XML configuration file for the use case interoperability adapter factory.

 Chapter 6: Implementing Interoperability Design Elements 185

Figure 6.8 shows how the developers implemented these components.
P

resen
tatio

n
 In

tero
p

 L
ayer

B
u

sin
ess

In
tero

p
 L

ayer

XBikes – J2EE Architecture — Interop between Presentation & Business Tiers

P
resen

tatio
n

 T
ier

B
u

sin
ess T

ier

Use Case Interop Adapters

Use Case 2 through
Use Case 6

In
P

ro
c

J2E
E

 – R
M

I-IIO
P

J2E
E

 – W
eb

 S
ervice

.N
E

T
 – Ja.N

E
T

.N
E

T
 – W

eb
 S

ervice

Use Case 1
AuthenticateCustomer

U
se C

ase A
d

ap
ter

In
P

ro
c

U
se C

ase A
d

ap
ter

J2E
E

 – R
M

I-IIO
P

U
se C

ase A
d

ap
ter

J2E
E

 – W
eb

 S
ervice

U
se C

ase A
d

ap
ter

.N
E

T
 – Ja.N

E
T

U
se C

ase A
d

ap
ter

.N
E

T
 – W

eb
 S

ervice

Use Case
Interop Adapter

Factory

XML Config
webConfig.xml

JSP/Struts Web Application

Business Service Facade

BLL RMI-IIOP
Service Interface

BLL WS
Service Interface

BLL Ja.NET
Service Interface

BLL JNBridge
Service Interface

U
se C

ase C
om

m
and

A

uthenticateC
ustom

er

U
se C

ase C
o

m
m

an
d

s

U
se C

ase C
om

m
and

P

laceO
rder

U
se C

ase C
om

m
and

G

etC
ategories

U
se C

ase C
om

m
and

G

etS
earchR

esults

U
se C

ase C
om

m
and

G

etP
roductsB

yC
ategoryID

U
se C

ase C
om

m
and

G

etC
ustom

erO
rder

Figure 6.8
XBikes on J2EE Presentation and business tiers with interoperability elements added

The next section describes the interoperability components the developers added.

186 Application Interoperability: Microsoft .NET and J2EE

J2EE Service Interfaces
To expose the J2EE Business tier to both the J2EE and .NET Framework Presentation
tiers, the developers added multiple service interfaces. Each service interface exposes
the J2EE Business tier through different interoperability mechanisms. There are four
services interfaces in the J2EE Business tier:
● Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) —

Exposes the J2EE Business tier through RMI-IIOP for remote consumption by the
J2EE Presentation tier.

● Web service — Exposes the J2EE Business tier through a Web service for
consumption by either the .NET Framework or J2EE Presentation tiers.

● Ja.NET — Exposes the J2EE Business tier through a Ja.NET runtime bridge for
consumption by the .NET Presentation tier.

● JNBridgePro — Exposes the J2EE Business tier through a JNBridge runtime bridge
for consumption by the .NET Presentation tier.

Although the RMI-IIOP service interface is specific to J2EE, the WS service interface
can field requests from either environment.

Note: RMI-IIOP uses Remote Method Invocation, the Java equivalent of .NET Remoting.

J2EE Use Case Interoperability Adapters
To communicate with either the J2EE or .NET Framework Business tiers, the
developers added interoperability adapters to the J2EE Presentation tier. For
flexibility, the XBikes developers implemented a series of interoperability adapters
for each use case, making it easy to select which interoperability technology to use,
depending on whether the next tier is on the same or the alternate platform. The
XBikes design refers to these interoperability adapters as use case interoperability
adapters.

Take the example of the AuthenticateCustomer use case. For this use case, the J2EE
developers implemented five use case interoperability adapters:
● Inproc — Addresses J2EE Business tier’s business service façade directly through

an in-process call in a single computer environment.
● RMI-IIOP — Addresses J2EE Business tier RMI-IIOP service interface.
● J2EE Web service — Addresses J2EE Business tier WS service interface.
● .NET Framework Web service — Addresses .NET Framework Business tier

WS service interface.
● Ja.NET — Addresses .NET Framework Business tier Ja.NET service interface.

 Chapter 6: Implementing Interoperability Design Elements 187

Here you can see that there are three ways of linking from the J2EE Presentation tier
to the J2EE Business tier, and two ways of linking from the J2EE Presentation tier to
the .NET Framework Business tier.

Because the design implements five interoperability adapters for each of the six use
cases, there are a total of thirty use case interoperability adapters in the XBikes J2EE
Presentation tier.

J2EE Use Case Interoperability Adapter Factory
To increase the flexibility in selecting interoperability adapters, the developers added
an interoperability factory to the J2EE Presentation tier. Rather than call the use case
interoperability adapters directly, the J2EE Presentation tier components first call an
interoperability adapter factory, which the design calls the use case interoperability
factory. The factory then checks with an XML configuration file to discover which use
case interoperability adapter to select for each use case. The J2EE Presentation tier
components then invoke that use case interoperability adapter to connect to the
.NET Framework or J2EE Business tiers.

Note: This configuration technique allows you to specify different use case interoperability adapters
for individual use cases, giving you maximum flexibility. If you do not foresee the need to change the
adapters, you can omit the factory and simply load the correct adapter within your Presentation tier
logic.

For example, when a user tries to log on to the XBikes Web site, this action requires
the AuthenticateCustomer use case. Rather than select and call the use case
interoperability adapter directly, the Web page calls the use case interoperability
adapter factory. The use case interoperability adapter factory checks with the
configuration file, which contains configuration information mapping use cases to
use case interoperability adapters. The factory then returns and loads the correct use
case interoperability adapter for the requested use case.

188 Application Interoperability: Microsoft .NET and J2EE

J2EE XML Configuration File
The use case interoperability adapter factory in the J2EE application retrieves
configuration information from WebConfig.xml. This file contains a text-based listing
of settings that link the use cases to the use case interoperability adapters. Hence the
AuthenticateCustomer use case might be set to use the .NET Framework Web service
use case interoperability adapter, whereas the GetCategories use case could be set to
use the RMI-IIOP use case interoperability adapter. This ensures no interdependence
between use cases.

For more information about the settings available to the use case interoperability
adapter factory in the J2EE Presentation tier, see Appendix A.

Adding J2EE Business to Data Tier Interoperability
The developers added interoperability components on the J2EE Business and Data
tiers to enable interoperability. The J2EE XBikes application has two resources in the
Data tier — the SQL Server database and a WebSphere MQ message queuing system.
Instead of calling resources in the Data tier directly, the J2EE Business tier
components make calls through the various interoperability components.

Interoperability components added to enable interoperability on the J2EE Business
and Data tiers include the following:
● Service interfaces in the Data tier.
● Resource interoperability adapters in the Business tier.
● Resource interoperability adapter factories in the Business tier.
● An XML configuration file for the resource interoperability adapter factories.

 Chapter 6: Implementing Interoperability Design Elements 189

Figure 6.9 shows how these elements appear.

B
u

sin
ess In

tero
p

 L
ayer

Entity Beans

Products
Data Bean

Order
Data Bean

Categories
Data Bean

Customer
Data Bean

D
ata In

tero
p

L
ayer

XBikes – J2EE Architecture — Interop between Business & Data Tiers
B

u
sin

ess T
ier

D
ata T

ier

Business Service Facade

U
se C

ase C
om

m
and

A

uthenticateC
ustom

er

U
se C

ase C
o

m
m

an
d

s

U
se C

ase C
om

m
and

P

laceO
rder

U
se C

ase C
om

m
and

G

etC
ategories

U
se C

ase C
om

m
and

G

etS
earchR

esults

U
se C

ase C
om

m
and

G

etP
roductsB

yC
ategoryID

U
se C

ase C
om

m
and

G

etC
ustom

erO
rder

R
eso

u
rce

In
tero

p
 A

d
ap

ters

R
esource
Q

ueue

R
esource Interop

 A
d

ap
ter

J2E
E

 – JM
S

 M
Q

 S
eries

R
esource
D

A
L

R
esource Interop

 A
d

ap
ter

J2E
E

 – W
eb

 S
ervice

R
esource Interop

 A
d

ap
ter

J2E
E

 – R
M

I-IIO
P

R
esource Interop

 A
d

ap
ter

In
P

ro
c

R
esource Interop

 A
d

ap
ter

.N
E

T
 – W

eb
 S

ervice

R
esource Interop

 A
d

ap
ter

N
E

T
 – Ja.N

E
T

XML Config
BLLConfig.xml

Resource Interop Adapter Factories

Resource
DAL

Resource
Queue

DAL Ja.NET
Service

Interface

DAL JNBridge
Service

Interface

DAL WS
Service

Interface

DAL RMI-IIOP
Service

Interface

Data Access Logic Facade WebSphere MQ

Figure 6.9
XBikes on J2EE Business and Data tiers with interoperability elements added

The next section describes the interoperability components the developers added.

190 Application Interoperability: Microsoft .NET and J2EE

J2EE Service Interfaces
The developers added multiple service interfaces to expose the resources in the J2EE
Data tier to both the J2EE and .NET Framework Business tiers. Each service interface
exposes a resource in the J2EE Data tier through a different interoperability
mechanism.

There are four service interfaces to expose the database resource, or Data Access
Logic tier, in the J2EE Data tier:
● Remote Method Invocation over Internet Inter-Orb Protocol (RMI-IIOP) —

Exposes the J2EE Data Access Logic resource by way of RMI-IIOP for remote
consumption by the J2EE Business tier.

● Web service — Exposes the J2EE Data Access Logic resource through a Web service
for consumption by either the .NET Framework or J2EE Business tiers.

● Ja.NET — Exposes the J2EE Data Access Logic resource through a Ja.NET runtime
bridge for consumption by the .NET Framework Business tier.

● JNBridgePro — Exposes the J2EE Data Access Logic resource through a JNBridge
runtime bridge for consumption by the .NET Framework Business tier.

Like with the Presentation to Business tier interface, the RMI-IIOP service interface
is J2EE-specific; whereas the WS service interface can field requests from either
environment.

There are three service interfaces that expose the WebSphere MQ message queuing
resource:
● RMI-IIOP-JMS — Exposes the WebSphere MQ resource for remote consumption

by the J2EE Business tier.
● Ja.NET-JMS — Exposes the WebSphere MQ resource through a Ja.NET runtime

bridge that uses JMS to connect to the .NET Framework Business tier.
● JNBridge-JMS — Exposes the WebSphere MQ resource through JNBridge that

uses JMS to connect to the .NET Framework Business tier.

The developers also implemented a sample console application that reads messages
from the WebSphere MQ message queue and sends them to the Data Access Logic
service façade.

J2EE Resource Interoperability Adapters
The developers also added interoperability adapters to the J2EE Business tier
to communicate with either the J2EE or .NET Framework Data tiers. They also
implemented a set of interoperability adapters for each resource in the Data tier
to demonstrate multiple interoperability techniques. The design refers to these as
resource interoperability adapters. Unlike the use case interoperability adapters in
the J2EE Presentation tier where there is a set of interoperability adapters for each
use case, there is only one set of resource interoperability adapters for each resource’s
service interface.

 Chapter 6: Implementing Interoperability Design Elements 191

To communicate with the Data Access Logic resource in both the .NET Framework
and J2EE Data tiers, the developers implemented the following resource
interoperability adapters:
● InProc — Addresses the Data Access Logic service façade in the J2EE Data tier

directly through an in-process call in a single computer environment.
● RMI-IIOP — Addresses the Data Access Logic resource RMI-IIOP service interface

in the J2EE Data tier.
● J2EE Web service — Addresses the Data Access Logic resource WS service

interface in the J2EE Data tier.
● .NET Framework Web service — Addresses the Data Access Logic resource WS

service interface in the .NET Framework Data tier.
● Ja.NET — Addresses the Data Access Logic resource Ja.NET service interface in the

.NET Framework Data tier.

This gives you three ways of linking from the J2EE Business tier to the Data Access
Logic resource in the J2EE Data tier, and two ways of linking from the J2EE Business
tier to the Data Access Logic resource in the .NET Framework Data tier.

To communicate with the WebSphere MQ message queuing resource in the J2EE Data
tier, the developers implemented only one resource interoperability adapter. This
uses the JMS API to place messages in the WebSphere queue. The PlaceOrder use
case command in the Business tier is the only process that calls this resource
interoperability adapter.

J2EE Resource Interoperability Factories
The developers added interoperability adapter factories to the J2EE Business tier to
provide flexibility when selecting the interoperability mechanism for connecting to
Data Access Logic and queue resources in the J2EE Data tier. Instead of calling the
resource interoperability adapters directly, the J2EE Business tier components first
call the interoperability adapter factory, which the design calls the resource
interoperability factory. The factory checks with an XML configuration file to discover
which interoperability adapter to select to connect to the resource. The J2EE Business
tier components then use that resource interoperability adapter to connect to the
corresponding resource in the .NET Framework or J2EE Data tiers.

The XBikes design implements two resource interoperability adapter factories:
● Data Access Logic
● Queue

The resource interoperability adapter factories work the same way as the use case
interoperability adapter factory in the Presentation tier. The only difference is that
they return interoperability adapters for the Data Access Logic and message queue
resources in the Data tier.

192 Application Interoperability: Microsoft .NET and J2EE

Like with the Presentation tier, this configuration technique allows you to specify
different resource interoperability adapters for two resources, giving you maximum
flexibility. If you do not foresee the need to change the adapters, you can omit the
factory and simply load the correct adapter within your Business tier logic. However,
it is recommended that you implement interoperability adapter factories to keep your
application responsive to future changes.

J2EE XML Configuration File
The resource interoperability adapter factory in the J2EE application retrieves
configuration information from an XML configuration file named Bllconfig.xml.
This XML file contains settings linking the resources to the resource interoperability
adapters. For example, you might configure the Data Access Logic resource
interoperability factory to use the .NET Framework Web service resource
interoperability adapter for all calls to the Data Access Logic.

For more information about the settings available to the resource interoperability
adapter factories in the J2EE Business tier, see Appendix A.

Adding .NET Framework Presentation to Business Tier Interoperability
The interoperability components the developers implemented in the .NET
Framework Presentation and Business tiers are very similar to those in the
corresponding tiers of the J2EE version of XBikes. The components that add
interoperability features to the .NET Framework version include the following:
● Service interfaces in the Business tier.
● Use case interoperability adapters in the Presentation tier.
● Use case interoperability adapter factory in the Presentation tier.
● An XML configuration file for the use case interoperability adapter factory.

 Chapter 6: Implementing Interoperability Design Elements 193

Figure 6.10 shows how the linking of the Presentation and Business tiers with the
.NET Framework interoperability components added.

P
resen

tatio
n

 In
tero

p
 L

ayer
B

u
sin

ess
In

tero
p

 L
ayer

XBikes .NET Architecture — Interop between Presentation & Business Tiers

P
resen

tatio
n

 T
ier

B
u

sin
ess T

ier

Use Case Interop Adapters

ASP.NET Web Application

Business Service Facade

U
se C

ase C
om

m
and

A

uthenticateC
ustom

er

U
se C

ase C
o

m
m

an
d

s

U
se C

ase C
om

m
and

P

laceO
rder

U
se C

ase C
om

m
and

G

etC
ategories

U
se C

ase C
om

m
and

G

etS
earchR

esults

U
se C

ase C
om

m
and

G

etP
roductsB

yC
ategoryID

U
se C

ase C
om

m
and

G

etC
ustom

erO
rder

Use Case 2 through
Use Case 6

.N
E

T R
em

oting

.N
E

T
 – W

eb
 S

ervice

J2E
E

 – W
eb

 S
ervice

J2E
E

 – JN
B

rid
g

e

J2E
E

 – Ja.N
E

T

In
P

ro
c

Use Case 1
AuthenticateCustomer

U
se C

ase A
d

ap
ter

.N
E

T R
em

oting

U
se C

ase A
d

ap
ter

.N
E

T
 – W

eb
 S

ervice

U
se C

ase A
d

ap
ter

J2E
E

 – W
eb

 S
ervice

U
se C

ase A
d

ap
ter

J2E
E

 – JN
B

rid
g

e

U
se C

ase A
d

ap
ter

J2E
E

 – Ja.N
E

T

U
se C

ase A
d

ap
ter

In
P

ro
c

Use Case
Interop
Adapter
Factory

XML
Config

web.config

BLL Remoting
Service Interface

BLL WS
Service Interface

BLL Ja.NET
Service Interface

Figure 6.10
XBikes on .NET Framework Presentation and Business tiers with interoperability elements added

The next section describes the interoperability components the developers added.

194 Application Interoperability: Microsoft .NET and J2EE

.NET Framework Service Interfaces
To expose the .NET Framework Business tier to both the .NET Framework and J2EE
Presentation tiers, multiple service interfaces were added. In the J2EE Business tier,
each service interfaces exposes the .NET Framework Business tier by way of different
interoperability mechanism. There are three services interfaces in the .NET
Framework Business tier. The service interfaces are the following:
● .NET Remoting — Exposes the .NET Framework Business tier by way of .NET

Remoting so that it can be consumed by the .NET Framework Presentation tier
remotely.

● Web service — Exposes the .NET Framework Business tier by way of a Web
service so that it can be consumed by either the .NET Framework or J2EE
Presentation tiers.

● Ja.NET — Exposes the .NET Framework Business tier by way of Ja.Net for
consumption by the J2EE Presentation tier.

Although the .NET Remoting service interface is .NET Framework-specific, the
WS service interface can field requests from either environment.

Note: The .NET Remoting service interface uses typed datasets to exchange data between .NET
Framework components. There is a known performance issue when sending DataSet objects across
.NET Remoting calls. This is due to the way DataSet objects are serialized in the .NET Framework
version 1.0 and 1.1. In a production application, consider implementing surrogate classes that
implement their own serialization process for higher performance.

.NET Framework Use Case Interoperability Adapters
As in the J2EE version, to communicate with either the J2EE or .NET Framework
Business tiers, interoperability adapters were added to the .NET Framework
Presentation tier. In the J2EE Presentation tier, a series of interoperability adapters
were implemented for each use case. This enables you to choose different
interoperability mechanisms to connect for each use case. These interoperability
adapters are referred to as use case interoperability adapters.

 Chapter 6: Implementing Interoperability Design Elements 195

The .NET Framework application requires different use case interoperability adapters
than the J2EE application to reflect the mechanisms for communicating between the
.NET Framework and J2EE Presentation and Business tiers. The .NET Framework
developers implemented the following six interoperability adapters for each use case:
● InProc or native mode adapter — Addresses .NET business façade directly.
● .NET Remoting adapter — Addresses .NET Remoting service interface.
● .NET Web services adapter — Addresses .NET WS service interface.
● J2EE Web services adapter — Addresses J2EE WS service interface.
● J2EE Ja.NET adapter — Addresses J2EE Ja.NET service interface.
● J2EE JNBridge adapter — Addresses J2EE JNBridge service interface.

There are three ways of linking from the .NET Framework Presentation tier to the
.NET Framework Business tier and three ways of linking from the .NET Framework
Presentation tier to the J2EE Business tier for each use case. Because six
interoperability adapters are implemented for each of the six use cases, there are a
total of 36 use case interoperability adapters in the XBikes .NET Framework
Presentation tier.

Note: The InProc use case interoperability adapter can only be used in a single computer
environment when calls can be made natively to the Business tier on the same computer without
the need for going across the network.

.NET Framework Use Case Interoperability Adapter Factory
An interoperability adapter factory was added to the .NET Framework Presentation
tier so you can use a variety of interoperability mechanisms. Instead of calling the
use case interoperability adapters directly, the .NET Framework Presentation tier
components first call an interoperability adapter factory, referred to as use case
interoperability factory, which then checks with an XML configuration file to discover
which use case interoperability adapter to use for each use case. The .NET
Framework Presentation tier components then use that use case interoperability
adapter to connect to the .NET Framework or J2EE Business tiers.

The use case interoperability adapter factory in the .NET Framework Presentation
tier is similar to the one in the J2EE Presentation tier.

196 Application Interoperability: Microsoft .NET and J2EE

.NET Framework XML Configuration File
The use case interoperability adapter factory in the .NET Framework version of
the XBikes application retrieves configuration information from the XML-based
Web.config configuration file of the ASP.NET Presentation tier application. Like the
J2EE version, this file contains a text-based listing of settings linking the use cases
to the use case interoperability adapters.

For more information about the settings available to the use case interoperability
adapter factory in the .NET Framework Presentation tier, see Appendix B.

Adding .NET Framework Business to Data Tier Interoperability
The developers added components to the .NET Framework Business and Data tiers
to enable interoperability. Like the J2EE version, the .NET Framework XBikes
application has two resources in the Data tier. These are the SQL Server database
and a message queuing system. Instead of calling resources in the Data tier directly,
the .NET Framework Business tier components make calls through the various
interoperability components.

The following are interoperability components added to enable interoperability on
the .NET Framework Business and Data tiers:
● Service interfaces in the Data tier.
● Resource interoperability adapters in the Business tier.
● Resource interoperability adapter factories in the Business tier.
● An XML configuration file for the resource interoperability adapter factories.

 Chapter 6: Implementing Interoperability Design Elements 197

Figure 6.11 shows how the developers implemented these components.

B
u

sin
ess In

tero
p

 L
ayer

DAL Components

Products
DALC

Order
DALC

Categories
DALC

Customer
DALC

D
ata In

tero
p

L
ayer

XBikes .NET Architecture — Interop between Business & Data Tiers
B

u
sin

ess T
ier

D
ata T

ier

Business Service Facade

U
se C

ase C
om

m
and

A

uthenticateC
ustom

er

U
se C

ase C
o

m
m

an
d

s

U
se C

ase C
om

m
and

P

laceO
rder

U
se C

ase C
om

m
and

G

etC
ategories

U
se C

ase C
om

m
and

G

etS
earchR

esults

U
se C

ase C
om

m
and

G

etP
roductsB

yC
ategoryID

U
se C

ase C
om

m
and

G

etC
ustom

erO
rder

R
eso

u
rce In

tero
p

 A
d

ap
ters

R
esource Q

ueue

R
esource Interop

 A
d

ap
ter

J2E
E

 – JN
B

ridge M
Q

 S
eries

R
esource Interop

 A
d

ap
ter

J2E
E

 – Ja.N
E

T
 M

Q
 S

eries

R
esource Interop

 A
d

ap
ter

M
S

M
Q

R
esource D

A
L

R
esource Interop

 A
d

ap
ter

In
P

ro
c

R
esource Interop

 A
d

ap
ter

.N
E

T R
em

oting

R
esource Interop

 A
d

ap
ter

.N
E

T
 – W

eb
 S

ervice

R
esource Interop

 A
d

ap
ter

J2E
E

 – W
eb

 S
ervice

R
esource Interop

 A
d

ap
ter

J2E
E

 – JN
B

rid
g

e

R
esource Interop

 A
d

ap
ter

J2E
E

 – Ja.N
E

T

XML Config
dllhost.exe.config

Resource Interop Adapter Factories

Resource
DAL

Resource
Queue

Data Access Logic Facade

DAL .NET Remoting
Service Interface

DAL WS
Service Interface

DAL Ja.NET
Service Interface

MSMQ

Figure 6.11
XBikes on .NET Framework Business and Data tiers with interoperability elements added

Architecturally, this diagram is very similar to the J2EE version in Figure 6.9.

198 Application Interoperability: Microsoft .NET and J2EE

.NET Framework Service Interfaces
The developers added multiple service interfaces to expose the resources in the
.NET Framework Data tier to both the J2EE and .NET Framework Business tiers.
Each service interfaces presents a resource in the .NET Framework Data tier through
a different interoperability mechanism.

There are three service interfaces that expose the database resource or Data Access
Logic tier in the .NET Framework Data tier:
● .NET Remoting — Exposes the .NET Framework Data Access Logic resource

through .NET Remoting for remote consumption by the .NET Framework
Business tier.

● Web service — Exposes the .NET Framework Data Access Logic resource through
a Web service for consumption by either the .NET Framework or J2EE Business
tiers.

● Ja.NET — Exposes the .NET Framework Data Access Logic resource though
a Ja.NET runtime bridge for consumption by the J2EE Business tier.

Although the .NET Remoting service interface is .NET Framework-specific,
the WS service interface can field requests from either environment.

Like the J2EE version of XBikes, a sample console application reads OrderData
messages off of a MSMQ queue then calls the Data Access Logic service façade and
adds the order to the database. You can consider this sample console application
(DALMSMQServiceInterface) a fourth service interface for the Data Access Logic.
Unlike the J2EE version, the .NET Framework version requires no service interfaces
to expose MSMQ to the .NET Framework Business tier, because the MSMQ resource
interoperability adapter can communicate with MSMQ directly.

.NET Framework Resource Interoperability Adapters
The developers added multiple interoperability adapters were added to the .NET
Framework Business tier to communicate with either the J2EE or .NET Framework
Data tiers. To demonstrate multiple interoperability techniques, the design
implements a set of interoperability adapters or resource interoperability adapters
for each resource in the Data tier. Unlike the use case interoperability adapters in the
.NET Framework Presentation tier, there is only one set of resource interoperability
adapters for each resource’s service interface.

 Chapter 6: Implementing Interoperability Design Elements 199

To communicate with the Data Access Logic resource in both the .NET Framework
and J2EE Data tiers, the developers implemented the following resource
interoperability adapters:
● InProc or native mode adapter — Addresses the .NET Framework Data Access

Logic service façade directly through an in-process call in a single computer
environment.

● .NET Remoting adapter — Addresses the Data Access Logic resource in the
.NET Framework Data tier through a .NET Remoting service interface.

● .NET Web services adapter — Addresses the Data Access Logic resource in the
.NET Framework Data tier through a WS service interface.

● J2EE Web services adapter — Addresses the Data Access Logic resource in the
J2EE Data tier through a WS service interface.

● J2EE Ja.NET adapter — Addresses the Data Access Logic resource in the J2EE Data
tier through the Ja.NET service interface.

● J2EE JNBridge adapter — Addresses the Data Access Logic resource in the J2EE
Data tier through the JNBridge service interface.

These adapters give you three ways of linking from the .NET Framework Business
tier to the Data Access Logic resource in the .NET Framework Data tier and three
ways of linking from the .NET Framework Business tier to the Data Access Logic
resource in the J2EE Data tier.

Note: You can only use the InProc use case interoperability adapter in a single computer
environment as InProc does not support connections to a remote computer.

To communicate with the message queuing resources in the .NET Framework and
J2EE Data tiers, the developers implemented the following three resource
interoperability adapters:
● MSMQ — Uses the System.Messaging namespace addresses to address the

MSMQ queue resource in the .NET Framework Data tier.
● WebSphere MQ-Ja.NET-JMS — Uses Ja.NET and JMS to address the WebSphere

MQ queue in the J2EE Data tier.
● WebSphere MQ-JNBridge-JMS — Uses JNBridge and JMS to address the

WebSphere MQ queue in the J2EE Data tier.

Again, the PlaceOrder use case command in the Business tier is the only use case that
accesses these resource interoperability adapters.

200 Application Interoperability: Microsoft .NET and J2EE

.NET Framework Resource Interoperability Factories
The developers added interoperability adapter factories to the .NET Framework
Business tier to increase flexibility in selecting which interoperability mechanism
connects with the Data Access Logic and queue resources in the .NET Framework
Data tier. The design implements these interoperability adapter factories in the same
fashion as the corresponding ones in the J2EE Business tier and refers to them as
resource interoperability adapter factories.

The developers implemented two resource interoperability adapter factories in
XBikes, one for the Data Access Logic and one for the queue.

.NET Framework XML Configuration File
The resource interoperability adapter factory in the .NET Framework application
retrieves configuration information from an XML configuration file named
Dllhost.exe.config. This file in the \System32 folder and contains a text-based listing
of settings linking the resources to the resource interoperability adapters. For
example, you could configure the Data Access Logic resource interoperability factory
to use the J2EE Web service resource interoperability adapter for all calls to the Data
Access Logic.

Note: This configuration is for illustrative purposes only. A production application should not read
configuration settings from the \System32 folder. For application security best practices, refer to
http://www.microsoft.com/practices.

For more information about the settings available to the resource interoperability
adapter factories in the .NET Framework Business tier, see Appendix B.

Summary
This chapter reviewed the elements that you need to add to an application to enable
interoperability. It also covered best practice recommendations for interoperability.
It then looked at how the developers implemented these elements in the application
architecture for the XBikes sample application. It described how this enabled the
developers to link the two platforms using multiple techniques and, importantly,
to change the linking method. The remaining chapters describe how the developers
added these interoperability elements.

http://www.microsoft.com/practices

 Chapter 6: Implementing Interoperability Design Elements 201

References
For more information about the Command, Façade, and Factory design patterns
Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (ISBN 0-201-63361-2).

For more information about the Value Object pattern, see Core J2EE Patterns Best
Practices and Design Strategies by Deepak Alur, Dan Malks, and John Crupi
(ISBN 0-13-064884-1).

For more information about implementing typed datasets in .NET Framework
See “Creating XML Schemas and Datasets”
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html
/vboriCreatingSchemasDataSets.asp

For more information about the service interfaces pattern
See “Enterprise Solution Patterns: Service Interface”
http://msdn.microsoft.com/practices/type/patterns/enterprise/DesServiceInterface/

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vboriCreatingSchemasDataSets.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vboriCreatingSchemasDataSets.asp
http://msdn.microsoft.com/practices/type/patterns/enterprise/DesServiceInterface/

7
Integrating .NET in the
Presentation Tier

Introduction
You should now understand the architecture of the XBikes application and the
interoperability techniques that XBikes uses. In this chapter, you look in detail at the
code that allowed the XBikes developers to implement interoperability by integrating
an ASP.NET Presentation tier application with a J2EE Business tier.

When deciding to add an ASP.NET Presentation tier to a J2EE application, there are
three areas you need to address, regardless of the technology you decide to use:
● Which data format to use for interoperability.
● How to design and build the service interfaces in the J2EE application.
● How to design and build the interoperability adapters in the .NET Framework

application.

There are several factors to consider when deciding on which interoperability
technology is best for your project. Performance, standards compliance and cost are
just some of the factors that affect your choice and each choice has advantages and
disadvantages.

Web services offers an industry standard solution, supported by many vendors on
a variety of platforms including .NET and Java. However, while being fairly easy to
implement, Web services do not offer the performance of some third party binary
interoperability technologies.

JNBridgePro from JNBridge and Ja.NET from Intrinsyc both offer high performance,
high control binary solutions, although they do not completely conform to open
industry standards.

204 Application Interoperability: Microsoft .NET and J2EE

Note: Choose Web services as the interoperability technology unless performance is an overriding
requirement. This is because Web services follow open standards and are the best way to ensure
interoperability with future applications and industry developments.

For a detailed discussion about choosing an interoperability technology, see
Chapters 3 to 5.

Determining Data Exchange Formats and Types
In Chapter 3, “Interoperability Fundamentals,” you saw how Java and .NET complex
data types are unlikely to correlate between the two platforms. You also saw how it
is possible to create a common format for exchanging data between the platforms
through the use of custom serializable classes generated from a common XML
Schema.

In Chapter 4, “Interoperability Technologies: Point to Point,” you saw how Ja.Net
and JNBridgePro can create proxies for Java data classes that a .NET Framework
application can then use. While these are two valid solutions for getting data from
Java to .NET, using custom data classes or proxy Java classes may not be desirable
within the .NET Presentation tier. It is likely that you will want to use native .NET
data types, such as a typed DataSet, to take advantage of the rich features provided
by ASP.NET such as data binding.

To get around this issue, you either need to package the data up on the Java side into
the format you want for .NET, or send the Java data and repackage it on the .NET
side. To do this, your service interfaces and interoperability adapters may need to
manipulate the data. In the XBikes application, the mapping techniques differ,
depending on the interoperability technology.

For a detailed discussion about data exchange factors, see Chapter 3.

Designing and Building the Service Interface
The XBikes sample application follows the J2EE best practices described in Chapter 6,
“Implementing Interoperability Design Elements,” so access to the Business tier is
through the session bean BusinessServiceFacade. To expose this functionality to the
.NET Framework application, the developers created a service interface that exposes
BusinessServiceFacade. Depending upon the interoperability technology in use, this
service interface class either calls the existing service façade directly or manipulates
the data before calling the service façade. Again, on the return path the service
interface either returns the data to the service interface caller directly or manipulates
it before returning it. Figure 7.1 shows this arrangement.

 Chapter 7: Integrating .NET in the Presentation Tier 205

Service Interface Service Facade
BusinessServiceFacade

ASP.NET
Application

J2EE Application
BLL Tier

Figure 7.1
Implementing a service interface and service façade to link the J2EE Business tier to the
.NET Presentation tier

For a detailed discussion of service interfaces, see Chapter 6.

Designing and Building the Interoperability Adapters
In the XBikes application, the developers created an Interoperability adapter for each
use case. This choice allows selection of the interoperability technology at the use
case level.

Note: Implementing interoperability adapters at the use case level was mainly for demonstration
purposes. Your application may not require that level of granularity.

Figure 7.2 shows the interoperability adapters linking the ASP.NET application to the
service interface.

Interoperability
Adapter

Service Interface

ASP.NET
Application

Interoperability
Adapter

Interoperability
Adapter

Figure 7.2
Interoperability adapters connecting the ASP.NET application to the service interface

For more information about implementing interoperability adapters, see Chapter 6.

206 Application Interoperability: Microsoft .NET and J2EE

Using Web Services for Interoperability
Web services are the recommended interoperability technique, unless performance or
other considerations require a binary solution. This section looks at how you can use
Web services to implement interoperability. It covers the data format choices, how to
build the service interface for the Web service in Java using GLUE, from The Mind
Electric (recently acquired by webMethods, Inc.) and how to build the .NET
interoperability adapters.

Deciding on a Data Format
With a Web service interface, the temptation is to use the service interface to return
complex types, allowing the adapters to create proxies of these complex types and
consume them. However, because of the issues of handling XSD-based complex types
in Web services, not all Web services stacks are compatible. Experience shows that
what works for one Web service stack may break another. To solve this problem, you
should look at exchanging only primitive data types, such as strings, integers and so
on. All Web service stacks support these data types, and these provide the greatest
levels of flexibility and client access.

If you use primitive data types and need to return something more complex, like an
order, you have to package the data as a string. The best solution for this is to
populate a string with an XML representation of the data. This XML encoding should
follow an agreed schema.

Note: There is little performance difference between passing Java data types directly and serializing
them and passing them as strings, because the Web service has to serialize the Java data into XML
anyway.

In the XBikes application, the J2EE and .NET developer teams decided upon a
common data format for the Web services. They created an XSD Schema from this
design, which both teams then used to create the appropriate classes and mapping
files.

Building the Service Interface in J2EE
You now need to create a service interface that exposes the J2EE Business tier façade
through Web services. This becomes the J2EE Web service service interface. This
publication refers to these as WS service interfaces.

Building the Java Web service is a fairly straight forward process. First, create Java
data classes based upon the XSD schemas for the messages. Then you need to create
Java helper classes that parse the data classes based upon the XSD schema and
convert the data to and from XML formatted strings. The Java data classes can then
be serialized in to XML formatted strings and back again using the helper classes.

 Chapter 7: Integrating .NET in the Presentation Tier 207

You then build a Java class that exposes the correct methods for the Web service. This
class accepts and returns primitive data types, performs any data conversion between
what the Web service uses and what the Business tier service façade(s) expect, and
calls the correct method on the service façade. Once you create this Java class, you
can expose this as a Web service using whatever techniques your Web service stack
provides.

To build your Java Web service, complete the following tasks:
1. Create the XSD-based data types and XML mapping for serialization.
2. Create a Java Helper Class
3. Create and expose the Java class as a Web service.

Creating the Data Types and XML Mapping
The first part in creating the WS service interface is to create any data manipulation
code you need. Since you should have an XSD Schema to work with, you can use one
of the many Java XML products to generate a Java class from this schema.

Many Java XML products contain mapping files, which map a field in the class to an
element or attribute in the XML Schema. Sometimes your existing classes map to the
correct Schema without needing an intermediary. If this is the case, create mapping
files for you existing classes, as this removes the step of taking the data from the
existing Java classes into the Schema-based Java classes.

The XBikes developers used GLUE as the Java Web services stack. GLUE also
contains Electric XML in the same package. Electric XML includes tools for building
Java classes from an XSD. Electric XML also produces a mapping file which GLUE
uses when reading or writing the XML data to or from Java classes.

The developers used these tools to build the Java classes from the XSD files.
Conveniently, the generated classes were almost the same as the existing Java data
classes. In these cases, the developers modified the created mapping files and then
serialized the existing classes.

The following steps illustrate how to create the Java class from the CustomerData
XSD files, which the developers implemented in the AuthenticateCustomer use case
using the GLUE tools:
1. The XBikes developers designed the CustomerData XSD file using the XSD

Designer in Visual Studio .NET 2003. For more information about XSD Designer
and XSD files, see Chapter 3.

Note: These steps assume the computer has a licensed copy of GLUE installed and a valid Java
path configured.

208 Application Interoperability: Microsoft .NET and J2EE

2. The developers created the Java classes based on the CustomerData.xsd file. GLUE
provides a schema2java tool, which the developers used to create the Java class in
the correct package for the project by running the following command.

schema2Java CustomerData.xsd -g -p xbikes.common.dataconverters.customers

This command generated two classes, Customers_TYPE.Java and
CustomerData_TYPE.Java. The tool also generated a CustomerData.map which the
serializer uses to map the fields to the correct XML elements.

Creating the Java Helper Class
After you have these XSD-based classes, you should move the data from the original
Java data classes into the XSD-based classes. After you populate the XSD classes, you
need to serialize them to an XML formatted string. It makes sense to put this
serialization code into a method in a helper class, and this is what the XBikes
developers did.

The following steps illustrate how the developers created the Java helper class for the
CustomerData XSD based classes:
1. The Developers created a helper class containing two methods to read and write

the data to and from a string. The methods accepted a single parameter for the
type of data you want to convert, and returned a single value of the converted
type. The following method signatures show this.

public static String orderToString(Order o);
public static Order StringToOrder(String o);

2. The developers then added the files created in steps 1 and 2 to the Java project,
placing them in the common package for easy access. As you can see from the
schema2Java command line in step 1, the package destination was
xbikes.common.dataconverters.customers.

3. As GLUE is the chosen environment, the team added Glue.jar to the build path.
4. Next the developers generated the helper class to perform the conversion to and

from the Java classes into the strings. They added a new class called
CustomerConverter to the xbikes.common.dataconverters package.

5. The developers added two methods to the CustomerConverter class, one to
convert the Java data into a string, and the other to convert a string into the Java
data. These methods use the GLUE serializer to read and write the XML. Because
the existing Java CustomerData class is not compatible with the schema, this
requires population of the CustomerData_TYPE and Customers_TYPE classes
as part of the conversion. This code listing shows the completed
CustomerConverter class.

 Chapter 7: Integrating .NET in the Presentation Tier 209

public final class CustomerConverter
{
 private static final String WRITER = "CustomerData";
 private static final String NAMESPACE =
 "http://tempuri.org/CustomerData.xsd";

 public static CustomerData stringToCustomerData(String xml)
 throws XBikesInteropException
 {
 try
 {
 // Need to convert the string into xml
 Document d = new Document(xml);
 IReader reader = new LiteralReader(d);
 CustomerData_TYPE myCustomer =
 (CustomerData_TYPE) reader.readObject(CustomerData_TYPE.class);
 Customers_TYPE customer = myCustomer.getCustomers();
 CustomerData cd = new CustomerData();
 cd.setAddress(customer.getEmailAddress());
 cd.setCustomerID(customer.getCustomerID());
 cd.setName(customer.getFullName());
 cd.setPassword(customer.getPassword());
 cd.setZip(customer.getZipCode());
 return cd;
 }
 catch (Exception e)
 {
 System.out.println(e.getMessage());
 throw new XBikesInteropException(e.getMessage());
 }
 }
 public static String customerDataToString(CustomerData cd)
 throws XBikesInteropException
 {
 try
 {
 // Move the data from the internal Java classes into those
 // generated by the schema tool
 Customers_TYPE customer = new Customers_TYPE();
 customer.setCustomerID(cd.getCustomerID());
 customer.setEmailAddress(cd.getAddress());
 customer.setFullName(cd.getName());
 customer.setPassword(cd.getPassword());
 customer.setZipCode(cd.getZip());
 CustomerData_TYPE customerData = new CustomerData_TYPE();
 customerData.setCustomers(customer);
 // Write the object to a string, via the LiteralWriter / Document
 // and StringBuffer
 IWriter writer = new LiteralWriter(WRITER);
 writer.writeObject(customerData);
 writer.writeNamespace("", NAMESPACE);
 Document d = writer.getDocument();

(continued)

210 Application Interoperability: Microsoft .NET and J2EE

(continued)
 String sCustomerData = "";
 StringWriter sw = new StringWriter();
 d.write(sw);
 sCustomerData = sw.getBuffer().toString();
 return sCustomerData;
 }
 catch (Exception e)
 {
 System.out.println(e.getMessage());
 throw new XBikesInteropException(e.getMessage());
 }
}

Creating and Exposing a Java Class as a Web Service
Your final task is to build and expose the Java Web service. The exact mechanics
of this depend on which Web service stack you have decided to use. The XBikes
developers used GLUE, so there may be steps that you do not need to carry out
in your chosen stack.

The Mind Electric, like many other Java Web service vendors, implements Web
services in GLUE through a servlet. Therefore you need a Web application to host
this component. The Web service needs to contain all the methods that you want to
expose from the BusinessServiceFacade, but rather than return the Java data types,
you should return strings. The Web service therefore should convert any Java data
types into strings containing XML, that has been formatted according to the XSD
files. In the following example, you already have the code for this in a helper, so you
simply need to make a method call. The flow of logic in any of the Web service
methods is as follows:
1. Application calls the Web service method.
2. Web service passes any data that requires converting to the helper class.
3. The Web service creates the home interface for the BusinessServiceFacade session

bean.
4. The Web service calls the appropriate method on the BusinessServiceFacade,

passing the converted data.
5. If the BusinessServiceFacade returns data, use the helper class to convert this to

a string.
6. Return the string representation of the data back to the calling application.

 Chapter 7: Integrating .NET in the Presentation Tier 211

Figure 7.3 shows this in action.

Data Converter
Helper

Web Service
Service Interface

Business
Service Facade

ASP.NET
Presentation Tier

Figure 7.3
Using the Data Helper class in a Web service

You now have all the pieces you need to build the Web service. Because GLUE
implements the Web service stack as a servlet, you need to create a Web project in
the XBikes solution to host this servlet.

Note: GLUE also provides its own container to run GLUE Web services if you are not using an
application server.

The XBikes developers carried out the following steps to implement the Web service:
1. The developers created a new Web Project called XBikesBLLServiceInterface

within IBM WebSphere Studio. They then added this project to the existing
Enterprise Application Project called SingleTierXBikes.

2. The Web service needs to call objects within both the XBikesCommon and
XBikesBiz projects, so the developers added these as module dependencies.

3. GLUE provides a template application that you can use. This template contains all
the files required to run a GLUE Web service on an application server. You should
find these files in the C:\Tme\Glue\App-Template folder. The developers copied
these files into the project to get the basic GLUE files and the required folder
structure. They also added the Glue.jar file to the build path.

4. The developers then built the class that the application exposes as the Web service.
This class has the same methods as BusinessServiceFacade, but uses strings as the
data type, rather than the existing Java classes.

212 Application Interoperability: Microsoft .NET and J2EE

5. The team created a new interface and class based upon the methods in
BusinessServiceFacade, replacing the data types with strings. They added these
classes to the xbikes.bll.serviceinterface.j2ee.ws package. The following code
sample shows the methods added to IBLLWSServiceInterface.

public String authenticateCustomer(String email, String password)
 throws XBikesInteropException;
public String getCategories() throws XBikesInteropException;
public String getProductsByCategory(int categoryID)
 throws XBikesInteropException;
public String getSearchResults(String keyword)
 throws XBikesInteropException;
public String placeOrder(String order) throws XBikesInteropException;
public String getCustomerOrders(int customerID)
 throws XBikesInteropException;

6. The following code shows the implementation of the AuthenticateCustomer
method in the XBikesBLLServiceInterface class.

package xbikes.bll.serviceinterface.j2ee.ws;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;

import xbikes.bll.facade.BusinessServiceFacade;
import xbikes.bll.facade.BusinessServiceFacadeHome;
import xbikes.common.data.CustomerData;
import xbikes.common.dataconverters.CustomerConverter;
import xbikes.common.exceptions.XBikesInteropException;

public class BLLWSServiceInterface implements IBLLWSServiceInterface
{
 private static final String BUSINESS_FACADE_JNDI =
 "ejb/xbikes/bll/facade/BusinessServiceFacadeHome";
 /**
 * @see
 xbikes.bll.serviceinterface.j2ee.ws.IBLLWSServiceInterface#authenticate
 Customer(String, String)
 */
 public String authenticateCustomer(String email, String password)
 throws XBikesInteropException
 {
 try
 {
 BusinessServiceFacade facade = getFacadeHome().create();
 CustomerData cd = facade.authenticateCustomer(email, password);
 String sCustomerData = CustomerConverter.customerDataToString(cd);
 // We now have a string that contains the xml.
 // We shall return that!
 return sCustomerData;
 }

(continued)

 Chapter 7: Integrating .NET in the Presentation Tier 213

(continued)
 catch (Exception e)
 {
 throw new XBikesInteropException(e.getMessage());
 }
 }
}

Note: In this class the developers created a helper method to allow easy access to the
BusinessServiceFacade session bean.

7. As you have now created the class that provides the functionality for the Web
service, you simply need to tell GLUE about it. In XBikes, the developers went to
the XBikesBLLServiceInterface\Web Content\WEB-INF\services folder, then
copied and renamed the sample configuration file Sample.xml to make the new
BLLWSServiceInterface.xml file.

8. The developers modified this file, changing the constructor tag with
xbikes.bll.serviceinterface.j2ee.we.BLLWSServiceInterface. They altered
the description tag to Bikes Unsecure Web Service, the publish tag to yes
and the style to document. They also amended the interface tag,
replacing electric.util.sample.ISample with
xbikes.bll.serviceinterface.j2ee.ws.IBLLWSServiceInterface and the
targetNamespace to http://www.xbikes.com/.

9. They then copied the maps created earlier into the Web Content\WEB-INF\Maps
folder.

10. To test the Web service, the developers compiled and started the server.
They opened a browser and pointed it to http://localhost:9080
/XBikesBLLServiceInterface/Console before using the GLUE console
to invoke the authenticateCustomer method.

Creating the Interoperability Adapters in .NET
You have now created the Web service service interface in Java, so you can proceed to
build the .NET interoperability adapters. The procedures to do this are as follows:
● Build the .NET data classes based on the XSD schema.
● Build a Web service proxy using the tools in Visual Studio .NET.
● Create an adapter for either the entire service interface, or one for each use case.

Note: In XBikes, the developers created an adapter for each use case.

The interoperability adapter calls the proxy, which then calls the Web service. The
adapter also has to convert any .NET data to and from the correct string/XML format
based on the XSD schema.

214 Application Interoperability: Microsoft .NET and J2EE

The logic flow for an adapter is as follows:
1. The application calls the adapter method.
2. The adapter converts any complex data to an XML string representation.
3. The adapter creates an instance of the Web service proxy.
4. The application calls the appropriate method in the Web service proxy.
5. If the proxy returns data, convert it into the correct .NET format if necessary.
6. Return the data back to the calling application.

Figure 7.4 shows this in operation.

Web Service
Proxy

.NET Web
Presentation

Tier

.NET
Interoperability

Adapter

Java
Web Service

Adapter performs
data conversion

if required

Figure 7.4
Web service proxy operation with .NET Framework applications

Creating the XSD based Data Classes
To enable .NET Framework applications to consume data from the Java Web service,
you need to have a .NET class that you can populate with the returned XML string.
Again you can use a tool that converts the schema into a class, which is the XSD.EXE
tool.

XSD.EXE accepts the /dataset switch to generate a sub-classed dataset. If you are
building the .NET Framework application from scratch, it may be worth considering
using the datasets that XSD generates in your .NET Framework application. This
removes the need to convert from the XSD-based classes into a differently formatted
or structured .NET class.

The XBikes developers used the XSD tool with the /dataset switch to generate the
.NET dataset classes. They then used these datasets throughout the entire .NET
Framework application to remove the need to convert between data that the Java
Web service returns and proprietary .NET classes.

Note: An alternative technique would be to use a graphical tool such as XML Schema Designer in
Visual Studio .NET 2003.

 Chapter 7: Integrating .NET in the Presentation Tier 215

To create the CustomerData data type in .NET the developers opened a Visual Studio
.NET 2003 command prompt and executed the following command.

xsd CustomerData.xsd /dataset /namespace:xbikes.common.schemas

They then copied the generated file into the XBikes-Common project.

Creating the .NET Web Service Proxies
The next task is to build the proxy classes for the Web service. You can use Visual
Studio .NET or the wsdl.exe command line tool depending on your preference. If
you use Visual Studio .NET, add a Web reference to the project that contains your
interoperability adapters. When you create the Web reference, enter the URL to the
Java WSDL file. If you prefer the wsdl.exe command line tool, you should specify
switches to create the proxy class in the correct namespace.

Note: When you add a Web reference to your project in Visual Studio .NET, it will have a default name
which is the same as the server name portion of the URL where the Web service’s WSDL is located.
The proxy class generated by the Web reference belongs to a namespace which is the default
namespace for the project suffixed with the name of the Web reference. It is good practice to give
the Web reference, and thus the proxy namespace, a name other than the default name.

Because XBikes consumes a simple Web service, the developers used the Add Web
Reference functionality of Visual Studio .NET to create the proxy. They added this
proxy to the XBikes-UseCaseInteropAdapters project. The URL to the Java WSDL
was http://localhost:9080/XBikesBLLServiceInterface/services
/BLLWSServiceInterface.wsdl. The developer team renamed the Web Reference
from its default value of localhost to J2EE.BLLWSSI. This new name reflects that
this Web reference is for the J2EE business logic layer WS service interface. The proxy
class generated by this Web reference then belongs to the
XBikes.UseCaseInteropAdapters.J2EE.BLLWSSI namespace.

Creating the .NET Interoperability Adapters
Now that you have the data classes and Web service proxy, you can build the
interoperability adapters. As discussed earlier in this chapter, you may choose
to have a single adapter per Web service, or create an adapter for each use case,
depending upon the level of fine control you require. The XBikes developers created
an adapter for each use case to give maximum flexibility.

The XBikes use cases follow the command pattern, providing an execute and initialise
method, and implement an interface called IUseCaseCommand. The adapters take
names from the command they adapt, so AuthenticateCustomerInteropAdapter
links to the AuthenticateCustomerCommand.

216 Application Interoperability: Microsoft .NET and J2EE

Creating the interoperability adapter for the AuthenticateCustomer use case was
straight forward. In the XBikes-UseCaseInteropAdapters project the developers
added a new class called AuthenticateCustomerInteropAdapter to the J2EE\WS
folder. Next they changed the class to implement the IUseCaseCommand interface.
This required them to implement both execute and initialise methods and to add
code to the class constructor. The following code listing illustrates the Constructor
and Initialise methods.

public AuthenticateCustomerInteropAdapter()
{
 try
 {
 // Instantiate the BLL service interface proxy.
 // Creates a J2EE-side BLL service interface
 _facade = new BLLWSServiceInterface();
 }
 catch (Exception e)
 {
 throw new XBikesInteropException("[AuthenticateCustomer]:
 J2EE WS Interop Adapter error: ", e);
 }
}
private string _email;
private string _password;

public void Initialise(object[] parameters)
{
 _email = (string) parameters[0];
 _password = (string) parameters[1];
}

The execute method needs to create an instance of the Web services proxy generated
earlier. The returned string data then needs packaging up into a dataset before being
returned. The next code listing shows the execute method.

public DataSet Execute()
{
 try
 {
 //Retrieve customer data as an XML Document in a string format.
 StringReader sr = new
 StringReader(_facade.authenticateCustomer(_email,_password));
 CustomerData ds = new CustomerData();
 //Load result string back into CustomerData typed DataSet.
 ds.ReadXml(sr);
 return ds;
 }
 //soap error
 catch (System.Web.Services.Protocols.SoapException soapExp)
 {
 string soapFaultMsg = soapExp.Message;

(continued)

 Chapter 7: Integrating .NET in the Presentation Tier 217

(continued)
 //Parse SoapException message to get exception type.
 string ExceptionType =
 ExceptionHelper.GetSoapExceptionType(soapFaultMsg);
 //Throw the appropriate exception type based on the
 //exception type found in the SoapException.
 switch (ExceptionType)
 {
 case "Interop":
 throw(new XBikesInteropException(soapFaultMsg));
 case "Application" :
 throw(new XBikesApplicationException(soapFaultMsg));
 default:
 throw(new XBikesApplicationException(soapFaultMsg));
 }//switch
 }
 //general error
 catch (Exception e)
 {
 //Wrap in Interop Exception
 XBikesInteropException intExp = new
 XBikesInteropException("AuthenticateCustomer WS Interop
 Adapter error.",e);
 //Throw up the stack to client for logging.
 throw (intExp);
 }
}

When implementing this procedure, the string data that the Web service returns
should be in the correct format according to the common XML Schema for
CustomerData. Since the CustomerData typed DataSet is based on the common
schema, you can load the XML string that the Web service returns into the DataSet
using the ReadXML() method.

Note: The code example assumes the XML string returned matches the correct schema format, as
the application generates an exception if this is not the case. You may wish to run the returned XML
string through a validation process against the XSD schema file in order to confirm this before
attempting to use the ReadXML() method to load the string into the typed DataSet.

In this section you saw how to create interoperability adapters and service interfaces
in Java and .NET that use Web services to interoperate. In the next sections you look
at how to implement interoperability adapters and service interfaces using
JNBridgePro and Ja.NET to provide higher performance interoperability solutions.

218 Application Interoperability: Microsoft .NET and J2EE

Using JNBridgePro for Interoperability
This section shows how you can use JNBridgePro to perform bridging between a
.NET Web tier and a J2EE Business tier. You look at the data format choices, how to
build the service interface, and how to build the interoperability adapters.

Deciding on a Data Format
JNBridgePro has the ability to generate proxy classes in .NET for the Java data
classes. You can then use these generated data classes throughout your .NET
application. However, for reasons mentioned earlier in the chapter, it may make
more sense to put this data into a dataset, which you can then easily use in the
.NET Presentation tier.

Note: You are highly likely to carry out some form of data conversion when building the
interoperability adapters in .NET.

Building the Service Interface for JNBridgePro
JNBridgePro can expose existing Java classes to .NET, so you could choose to expose
an existing service façade to .NET. However, you should protect your code from
changes by using a layered approach. To do this, create another Java class which is
your service interface. Because you can return native Java data types to .NET with
JNBridgePro, this service interface simply calls the appropriate methods on the
service façade and returns any resultant data types.

Applications that use JNBridgePro for interoperability need JNBridge runtime
components on both the .NET and J2EE sides. The Java-side runtime component acts
as a .NET Framework remoting server, marshalling and unmarshaling parameters,
returning values, dispatching methods, and managing the lifecycles of Java objects
that .NET references.

Following the pattern of creating a service interface class, the developers built
a Java class that implemented exactly the same methods as the existing
BusinessServiceFacade session bean. This section shows the overall process of
how the developers created the AuthenticateCustomer use case:
1. The developers created a new Web Project called JNBridgeBLL and added it to

the existing SingleTierXBikes EAR. They then included the XBikesCommon and
XBikesBiz projects as module references.

2. They then installed the JNBridgePro Java-side runtime component,
JNBCORE.JAR to the WEB-INF\lib folder and added the jnbcore_tcp.properties
file to the WEB-INF folder, copying these files from the JNBridge install folder.

 Chapter 7: Integrating .NET in the Presentation Tier 219

3. Next they added the JNBServlet to the Web Deployment Descriptor and
specified Load on startup and set the Load Order to –1, which loads the class
when the application server starts.

4. The developers created the BLLServiceInterface class in the
xbikes.bll.serviceinterface.j2ee.jnbridge package. This class simply passes any
method call across to the existing service façade. The next code example shows
the BLLServiceInteface class.

Source Code Listing

package xbikes.bll.serviceinterface.j2ee.jnbridge;

import javax.naming.*;
import javax.rmi.*;
import java.rmi.*;
import xbikes.bll.facade.*;
import xbikes.common.data.*;

public class BLLServiceInterface {

 BusinessServiceFacade facade=null;
 private final String BUSINESS_FACADE_JNDI =
 "BusinessServiceFacade";
 private final String BUSINESS_FACADE_CLASS =
 "xbikes.bll.facade.BusinessServiceFacadeHome";

 /**
 * Constructor for BLLServiceInterface.
 */
 public BLLServiceInterface() {
 try
 {
 InitialContext ic = new InitialContext();
 Java.lang.Object objRef = ic.lookup(BUSINESS_FACADE_JNDI);
 BusinessServiceFacadeHome home =
 (BusinessServiceFacadeHome) PortableRemoteObject.narrow(objRef,
 Java.lang.Class.forName(BUSINESS_FACADE_CLASS));
 facade = home.create();
 }
 catch (Exception excp)
 {
 System.out.println(excp.getMessage());
 }
 }

 public CustomerData authenticateCustomer(String email, String password)
 throws Exception
 {
 return facade.authenticateCustomer(email, password);
 }

(continued)

220 Application Interoperability: Microsoft .NET and J2EE

(continued)

 public CategoriesListData getCategories()
 throws Exception
 {
 return facade.getCategories();
 }

 public OrderListData getCustomerOrders(int customerID)
 throws Exception
 {
 return facade.getCustomerOrders(customerID);
 }

 public ProductsListData getProductsByCategory(int categoryID)
 throws Exception
 {
 return facade.getProductsByCategory(categoryID);
 }

 public ProductsListData getSearchResults(String keyword)
 throws Exception
 {
 return facade.getSearchResults(keyword);
 }

 public void placeOrder(OrderData theOrder)
 throws Exception
 {
 facade.placeOrder(theOrder);
 }
}

The BLLServiceInterface is mostly a pass-through to the existing
BusinessServiceFacade EJB. The additional functionality that the wrapper class
provides is the constructor, which encapsulates the code necessary to find and access
the EJB.

While you can use JNBridgePro to generate proxies that access the
BusinessServiceFacade and the supporting JNDI classes directly, it is more efficient
if you perform these operations entirely on the Java side and encapsulate the
operations within a wrapper. In other situations, where you cannot change the
J2EE code, you might have to access JNDI and EJB classes directly. The section on
Using the MSMQ-MQSeries Bridge in Chapter 9, “Implementing Asynchronous
Interoperability,” shows how to create an adapter that accesses the MQSeries APIs
and demonstrates how you could create such an adapter if it were impossible to
change the J2EE code.

 Chapter 7: Integrating .NET in the Presentation Tier 221

Building the Interoperability Adapters using JNBridgePro
After you construct the service interface that you want the .NET application to
consume, you need to generate a proxy assembly for .NET. This assembly contains
.NET proxies for the service interface, as well as any data classes that the service
interface uses. Therefore if the service interface returns Java data of the type
CustomerData, the .NET assembly that JNBridgePro generates would contain a
proxy for this class.

Note: In your code, consider prefixing the name of the proxy class with the name of the platform
from where the proxy class originated, for example, if the .NET class was CustomerData, the Java
proxy class would be javaCustomerData.

You can use the GUI tools that JNBridgePro provides to generate these proxy classes.
You simply select the classes for which you wish to generate proxies and
JNBridgePro creates them.

You can then add this assembly to your .NET project as a reference, along with the
required JNBridgePro configuration files, and applications can consume it like any
other .NET class, such as the interoperability adapter. Again, you should decide upon
the level of fine control that you need with the interoperability adapters, either
implementing one for each use case, or one for the whole service interface.

Note: The XBikes developers implemented an interoperability adapter for each use case.

Creating the Java Proxy Classes
The first stage for creating the interoperability adapters in XBikes was to generate the
proxies for the Java service interface. The GUI-based proxy generation tool that is
part of JNBridgePro was used to do this.

The first time this tool is executed, you have to setup the Java environment. This is
done by specifying where the Java.exe program file is located. After that was done,
the developers moved on to generating the adapters:
1. The developers loaded and configured the JNBProxy tool with the correct Java

configuration, then added all the project folders and the Project Utility Jars that the
service interface required to the class path created earlier. This included the
following J2EE project folders and the Project Utility Jars:
● C:\xbikes\J2EE-IBM\XBikesBiz\ejbModule, the root directory for the business

façade classes.
● C:\xbikes\J2EE-IBM\XBikesCommon, the root directory for the common data

transfer objects.

222 Application Interoperability: Microsoft .NET and J2EE

● C:\xbikes\J2EE-IBM\JNBridgeBLL\Web Content\WEB-INF\classes, the root
directory for the façade wrapper classes.

● C:\Program Files\IBM\WebSphere Studio\runtimes\base_v5\lib\j2ee.jar,
the library containing various J2EE and EJB-related classes and exceptions.

● C:\Program Files\IBM\WebSphere Studio\runtimes\base_v5\mqjms\Java
\lib\jndi.jar, the library containing various JNDI-related classes and
exceptions.

Note: The folder and file paths may differ depending on your installation.

2. The development team had to select which classes they wanted to access from
.NET, eventually adding the following classes, plus all the supporting classes:
● xbikes.bll.serviceinterface.j2ee.jnbridge.BLLServiceInterface
● xbikes.common.data.CategoriesData
● xbikes.common.data.CategoriesListData
● xbikes.common.data.CustomerData
● xbikes.common.data.OrderData
● xbikes.common.data.OrderDetailsData
● xbikes.common.data.OrderListData
● xbikes.common.data.ProductsData
● xbikes.common.data.ProductsListData

3. JNBProxy then loaded the required Java classes. This only exposed the classes
listed above, and the developers added these to the exposed proxies pane.

4. The goal was to create an assembly that would load into the GAC, so the
developers configured JNBProxy to build a strong name, supplying the version
number of 1.0.0.0, and a strong name key file.

5. Finally, the developers instructed JNBProxy to build the assembly with the name
Jnbridgebllproxies.dll.

JNBridgePro also ships with a configuration file that contains the settings for how the
.NET Framework client can communicate with the Java application, such as the URL
or location of the Java application. This file is named jnbproxy_tcp.config. Now that
they had generated the proxies, the next task was to integrate this into the ASP.NET
Presentation tier.

Note: This example focuses on the AuthenticateCustomer use case; however the rest follow the
same pattern.

 Chapter 7: Integrating .NET in the Presentation Tier 223

Implementing the Interoperability Adapters
The developers opened the .NET XBikes solution and added a new project named
XBikes-UseCaseInteropAdapters-JNBridge. In this project the developers added a
new class called AuthenticateCustomerInteropAdapter to the J2EE\JNBridge folder.

Note: The JNBridge and JaNET use case interoperability adapters reside in separate Visual Studio
projects from the other XBikes .NET use case interoperability adapters. This avoids conflicts when
using JaNET and JNBridge elements within the same project. In a production environment, it is
unlikely that you would need both JaNET and JNBridge.

Because the interoperability adapter uses JNBridge, the developers copied both
the created proxy assembly, Jnbridgebllproxies.dll and the JNBridge .NET support
assembly Jnbshare.dll to the .NET computer and added them as project references.
They also copied the configuration file Jnbproxy_tcp.config to the WWWroot folder
on this computer and renamed it Jnbproxy.config.

The AuthenticateCustomerInteropAdapter handles the bridging between the
.NET Web tier and the J2EE Business tier when authenticating the customer’s
identity. It implements the IUseCaseCommand interface, which means it implements
two methods:
● Initialise() — Sets up the use case adapter and assigns parameters for the

upcoming action.
● Execute() — Causes the use case adapter to perform its action.

The interoperability adapter creates a JNBridge-generated proxy for the J2EE-based
BLLServiceInterface object, which is the object that performs the lookup of products
by category. The interoperability adapter’s constructor creates the proxy, and as part
of that action creates the underlying J2EE BLLServiceInterface object.

The call to Initialise() simply takes a category identifier (an integer), and saves it
so that it is available when the command executes. The call to Execute() calls the
authenticateCustomer() method in the BLLServiceInterface proxy object, which
causes the equivalent method to execute in J2EE, and returns a reference to a J2EE
CustomerData object.

On the .NET side, this CustomerData object is a proxy of the J2EE CustomerData
object. The remainder of Execute() converts the J2EE CustomerData object into an
equivalent native .NET CustomerData object. It does this by iterating through the
individual product data in the J2EE CustomerData object, extracting the details of
that product, and assigning a new native .NET CustomerRow object to the native
.NET CustomerData object.

Note: The namespaces ndata and jdata represent the longer .NET and J2EE namespaces in order
to improve readability and to allow you to recognize and distinguish between .NET-based and
J2EE-based objects easily.

224 Application Interoperability: Microsoft .NET and J2EE

using System;
using System.Data;
using XBikes.Common.Exceptions;
using XBikes.Common.Interfaces.Architecture;
// namespace of the J2EE BLL Service interface
using xbikes.bll.serviceinterface.j2ee.jnbridge;
// namespace for J2EE version of common data objects
using jdata = xbikes.common.data;
// namespace for .NET version of common data objects
using ndata = XBikes.Common.Schemas;

namespace XBikes.UseCaseInteropAdapters.J2EE.JNBridge
{
 /// <summary>
 /// Use case adapter to authenticate customer information.
 /// </summary>
 public class AuthenticateCustomerInteropAdapter : IUseCaseCommand
 {
 private BLLServiceInterface facade = null;
 /// <summary>
 /// Summary description for AuthenticateCustomerCommand.
 /// </summary>
 public AuthenticateCustomerInteropAdapter()
 {
 try
 {
 facade = new BLLServiceInterface();
 }
 catch (Exception e)
 {
 throw new XBikesInteropException
 ("[AuthenticateCustomer]: JNBridge Interop
 Adapter error: ", e);
 }
 }

 private string _email;
 private string _password;

 public void Initialise(object[] parameters)
 {
 _email = (string) parameters[0];
 _password = (string) parameters[1];
 }
 public DataSet Execute()
 {
 try
 {
 // perform the customer authentication
 // on the J2EE side
 // and retrieve the customer data
 jdata.CustomerData cust =
 facade.authenticateCustomer(_email,_password);

(continued)

 Chapter 7: Integrating .NET in the Presentation Tier 225

(continued)

 // copy the Java data into a .NET data object
 // create the .NET data object
 ndata.CustomerData ds =
 new ndata.CustomerData();
 // create a new row in the .NET data object
 ndata.CustomerData.CustomersRow cr =
 ds.Customers.NewCustomersRow();
 // copy the individual fields from the
 // J2EE data object to the .NET data object
 cr.CustomerID = cust.getCustomerID();
 cr.EmailAddress=cust.getAddress();
 cr.FullName=cust.getName();
 cr.Password=cust.getPassword();
 cr.ZipCode = cust.getZip();

 // add the data row to the data set
 ds.Customers.AddCustomersRow(cr);
 return ds;
}
 catch (XBikesInteropException intExp)
 {
 //This will already have been logged on its own tier.
 //re-throw up the stack for logging at the client.
 throw (intExp);
 }
 catch (XBikesApplicationException appExp)
 {
 //This will already have been logged on its own tier.
 //re-throw up the stack for logging at the client.
 throw (appExp);
 }
 catch (Exception e)
 {
 throw new XBikesInteropException
 ("[AuthenticateCustomer]: JNBridge Interop
 Adapter error: ", e);
 }
 }
 }
}

The final part of the configuration the developers carried out is on the .NET side
of the XBikes application, where they needed to configure the file that tells the
two computers how to communicate. This file is Jnbproxy.config and lives in the
WWWroot folder. The developers changed the name LOCALHOST to point to the
J2EE computer. They also installed Jnbshare.dll and Jnbridgebllproxies.dll in the
global assembly cache.

226 Application Interoperability: Microsoft .NET and J2EE

Using Ja.NET for Interoperability
This section shows how you can use Ja.NET to perform bridging between a
.NET Web tier application and a J2EE Business tier. Like the previous section on
JNBridgePro, it covers the data format choices, how to build the service interface
and how to build the interoperability adapters.

Deciding on a Data Format
Ja.NET also has the ability to provide .NET with proxy classes for the Java data
classes, allowing you to use these generated data classes throughout your .NET
application. For reasons mentioned earlier in this chapter it is more sensible to place
the data into a dataset, which can then be used in the .NET Presentation tier. Hence
you are likely to perform some data conversion when building the interoperability
adapters in .NET.

Building the Service Interface for Ja.NET
Like with JNBridgePro, you could choose to expose an existing service façade to
.NET. However, you should protect your code from changes by implementing a
layered approach. You can do this by creating another Java class to be your service
interface. Because you can return native Java data types to .NET using Ja.NET, this
service interface simply calls the appropriate methods on the service façade and
returns the resultant data types.

Applications that use Ja.NET for interoperability need Ja.NET runtime components
on the J2EE side, and proxy definition libraries (DLLs) on the .NET side. The Java-
side runtime component acts as a .NET Framework remoting server, marshalling and
unmarshaling parameters, returning values, dispatching methods, and managing the
lifecycles of Java objects that .NET references.

Again the developers created the Ja.NET service interface as a Java class. This class
passes the method calls across to the existing session bean service façade. This
example also shows the AuthenticateCustomer use case:
1. The developers created a new Web Project called JaNetBLL. They added this to

the existing SingleTierXBikes EAR. Like before, they included XBikesCommon
and XBikesBiz projects as module references.

2. The developers created the contents of the Web project using the Janetor tool. This
tool creates a WAR that contains the Ja.NET runtime and a configured Web.xml
file. After installing the license, they had to configure the host name of the
application server, and then export the WAR. They then imported this WAR into
the newly created JaNetBLL project, overwriting files as needed.

 Chapter 7: Integrating .NET in the Presentation Tier 227

3. To allow the JaNet project to talk to the session bean, the developers created an
EJB reference in the Web project to point to the BusinessServiceFacade session
bean.

4. Finally, they created a Java Class called BLLServiceInterface in the
xbikes.bll.serviceinterface.j2ee.janet package. This class has the same methods
as the BusinessServiceFacade and simply passes the method calls onto this
session bean.

Note: This class is exactly the same as the one detailed in the JNBridge section.

While you can use Ja.NET to generate proxies that access the BusinessServiceFacade
and the supporting JNDI classes directly, it is more efficient if you perform these
operations entirely on the Java side and encapsulate the operations within a wrapper.
In other situations, where you cannot change the J2EE code, you might have to access
JNDI and EJB classes directly. The section on Using the MSMQ-MQSeries Bridge in
Chapter 9, “Implementing Asynchronous Interoperability,” shows how to create an
adapter that accesses the MQSeries APIs and demonstrates how you could create
such an adapter if it were impossible to change the J2EE code.

Building the Interoperability Adapters using Ja.NET
After you construct the service interface that you want your .NET application to
consume, you need to generate the proxy assembly for .NET. This assembly contains
.NET proxies for the service interface, along with data classes that the service
interface uses. For example, if the service interface returns data of the Java type
CustomerData, the .NET assembly that Ja.NET generates would contain a proxy for
this class.

You can use the Ja.NET GUI tools to generate these proxy classes. Select which classes
for which you wish to generate proxies and Ja.NET creates them.

You can then add this assembly to your .NET project as a reference, along with the
required Ja.NET configuration files, and then consume it like any other .NET class,
such as the interoperability adapter. Again, you have to decide upon the level of fine
control of the interoperability adapters, either implementing one for each use case, or
one for the whole service interface.

228 Application Interoperability: Microsoft .NET and J2EE

Creating the Java Proxy Classes
The first stage in creating the interoperability adapters in XBikes was to generate the
proxies for the Java service interface. To do this the developers used the GUI-based
proxy generation tool GenNet that is part of Ja.Net.
1. The developers started GenNet and added the following folders and Project

Utility Jars:
● C:\xbikes\J2EE-IBM\JaNetBLL\Web ContentWEB-INF\classes
● C:\xbikes\J2EE-IBM\XBikesCommon
● C:\Program Files\IBM\WebSphere Studio\runtimes\base_v5\lib\j2ee.jar
● C:\xbikes\J2EE-IBM\XBikesBiz\ejbModule

2. Next they added the BLLServiceInterface class and all the classes in the
xbikes.common.data package. They changed the data classes to pass by value
to improve performance.

3. The developers then saved the generated proxy assembly as JanetBLLEjb.dll with
a strong name. The GenNet proxy generation tool also generates a remoting
configuration file, named Remoting_http.config, containing the .NET Remoting
settings that enable communication with the Java components.

Now that they had generated the proxies, the next task was to integrate this into the
ASP.NET Presentation tier.

Note: This example focuses on the AuthenticateCustomer use case; however the rest follow the
same pattern.

Implementing the Interoperability Adapters
The developers opened the .NET XBikes solution and added a new project called
XBikes-UseCaseInteropAdapters-JaNET. In this project the developers added a new
class called AuthenticateCustomerInteropAdapter to the J2EE\JaNET folder.

Note: The JNBridge and JaNET use case interoperability adapters reside in separate Visual Studio
projects from the other XBikes .NET use case interoperability adapters. This avoids conflicts when
using JaNET and JNBridge elements within the same project. In a production environment, it is
unlikely that you would need both JaNET and JNBridge.

Because the interoperability adapter uses the Ja.Net-generated Java proxies, the
developers copied the JanetBLLEjb.dll to the .NET computer and installed it in the
GAC. They then added it as a reference to the XBikes-UseCaseInteropAdapters
-JaNET project.

 Chapter 7: Integrating .NET in the Presentation Tier 229

The AuthenticateCustomerInteropAdapter handles the bridging between the
.NET Web tier and the J2EE Business tier when authenticating a customer’s identity.
It implements the IUseCaseCommand interface, which means it implements two
methods:
● Initialise() — Sets up the use case adapter and assigns parameters for the

upcoming action.
● Execute() — Causes the use case adapter to perform its action.

The interoperability adapter creates a Ja.NET-generated proxy for the J2EE-based
BLLServiceInterface object, which is the object that performs the authentication of
the customer. The interoperability adapter’s constructor creates the proxy, and, as
part of that action, creates the underlying J2EE BLLServiceInterface object.

The call to Initialise() simply takes the customers email address and password (both
strings), and saves them so that they are available when the command executes. The
call to Execute() calls the authenticateCustomer() method in the BLLServiceInterface
proxy object, which causes the equivalent method to execute in J2EE, and returns a by
value copy of a J2EE CustomerData object. This is in accordance with the Ja.NET Best
Practices in Chapter 4, “Interoperability Technologies: Point to Point.”

On the .NET side, this CustomerData object is a proxy of the J2EE CustomerData
object. The remainder of Execute() converts the J2EE CustomerData object into an
equivalent native .NET CustomerData object. It does this by iterating through the
individual product data in the J2EE CustomerData object, extracting the details of
that product, and assigning a new native .NET CustomerRow row object to the
native .NET CustomerData object.

using System;
using xbikes.bll.serviceinterface.j2ee.janet;
using xbikes.common.data;
using XBikes.Common.Interfaces.Architecture;
using XBikes.Common.Schemas;
using System.Data;
using XBikes.Common.Exceptions;

namespace XBikes.UseCaseInteropAdapters.J2EE.JaNET
{
 /// <summary>
 /// Class that implements the IUseCaseCommand interface.
 /// This class performs the task of
 /// AuthenticateCustomerInteropAdapter.
 /// It calls into the J2EE Server to get at its BLL Service
 /// Interface
 /// and calls the authenticateCustomer method on the
 /// BLLServiceInterface contained
 /// in the JaNetBLL servlet.

(continued)

230 Application Interoperability: Microsoft .NET and J2EE

(continued)
 /// In actual fact, you could use Ja.NET and the JNDIContext
 /// object
 /// to directly call the BLL Bean in the app server.
 /// For this Case Study, there is an extra layer that has been
 /// added, namely
 /// that of
 /// xbikes.bll.serviceinterface.j2ee.janet.BLLServiceInterface
 /// that lives in the JaNetBll servlet.
 /// </summary>
 public class AuthenticateCustomerInteropAdapter : IUseCaseCommand
 {
 private string m_szPassword = "";
 private string m_szEmail = "";

 // the proxy for the BLL service interface object
 private BLLServiceInterface _facade = null;

 /// <summary>
 /// The constructor for the authenticate customer use case adapter.
 /// </summary>
 public AuthenticateCustomerInteropAdapter()
 {
 try
 {
 // instantiate the BLL service interface .
 _facade = new BLLServiceInterface();
 }
 catch (Exception e)
 {
 throw new
 XBikesInteropException("[AuthenticateCustomerInteropAdapter]:
 J2EE JaNET Interop Adapter error: ", e);
 }
 }

 /// <summary>
 /// Sets the parameters for this UseCaseAdapters
 /// </summary>
 /// <param name="parameters"></param>
 public void Initialise(object[] parameters)
 {
 m_szPassword = (string) parameters[0];
 m_szEmail = (string) parameters[1];
 }

 /// <summary>
 /// The Actual Execute Method
 /// </summary>
 /// <returns>DataSet object</returns>
 public DataSet Execute()
 {
 try

(continued)

 Chapter 7: Integrating .NET in the Presentation Tier 231

(continued)

 {
 // Create the return DataSet Object
 XBikes.Common.Schemas.CustomerData custData =
 new XBikes.Common.Schemas.CustomerData();

 // Get the EJB Data
 xbikes.common.data.CustomerData ejbCustData =
 _facade.authenticateCustomer(m_szPassword, m_szEmail);
 // We need a row
 XBikes.Common.Schemas.CustomerData.CustomersRow cr =
 custData.Customers.NewCustomersRow();
 // Fill in the values
 cr.CustomerID = ejbCustData.getCustomerID();
 cr.EmailAddress = ejbCustData.getAddress();
 cr.FullName = ejbCustData.getName();
 cr.Password = ejbCustData.getPassword();
 cr.ZipCode = ejbCustData.getZip();
 custData.Customers.AddCustomersRow(cr);
 return custData;

 }
 catch (XBikesApplicationException ae)
 {
 throw ae;
 }
 catch (XBikesInteropException ae)
 {
 throw ae;
 }
 catch (System.Runtime.Remoting.RemotingException sre)
 {
 // Is it a problem with the network?
 string message = sre.Message;
 if (message.IndexOf("com.intrinsyc.janet") >= 0)
 {
 throw new XBikesInteropException(sre.Message, sre);
 }
 else
 {
 // or is it an application error?
 throw new XBikesApplicationException(sre.Message, sre);
 }
 }
 catch (Exception eX)
 {
 // generic catch/rethrow
 throw new XBikesApplicationException(eX.Message, eX);
 }

 }
 }
}

232 Application Interoperability: Microsoft .NET and J2EE

The final part of the implementing JaNET interoperability adapter is to set up the
configuration files. In ASP.NET Web applications, all .NET Remoting configuration
settings must be read during the event handler for the Application_OnStart event
of the web application. JaNET uses .NET Remoting to communicate with the Java
components, and the interoperability adapters run as part of the .NET Presentation
tier’s ASP.NET application. Hence the JaNET configuration settings must also be
read in during the event handler for the Application_OnStart event of the ASP.NET
application. The event handler for the Application_OnStart event lives in the
Global.asax.cs file of the Web application. This introduces two minor complications
to the application architecture:
● If your ASP.NET application communicates with any other components using

.NET Remoting, the remoting configuration settings for those components must
live in the same file and load at the same time as the Application_OnStart event.

● By loading JaNET configuration settings from the Global.asax.cs file of the
ASP.NET application the interoperability adapter no longer provides complete
abstraction.

To accommodate the remoting configuration requirements of the ASP.NET
application, the XBikes developers then updated the remoting configuration file,
Remoting.config, in XBikes-Web with the content from the client section of the
Remoting_http.config file that the proxy tool generated.

Note: You can only configure one instance of a type of channel in a .NET Remoting configuration file.
Hence you can only have one HTTP channel configured at a time, which can cause issues if you have
existing components in your ASP.NET application that use .NET Remoting to communicate. If you
already have a channel configured in the Remoting.config file, check that you do not copy the
definition of the same type of channel twice when you copy the Ja.NET configuration settings from
Remoting_http.config (the generated configuration file) into the Remoting.config file.

If the .NET and J2EE components are on different computers, then you need to ensure
the URL specified in the <client> tag of the JaNET configuration settings within the
Remoting.config file contains the name of the computer hosting the J2EE
components.

 Chapter 7: Integrating .NET in the Presentation Tier 233

Summary
This chapter looked at how the developers implemented interoperability in the
sample XBikes application. You saw how to implement an ASP.NET application in the
Presentation tier and then connect this to an existing J2EE Business tier. You saw how
to implement use case adapters, service interfaces and service façades to do this. You
also covered how to use runtime bridges to connect J2EE and .NET where Web
services are not suitable.

References
For more information about GLUE
http://www.themindelectric.com/

- or -

http://www.webmethods.com/

http://www.themindelectric.com/
http://www.webmethods.com/

8
Integrating .NET in the
Business Tier

Introduction
Chapter 7, “Integrating .NET in the Presentation Tier,” described how to integrate a
.NET Framework Presentation tier with a J2EE Business tier and how to define Java
service interfaces that encapsulate J2EE business service façades. It then covered the
design of .NET Framework interoperability adapters so that .NET Framework
applications, such as ASP.NET Web Forms, can invoke the Java service interfaces.

This chapter is the reverse of Chapter 7; it describes how to integrate a J2EE
Presentation tier with a .NET Framework Business tier. It includes two sections that
define different ways to achieve this interoperability:
● Using Web Services for Interoperability — This section describes how to

define .NET Framework Web service (WS) service interfaces to encapsulate
.NET Framework business service façades. It then describes how to design Java
interoperability adapters to enable Java code, such as a J2EE Presentation tier to
invoke the .NET Framework WS service interfaces.

● Using Ja.NET for Interoperability — This section describes how to use Ja.NET to
enable a J2EE Presentation tier to access .NET Framework business service façades
through the use of .NET Remoting.

For each of these approaches, this chapter describes how to address the following
technical issues:
● Determining data exchange formats and types.
● Designing and building the service interface.
● Designing and building the interoperability adapters.

236 Application Interoperability: Microsoft .NET and J2EE

The following sections briefly summarize how you can resolve these technical issues
in the Web services and Ja.NET scenarios. The chapter then provides detailed
descriptions of each scenario and describes what the XBikes developers did in the
sample application.

Determining Data Exchange Formats and Types
As Chapter 7 illustrates, one of the keys to interoperability is to define and use
consistent data exchange formats and data types in the .NET Framework and Java
applications. This chapter describes how to expose data formats and data types from
the .NET Framework Business tier and how to consume these data formats and data
types in the J2EE Presentation layer.

A good way to achieve consistency is to define XML Schemas to represent your data
types. You can then generate .NET Framework and Java classes that are compatible
with the XSD types and use XML serialization to convert between XML data and
objects in memory. This approach is particularly suitable when you use Web services
as the interoperability mechanism, because Web services always exchange data in
XML format (enclosed in a SOAP envelope).

When you use .NET Remoting as the interoperability mechanism, Ja.NET allows you
to expose most .NET Framework data types to Java. You can therefore pass actual
.NET Framework objects between the J2EE Presentation tier and the .NET
Framework Business tier.

For a detailed discussion about data exchange factors, see Chapter 3,
“Interoperability Fundamentals.”

Designing and Building the Service Interface
As described in Chapter 7, the role of the service interface is to expose the
functionality of the business service façade so that other parts of the application
can access it.

Chapter 6, “Implementing Interoperability Design Elements,” described how the
developers implemented the XBikes business service façade in .NET Framework.
In your application, this could be either a serviced component or an ordinary
.NET Framework class. The service interface exposes this .NET Framework
functionality to the J2EE Presentation tier. The J2EE Presentation tier can call
into the service interface, and then the service interface relays the calls on to the
.NET Framework business service façade.

Depending on your implementation details, the service interface might need to
manipulate data before it is passed into the business service façade, and it might
also need to manipulate returned values from the business service façade.

 Chapter 8: Integrating .NET in the Business Tier 237

Designing and Building the Interoperability Adapters
Interoperability adapters change the data from your applications into a suitable
format for interoperability. They also hide the implementation details of the
interoperability technique from the connected applications.

You should create interoperability adapters based on the design of the service
interface and the level of fine control that you require. You may choose either to build
an interoperability adapter for each use case or implement a single interoperability
adapter for each service. The interoperability adapters may have to change the
structure of the data before returning it to the calling application.

In the XBikes application, the developers created an interoperability adapter for
each use case. This choice allows selection of the interoperability technology at
the use case level, showing how different use cases can execute through different
interoperability adapters. For example, the AuthenticateCustomer use case could
execute in the .NET Business tier, whereas the GetCategories use case calls into the
J2EE Business tier.

Using Web Services for Interoperability
Web services are the recommended interoperability technique, unless performance or
other considerations require a binary solution. This section looks at how you can use
Web services to implement interoperability. It covers the data format choices, how to
build the service interface by using .NET Framework Web services, and how to build
the J2EE interoperability adapters.

Deciding on a Data Format
As Chapter 7 observed, it is a good idea for Web services to use primitive XSD data
types such as strings and integers instead of using complex XSD data types. All Web
service stacks support the primitive XSD data types, so using these data types
promotes flexibility and simplifies client access.

If you use primitive data types and need to return something more complex, such as
an order, you can package the data as a string. The best solution for this is to populate
a string with an XML representation of the data. This XML encoding should follow an
agreed schema.

If your communicating applications use compatible Web services stacks, then you
can use complex data types to link components rather than serializing into an XML
string. While there is currently no guarantee of interoperability between all
manufacturers’ Web stacks, this situation should change as more Web stack
implementations start to follow industry guidelines.

238 Application Interoperability: Microsoft .NET and J2EE

Note: There is little performance difference between passing .NET Framework data types directly
and serializing them and passing them as strings, because the Web service has to serialize the
.NET Framework data into XML anyway.

In the XBikes application, the J2EE and .NET Framework developer teams decided
on a common data format for the Web services. They created an XML Schema from
this design, which both teams then used to create the appropriate classes and
mapping files.

Building the Service Interface in .NET Framework
You perform the following two tasks to build the service interface in
.NET Framework:
● Define .NET Framework data types based on an XML Schema.
● Create .NET Framework Web services.

The following sections describe how to perform these tasks.

Defining .NET Framework Data Types based on an XML Schema
To enable .NET Framework applications to present data for consumption by Java
applications, it is a good idea to define .NET Framework classes that you can serialize
as XML strings. You can use the Xsd.exe tool in the .NET Framework SDK to generate
.NET Framework classes from existing XML Schemas. When instances of these
classes are serialized to XML, they generate the correct XML structure as defined
by the XML Schemas.

You can use the Xsd.exe tool in one of two ways, depending on how you want
to represent data within your .NET Framework application:
● Use the /dataset switch to generate .NET Framework typed dataset classes.
● Use the /class switch to generate normal .NET Framework classes.

The XBikes developers used the Xsd.exe tool with the /dataset switch to generate
.NET Framework typed dataset classes. The following code sample shows how the
XBikes developers generated a typed dataset class for the CustomerData type. To do
this, they opened a Visual Studio .NET 2003 command prompt and ran the following
command (note that the /namespace switch specifies the .NET Framework
namespace of the generated classes).

xsd CustomerData.xsd /dataset /namespace:xbikes.common.schemas

 Chapter 8: Integrating .NET in the Business Tier 239

Typed dataset classes inherit from the System.Data.DataSet class and have named
inner types and type-safe properties that map directly to the XML structure that the
XML Schema defines. Typed dataset classes are serializable by default. However, if
you serialize a typed dataset using the XMLSerializer class in .NET Framework,
the serialized XML output does not conform to the XML Schema that you used to
generate the typed dataset. Instead, it contains an XML representation of the typed
dataset object itself, including .NET Framework-specific information such as the
inner types and type-safe properties. You cannot use this method to exchange data
in an interoperability scenario as the Java client does not know how to deserialize
the .NET Framework-specific XML format of the serialized typed dataset.

To get around this issue, you can use the typed dataset’s GetXml method. Typed
datasets have a GetXml method, which returns the data contained in a dataset object
in an XML formatted string. The format of the XML string the GetXml method
returns matches the one specified by the XML Schema that defines the typed dataset.
You can then exchange this XML string with Java clients that can then deserialize it
into a corresponding Java class.

If you are not using datasets in your .NET Framework application, you can use the
/class switch with Xsd.exe to generate normal .NET Framework classes as shown in
the following example, which again illustrates the CustomerData custom data class.

xsd CustomerData.xsd /class /namespace:MyNamespace

The generated classes contain public fields corresponding to the structure defined
by the XML Schema. It is a good idea to make the fields private and define public
properties to get and set the fields. The following sample code shows how the
generated classes appear after making these changes.

using System;
using System.Xml.Serialization;

namespace MyNamespace
{
 [System.Xml.Serialization.XmlTypeAttribute(
 Namespace="http://xbikes.com/CustomerData.xsd")]
 [System.Xml.Serialization.XmlRootAttribute(
 Namespace="http://xbikes.com/CustomerData.xsd", IsNullable=false)]
 public class CustomerData
 {
 private CustomerDataCustomers[] Items;

 [System.Xml.Serialization.XmlElementAttribute("Customers")]
 public CustomerDataCustomers[] customers
 {
 set { Items = value; }
 get { return Items; }
 }
 }

(continued)

240 Application Interoperability: Microsoft .NET and J2EE

(continued)

 [System.Xml.Serialization.XmlTypeAttribute(
 Namespace="http://xbikes.com/CustomerData.xsd")]
 public class CustomerDataCustomers
 {
 private int _CustomerID;
 private string _FullName;
 private string _EmailAddress;
 private string _Password;
 private string _ZipCode;

 public int CustomerID
 {
 set { _CustomerID = value; }
 get { return _CustomerID; }
 }

 public string FullName
 {
 set { _FullName = value; }
 get { return _FullName; }
 }

 public string EmailAddress
 {
 set { _EmailAddress = value; }
 get { return _EmailAddress; }
 }

 public string Password
 {
 set { _Password = value; }
 get { return _Password; }
 }

 public string ZipCode
 {
 set { _ZipCode = value; }
 get { return _ZipCode; }
 }
 }
}

The next set of sample code shows how to create and serialize an instance of the
CustomerData class. XmlSerializer is a standard .NET Framework class in the
System.Xml.Serialization namespace, and it allows you to serialize and deserialize
objects to and from XML format.

 Chapter 8: Integrating .NET in the Business Tier 241

using System; // For the Console class
using System.Xml.Serialization; // For the XmlSerializer class
using System.IO; // For the StringReader and StringWriter classes
using System.Text; // For the StringBuilder class
using MyNamespace; // For CustomerData and CustomerDataCustomers

class SerializationExample
{
 static void Main(string[] args)
 {
 // Create and initialise a customer
 CustomerDataCustomers customer = new CustomerDataCustomers();
 customer.FullName = "someone";
 customer.EmailAddress = "someone@microsoft.com";
 customer.CustomerID = 1008;
 customer.Password = "secret";
 customer.ZipCode = "91210";

 // Create a customer collection, containing a single customer
 CustomerData cd = new CustomerData();
 cd.customers = new CustomerDataCustomers[] { customer };

 // Serialize the customer collection to an XML string
 XmlSerializer ser = new XmlSerializer(typeof(CustomerData));
 StringBuilder sb = new StringBuilder();
 StringWriter writer = new StringWriter(sb);
 ser.Serialize(writer, cd);
 writer.Close();

 // Output the XML string that represents the customer collection
 Console.Write(sb.ToString());
 }
}

The result is that when the CustomerData object is serialized to XML, the XML data
has exactly the correct format as specified by the XML Schema.

Creating the .NET Framework Web Service
The next task is to create a .NET Framework Web service to provide a service
interface that encapsulates the .NET Framework business service façade.

Visual Studio .NET and the .NET Framework make it extremely easy to create
Web services. When you create an ASP.NET Web service project in Visual Studio
.NET, the project contains a single Web service. The Web service comprises an
.asmx file (for example, MyWebService.asmx) and a code-behind file (for example,
MyWebService.asmx.cs). The code-behind file contains a class that inherits from
System.Web.Services.WebService, and it can contain a series of methods annotated
with the [WebMethod] attribute.

242 Application Interoperability: Microsoft .NET and J2EE

You must define a separate Web service method for each business method that
you want to expose from the BusinessServiceFacade. To simplify interoperability,
the Web service methods should convert the return values from the
BusinessServiceFacade methods into XML-formatted strings. Use one
of the following techniques to perform this conversion:
● If you are using .NET Framework datasets to represent data, you can call GetXml

to convert the dataset into an XML string.
● If you are using normal .NET Framework classes to represent data, you must use

the XmlSerializer to obtain the XML string representation for your objects.

The flow of logic in any of the Web service methods is as follows:
1. The application calls the Web service method.
2. The Web service method creates the BusinessServiceFacade object.
3. The Web service method calls the appropriate method on the

BusinessServiceFacade, passing the converted data.
4. If the BusinessServiceFacade method returns data, the Web service method

converts this data to a string by using the helper class.
5. The Web service method returns the string representation of the data back to the

calling application.

Figure 8.1 shows this in action.

Data Converter
Helper

Web Service
Service Interface

Business
Service Facade

J2EE
Presentation Tier

Figure 8.1
Implementing a .NET Framework service interface for the .NET Framework business service façade

 Chapter 8: Integrating .NET in the Business Tier 243

The following procedure describes how the XBikes developers created a .NET
Framework Web service service interface to expose the business service façade in the
Business tier of the .NET Framework version of XBikes:
1. The developers created a new ASP.NET Web service project named XBikes-BLL-

WSServiceInterface.
2. They removed the default Service1.asmx file and replaced it with a new Web

service named BLLWSServiceInterface.asmx. The developers annotated the
Web service class with a [WebService] attribute as follows.

[WebService(Namespace="http://XBikes.com/BLLWSServiceInterace/")]
public class BLLWSServiceInterface : System.Web.Services.WebService
{
 // Members...
}

3. The team added Web service methods to the Web service class, with the correct
method signatures for each of the methods exposed by the existing business
service façade. However, instead of each method accepting or returning datasets
as parameters, the developers changed the data type exchanged to “string.”

[WebService(Namespace="http://XBikes.com/BLLWSServiceInterace/")]
public class BLLWSServiceInterface : System.Web.Services.WebService
{
 [WebMethod]
 public string AuthenticateCustomer(string email, string password)
 {}

 [WebMethod]
 public string GetCategories()
 {}

 [WebMethod]
 public string GetProductsByCategory(int CategoryID)
 {}

 [WebMethod]
 public string GetSearchResults(string keyword)
 {}

 [WebMethod]
 public void PlaceOrder(string order)
 {}

 [WebMethod]
 public string GetCustomerOrders(int customerID)
 {}
}

244 Application Interoperability: Microsoft .NET and J2EE

4. The team added code to each of the Web service methods to call the business
service façade methods. The following code sample shows how this was done
for the GetCategories method in the Web service service interface. The developers
called the GetXml method of the CategoriesData object returned from the
business service façade to convert the data into an XML formatted string,
which the WS service interface returns to its caller.

[WebMethod]
public string GetCategories()
{
 try
 {
 // Create a business service façade (BSF) object
 BusinessServiceFacade bsf = new BusinessServiceFacade();

 // Call the GetCategories method on the BSF object
 CategoriesData cd = bsf.GetCategories();

 // Convert the CategoriesData dataset into XML, and return it
 return cd.GetXml();
 }
 catch (XBikesInteropException intExp)
 {
 //.. Error handling code
 }
}

5. According the WS-I Basic Profile 1.0, Web services should support the SOAP
protocol but not the HTTPGet or HTTPPost protocols. To remove support for the
protocols from the Web service, the XBikes developers added the following code
to the <system.web> section of the Web.config file for the Web service.

<webServices>
 <protocols>
 <remove name="HttpGet" />
 <remove name="HttpPost" />
 </protocols>
</webServices>

To test the Web service, the developers built and ran the Web service project in
Visual Studio .NET 2003. When you run an ASP.NET Web service project, a test page
appears automatically in the browser. The test page contains hyperlinks that allow
you to invoke each of the Web service methods. The test page also has text boxes
for you to enter input values if necessary. After you invoke a Web service method,
another browser window opens showing the XML response from the Web service
method.

Note: Although the XBikes sample application is not fully WS-I Basic Profile 1.0 compliant, the
developers used toolkit capability, available at the time of development, to come as close as
possible to Basic Profile compliance.

 Chapter 8: Integrating .NET in the Business Tier 245

Creating the Interoperability Adapters in J2EE
Earlier sections described how to create the Web service service interface in .NET
Framework; after that is created, you can proceed to build the J2EE interoperability
adapters. This section describes how. The procedures to do this are as follows:
● Build the Java data classes based on the XML Schema.
● Build a Web service proxy using the tools provided by your Web services stack.
● Create an adapter for either the entire service interface, or one for each use case.

Note: In XBikes, the developers created an adapter for each use case.

The interoperability adapter calls the proxy, which then calls the Web service. The
adapter also has to convert any Java data to and from the correct string/XML format
based on the XML Schema.

The logic flow for an adapter is as follows:
1. The application calls the adapter method.
2. The adapter method converts any complex data to an XML string representation.
3. The adapter method creates an instance of the Web service proxy.
4. The adapter method calls the appropriate method in the Web service proxy.
5. If the proxy returns data, the adapter method converts it into the correct Java

format if necessary.
6. The adapter method returns the data back to the calling application.

Figure 8.2 shows this in operation.

Web Service
Proxy

J2EE Web
Presentation

Tier

Java
Interoperability

Adapter

ASP.NET
Web Service

Adapter performs
data conversion

if required

Figure 8.2
Web service proxy operation with J2EE applications

246 Application Interoperability: Microsoft .NET and J2EE

The tasks to build the Java adapters are the following:
1. Create the Java data types and XML mapping from the XML Schema.
2. Create the Java Web service proxies from the WSDL for the .NET Framework

Web service.
3. Create the Java adapters to convert Java data and call the .NET Framework

Web service.

The following sections describe how to perform these tasks.

Creating Java Data Types and XML Mapping from the XML Schema
Most Java XML products provide tools that allow you to create Java data types based
on an XML Schema. Typically, these tools also create a mapping file that maps each
field in the Java class to an element or attribute in the XML Schema.

Note: If your existing Java data types are already consistent with an XML Schema, you do not have
to define intermediary Java classes. Simply define a mapping file that maps Java fields directly to
elements and attributes in the XML Schema.

After you define the XSD-based Java classes, the next step is to write code that copies
data from your original Java objects into objects of the XSD-based classes. You must
then write code to serialize the XSD-based objects into an XML formatted string.

It is a good idea to put the serialization code into a helper class, and this is what
the XBikes developers did. The helper class requires two methods for each type of
data you want to write to a string or read from a string; the methods take a single
parameter for the type of data you want to convert and return a single value of the
converted type. The following method signatures show how to convert an Order
object to and from an XML formatted string.

public static String orderToString(Order o);
public static Order StringToOrder(String o);

The following steps illustrate how the XBikes developers created XSD-based Java
classes from the CustomerData.xsd XML Schema described earlier in this chapter.
The XBikes developers used GLUE to generate the XSD-based Java classes, and to
create mapping files so that GLUE can serialize and deserialize Java objects to and
from XML. The steps were:
1. The developers created Java classes based on the CustomerData.xsd schema, using

the schema2java tool provided by GLUE.

schema2java CustomerData.xsd -g -p xbikes.common.dataconverters.customers

 Chapter 8: Integrating .NET in the Business Tier 247

2. The schema2java command generated two Java files, CustomerData_TYPE.java
and Customers_TYPE.java. The XBikes developers added these files to the Java
project, placing them in the common package for easy access. The package
destination was xbikes.common.dataconverters.customers.

3. The schema2java command also generated a CustomerData.map file, which the
GLUE serializer uses to map the fields to the correct XML elements and attributes.
The XBikes developers copied this map file into the XBikesWeb\Web Content
\WEB-INF\maps folder, which is where GLUE expects to find map files for
XML serialization.

4. Because GLUE is the chosen environment, the team added the Glue.jar file to the
build path.

5. Next, the developers wrote a Helper class to perform the conversion between Java
data and strings. They named the new class CustomerConverter, and added it to
the xbikes.common.dataconverters package.

6. The developers added two methods to the CustomerConverter class, one to
convert an XML string into a Java object, and the other to convert a Java object
into an XML string. These methods use the GLUE serializer to read and write
XML data from XSD-based CustomerData_TYPE and Customers_TYPE objects.
The CustomerData_TYPE and Customers_TYPE data types exist solely to allow
XML data to be serialized and deserialzed as Java objects; the rest of the J2EE
application uses an existing Java class named CustomerData. Therefore the
conversion methods in CustomerConverter are expressed entirely in terms of the
CustomerData class, and they perform internal conversions between this data
type and CustomerData_TYPE and Customers_TYPE.
The following code listing shows the completed CustomerConverter class.

package xbikes.common.dataconverters;
import java.io.StringWriter;
import xbikes.common.data.CustomerData;
import xbikes.common.dataconverters.customers.CustomerData_TYPE;
import xbikes.common.dataconverters.customers.Customers_TYPE;
import xbikes.common.exceptions.XBikesInteropException;
import electric.xml.Document;
import electric.xml.io.IReader;
import electric.xml.io.IWriter;
import electric.xml.io.literal.LiteralReader;
import electric.xml.io.literal.LiteralWriter;
public final class CustomerConverter
{
 private static final String WRITER = "CustomerData";
 private static final String NAMESPACE =
 "http://tempuri.org/CustomerData.xsd";

(continued)

248 Application Interoperability: Microsoft .NET and J2EE

(continued)

 public static CustomerData stringToCustomerData(String xml) throws
 XBikesInteropException
 {
 try
 {
 // Need to convert the string into xml
 Document d = new Document(xml);
 IReader reader = new LiteralReader(d);
 CustomerData_TYPE myCustomer =
 (CustomerData_TYPE)
 reader.readObject(CustomerData_TYPE.class);
 Customers_TYPE customer = myCustomer.getCustomers();
 CustomerData cd = new CustomerData();
 cd.setAddress(customer.getEmailAddress());
 cd.setCustomerID(customer.getCustomerID());
 cd.setName(customer.getFullName());
 cd.setPassword(customer.getPassword());
 cd.setZip(customer.getZipCode());
 return cd;
 }
 catch (Exception e)
 {
 System.out.println(e.getMessage());
 throw new XBikesInteropException(e.getMessage());
 }
 }
 public static String customerDataToString(CustomerData cd) throws
 XBikesInteropException
 {
 try
 {
 // Move the data from the internal java classes into those
 // generated by the schema tool
 Customers_TYPE customer = new Customers_TYPE();
 customer.setCustomerID(cd.getCustomerID());
 customer.setEmailAddress(cd.getAddress());
 customer.setFullName(cd.getName());
 customer.setPassword(cd.getPassword());
 customer.setZipCode(cd.getZip());
 CustomerData_TYPE customerData = new CustomerData_TYPE();
 customerData.setCustomers(customer);
 // Write the object to a string, via the LiteralWriter /
 // Document and StringBuffer
 IWriter writer = new LiteralWriter(WRITER);
 writer.writeObject(customerData);
 writer.writeNamespace("", NAMESPACE);
 Document d = writer.getDocument();
 String sCustomerData = "";
 StringWriter sw = new StringWriter();
 d.write(sw);

(continued)

 Chapter 8: Integrating .NET in the Business Tier 249

(continued)

 sCustomerData = sw.getBuffer().toString();
 return sCustomerData;
 }
 catch (Exception e)
 {
 System.out.println(e.getMessage());
 throw new XBikesInteropException(e.getMessage());
 }
 }
}

The conversion methods in the CustomerConverter class allow CustomerData
objects to be converted to and from the XML format defined by the
CustomerData.xsd schema.

Creating Java Web Service Proxies
The next task is to generate the Java proxy classes for the .NET Framework
Web service. Most Web service stacks provide a tool named wsdl2java (or similar),
to generate Java proxy classes from WSDL.

The following steps describe how the XBikes developers used GLUE to generate Java
proxy classes for the .NET Framework Web service:
1. The developers used the Wsdl2java tool in GLUE to generate Java proxy classes

and associated helper classes for the .NET Framework Web service.

wsdl2java
http://localhost/XBikes-BLL-WSServiceInterface/BLLWSServiceInterface.asmx?wsdl
-p xbikes.usecaseintropadapters.net.ws

This command generated a BLLWSWebServiceInterfaceHelper Java class and
an IBLLWSServiceInterfaceSoap Java interface These Java types were located
in xbikes.usecaseinteropadapters.net.ws Java package.

2. The developers added the BLLWSWebServiceInterfaceHelper Java class and the
IBLLWSServiceInterfaceSoap Java interface to the J2EE XBikesWeb project.

`

The Web service proxies enable the J2EE presentation layer to invoke Web service
methods upon the .NET Framework Web service.

Creating the J2EE Interoperability Adapters
Now that you have the Java data classes and Web service proxies, you can define
the interoperability adapters for the J2EE application. You can either define a single
adapter for each Web service or define a separate adapter for each use case,
depending upon the level of fine control you require. The XBikes developers
created an adapter for each use case to give maximum flexibility.

250 Application Interoperability: Microsoft .NET and J2EE

The XBikes use cases follow the Command pattern. Each adapter class implements an
interface named IUseCaseCommand and provides initialise and execute methods:
● initialise — Sets up the use case adapter and assigns parameters for the upcoming

action.
● execute — Causes the use case adapter to perform its action.

Adapter classes are named after the command that they adapt. For example,
AuthenticateCustomerCommandAdapter is the adapter class for the
AuthenticateCustomerCommand command. The following code listing shows how
the XBikes developers implemented the AuthenticateCustomerCommandAdapter
adapter class.

package xbikes.usecaseinteropadapters.j2ee.ws;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;

import xbikes.bll.facade.BusinessServiceFacadeHome;
import xbikes.common.data.CustomerData;
import xbikes.common.data.ValueObject;
import xbikes.common.dataconverters.CustomerConverter;
import xbikes.common.interfaces.architecture.IUseCaseCommand;
public class AuthenticateCustomerCommandAdapter implements IUseCaseCommand
{
 private String email;
 private String password;
 /**
 * Constructor for AuthenticateCustomerCommandAdapter.
 */
 public AuthenticateCustomerCommandAdapter()
 {
 super();
 this.email = "";
 this.password = "";
 }
 /**
 * @see xbikes.common.interfaces.architecture.IUseCaseCommand#execute()
 */
 public ValueObject execute() throws Exception
 {
 IBLLWSServiceInterface service;
 service = BikesWebServiceHelper.bind();
 String xml = service.authenticateCustomer(email, password);
 CustomerData cd = CustomerConverter.stringToCustomerData(xml);
 return cd;
 }

(continued)

 Chapter 8: Integrating .NET in the Business Tier 251

(continued)

 public ValueObject execute(String pEmail, String pPassword) throws Exception
 {
 this.email = pEmail;
 this.password = pPassword;
 return this.execute();
 }
 /**
 * @see
 xbikes.common.interfaces.architecture.IUseCaseCommand#initialise(Object[])
 */
 public void initialise(Object[] params)
 {
 this.email = params[0].toString();
 this.password = params[1].toString();
 }

}

This section described how to create interoperability adapters in Java and service
interfaces in .NET that use Web services to interoperate. The next sections describe
how to implement interoperability adapters and service interfaces using Ja.NET to
provide higher performance interoperability solutions.

Using Ja.NET for Interoperability
This section shows how you can use Ja.NET to perform bridging between a Java (JSP)
Web tier and a .NET Framework Business tier. It describes the data format choices,
how to create the service interface, and how to build the interoperability adapters.

Deciding on a Data Format
Ja.NET implements pure .NET Remoting, allowing you to expose any .NET
Framework data type to Java. However, you are advised not to expose datasets
to .NET Remoting clients directly for the following reasons:
● The current implementation of the .NET Framework DataSet class does not offer

optimum performance for serialization and deserialization. This is a known issue,
and Microsoft plans to address this in future releases of the .NET Framework.

● Typed datasets include inner classes, but the current version of Ja.NET does not
support serialization of inner classes. This will be supported soon in a service
release of the Ja.NET runtime.

If your .NET Framework application uses typed datasets, the recommended
approach for exchanging data is to generate a set of simple custom data classes from
the same XML Schema (XSD file) as the typed datasets. This can be done using the
technique shown earlier in the chapter for generating a regular class from an XSD file.

252 Application Interoperability: Microsoft .NET and J2EE

These simple classes contain the data within the dataset classes, but their design
improves serialization performance. Also, you can pass the simple classes using
Ja.NET because they do not contain any inner-classes.

Building the Service Interface for Ja.NET
Ja.NET is a pure Java implementation of the .NET Remoting protocol, so you do not
have to write any special code or runtime libraries when you expose .NET Remoting
objects to Java applications.

As the previous section covers, the XBikes developers could not return dataset objects
from the .NET Framework service interface. So the developers took the following
steps to overcome the difficulties with datasets:
1. They created a set of simple custom data classes for the .NET Framework dataset

classes. The simple classes contain the data within the dataset classes but are
optimized for performance (for more information, see Ja.NET best practices in
Chapter 4, “Interoperability Technologies: Point to Point”).

2. The developers created a wrapper interface around the .NET Framework business
service façade to return the simple classes instead of the dataset classes.

Figure 8.3 shows how Ja.NET uses pure .NET Remoting to achieve interoperability
between the J2EE Presentation tier and the .NET Framework Business tier.

.NET dataset
classes

XBikes Ja.NET
BLL Service Interface

(.NET Web Project)

Business
Service Facade

(.NET)

J2EE
Presentation Tier

Simple custom .NET
types, which are efficient,
 are sent by value to the

J2EE Presentation tier

.NET
Remoting
over HTTP

Figure 8.3
Implementing a custom .NET Framework service interface for the .NET Framework business
service façade

 Chapter 8: Integrating .NET in the Business Tier 253

The following steps describe how the XBikes developers defined a custom service
interface to expose the .NET Framework business service façade to Ja.NET:
1. The developers created a new Web project in Visual Studio .NET named

XBikes-BLL-JaNetServiceInterface.
2. The developers created a series of .NET Framework simple custom data classes,

such as the CustomerData class shown in the next step; these classes are similar
to the corresponding data classes in Java. The developers placed these classes in
a folder named JaNetWireDataTypes.

using System;

namespace XBikes.BLL.ServiceInterface.Net.JaNet
{
 /// <summary>
 /// Wrapper class for DataSet CustomerData class
 /// Merely contains the intrinsic values of the DataSet
 /// It is sent over the wire by value, and is more efficient than
 /// sending the whole DataSet
 /// </summary>
 ///
 [Serializable()]
 public class CustomerData
 {
 /// <summary>
 /// Constructor
 /// </summary>
 public CustomerData()
 {
 }

 private int customerID;

 private string name;

 private string address;

 private string password;

 private string zip;

 /// <summary>
 /// Gets Customer ID
 /// </summary>
 /// <returns>Customer ID</returns>
 public int getCustomerID()
 {
 return customerID;
 }

(continued)

254 Application Interoperability: Microsoft .NET and J2EE

(continued)

 /// <summary>
 /// Gets Customer ID
 /// </summary>
 /// <param name="customerID">Customer ID</param>
 public void setCustomerID(int customerID)
 {
 this.customerID = customerID;
 }

 /// <summary>
 /// Gets Name
 /// </summary>
 /// <returns>Name</returns>
 public string getName()
 {
 return name;
 }

 /// <summary>
 /// Sets Name
 /// </summary>
 /// <param name="name">Name</param>
 public void setName(string name)
 {
 this.name = name;
 }

 /// <summary>
 /// Gets Address
 /// </summary>
 /// <returns>Address</returns>
 public string getAddress()
 {
 return address;
 }

 /// <summary>
 /// Sets Address
 /// </summary>
 /// <param name="address">Address</param>
 public void setAddress(string address)
 {
 this.address = address;
 }

(continued)

 Chapter 8: Integrating .NET in the Business Tier 255

(continued)
 /// <summary>
 /// Gets Password
 /// </summary>
 /// <returns>Password</returns>
 public string getPassword()
 {
 return password;
 }

 /// <summary>
 /// Sets Password
 /// </summary>
 /// <param name="password">Password</param>
 public void setPassword(string password)
 {
 this.password = password;
 }

 /// <summary>
 /// Gets Zip
 /// </summary>
 /// <returns>Zip</returns>
 public string getZip()
 {
 return zip;
 }

 /// <summary>
 /// Sets Zip
 /// </summary>
 /// <param name="zip">Zip</param>
 public void setZip(string zip)
 {
 this.zip = zip;
 }
 }
}

3. Next the developers created a .NET Framework class named
BLLJaNetServiceInterface to perform the conversion between .NET Framework
dataset classes and the simple classes. BLLJaNetServiceInterface inherits from
System.MarshalByRefObject because it is a marshal-by-reference data type.
The following code listing shows the AuthenticateCustomer method for
BLLJaNetServiceInterface class.

using System;
using XBikes.BLL.Facade;
using XBikes.Common.Exceptions;
using XBikes.Common.Schemas;
using System.Collections;
using System.EnterpriseServices;

(continued)

256 Application Interoperability: Microsoft .NET and J2EE

(continued)

namespace XBikes.BLL.ServiceInterface.Net.JaNet
{
 /// <summary>
 /// Class that wraps the BLL Business Service Facade.
 /// This class is a custom wrapper and does NOT implement the
 /// IBLLServiceFacade interface, as that interface deals directly with
 /// the DataSet classes.
 /// The DataSet classes currently have performance issues when being
 /// serialized over the wire. As well the current version of Ja.NET (1.5.0)
 /// does not handle the serialization of inner classes. The future version
 /// of the DataSet classes will have greatly improved performance. As well,
 /// Ja.NET will support inner class serialization in the new future.
 /// </summary>
 public class BLLJaNetServiceInterface : System.MarshalByRefObject
 {
 /// <summary>
 /// Constructor - No Action
 /// </summary>
 public BLLJaNetServiceInterface()
 {

 }
 /// <summary>
 /// This is the wrapped version of the AuthenticateCustomer
 /// method in the
 /// standard IBLLServiceFacade method. Converts the DataSet
 /// CustomerData object
 /// the more remoting friendly wrapper version.
 /// </summary>
 /// <param name="email">The email of the user</param>
 /// <param name="password">Password of the User</param>
 /// <returns>Wrapped Version of Customer Data</returns>
 public XBikes.BLL.ServiceInterface.Net.JaNet.CustomerData
 AuthenticateCustomer(string email, string password)
 {
 try
 {
 // Create a return type object
 XBikes.BLL.ServiceInterface.Net.JaNet.CustomerData ejbCustData =
 new XBikes.BLL.ServiceInterface.Net.JaNet.CustomerData();

 // Use the .Net Business Service Facade and
 // get a Data Set customer object
 BusinessServiceFacade bsf = new BusinessServiceFacade();
 XBikes.Common.Schemas.CustomerData custData =
 (XBikes.Common.Schemas.CustomerData)
 bsf.AuthenticateCustomer(email, password);

(continued)

 Chapter 8: Integrating .NET in the Business Tier 257

(continued)

 //Check if authentication failed by looking for
 //an empty CustomerData dataset.
 if (custData.Customers.Count != 0)
 {
 // Fill in the wrapper object with values
 // from the DataSet object
 ejbCustData.setCustomerID(custData.Customers[0].CustomerID);
 ejbCustData.setName(custData.Customers[0].FullName);
 ejbCustData.setAddress(custData.Customers[0].EmailAddress);
 ejbCustData.setZip(custData.Customers[0].ZipCode);
 }
 else
 {
 //do nothing - leave ejbCustData empty
 }
 return ejbCustData;
 }
 catch (XBikesApplicationException ae)
 {
 throw ae;
 }
 catch (XBikesInteropException ae)
 {
 throw ae;
 }
 catch (System.Runtime.Remoting.RemotingException sre)
 {
 // Is it a problem with the network?
 string message = sre.Message;
 if (message.IndexOf("com.intrinsyc.janet") >= 0)
 {
 throw new XBikesInteropException(sre.Message, sre);
 }
 else
 {
 // or is it an application error?
 throw new XBikesApplicationException(sre.Message, sre);
 }
 }
 catch (Exception eX)
 {
 // generic catch/rethrow
 throw new XBikesApplicationException(eX.Message, eX);
 }

 }
 }

258 Application Interoperability: Microsoft .NET and J2EE

4. Finally the XBikes developers modified the Web.config file to expose the service
for .NET Remoting. The developers chose to host the .NET Remoting component
in IIS, using HTTP as the transport but with binary formatting for performance.
The <system.runtime.remoting> section of the Web.config file is shown in the
following code sample.

<system.runtime.remoting>
 <application>
 <service>
 <activated
 type="XBikes.BLL.ServiceInterface.Net.JaNet.BLLJaNetServiceInterface,
 XBikes-BLL-JaNetServiceInterface" />
 </service>
 <channels>
 <!-- <channel port="<JaNet Port From Janetor>" ref="tcp"/> -->
 <!-- IMPORTANT: COMMENT OUT THE FOLLOWING IF UNDER .NET 1.0!!! -->
 <!-- and uncomment the statement above -->
 <channel ref="http">
 <serverProviders>
 <formatter ref="binary" typeFilterLevel="Full"/>
 </serverProviders>
 </channel>
 <!-- END .NET 1.1 SPECIFIC -->
 </channels>
 </application>
 </system.runtime.remoting>

Creating the Interoperability Adapters using Ja.NET
After you construct and expose the service interface, the next step is to create the
interoperability adapters in J2EE.

Because Ja.NET implements pure .NET Remoting, you must define a Java proxy class
that the J2EE application can call to consume the exposed .NET Framework service
interface. You can use graphical tools provided by Ja.NET to create this proxy class.
After you have created the proxy class, it is a simple task to define the Java
interoperability adapters.

The following steps describe how the XBikes developers created the interoperability
adapters using Ja.NET:
1. The developers used the GenNet tool to create Java proxy classes for selected

.NET Framework assemblies. GenNet generated a set of Java source files, which
the developers compiled and added to JanetNetBllProxies.jar. The developers also
added Janet.jar to the same folder as JanetNetBllProxies.jar.

2. The developers used the Janetor tool to configure the location of the .NET
Framework client. This is the Java equivalent of defining .NET Remoting
configuration files.

 Chapter 8: Integrating .NET in the Business Tier 259

3. The developers created a new package named
xbikes.usecaseinteropadapters.net.janet in the XBikesWeb project, and they
added the use case adapter classes. Each adapter class makes a call into the proxy
JAR file to communicate with a particular .NET Framework service. The code for
the AuthenticateCustomerCommandAdapter adapter class is shown in the
following code sample.

package xbikes.usecaseinteropadapters.net.janet;

import xbikes.common.data.CustomerData;
import xbikes.common.data.ValueObject;
import xbikes.common.interfaces.architecture.IUseCaseCommand;

import XBikes.BLL.ServiceInterface.Net.JaNet.*;

public class AuthenticateCustomerCommandAdapter implements IUseCaseCommand
{
 // Values required when the command is executed
 private String email;
 private String password;

 // Constructor
 public AuthenticateCustomerCommandAdapter() throws Exception
 {
 email = "";
 password = "";
 }

 // Set up the use case adapter and assign parameters for the upcoming action
 public void initialise(Object[] params)
 {
 this.email = params[0].toString();
 this.password = params[1].toString();
 }

 // Execute the command, using the email and password instance variables
 public ValueObject execute() throws Exception
 {
 // Invoke the AuthenticateCustomer method on the remote object
 BLLJaNetServiceInterface rf = new BLLJaNetServiceInterface();
 XBikes.BLL.ServiceInterface.Net.JaNet.CustomerData cdr =
 rf.AuthenticateCustomer(email, password);

 System.out.println("AuthenticateCustomerCommandAdapter: " +
 ".NET Framework remoting object returned details " +
 "for Customer: " + cdr.getname() + ".");

(continued)

260 Application Interoperability: Microsoft .NET and J2EE

(continued)

 // Return a Java CustomerData object
 return new CustomerData(cdr.getcustomerID(),
 cdr.getname(),
 cdr.getaddress(),
 password,
 cdr.getzip());
 }

 // Execute the command, using specific email and password values
 public ValueObject execute(String pEmail, String pPassword) throws Exception
 {
 this.email = pEmail;
 this.password = pPassword;
 return this.execute();
 }
}

The AuthenticateCustomerCommandAdapter adapter class provides a bridge from
the J2EE Presentation tier and the .NET Framework Business tier.

Summary
This chapter included practical examples of how to integrate a J2EE Presentation
tier with a .NET Framework Business tier. It showed two different interoperability
techniques, those of Web services and of .NET Remoting using a runtime bridge.
Web services are the preferred mechanism in most situations, but .NET Remoting
with a runtime bridge is more appropriate if you require faster communication rates
or want to use a binary interoperability mechanism.

9
Implementing Asynchronous
Interoperability

Introduction
Implementing asynchronous interoperability is the third interoperability
scenario introduced in Chapter 1, “Introduction,” involving the connection of
.NET Framework components to message queuing components in the Data tier.
Asynchronous interoperability covers situations where you want a client application
to be able to make a call to another tier or process. Having made the call, the client
can then continue to operate while the remote component processes the request
rather than wait for the result.

Using asynchronous operations only makes sense for tasks that are amenable to this
style of operation. In the sample XBikes application, the process of placing an order
is a good candidate for using message queues and is recommended best practice for
business to consumer e-commerce applications.

The main focus of this chapter is on connecting to IBM WebSphere MQ. Another
section reviews the MSMQ-MQSeries Bridge that ships with Microsoft Host
Integration Server (HIS) and provides a bridge between Microsoft Message
Queuing (MSMQ) and IBM WebSphere MQ (formerly known as MQSeries).

The section on JNBridgePro covers how you can generate Java proxy assemblies that
bridge the connection between the .NET Framework Business tier components and
WebSphere MQ. The chapter finishes with a section that shows the same technique
using Ja.NET.

262 Application Interoperability: Microsoft .NET and J2EE

Determine Data Exchange Formats and Data Types
Like with the other interoperability technologies, you first have to decide upon a data
format that both .NET Framework and Java can understand. This choice is dependent
on a number of factors:
● How are you going to integrate with the message queues?
● Are you using a bridging product to wrap message queue functionality?
● Are you using the MSMQ-MQSeries Bridge?

Your choice of data exchange format and data types depends on which integration
technology you use:
● If you are using one of the bridging products to wrap the message queue

functionality, you are likely to use the same data exchange format and data types
as you used for point-to-point communication.

● If you use the MSMQ-MQSeries Bridge, you have to implement a similar
strategy to Web services. In order to allow objects to be read from and written
to the message queues you must serialize these XML documents into strings.
XML-formatted strings preserve the richness of information contained in .NET
Framework or Java objects and they overcome the interoperability difficulties
that arise when exchanging real objects.

This chapter describes each of these options.

Designing and Building the Service Interface
When using message queuing for asynchronous interoperability, there are no direct
calls into service interfaces across technological boundaries. Instead, the role of
service interfaces is more like “message consumers.” The service interface is an
application that monitors and picks up messages from a queue, unpacks the data,
and sends it to the existing façade or application that processes the message.

Both .NET Framework and J2EE provide built-in support for activation of
components from messages (queued components in .NET Framework and
message-driven beans in J2EE). However, there are differences in the required
message structure in each case, so this approach is not feasible when you require
interoperability between .NET Framework and J2EE. Instead you write a service
interface yourself that consumes messages and passes them on to the appropriate
service façade.

Building a message consumer is an easy task. Regardless of the technology that you
use to write the message, the technique for consuming the message is the same. You
need to create a client application or service that polls for messages on the queues
and reads any messages found. The data you extract from the message is then

 Chapter 9: Implementing Asynchronous Interoperability 263

either already in the correct format (if it uses the bridging technologies) or requires
de-serializing from an XML string back into the correct data class using the
techniques described for Web services in Chapters 7 and 8.

Figure 9.1 shows the role of service interfaces in asynchronous communications.

Message Queue

Service Facade

Performs data
conversion if required

Service
Interface
(Message
Consumer)

Reads message
from queue

Figure 9.1
The role of service interfaces in asynchronous communications

After the data is back into the correct format, all you need is a method call into the
appropriate service façade.

Designing and Building the Asynchronous Interoperability
Adapters

Building the asynchronous interoperability adapters is a similar process to building
a synchronous adapter, except that instead of making calls to the correct service
interface, you place a message in a message queue. Again, depending on the
technology in use, you may have to manipulate the data, either by converting
it into the Java data proxies or by serializing it into a string as XML.

Figure 9.2 shows the role of interoperability adapters in asynchronous
communications.

Message Queue

Client Application

Performs any
data conversion

Asynchronous
Interoperability

Adapter

Places message
in queue

Figure 9.2
The role of interoperability adapters in asynchronous communications

264 Application Interoperability: Microsoft .NET and J2EE

How the message joins the message queue depends upon the technology used. For
bridging products that wrap the JMS functionality, you can place the messages in the
queue using ObjectMessage types; otherwise, you have to use text-based message
types.

Using the MSMQ-MQSeries Bridge
If you are familiar with code that writes messages from .NET Framework to MSMQ
and have experience of writing JMS code to work with WebSphere MQ, enabling
interoperability using the MSMQ-MQSeries Bridge is straightforward.

MSMQ-MQSeries Bridge requires two computers, the first with the following
configuration:
● Windows 2000 or Windows 2003
● Active Directory
● MSMQ-MQSeries Bridge
● MSMQ (with routing support)
● WebSphere MQ client

The second computer should have Windows 2000 installed as a member server and
should be running WebSphere MQ.

You need to configure the computer running WebSphere MQ as the foreign computer
in MSMQ. Do this by creating a foreign site under the Services/MsmqServices node
in Active Directory Sites and Services, add a new MSMQ routing link to link the local
site (usually Default-First-Site-Name) to the foreign site, add the MSMQ computer as
the local site gate, and then add the MQ Series computer as a foreign computer to the
foreign site.

For more information about the details of configuring MSMQ foreign sites, see
“Configuring cross-platform messaging” on TechNet.

For more information about how to configure and use the MSMQ-MQSeries Bridge,
see “Chapter 13 — MSMQ-MQSeries Bridge Configuration Guide” on TechNet.

Consider the scenario where you are reading WebSphere MQ messages using JMS.
Originally, those messages came from MSMQ and passed over the bridge. In this
case, there should be no message consumption problems providing you change the
WebSphere MQ JMS configuration. To implement this interoperability scenario, set
the Queue Configuration for WebSphere MQ’s targetClient to MQ, not JMS. If you
do not make this change, WebSphere MQ expects a JMS headed message, which
.NET Framework cannot generate.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/windowsserver2003/proddocs/standard/msmqconcepts/sag_msmqconcepts_admforeign.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/host/reskit/part3/hisrkc13.asp?frame=true

 Chapter 9: Implementing Asynchronous Interoperability 265

Note: Do not configure targetClient on existing queues, because the change may cause existing
JMS applications to fail. Always create a new message queue exclusively for interoperability
purposes.

In the reverse direction, providing you change the targetClient to MQ, you can
generate messages from JMS and then pass them over the bridge and consume
them in a .NET Framework application.

Configuring the Message Queues
To enable interoperability through the MSMQ-MQSeries Bridge, you need to create
two queues for each direction in which you want to send messages. You need to
define local queues for receiving messages and remote queues for sending messages.
You also have to configure the bridge correctly.

Figure 9.3 shows how you might set up two queues for each direction you want
to send messages between .NET Framework and Java.

MSMQ-
MQSeries

Bridge

SampleQ1
(this queue

receives messages
from .NET to Java)

SampleQ2
(this queue

receives messages
from Java to .NET)

SampleQ1
(this queue sends

messages from
.NET to Java)

SampleQ2
(this queue sends

messages from
Java to .NET)

MSMQ 3.0 WebSphere
MQ 5.3

Local Queue:

Local Queue:

Remote Definition:

Foreign Site Queue:

Message flow from
WebSphereMQ

to MSMQ

Message flow
from MSMQ to
WebSphereMQ

Figure 9.3
Logical representation of the MSMQ-MQSeries Bridge connecting MSMQ and MQ Series

Start by defining the MSMQ queues. You add a local queue to the computer running
the bridge and a remote queue on the foreign computer.

266 Application Interoperability: Microsoft .NET and J2EE

Next, using the MSMQ-MQSeries Bridge Manager, you add a MQI channel which
points to the computer running WebSphere MQ. This creates four message pipes,
two transactional and two non-transactional, that route messages between the two
queuing systems. After you have created these, you need to export both the client and
server definitions. Copy these files to the WebSphere MQ computer, and then import
them using the runmqsc command. This command configures the transmission
queues and keeps the channels synchronized across the bridge.

The next step is to create a local and remote queue in WebSphere MQ. Configure
the remote queue to point to the MSMQ queue through the bridge. Do this by
configuring the remote queue manager name and transmission queue name to
point to the objects that the import created.

Finally, you need to copy the WebSphere MQ Client Channel Table file from the
computer running WebSphere MQ to the MSMQ computer and configure the
MQCHLLIB and MQCHLTAB environment variables to point to this file.

Selecting a Data Format
When sending messages on queues using the MSMQ-MQSeries Bridge, you must
ensure that the receiving end can consume the message data. The only realistic way
of sending complex data between J2EE and .NET Framework is to serialize the data
into an XML-formatted string. Additionally, WebSphere MQ supports sending
TextMessages, where you load up the body with a string containing the XML data
you want to send. MSMQ also allows you to send simple messages containing an
XML-formatted string.

Note: It is not feasible to use other data types because of binary serialization differences between
.NET Framework and J2EE as discussed in Chapter 3, “Interoperability Fundamentals.”

Creating the Message Consumer
This guide has already covered how the Message Consumer is an application that
you create to poll and read messages from a queue and place them into the resource
façade. Because you are using the bridge, you work with XML-formatted strings.
Therefore, you have to reconstruct the data from the XML string before you can use
it to call methods on the resource façade. The next two sections consider how to do
this on the two platforms.

Creating the .NET Framework Message Consumer
As described in Chapter 5, “Interoperability Technologies: Resource Tier “the
.NET Framework message consumer reads from an MSMQ queue. After you read
the contents of the message you must reconstruct the data. For techniques about
how to do this, see the “Web Services” section of Chapter 7, “Integrating .NET in
the Presentation Tier.”

 Chapter 9: Implementing Asynchronous Interoperability 267

The following code sample shows how to read a message from MSMQ and the data
you use to build the correct .NET Framework data type.

MessageQueue q = new MessageQueue(_queueName);
q.Formatter = new XmlMessageFormatter(new Type[] {typeof(String)});
Message order = q.Receive(0);
string xml = (string) order.Body();
StringReader sr = new StringReader(xml);
OrderData ds = new OrderData();

// Load result string back into an OrderData-typed DataSet
ds.ReadXml(sr);

Note: The preceding sample uses the OrderData custom data type from XBikes. However, the XBikes
application does not implement this code.

Creating the J2EE Message Consumer
The J2EE message consumer reads from WebSphere MQ, which you can build
using either the MQI Java classes or JMS. After you read the message, you have to
reconstruct the Java data from the XML string. For techniques about how to do this,
see the “Web Services” section of Chapter 8, “Integrating .NET in the Business Tier.”

The following code sample shows how you can read a message from WebSphere MQ
and the data you use to build the correct J2EE data type.

String connectionName = "XBikesQFC";
InitialContext ic = new InitialContext();
QueueConnectionFactory factory =
 (QueueConnectionFactory) ic.lookup(connectionName);
QueueConnection connection = factory.createQueueConnection();
QueueSession session =
connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
Queue queue = (Queue) ic.lookup(queueName);
QueueReceiver receiver = session.createReceiver(queue);
connection.start();

TextMessage message = (TextMessage) receiver.receive();
String orderXML = message.getText();
OrderData order = OrderConverter.stringtoOrderData(orderXML);
DalServiceFacade facade = getFacadeHome().create();

return facade.saveOrder(order);

Note: The preceding sample uses the OrderData custom data type, and the OrderConverter class
from XBikes. However, the XBikes application does not implement this code.

268 Application Interoperability: Microsoft .NET and J2EE

Creating the Interoperability Adapter
Following the techniques already discussed in this guide, it is recommended
that you create an asynchronous interoperability adapter to provide access to the
asynchronous communication channel. This adapter serializes the data for the
message into an XML formatted string.

Creating the .NET Framework Asynchronous Interoperability Adapter
The .NET Framework application sends a message to MSMQ, so you can use the
.NET Framework classes to do this, as discussed in Chapter 5. Because the final
destination of the message is to WebSphere MQ, you must write the message as a
string.

If you are using datasets, you can extract the XML using the GetXml() method.
You can then place the XML string in the MSMQ message queue as the following
code example shows.

string xml = order.GetXml();
MessageQueue q = new MessageQueue(_queueName);
q.Send(xml);

Note: The preceding sample uses the OrderData class from the order object that appears in the
XBikes application. However the XBikes application does not implement this code.

Creating the J2EE Asynchronous Interoperability Adapter
The J2EE application sends a message to WebSphere MQ, so you can use the JMS
classes (or MQI) to send the message. Again, because the final message destination
is MSMQ, you must create a string message rather than writing an object.

For the background and code for serializing Java data to an XML string, see the
“Web Services” section of Chapter 7. To send the message, you can use JMS code
similar to the following example.

InitialContext ic = new InitialContext();
QueueConnectionFactory factory =
 (QueueConnectionFactory) ic.lookup("XBikesQCF");
QueueConnection connection = factory.createQueueConnection();
QueueSession session =
 connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
Queue queue = (Queue) ic.lookup("XBikesQ");
QueueSender sender = session.createSender(queue);
sender.setDeliveryMode(DeliveryMode.NON_PERSISTENT);
sender.setPriority(4);
sender.setTimeToLive(0);
connection.start();

(continued)

 Chapter 9: Implementing Asynchronous Interoperability 269

(continued)

// Use a text message
TextMessage message = session.createTextMessage();

// Convert the order to a string
String sorder = OrderConverter.orderListDataToString(orderObject);
message.setText(sorder);
sender.send(message);

Note: The preceding sample uses the OrderData and OrderConverter classes from XBikes. However,
the XBikes application does not implement this code.

Now that how to implement the MSMQ-MQSeries Bridge has been described,
it is time to look at runtime bridges for asynchronous interoperability.

Using JNBridgePro
Chapter 4, “Interoperability Technologies: Point to Point,” shows how JNBridgePro
lets you create .NET Framework proxies for Java classes. These .NET Framework
proxies allow your .NET Framework application to interact with the native Java
classes. One technique of providing asynchronous interoperability is to create proxy
classes for the JMS classes on Java. This technique provides the ability to make JMS
message calls from .NET Framework. This solution is somewhat different to those
discussed so far, because .NET Framework would not be directly interacting with the
message queues; it would be communicating through Java. Therefore, you need a
running J2EE application server to provide .NET Framework with JMS access.

270 Application Interoperability: Microsoft .NET and J2EE

Figure 9.4 shows the role of JNBridge in asynchronous communications.

EJB Data

WebSphere MQ
JMS Server

ASP.NET
Presentation Tier

JNBridge Java-side
remoting server

(running inside servlet)

EJB Data is sent
by value to the

JMS Server, encased
in an ObjectMessage

.NET Remoting
over TCP

Figure 9.4
The role of JNBridge in asynchronous communications

Note: Because JNBridgePro wraps JMS, there is no special configuration required other than
configuring the JMS support for WebSphere MQ.

Deciding on a Data Format for JNBridgePro
JNBridgePro wraps the JMS functionality, allowing you to place a Java object directly
into the message queue. The only task from a data perspective is to create a .NET
Framework proxy of the Java data object, populate this with the data from .NET
Framework, and then use this object to write the message.

 Chapter 9: Implementing Asynchronous Interoperability 271

Creating the Message Consumer for JNBridgePro
Because the JNBridgePro adapter places a JMS message in WebSphere MQ, you can
use standard JMS code for reading the message. JMS with a JNBridgePro wrapping
determines the format of the message you read, so there is no need to change the data
that you can send directly to the resource application. The following code example
shows how to read the message from JMS.

InitialContext ic = new InitialContext();
QueueConnectionFactory factory = (QueueConnectionFactory)
ic.lookup(connectionName);

QueueConnection connection = factory.createQueueConnection();
QueueSession session =
connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
Queue queue = (Queue) ic.lookup(queueName);
QueueReceiver receiver = session.createReceiver(queue);
connection.start();

ObjectMessage message = (ObjectMessage) receiver.receive();
order = (OrderData) message.getObject();
DalServiceFacade facade = getFacadeHome().create();

return facade.saveOrder(order);

Creating the Asynchronous Interoperability Adapter for JNBridgePro
To create the asynchronous interoperability adapter, you need to expose the JMS
classes from J2EE into the .NET Framework application. You can do this using the
JNBridgePro proxy generation tool, in the same way that you used it to achieve
interoperability as described in Chapter 7.

To create the proxy, add the j2ee.jar, jndi.jar, and jms.jar packages as well as any
application-specific data classes you require to the JNBridgePro classpath. You must
create proxies for the following classes:
● javax.naming.InitialContext
● javax.naming.NamingException
● javax.jms.QueueConnectionFactory
● javax.jms.QueueConnection
● javax.jms.QueueSession
● javax.jms.Session
● javax.jms.Queue
● javax.jms.QueueSender
● javax.jms.ObjectMessage

272 Application Interoperability: Microsoft .NET and J2EE

● javax.jms.JMSException
● javax.jms.DeliveryMode
● javax.jms.InvalidDestinationException

In the XBikes sample application, this list also included the classes from the
xbikes.common.data package.

After you generate the proxy and configure the .NET Framework application,
the .NET Framework interoperability adapter calls the proxy classes in a similar
way that the J2EE application would use them. The following code sample shows
how to create a new JMS message in WebSphere from .NET Framework.

InitialContext ic = new InitialContext();
QueueConnectionFactory factory =
(QueueConnectionFactory) ic.lookup(connectionName);

QueueConnection connection = factory.createQueueConnection();
connection.start();
QueueSession session =
connection.createQueueSession(false, SessionConstants.AUTO_ACKNOWLEDGE);
javax.jms.Queue queue = (javax.jms.Queue) ic.lookup(queueName);
QueueSender sender = session.createSender(queue);

ObjectMessage message = session.createObjectMessage(order);
sender.send(message);

Note: This it is almost identical to sending a JMS message from Java, but the language is C#.

The next section covers the same techniques but using Ja.NET instead of
JNBridgePro.

Using Ja.NET
Chapter 4 shows how Ja.NET lets you to define .NET Framework proxy classes
for Java classes, to enable .NET Framework applications to access Java classes. In a
similar way, you can define .NET Framework proxy classes for the Java JMS classes to
enable .NET Framework applications to make JMS message calls. This solution is
somewhat different to those discussed so far, because the .NET Framework
application is communicating through Java rather than interacting directly with the
message queues. This implementation requires that you run a J2EE application server
to provide .NET Framework with JMS access.

 Chapter 9: Implementing Asynchronous Interoperability 273

At first sight, this looks the same as the JNBridgePro solution; however, Ja.NET
comes supplied with a ready-built JMS proxy. This is because all JMS invocations are
implemented through interfaces. Hence you do not need to create a proxy yourself
when you use Ja.NET.

Figure 9.5 shows the role of Ja.NET in asynchronous communications.

EJB Data

JaNetJms
Servelet

WebSphere MQ
JMS Server

ASP.NET
Presentation Tier

EJB Data is sent
by value to the

JMS Server, encased
in an ObjecMessage

.NET
Remoting
over HTTP

Figure 9.5
The role of Ja.NET in asynchronous communications

Again, you need to configure message queues and decide on a data format.

Configuring the Message Queues
Because Ja.NET provides a wrapper for JMS, there is no special configuration
required. However, you still need to configure WebSphere MQ for JMS support.

Deciding on a Data format for Ja.NET
Because Ja.NET wraps the JMS functionality, you can place a Java object directly
into the message queue. The only task from a data perspective is to create a .NET
Framework proxy of the Java data object, populate this with the data from .NET
Framework, and then use this object to write the message.

274 Application Interoperability: Microsoft .NET and J2EE

Creating the Message Consumer for Ja.NET
Because the Ja.NET adapter places a JMS message in WebSphere MQ, you can use
standard JMS code for reading the message. The message is in JMS format with a
Ja.NET wrapper, so there is no need to change the data. Thus you can send it directly
to the resource application. The following code sample shows how to read the
message from JMS.

InitialContext ic = new InitialContext();
QueueConnectionFactory factory = (QueueConnectionFactory)
ic.lookup(connectionName);

QueueConnection connection = factory.createQueueConnection();
QueueSession session =
connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
Queue queue = (Queue) ic.lookup(queueName);
QueueReceiver receiver = session.createReceiver(queue);
connection.start();

ObjectMessage message = (ObjectMessage) receiver.receive();
order = (OrderData) message.getObject();
DalServiceFacade facade = getFacadeHome().create();

return facade.saveOrder(order);

The next section looks at creating the asynchronous interoperability adapter.

Creating the Ja.NET Asynchronous Interoperability Adapter
To create this adapter, use the prepackaged JMS proxy that ships with Ja.NET 1.5.
This proxy is strong named so you can use it from within a COM+ context without
problems. You also have to create proxy classes for any Java data types you want to
access from .NET Framework. Remember to package the data into the Java classes
before placing the message in the queue.

Note: Chapter 7 contains details for generating proxies for Ja.NET.

 Chapter 9: Implementing Asynchronous Interoperability 275

The following code sample shows how to send a message from .NET Framework to a
JMS queue using Ja.NET.

JNDIContext context = new JNDIContext();
object o = context.Lookup("javax.jms.QueueConnectionFactory", "XBikesQCF");
javax.jms.QueueConnectionFactory factory =
 (javax.jms.QueueConnectionFactory) o;
QueueConnection connection = factory.createQueueConnection();
QueueSession session =
 connection.createQueueSession(false, SessionConstants.AUTO_ACKNOWLEDGE);
javax.jms.Queue queue =
(javax.jms.Queue) context.Lookup("javax.jms.Queue", "XBikesQ");
QueueSender qSender = session.createSender(queue);
qSender.setDeliveryMode(DeliveryMode.NON_PERSISTENT);
qSender.setPriority(4);
qSender.setTimeToLive(0);
connection.start();

ObjectMessage message = (ObjectMessage)session.createObjectMessage();
message.setObject(ejbOrder);
qSender.send(message);

Again, this is almost identical to sending a JMS message from Java, but the language
is C#.

Summary
This chapter described mechanisms for connecting from a .NET Framework Business
tier to a Java environment using asynchronous connections to message queuing
components. It also covered configuring runtime bridges to make the connection and
using proxies with both JNBridgePro and Ja.NET.

References
For more information about the details of configuring MSMQ foreign sites
See “Configuring cross-platform messaging”
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol
/windowsserver2003/proddocs/standard/msmqconcepts/sag_msmqconcepts_admforeign.asp

For more information about how to configure and use the MSMQ-MQSeries Bridge
See “Chapter 13 — MSMQ-MQSeries Bridge Configuration Guide”
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/host/reskit
/part3/hisrkc13.asp?frame=true

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/windowsserver2003/proddocs/standard/msmqconcepts/sag_msmqconcepts_admforeign.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/windowsserver2003/proddocs/standard/msmqconcepts/sag_msmqconcepts_admforeign.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/host/reskit/part3/hisrkc13.asp?frame=true
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/host/reskit/part3/hisrkc13.asp?frame=true

Appendix A
Installing XBikes on J2EE

Introduction
There are several ways to deploy the J2EE version of XBikes. This appendix describes
the following common deployment scenarios:
● Deploying XBikes on WebSphere Application Developer Studio 5.0
● Deploying XBikes on WebSphere Application Server 5.0 on a Single Computer
● Deploying XBikes on WebSphere Application Server 5.0 on Multiple Computers

This appendix also includes a section on changing interoperability methods, so that
you can see how to configure the different use case adapters to change the
interoperability methods that you use.

To assist with the descriptions of what the XBikes developers did in Chapters 7 to 9,
this appendix provides two installation methods:
● Automated
● Manual

The automated installation runs from a Microsoft Windows Installer (.msi) file,
installing and configuring the XBikes application. However, the manual installation
steps let you work through the complete process of deploying the J2EE version of
XBikes.

Note: The manual installation is recommended for those with some experience of J2EE applications
and IBM WebSphere products.

278 Application Interoperability: Microsoft .NET and J2EE

Deploying XBikes on WebSphere Application
Developer Studio 5.0

Using WebSphere Application Developer Studio 5.0 to run the XBikes sample code
requires you to install and configure the following software on a single computer:
● Windows 2000 Server with Service Pack 3 or later in Workgroup mode
● Microsoft SQL Server 2000 with mixed mode security and Service Pack 3
● Microsoft JDBC Driver for Microsoft SQL Server 2000
● A default installation of IBM WebSphere Application Developer Studio 5.0
● A custom installation of IBM WebSphere MQ 5.3 (described in the following

section)
● A default installation of GLUE 4.1.2 Professional

Note: You must install a valid GLUE license file into Glue.jar. See the GLUE documentation for help.

Configuring IBM WebSphere MQ 5.3
When setting up IBM WebSphere MQ, ensure you select a custom install and add
support for Java Messaging. To do this, complete the following steps.

� To install IBM WebSphere MQ

1. Open Windows Explorer, and then double-click WebSphereMQ_t_en_us.exe.
The WebSphere MQ (Evaluation Copy) dialog box appears. Click Next.

2. The Location to Save Files page prompts you for a folder into which you want
to extract the installation files. Note that this is not the directory into which you
install IBM WebSphere MQ. The default folder is C:\Program Files\IBM\Source
\WebSphere MQ t_en_us. Either accept the default value, enter a new directory,
or click the Change button and browse for a directory.

3. Click Next to continue. The installation process extracts the WebSphere MQ
installation files into the directory you specified.

4. In the dialog box that appears after the installation files are extracted, click Yes.
5. The WebSphere MQ Installation Launchpad appears. Click Software

Prerequisites.
6. The Launchpad checks your system for prerequisite software. Check that the

check boxes next to each required component are selected. However, note that
the installation routine can fail to detect the presence of a supported Java Runtime
Environment 1.3 or later.

7. Click Network Prerequisites and check that your computer meets the
requirements. If the computer is in Workgroup mode, you can click No.

 Appendix A: Installing XBikes on J2EE 279

8. Click WebSphere MQ Installation and check the pre-installation status. If you are
certain you have already installed a Java Runtime Environment 1.3 or later, you
can ignore any warnings about that component.

9. Click the Launch WebSphere MQ Installer button. The WebSphere MQ
Installation Wizard appears. Click Next.

10. On the License Agreement page, click the option to accept the terms in the license
agreement, and then click Next.

11. On the Setup Type page, click Custom, and then click Next.
12. Accept the default installation folder of C:\Program Files\IBM\WebSphere MQ

for the program files, and then click Next.
13. Accept the default installation folder of C:\Program Files\IBM\WebSphere MQ\

for the data files, and then click Next.
14. Accept the default installation folder of C:\Program Files\IBM\WebSphere MQ

\log\ for the log files, and then click Next.
15. On the Features page, click the red cross next to Java Messaging, click Install this

feature, and then click Next.
16. The Ready to Install WebSphere MQ page appears. Check that the settings are

correct, and then click Install.
17. A dialog box asks if you have purchased sufficient license units to install

IBM WebSphere on this computer. If you are using the evaluation version of
WebSphere MQ, click Yes.

18. After the installation process completes, click Finish.
19. When the Prepare WebSphere MQ Wizard appears, click Next.
20. On the WebSphere MQ Network Configuration page, click No. This assumes

that your computer is a member of a Workgroup. Click Next. The WebSphere MQ
Service starts.

21. Click the Setup the Default Configuration link.
22. When the Default Configuration Wizard appears, click Next.
23. The next page gives you basic information on what you are doing. Click Next.
24. On the Select Options page, leave the options for Allow remote administration

of the queue manager and Join the queue manager to the default cluster
selected. Click Next.

25. On the Join Default Cluster page, select the option for Yes, make it the repository
for the cluster. Click Next.

Note: If you are using a computer that gets its IP address dynamically, a message may appear
that asks if another computer with a fixed IP address is available to hold the repository. If this
message appears, click No.

280 Application Interoperability: Microsoft .NET and J2EE

26. The Repository Location page confirms that the current computer holds the
repository for the cluster. Click Next.

27. On the Default Configuration Summary page, check that the settings are correct,
and then click Finish.

28. WebSphere MQ then sets up the default configuration. The WebSphere MQ
Default Configuration dialog box appears, showing the Queue Manager and
Default Cluster Membership details. Click Close.

29. On the Prepare WebSphere MQ Wizard page, click Next.
30. On the Completing the Prepare WebSphere MQ Wizard page, clear all check

boxes, and then click Finish.

This completes the installation and configuration of IBM WebSphere MQ.

Creating the XBikesQ Queue
To create the message queue that XBikes uses, complete the following steps.

� To create the XBikes message queue

1. Start WebSphere MQ Explorer by clicking Start, pointing to All Programs,
pointing to IBM WebSphere MQ, and then clicking WebSphere MQ Explorer.

2. Expand WebSphere MQ, expand Queue Managers, and then expand
QM_<machine name> (where <machine name> is the name of your computer).

3. Right-click Queues, point to New, and then click Local Queue.
4. In the Queue Name box, type XBikesQ, and then click OK.
5. In the WebSphere MQ dialog box, click Don’t Share in Cluster. The WebSphere

MQ dialog box closes.
6. Close WebSphere MQ Explorer.

Installing the XBikes Sample Code
To install the XBikes sample code for the J2EE platform, complete the following steps.

Note: Check again that your system meets the prerequisites listed at the beginning of this section.
For example, failure to install a component such as Microsoft SQL Server results in the database
tables not installing.

� To install the XBikes application and the XBikes database

1. Open Windows Explorer, and then double-click Xbikesj2ee.msi. In the Welcome
to the XBikes J2EE Setup Wizard page, click Next.

2. On the Installation Options page, make sure Single Tier is selected, and then
click Next.

 Appendix A: Installing XBikes on J2EE 281

3. On the second Installation Options page, make sure the Install Source Code and
Install Database check boxes are selected and the Install to WebSphere
Application Server 5.0 (uncheck for single tier WSAD only) check box is not
selected, and then click Next.

4. On the Confirm Installation page, click Next to begin the installation. The
installation copies the XBikes sample code and installs the XBikes database.

5. When the installation is complete, click Close.

Configuring the JMS Queues
To configure the JMS entries for the XBikes queues, complete the following steps.

� To configure the XBikes JMS queues for WebSphere Application Developer Studio 5.0

1. Start WebSphere Application Developer Studio 5.0 by clicking Start, pointing to
All Programs, pointing to IBM WebSphere Studio, and then clicking Application
Developer 5.0.

2. In the WebSphere Studio dialog box, change the workspace to C:\Xbikes
\J2ee-ibm, and then click OK.

3. The J2EE – IBM WebSphere Studio Application Developer window appears.
In the left pane under J2EE Navigator, right-click XBikesWeb, and then click
Run on Server.

4. In the Server Selection dialog box, click Use an existing server, and then
click Next.

5. In the Select Tasks dialog box, ensure that both check boxes are not selected,
and then click Finish.

6. Ensure that the WebSphere server is started with WebSphere Studio.
7. Open Internet Explorer and navigate to http://localhost:9090/admin/. This opens

the Web server administration tool.
8. In the User ID box, type Admin, and then click OK.
9. Expand Resources, and then click WebSphere MQ JMS Provider.

10. In the right pane, select Server for the scope, and then click Apply.
11. Under Additional Properties, click WebSphere MQ Queue Connection Factories,

and then click XBikesQCF.
12. In the Queue Manager field under General Properties, change the value to the

exact name of the Queue Manager on your computer, and then click OK under
General Properties.

Note: If you do not know the name of the Queue Manager, open the WebSphere MQ Explorer
by clicking Start, pointing to Programs, pointing to IBM WebSphere MQ, and then clicking
WebSphere MQ Explorer. Expand WebSphere MQ, and then expand Queue Managers. The
name of the Queue Manager displays.

http://localhost:9090/admin

282 Application Interoperability: Microsoft .NET and J2EE

13. In the left pane, click WebSphere MQ JMS Provider.
14. Under Additional Properties in the right pane, click WebSphere MQ Queue

Destinations, and then click XBikesQ.
15. Under General Properties, locate the Base Queue Manager Name field.

As in step 9, enter the name of your Queue Manager in the form of
“QM_<machine name>“ (without the quotation marks). Note that this value
is case-sensitive. At the bottom of the General Properties section, click OK.

16. Under Messages in the right pane, click Save, and then click Save under Save to
Master Configuration.

17. Click Logout, and then close Internet Explorer.
18. Restart your WebSphere server for the changes to take effect.

Running XBikes
To execute XBikes within WebSphere Application Developer Studio, complete the
following steps.

� To execute the XBikes application within WebSphere Application Developer Studio

1. Start WebSphere Application Developer Studio 5.0 by clicking Start, pointing to
All Programs, pointing to IBM WebSphere Studio, and then clicking Application
Developer 5.0.

2. In the WebSphere Studio dialog box, change the workspace to C:\Xbikes
\J2ee-ibm, and then click OK.

3. The J2EE – IBM WebSphere Studio Application Developer window appears. In the
left pane under J2EE Navigator, right-click XBikesWeb, and then click Run on
Server.

4. In the Server Selection dialog box, click Use an existing server, and then
click Next.

5. In the Select Tasks dialog box, ensure that both check boxes are not selected,
and then click Finish.

6. After the server starts, the XBikes application appears in the WebSphere Studio
Internal Web browser window.

The XBikes Web application allows you to browse bikes by type, order bikes, change
quantities, and check out your order.

 Appendix A: Installing XBikes on J2EE 283

Using WebSphere Studio Application Developer 5.1 with XBikes
If you want to use WebSphere Studio Application Developer 5.1 instead of version
5.0, you have to make some changes to the project. Use the following steps as a guide
to resolve the configuration problems encountered when using version 5.1. You also
have to install fix pack CSD05 for WebSphere MQ. For more information about the
fix pack, including download information, see “WebSphere MQ Support,
Service Summary for Windows NT and Windows 2000” on the IBM Web site
(http://www-3.ibm.com/software/integration/mqfamily/support/summary/wnt.html).

� To configure the XBikes application for WebSphere Studio 5.1

1. Start WebSphere Application Developer Studio 5.1 by clicking Start, pointing to
All Programs, pointing to IBM WebSphere Studio, and then clicking Application
Developer 5.1.

2. In the WebSphere Studio dialog box, change the workspace to C:\Xbikes
\J2ee-ibm, and then click OK.

3. In the Different Workspace Version dialog box, click OK.
4. When the project is fully loaded in Studio, click Rebuild All on the Project menu.

A number of build errors will display in the Task window.

� To correct the build errors

1. Right-click XBikesResourceInteropFactory, and then click Properties.
The XBikesResourceInteropFactory Properties dialog box appears.

2. In the left pane of the Properties dialog box, click Java Build Path, and then click
the Libraries tab.

3. Remove J2EE.jar from the JAR’s and class folders on the build path list by
highlighting J2EE.jar and clicking Remove.

4. Click Add External JARs. The JAR Selection dialog appears.
5. Navigate to the C:\Program Files\IBM\WebSphere Studio\Application

Developer\v5.1\runtimes\base_v5\lib\ folder, click J2EE.jar, and then
click Open.

6. Click OK to close the Properties dialog box.
7. Right-click XBikesUseCase, and then click Properties. The XBikesUseCase

Properties dialog box appears.
8. In the left pane of the Properties dialog box, click Java Build Path, and then

click the Libraries tab.
9. Remove J2EE.jar from the JAR’s and class folders on the build path list by

highlighting J2EE.jar, and then clicking Remove.
10. Click Add External JARs. The Jar Selection dialog appears.

http://www-3.ibm.com/software/integration/mqfamily/support/summary/wnt.html

284 Application Interoperability: Microsoft .NET and J2EE

11. Navigate to the C:\Program Files\IBM\WebSphere Studio
\Application Developer\v5.1\runtimes\base_v5\lib\ folder, click J2EE.jar,
and then click Open.

12. Click OK to close the Properties dialog box.
13. In the upper left pane, click J2EE Hierarchy.
14. Expand the servers node and check that ServerOne is listed. If ServerOne is not

listed under the Servers node, do the following:
a. Right-click Servers, and then click Create a New Server and Server

Configuration. The Create a New Server and Server Configuration dialog box
appears.

b. In the Server Name field, enter TestServer, and then click Finish.
c. In the J2EE Hierarchy view, expand Servers, and then right-click TestServer.
d. Click Switch Configuration, and then click WebSphere v5.0 Server

Configuration.
15. In the J2EE Hierarchy view, expand EJB Modules, and then expand Maps.
16. Right-click XBikes:MSSQLServer_V7_1, and then click Delete Map Resource.

The Delete Map Options dialog box appears.
17. Make sure the Map and Schema check boxes are selected, and then click OK.

The Delete Map Options dialog box closes.
18. Right-click XBikesDal, click Generate, and then click EJB to RDB mapping.

The EJB to RDB Mapping dialog box appears.
19. Make sure the Create a new backend folder check box is selected, and then

click Next.
20. Select the Meet in the middle radio button, and then click Next.
21. Select the Use Existing Connection checkbox, verify that XBikes is selected

in the Existing Connection drop-down box, and then click Next.
22. From the Import Table list, select the dbo.Categories, dbo.Customers,

dbo.OrderDetails, and dbo.Orders dbo.Products tables; then click Next.
23. Select Match By Name, and then click Finish. The Mapping file opens in the main

window.
24. In the Enterprise Beans pane, click CategoriesDataAdapter.
25. In the Tables pane, right-click the Categories table, and then click Match By

Name.
26. Repeat steps 24 and 25 for the CustomerDataAdapter, ProductsDataAdapter,

OrderDataAdapter, and OrderDetailsDataAdapter tables.
27. Save and close the Mapping file. At this point, all build errors should be removed

from the project.

 Appendix A: Installing XBikes on J2EE 285

28. Right-click XBikesDAL, click Generate, and then click Deployment and RMIC
code. The Generate Deployment and RMIC Code dialog box appears.

29. Click Select All, and then click Finish.
30. Expand the Servers node in the J2EE Hierarchy view, right-click TestServer,

and then click Start.
31. Reconfigure the Queue Manager settings using the Web admin tool. For

instructions, see Configuring the JMS Queues earlier in this appendix.
32. Restart the WebSphere server and test.

Deploying XBikes on WebSphere Application Server 5.0 on a
Single Computer

Before you begin, install and configure the following software on a single computer
in the following order:
1. Windows 2000 Server with Service Pack 3 or higher in Workgroup mode
2. Microsoft SQL Server 2000 with mixed mode security and Service Pack 3
3. Microsoft JDBC Driver for Microsoft SQL Server 2000
4. A custom installation of WebSphere Application Server 5.0 (described in the

following section)
5. IBM WebSphere MQ 5.3
6. A default installation of GLUE 4.1.2 Professional

Note: You must install a valid license file into Glue.jar. For information about how to do this, see the
GLUE documentation.

Installing WebSphere Application Server 5.0
To install IBM WebSphere Application Server 5.0, make sure you have downloaded
the following files from the IBM Web site (http://www7b.software.ibm.com/wsdd
/downloads/):
● Ibmwas5_trial_for_nt.zip
● Messaging_trial_for_nt.zip

Note: You must add the messaging component from the Messaging_trial_for_nt.zip file as described
in steps 3 and 4 in the following procedure.

http://www7b.software.ibm.com/wsdd/downloads/
http://www7b.software.ibm.com/wsdd/downloads/

286 Application Interoperability: Microsoft .NET and J2EE

After you download these components, complete the following steps.

� To install IBM WebSphere Application Server 5.0

1. Expand the Ibmwas5_trial_for_nt.zip archive into the C:\Ibmwas5_trial_for_nt
folder.

2. After the IBM WebSphere Application Server 5.0 installation files extract, unzip
Messaging_trial_for_nt.zip to a folder of your choice.

3. Copy the Messaging folder from where you unzipped Messaging_trial_for_nt.zip
and make it a subdirectory of the WebSphere installation folder,
C:\Ibmwas5_trial_for_nt. (The Ibmwas5_trial_for_nt folder now contains
seven subdirectories, one of which is Messaging.)

4. In the Ibmwas5_trial_for_nt folder, double-click Install.exe.
5. In the Installation Wizard dialog box, click English, and then click OK.
6. In the Installation Wizard introduction screen, click Next.
7. Click Custom setup, and then click Next.
8. On the Select the features for “IBM WebSphere Application Server for

Developers, Version 5” you would like to install screen, make sure the check
boxes for the following components are selected or not selected, as specified:
● Application Server — Selected
● Application Server Samples — Not selected
● Administration — Selected (including all subcomponents)
● Application Assembly and Deployment Tools — Selected (including all

subcomponents)
● Embedded Messaging — Selected

● Server and Client — Not selected
● Client Only — Selected
● Message-driven Bean Samples — Not selected

● Web Server Plugins — Selected
● IBM HTTP Server — Not selected
● Apache, Microsoft IIS and IPlanet — Not selected
● Lotus Domino Web Server — Not selected

● Performance and Analysis Tools — Not selected
● Javadocs — Not selected

9. Click Next.
10. Do not install to the default location. In the target path for the program files,

enter C:\WAS\WebSphere\AppServer, and then click Next.
11. Accept the default settings for Node Name, enter your computer’s IP address in

the Host Name or IP Address field, click Next.

 Appendix A: Installing XBikes on J2EE 287

12. Clear the Run WebSphere Application Server as a service check box, and then
click Next.

13. In the installation summary screen, make sure the details are correct, and then
click Next.

14. When the installation is complete, click Finish.
15. If a WebSphere Application Server First Steps Version 5.0 page appears, click Exit.

Installing and Configuring IBM WebSphere MQ 5.3
To install and configure IBM WebSphere MQ 5.3, you have to do a custom installation
of IBM WebSphere MQ, adding support for Java messaging. To do this, complete the
following steps.

� To install IBM WebSphere MQ

1. Open Windows Explorer, and then double-click WebSphereMQ_t_en_us.exe.
2. In the WebSphere MQ (Evaluation Copy) dialog box, click Next.
3. The Location to Save Files page prompts you for a folder that you want to extract

the installation files to. Note that this is not the directory into which you install
IBM WebSphere MQ. The default folder is C:\Program Files\IBM\Source
\WebSphere MQ t_en_us. Either accept the default value, enter a new directory,
or click the Change button to browse for a directory, and then click Next to
continue. The installation process extracts the WebSphere MQ installation files
into the directory you specified.

4. After the installation files extract, the WebSphere MQ Installation dialog box
appears. Click Yes. The WebSphere MQ Installation Launchpad dialog box
appears.

5. On the WebSphere MQ Installation Launchpad page, click Software
Prerequisites in the list of steps on the left.

6. The Launchpad checks your system for prerequisite software. On the Software
Prerequisites page, make sure that the check boxes for all required components
are selected. However, note that the installation routine can fail to detect the
presence of a supported Java Runtime Environment 1.3 or later.

7. Click Network Prerequisites from the list of steps on the left. The Preparing for
installation on networks that include Windows 2000 Servers page appears. Make
sure your computer meets the requirements displayed. If the computer is in
Workgroup mode, you can click No under Do both conditions apply?.

8. On the list of steps on the left, click WebSphere MQ Installation. The WebSphere
MQ Installation page appears. Check the pre-installation status. If you are certain
you have already installed a Java Runtime Environment v 1.3 or later, you can
ignore any warnings about that component.

9. Click the Launch WebSphere MQ Installer button.
10. On the first page of the WebSphere MQ Installation Wizard, click Next.

288 Application Interoperability: Microsoft .NET and J2EE

11. On the Program Maintenance page, select Modify, and then click Next.
12. Accept the default installation folder of C:\was\IBM\WebSphere MQ\log\

for the log files, and then click Next.
13. On the Features page, click the red cross next to Server, click Install this feature,

and then click Next.
14. On the Ready to Modify WebSphere MQ page, make sure the settings are correct,

and then click Modify.
15. The IBM WebSphere MQ dialog box appears. If you are using the evaluation

version of WebSphere MQ, click Yes; otherwise ensure you have sufficient licenses
to run the product.

16. After the installation process completes, click Finish.
17. On the first page of the Prepare WebSphere MQ Wizard, click Next.
18. On the WebSphere MQ Network Configuration page, click No. This assumes

that your computer is a member of a Workgroup. Click Next. The WebSphere MQ
Service starts.

19. On the Prepare WebSphere MQ page, click Setup the Default Configuration.
20. On the first page of the Default Configuration Wizard, click Next.
21. On the Set up Default Configuration page, click Next.
22. On the Select Options page, leave the Allow remote administration of the queue

manager and Join the queue manager to the default cluster check boxes selected.
Make a note of what the Queue Manager is named because you will need this
when installing the XBikes application, and then click Next.

23. On the Join Default Cluster page, select the Yes, make it the repository for the
cluster radio button, and then click Next.

Note: If you are using a computer that gets its IP address dynamically, a message may appear
that asks if another computer with a fixed IP address is available to hold the repository. If this
message appears, click No.

24. On the Repository Location page, click Next.
25. On the Default Configuration Summary page, make sure the settings are correct,

and then click Finish.
26. WebSphere MQ then sets up the default configuration. The WebSphere MQ

Default Configuration dialog box appears, showing the Queue Manager and
Default Cluster Membership details. Click Close.

27. On the Prepare WebSphere MQ Wizard page, click Next.
28. On the Completing the Prepare WebSphere MQ Wizard page, clear all the check

boxes, and then click Finish. This completes the installation and configuration of
IBM WebSphere MQ.

29. Restart your computer before continuing.

 Appendix A: Installing XBikes on J2EE 289

Creating the XBikesQ Queue
To create the message queue that XBikes uses, complete the following steps.

� To create the XBikes message queue

1. Start WebSphere MQ Explorer by clicking Start, pointing to All Programs,
pointing to IBM WebSphere MQ, and then clicking WebSphere MQ Explorer.

2. Expand WebSphere MQ, expand Queue Managers, and then expand
QM_<machine name> (where <machine name> is the name of your computer).

3. Right-click Queues, point to New, and then click Local Queue.
4. In the Queue Name box, enter XBikesQ, and then click OK.
5. In the WebSphere MQ dialog box, click Don’t Share in Cluster. The dialog box

closes.
6. Close WebSphere MQ Explorer.

Installing the XBikes Sample Code
To install the XBikes sample code for the J2EE platform, complete the following steps.

Note: Check again that your system meets the prerequisites listed at the beginning of this section.
For example, failure to install a component such as Microsoft SQL Server results in the database
tables not installing.

� To install the XBikes application and the XBikes database

1. Open Windows Explorer, and then double-click xbikesj2ee.msi.
2. On the Welcome to the XBikes J2EE Setup Wizard page, click Next.
3. In the Installation Options dialog box, make sure Single Tier is selected, and then

click Next.
4. In the second Installation Options dialog box, make sure the Install Source Code,

Install Database, and Install to WebSphere Application Server 5.0 (uncheck for
single tier WSAD only) check boxes are selected.

Note: You do not need to install the source code unless you want to look at the code.

Click Next to continue.
5. In the Confirm Installation dialog box, click Next to begin the installation.
6. In the MQ Configuration dialog box, enter the correct queue manager name, and

then click OK. Note that this name is case sensitive. You should have made a note
of this when installing WebSphere MQ. If not, you can find the name of the queue
manager in WebSphere MQ Explorer.

290 Application Interoperability: Microsoft .NET and J2EE

7. The installation copies the XBikes sample code, configures the application server,
and installs the XBikes database.

8. When the installation is complete, click Close.

Running the XBikes Application
You are now ready to run the XBikes application. To do this, open a browser window
and enter http://localhost:9080/XBikesWeb.

Note: XBikesWeb is case sensitive.

The XBikes Web application allows you to browse bikes by type, order bikes, change
quantities, and check out your order.

Deploying XBikes on WebSphere Application Server 5.0 on
Multiple Computers

To install XBikes in a multi-computer configuration, you need three computers for the
Presentation tier, Business tier, and Data tier respectively. All three computers need
the following setup:
● Windows 2000 Server with Service Pack 3 or later in Workgroup mode
● A default installation of GLUE 4.1.2 Professional

Note: You must install a valid GLUE license file into Glue.jar. See the GLUE documentation for help.

Data Tier Computer Setup
The Data tier computer requires the following components to be installed:
● Microsoft SQL Server 2000 with mixed mode security and Service Pack 3
● Microsoft JDBC Driver for Microsoft SQL Server 2000
● A custom installation of IBM WebSphere MQ 5.3, as described in the “Configuring

IBM WebSphere MQ 5.3” section earlier in this appendix.
● The XBikesQ message queue, as described in the “Creating the XBikesQ Queue”

section earlier in this appendix.
● A custom installation of IBM WebSphere Application Server 5.0, as described in

the “Installing WebSphere Application Server 5.0” section earlier in this appendix,
including the messaging client installation in steps 3 and 4.

http://localhost:9080/XBikesWeb

 Appendix A: Installing XBikes on J2EE 291

Installing XBikes into the Data Tier
To install the XBikes sample code and XBikes database for the J2EE platform,
complete the following steps.

Note: Check again that your system meets the prerequisites listed at the beginning of this section.

� To install the XBikes application into the Data tier

1. Open Windows Explorer, and then double-click xbikesj2ee.msi.
2. On the Welcome to the XBikes J2EE Setup Wizard page, click Next.
3. In the Installation Options dialog box, make sure Data Access Layer Only

is selected, and then click Next.
4. In the second Installation Options dialog box, make sure the Install Source Code,

Install Database, and Install to WebSphere Application Server 5.0 (uncheck for
single tier WSAD only) check boxes are selected.

Note: You do not need to install the source code unless you want to look at the code.

Click Next to continue.
5. In the Confirm Installation dialog box, click Next to begin the installation.
6. In the MQ Configuration dialog box, enter the correct queue manager name, and

then click OK. Note that this name is case sensitive. You should have made a note
of this when installing WebSphere MQ. If not, you can find the name of the queue
manager in WebSphere MQ Explorer.

7. The installation copies the XBikes sample code, installs the XBikes database, and
configures the application server.

8. When the installation is complete, click Close.

Business Tier Computer Setup
The Business tier computer requires a custom installation of IBM WebSphere
Application Server 5.0. Follow the instructions in the “Installing WebSphere
Application Server 5.0” section earlier in this appendix, except instead of choosing
Client Only, choose Server and Client for the Embedded Messaging.

To install the XBikes sample code for the J2EE platform, complete the following steps.

Note: Check again that your system meets the prerequisites listed at the beginning of this section.

292 Application Interoperability: Microsoft .NET and J2EE

� To install the XBikes application into the Business tier

1. Open Windows Explorer, and then double-click xbikesj2ee.msi.
2. On the Welcome to the XBikes J2EE Setup Wizard page, click Next.
3. In the Installation Options dialog box, make sure Business Logic Layer Only

is selected, and then click Next.
4. In the second Installation Options dialog box, make sure the Install Source Code

check box is selected, the Install Database check box is not selected, and the
Install to WebSphere Application Server 5.0 (uncheck for single tier WSAD
only) check box is selected.

Note: You do not need to install the source code unless you want to look at the code.

Click Next to continue.
5. In the Confirm Installation dialog box, click Next.
6. In the MQ Configuration dialog box, enter the correct queue manager name, and

click OK. Note that this the name of the queue manager installed on the Data tier
and the name is case sensitive. You should have made a note of this when
installing WebSphere MQ on the Data tier. If not, you can find the name of the
queue manager in WebSphere MQ Explorer.

7. In the next MQ Configuration dialog box, enter the host name of the computer
running WebSphere MQ. This should be the name of the Data tier computer. The
installation routine makes a best guess based upon the queue manager name you
entered earlier.

8. The installation copies the XBikes sample code and configures the application
server.

9. When the installation is complete, click Close.

Presentation Tier Computer Setup
The Presentation tier computer requires a custom installation of IBM WebSphere
Application Server 5.0. Follow the instructions in the “Installing WebSphere
Application Server 5.0” section earlier in this appendix, excluding the messaging
client installation in steps 3 and 4.

To install the XBikes sample code for the J2EE platform, complete the following steps.

Note: Check again that your system meets the prerequisites listed at the beginning of this section.

 Appendix A: Installing XBikes on J2EE 293

� To install the XBikes application into the Presentation tier

1. Open Windows Explorer, and then double-click xbikesj2ee.msi.
2. On the Welcome to the XBikes J2EE Setup Wizard page, click Next.
3. In the Installation Options dialog box, make sure Web Tier is selected, and then

click Next.
4. In the second Installation Options dialog box, make sure the Install Source Code

check box is selected, the Install Database check box is not selected, and the
Install to WebSphere Application Server 5.0 (uncheck for single tier WSAD
only) check box is selected.

Note: You do not need to install the source code unless you want to look at the code.

Click Next to continue.
5. In the Confirm Installation dialog box, click Next. The installation copies the

XBikes sample code and configures the application server.
6. When the installation is complete, click Close.

Configuring the XBikes Application
Now that you have installed XBikes, you must configure the Web tier and the
Business tier to use the correct JNDI servers.

� To configure the Web tier for JNDI lookups

1. On the Web tier computer, open the C:\Xbikes\Config\Webconfig.xml
configuration file in Notepad.

2. Locate the <iiop> tag.
3. Change localhost in the iiop entry to the IP address of the server containing the

business tier.
4. Save the file.

� To configure the Business tier for JNDI lookups

1. On the Business tier computer, open the C:\Xbikes\Config\Bllconfig.xml
configuration file in Notepad.

2. Locate the <iiop> tag.
3. Change localhost in the iiop entry to the IP address of the server containing the

data tier.
4. Save the file.

294 Application Interoperability: Microsoft .NET and J2EE

Running the XBikes Application
You are now ready to run the XBikes application. Make sure you start the computers
in the following order: Data tier, Business tier, and then Presentation tier. After all the
computers start, open a browser window on the Presentation tier computer, and then
enter http://localhost:9080/XBikesWeb.

Note: XBikesWeb is case sensitive.

Changing Interoperability Methods
When you have the XBikes Web application operating correctly, you can change the
interoperability methods so that XBikes uses different use case adapters or resource
interoperability adapters. This section describes the possible options in the following
topics:
● Using Web Services Adapters
● Using Ja.NET Adapters
● Using Message Queue Adapters

The following sections describe how to use each kind of adapter.

Using Web Services Adapters
You can use Web services adapters in the following scenarios:
● Using Web Service Adapters between the Web and Business Tiers
● Using Web Service Adapters between the Business and Data Tiers

To change XBikes to use Web services adapters, you must modify the application
configuration to use the Web services adapters, update the application configuration
with the URLs of the Web services, and then restart the application server. The
following sections describe how to perform these tasks in each scenario.

Using Web Service Adapters between the Web and Business Tiers
This section describes how to use Web services between the Web and Business tiers.
You can either use J2EE Web services or .NET Framework Web services; complete the
steps in one of the following procedures.

� To use J2EE Web services between the Web and Business tiers

1. Open Windows Explorer and navigate to the C:\Xbikes\Config folder.
2. In Notepad, open WebConfig.xml.

This file contains six entries for interoperability, one for each use case.

http://localhost:9080/XBikesWeb

 Appendix A: Installing XBikes on J2EE 295

3. Locate the tag associated with the use case you want to change.
For example, if you want to change the GetCategories use case, locate the
<GetCategories> XML tag.

4. Change the class name defined in the use case tag to
xbikes.usecaseinteropadapters.j2ee.ws.XXXX, where XXXX is the name of the use
case you want to change. (You can change all the use cases if you want.)

5. Locate the <j2eews> tag, and change the URL to the location of the J2EE Web
services.
For example, if the J2EE Web services reside on a computer named J2EEBLL, the
<j2eews> tag would look like the following.

<j2eews>http://J2EEBLL:9080/XBikesBLLServiceInterface/services/BLLWSServiceInte
rface.wsdl</j2eews>

6. Save WebConfig.xml.
7. Restart the application server that contains the Web tier to flush out the cached

adapter configuration file.

� To use .NET Web services between the Web and Business tiers

1. Open Windows Explorer and navigate to the C:\Xbikes\Config folder.
2. In Notepad, open WebConfig.xml.

This file contains six entries for interoperability, one for each use case.
3. Locate the tag associated with the use case you want to change.

For example, if you want to change the GetCategories use case, locate the
<GetCategories> XML tag.

4. Change the class name defined in the use case tag to
xbikes.usecaseinteropadapters.net.ws.XXXX, where XXXX is the name of the
use case you want to change. (You can change all the use cases if you want.)

5. Locate the <netws> tag, and change the URL to the location of the
.NET Framework Web services.
For example, if the .NET Framework Web services reside on a computer named
NETBLL, the <netws> tag would look like the following.

<netws>http://NETBLL/XBikes-BLL-
WSServiceInterface/BLLWSServiceInterface.asmx?WSDL</netws>

6. Save WebConfig.xml.
7. Restart the application server that contains the Web tier to flush out the cached

adapter configuration file.

296 Application Interoperability: Microsoft .NET and J2EE

Using Web Service Adapters between the Business and Data Tiers
This section describes how to use Web services between the Business and Data tiers.
You can either use J2EE Web services or .NET Framework Web services; follow the
steps in one of the following procedures.

� To use J2EE Web services between the Business and Data tiers

1. Open Windows Explorer and navigate to the C:\Xbikes\Config folder.
2. In Notepad, open BLLConfig.xml.

This file contains two entries, one for the resource adapters and one for the
POResourceAdapter. The ResourceAdapter tag is used for all data access except
for placing an order, which is configured using the POResourceAdapter tag.

3. Locate the tag that you want to change.
4. Change the class name defined in the ResourceAdapter tag to

xbikes.resourceinteropadapters.dal.j2ee.ws.DALServiceFacadeAdapter.
5. Locate the <j2eews> tag, and change the URL to the location of the J2EE Web

services.
For example, if the J2EE Web services reside on a computer named J2EEDAL,
the <j2eews> tag would look like the following.

<j2eews>http://J2EEDAL:9080/
XBikesResWS/services/DALWSServiceInterface.wsdl</j2eews>

6. Save BLLConfig.xml.
7. Restart the application server that contains the Business tier to flush out the

cached adapter configuration file.

� To use .NET Framework Web services between the Business and Data tiers

1. Open Windows Explorer and navigate to the C:\Xbikes\Config folder.
2. In Notepad, open BLLConfig.xml.

This file contains two entries, one for the resource adapters and one for the
POResourceAdapter. The ResourceAdapter tag is used for all data access except
for placing an order, which is configured using the POResourceAdapter tag.

3. Locate the tag that you want to change.
4. Change the class name defined in the ResourceAdapter tag to

xbikes.resourceinteropadapters.dal.net.ws.DALServiceFacadeAdapter.

 Appendix A: Installing XBikes on J2EE 297

5. Locate the <netws> tag, and change the URL to the location of the
.NET Framework Web services.
For example, if the .NET Framework Web services reside on a computer
named NETDAL, the <netws> tag would look like the following.

<netws>http://NETDAL/ XBikes-DAL-
WSServiceInterface/DALWSServiceInterface.asmx?WSDL</netws>

6. Save BLLConfig.xml.
7. Restart the application server that contains the Business tier to flush out the

cached adapter configuration file.

Note: If you want to change the Place Order functionality to use Web services, repeat
one of the preceding procedures for the POResourceAdapter tag, using the class name
xbikes.resourceinteropadapters.dal.net.ws.PlaceOrderResourceAdapter.

Using Ja.NET Adapters
You can use Ja.NET adapters in the following scenarios:
● Using Ja.NET Adapters between the J2EE Web Tier and the .NET Framework

Business Tier
● Using Ja.NET Adapters between the J2EE Business Tier and the .NET Framework

Data Tier

To change XBikes to use Ja.NET adapters, you must modify the application
configuration to use the Ja.NET adapters, update the server configuration file to
load the correct Ja.NET configuration file, and then restart the application server.
The following sections describe how to perform these tasks in each scenario.

Using Ja.NET Adapters between the J2EE Web Tier and the .NET Framework
Business Tier
This section describes how to use Ja.NET adapters between the J2EE Web tier and
the .NET Framework Business tier.

� Using Ja.NET adapters between the J2EE Web tier and the .NET Framework
Business tier

1. Open Windows Explorer and navigate to the C:\Xbikes\Config folder.
2. In Notepad, open WebConfig.xml. This file contains six entries for interoperability,

one for each use case.
3. Locate the tag associated with the use case you want to change. For example, if

you want to change the GetCategories use case, locate the <GetCategories>
XML tag.

298 Application Interoperability: Microsoft .NET and J2EE

4. Change the class name defined in the use case tag to
xbikes.usecaseinteropadapters.net.janet.XXXX, where XXXX is the name of the
use case you want to change. (You can change all the use cases if you want.)

5. Save WebConfig.xml.
6. In Notepad, open the C:\Xbikes\Config\Janet_bll.xml file.
7. Locate the JaNETConfiguration element, followed by the ClientMap child

element, followed by the default child element, followed by the URI child
element. Make sure the URI element contains the correct URL to the
XBikes-BLL-JaNetServiceInterface Web project.

8. Save the Janet_bll.xml file.
9. Copy the Janet_bll.xml file in the C:\Xbikes\Config folder to Janet_config.xml

in the same folder.

Note: The Janet_config.xml file already exists, so overwrite it with the Janet_bll.xml file.

10. Restart the Web tier application server.

Using Ja.NET Adapters between the J2EE Business Tier and the .NET Framework
Data Tier
This section describes how to use Ja.NET adapters between the J2EE Business tier
and the .NET Framework Data tier.

� Using Ja.NET adapters between the J2EE Business tier and the .NET Framework
Data tier

1. Open Windows Explorer and navigate to the C:\Xbikes\Config folder.
2. In Notepad, open BLLConfig.xml.

This file contains two entries, one for the resource adapters and one for the
POResourceAdapter. The ResourceAdapter tag is used for all data access except
for placing an order, which is configured using the POResourceAdapter tag.

3. Change the class name defined in the ResourceAdapter tag to
xbikes.resourceinteropadapters.dal.net.janet.JaNetDALServiceFacadeAdapter.

4. Save BLLConfig.xml.
5. In Notepad, open the C:\Xbikes\Config\Janet_dal.xml file.
6. Locate the JaNETConfiguration element, followed by the ClientMap child

element, followed by the default child element, followed by the URI child
element. Make sure the URI element contains the correct URL to the
XBikes-DAL-JaNetServiceInterface Web project.

7. Save the Janet_dal.xml file.

 Appendix A: Installing XBikes on J2EE 299

8. Copy the Janet_dal.xml file in the C:\Xbikes\Config folder to Janet_config.xml
in the same folder.

Note: The Janet_config.xml file already exists, so overwrite it with the Janet_dal.xml file.

9. Restart the Business tier application server.

Using Message Queue Adapters
XBikes allows you to use a message queue to place orders. To configure the XBikes
application to use the message queue, complete the following steps.

� To configure the “Place Order” functionality to use message queues

1. Open Windows Explorer and navigate to the C:\Xbikes\Config folder.
2. In Notepad, open BLLConfig.xml.
3. Change the POResourceAdapter entry to

xbikes.resourceinteropadapters.queue.wsmq.PlaceOrderResourceAdapter.
4. Save the BLLConfig.xml file.
5. Restart the application server.

The J2EE XBikes application contains a Web application on the Data tier to read
orders from the queue and insert them into the database. If you have configured
XBikes to use message queuing, and you have successfully placed an order, you can
complete the following steps to view and process the orders.

� To view and process orders from the message queue

1. Open a Web browser window and enter http://localhost:9080/MQTestClient.
2. Click the Check MQ for Orders button to display orders in the Web browser

window.

Manual Installation Instructions
The following section describes how to deploy the J2EE version of XBikes without
using the automated setup.

Manually Configuring XBikes on IBM Application Server
After IBM WebSphere Application Server and WebSphere MQ are installed, you can
configure XBikes.

http://localhost:9080/MQTestClient

300 Application Interoperability: Microsoft .NET and J2EE

� To manually configure XBikes on WebSphere application server

1. Create the XBikes Enterprise Archive (EAR) file.
2. Configure WebSphere Application Server:

a. Configure the SQL Server login.
b. Configure the XBikes data source.
c. Add the licensed Glue.jar file.
d. Add the EJB bindings.

3. Install the XBikes EAR file.
4. Configure WebSphere MQ support.
5. Restart WebSphere Application Server.

After you complete these procedures, you can test that you have successfully
deployed the XBikes Web site.

Note: Make sure you install the XBikes sample code by following the instructions in the “Installing
the XBikes Sample Code” section.

The XBikes EAR file contains the components, assemblies, and configuration
information to run XBikes on a single computer.

� To create the single computer XBikes EAR file

1. Start WebSphere Application Developer Studio 5.0 by clicking Start, pointing to
All Programs, pointing to IBM WebSphere Studio, and then clicking Application
Developer 5.0.

2. In the WebSphere Studio dialog box, change the workspace to C:\Xbikes
\J2ee-Ibm, and then click OK. The J2EE – IBM WebSphere Studio Application
Developer window appears.

3. Switch to the J2EE Perspective view by clicking the Window menu, pointing
to Open Perspective, and then clicking J2EE.

4. In the lower left pane, click the J2EE Hierarchy tab.
5. Expand Enterprise Applications, right-click SingleTierXBikes, and then

click Export EAR File. The Export dialog box appears.
6. Under Where do you want to export resources to, enter

c:\xbikes\SingleTierXBikes.ear.
7. Under Options, ensure that all three check boxes are selected, and then

click Finish.
8. After the export process takes place, exit WebSphere Application Developer

Studio 5.0.

 Appendix A: Installing XBikes on J2EE 301

� To configure WebSphere Application Server

1. Open a command prompt and navigate to the C:\Was\WebSphere\AppServer
\Bin folder.

2. Type startserver server1, and then press Enter.
3. After a few seconds a message displays, indicating that server1 is open for

e-business.
4. Open a Web browser window and navigate to http://localhost:9090/admin.

For convenience, add this URL to your favorites.
5. In the User ID field, enter admin, and then click OK.

� To configure the SQL Server login

1. In the left pane, expand Security, expand JAAS Configuration, and then click
J2C Authentication Data.

2. The right pane changes to J2C Authentication Data Entries. Click the New
button.

3. Click the Configuration tab, enter dhb in the alias field, dhb in the User ID field,
bikes in the password field, and then click OK.

4. The Messages section appears at the top of the right pane. Click the Save link.
5. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.

� To configure the XBikes data source

1. In the left pane, expand Environment, and then click the Manage WebSphere
Variables link. The WebSphere Variables window appears in the right pane.

2. Click the MSSQLSERVER_JDBC_DRIVER_PATH link. The
MSSQLSERVER_JDBC_DRIVER_PATH window appears in the right pane.

3. In the Value field, enter C:\Program Files\Microsoft SQL Server 2000 Driver for
JDBC\lib, and then click OK.

4. The Messages section appears at the top of the right pane. Click the Save link.
5. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.
6. In the left pane, expand Resources, and then click JDBC Providers. The right pane

changes to JDBC Providers.
7. Under Scope, select the Server option, and then click Apply.
8. Click New.
9. In the JDBC Providers list, click Microsoft JDBC driver for MSSQLServer 2000,

and then click OK. The Microsoft JDBC driver for MSSQLServer 2000 window
appears in the right pane.

10. Under Configuration, change the value of the Name field to XBikesDB.

http://localhost:9090/Admin

302 Application Interoperability: Microsoft .NET and J2EE

11. Make sure the value of the Implementation Classname field is set to
com.microsoft.jdbcx.sqlserver.SQLServerDataSource, and then click OK.

12. The Messages section appears at the top of the right pane. Click the Save link.
13. In the Save pane, click Save. The right pane reverts to the WebSphere Application

Server home page.
14. In the left pane, click JDBC Providers again. The right pane changes to JDBC

Providers.
15. Click the XBikesDB link. The right pane changes to XBikesDB.
16. At the bottom of the page under Additional Properties, click the Data Sources

link. The right pane changes to the Data Sources page. Click the New button.
17. The right pane changes to New. In the name and JNDI Name fields, type

XBikesDB. Select the Use this Data Source in Container Managed Persistence
(CMP) option.

18. Next to Component-managed Authentication Alias, select the only option
available from the drop down list box, which is in the form servername/dhb.
Do the same for the Container-managed Authentication Alias field, and then
click OK.

19. On the Data Sources page, click the XBikesDB link. The XBikesDB page appears.
20. At the bottom of the page under Additional Properties, click the Custom

Properties link.
21. Select the databaseName option, and then click the databaseName link.

The databaseName page appears.
22. In the Value field, enter XBikes, and then click OK.
23. Click the serverName link. The serverName page appears.
24. In the Value field, enter localhost, and then click OK.
25. In the Messages section, click the Save link.
26. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.

� To add the licensed Glue.jar file

1. In the left pane, expand Environment, and then click the Shared Libraries link.
2. Under Scope, select the Server option, and then click the Apply button.
3. Click the New button. The New page appears.
4. In the Name field, enter GLUE.jar.
5. In the Classpath field, enter c:\tme\glue\lib\GLUE.jar, and then click OK.
6. In the Messages section, click the Save link.
7. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.

 Appendix A: Installing XBikes on J2EE 303

� To add the EJB bindings

1. In the left pane, expand Environment, and then expand Naming.
2. Click the Name Space Bindings link. The right pane changes to the Name Space

Bindings page.
3. Under Scope, select the Server option, and then click Apply.
4. Click New. The New page appears.
5. In the Binding Type options, select EJB and click Next.
6. In the Binding Identifier field, enter BusinessServiceFacade.
7. In the Name in Name Space field, enter BusinessServiceFacade.
8. In the Enterprise Bean Location field, type your WebSphere host name. This name

is displayed at the top of the left pane in the administration console.
9. In the Server field, enter server1.

10. In the JNDI Name field, enter ejb/xbikes/bll/facade
/BusinessServiceFacadeHome, click Next, and then click Finish.

11. Click the New button. The New page appears.
12. In the Binding Type options, select EJB and click Next.
13. In the Binding Identifier field, enter DalServiceFacadeHome.
14. In the Name in Name Space field, enter DalServiceFacadeHome.
15. In the Enterprise Bean Location field, type your WebSphere host name. This name

is displayed at the top of the left pane in the administration console.
16. In the Server field, enter server1.
17. In the JNDI Name field, enter ejb/xbikes/dal/façade/DalServiceFacadeHome,

click Next, and then click Finish.
18. In the Messages section, click the Save link.
19. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.

� To Install the SingleTierApp enterprise archive file

1. In the left pane, expand Applications.
2. Click the Enterprise Applications link. The Enterprise Applications page

displays in the right pane.
3. Click Install, and then click Browse next to the Local Path field.
4. Navigate to C:\Xbikes, select the singletierxbikes.ear file, and then click Open.

The full path to the singletierxbikes.ear file displays in the Local Path field. Click
Next to continue.

5. On the Preparing for the application installation page, click Next.
6. On the Step 1 page, select the Deploy EJBs option, and then click Next.

304 Application Interoperability: Microsoft .NET and J2EE

7. On the Step 2 page, select MSSQLServer_2000 in the Database Type list box,
and then click Next.

8. On the Step 3 page, click Next.
9. On the Step 4 page, enter XBikesDB in the JNDI name field next to XBikesDal,

and then click Next.
10. Steps 5, 6, 7, 8 and 9 do not require any changes. Click Next on the page for each

of these steps, and then click Finish on the Step 10 page. A command prompt
window appears and messages display on the Installing page in the right pane.

Note: Do not do anything else until the deployment process completes and the command prompt
window disappears.

11. Click the Save to Master Configuration link.
12. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.
13. In the left pane, expand Applications.
14. Click the Enterprise Applications link. The Enterprise Applications page

displays in the right pane.
15. Click the SingleTierXBikes link. The SingleTierXBikes page displays in the

right pane.
16. In the Additional Properties section, click the Libraries link. The Library Ref

page displays in the right pane.
17. Click the Add button. The New page displays.
18. Ensure that GLUE.jar appears next to the Library Name field, and then click OK.
19. In the Messages section, click the Save link.
20. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.

� To configure WebSphere MQ support

1. In the left pane, expand Resources, and then select WebSphere MQ JMS
Provider.

2. Under Scope, select the Server option, and then click Apply.
3. Under Additional Properties, select the WebSphere MQ Queue Connection

Factories link. The WebSphere MQ Queue Connection Factories page appears.
4. Click the New button. Next to the Name and JNDI Name fields, enter

XBikesQCF.

Note: JNDI Name is case sensitive.

5. In the Queue Manager field, enter the name of your Queue Manager. Typically,
this is QM_YourComputerName.

 Appendix A: Installing XBikes on J2EE 305

6. In the Host field, enter localhost, and then click OK to create the connection
factory.

7. Under Resources in the left pane, click the WebSphere MQ JMS Provider link.
The WebSphere MQ JMS Provider page displays.

8. Under Additional Properties, click the WebSphere Queue Destinations link.
The WebSphere MQ Queue Destinations page displays.

9. Click the New button. In the Name, JNDI Name, and Base Queue Name fields,
enter XBikesQ.

Note: These fields are case sensitive.

10. In the Base Queue Manager field, enter the name of your Queue Manager,
and then click OK.

11. In the Messages section, click the Save link.
12. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.
13. Click the Logout link at the top of the page to leave the Web Admin tool, and then

close your browser window.

Restarting WebSphere Application Server
Before you can test the application, you need to restart WebSphere application server.

� To restart WebSphere application server

1. Open a command prompt and navigate to the C:\Was\WebSphere\AppServer
\Bin folder.

2. Type stopserver server1, and then press Enter. Wait for the prompt indicating that
server1 has stopped.

3. Type startserver server1, and then press Enter.
4. After a few seconds a message displays, indicating that server1 is open for

e-business.

Testing the XBikes Application
You are now ready to test the XBikes application. To do this, open a browser window
and enter http://localhost:9080/XBikesWeb.

Note: XBikesWeb is case sensitive.

After the XBikes Web site displays, you can change the configuration files to test
Web Service, Message Queuing, and Interoperability functionality just as you did
in the previous section.

http://localhost:9080/XBikesWeb

306 Application Interoperability: Microsoft .NET and J2EE

Preparing XBikes for Multi-Tier Deployment
To deploy the J2EE XBikes to multiple computers, you need to export the enterprise
archive files from the XBikes application. If you installed IBM Application Developer
Studio 5.0 on the Presentation tier computer, complete the following steps on that
computer.

� To export the enterprise archive files

1. Start WebSphere Application Developer Studio 5.0 by clicking Start, pointing to
All Programs, pointing to IBM WebSphere Studio, and then clicking Application
Developer 5.0.

2. A WebSphere Studio dialog box appears. Change the workspace to
C:\Xbikes\J2ee-Ibm, and then click OK. The J2EE – IBM WebSphere Studio
Application Developer window appears.

3. Switch to the J2EE Perspective view by clicking the Window menu, pointing
to Open Perspective, and then clicking J2EE.

4. Click the J2EE Hierarchy tab at the bottom of the left pane, and then expand
Enterprise Applications.

5. Right-click SingleTierXBikes, and then click Delete. The Delete Enterprise
Applications Options dialog box appears.

6. Make sure Delete Selected Enterprise Application Project(s) only is selected,
and then click OK. The Confirm Project Delete dialog box appears.

7. Make sure Also delete contents under c:\xbikes\j2ee-ibm\SingleTierXBikes is
selected, and then click Yes. This removes the application and the Repair Server
Configuration dialog box appears.

8. Click OK.
9. Click the J2EE Navigator tab at the bottom of the left pane, right-click XBikesWeb,

and then click Properties. The Properties for XBikes Web dialog box appears.
10. In the left pane, click Web Library Projects, and then click Add. The Add a

Library Project dialog appears.
11. Click Browse. The Select a Java Project dialog box appears.
12. Click XBikesBiz, and then click OK. The Select a Java Project dialog box closes.

The Add a Library Project dialog box now shows XBikesBiz.jar as the JAR Name
and XBikesBiz as the Java Project.

13. Click OK. The XBikesBiz.jar (XBikesBiz) is now listed as a Web Library Project.
14. Click OK to close the dialog box.
15. In the Navigator view, right-click XBikesBiz, and then click Properties.

The Properties for XBikesBiz dialog box appears.
16. In the left pane, click Java JAR Dependencies, and then make sure

XBikesDALUtility.jar is selected. Click OK.

 Appendix A: Installing XBikes on J2EE 307

17. At the bottom of the left pane, click the J2EE Hierarchy tab.
18. Right-click XBikesWebApp, and then click Export EAR File. The Export dialog

box appears.
19. Under Where do you want to export resources to, enter

c:\xbikes\XBikesWebApp.ear.
20. Under Options, make sure that all three check boxes are selected, and then

click Finish.
21. Repeat steps 18 to 20 for XBikesBLL and XBikesDAL, naming the exported files

XBikesBLL.ear and XBikesDAL.ear respectively.
22. After you complete exporting the three EAR files, exit WebSphere Application

Developer Studio 5.0.
23. Copy the XBikesBLL.ear file to the C:\xbikes directory on the Business tier

computer.
24. Copy the XBikesDAL.ear file to the C:\xbikes directory on the Data tier

computer.

Deploying XBikes on the Presentation Tier Computer
To deploy XBikes on the Presentation tier computer, complete the following
procedures:
1. Configure the WebSphere server.
2. Install the XBikesWebApp enterprise archive file.
3. Start the XBikes Presentation tier component.

� To configure the WebSphere server

1. Open a command prompt and navigate to the C:\Was\WebSphere\AppServer
\Bin folder.

2. Type startserver server1, and then press Enter.
3. After a few seconds a message displays that indicates that server1 is open for

e-business.
4. In Notepad or another text editor, open the C:\Xbikes\Config\WebConfig.xml

file.
5. Change the localhost entry within the <iiop> and <j2eews> tags to the name of

the Business tier computer. This entry should now read as follows.

<iiop>iiop://BusinessTierComputerName</iiop>
<j2eews>http://BusinessTierComputerName:9080/XBikesBLLServiceInterface/services
/BLLWSServiceInterface.wsdl</j2eews>

6. Open a Web browser window and navigate to http://localhost:9090/admin.
For convenience, add this URL to your favorites.

http://localhost:9090/Admin

308 Application Interoperability: Microsoft .NET and J2EE

7. In the User ID field, enter admin, and then click OK.
8. In the left pane, expand Environment, and then click the Shared Libraries link.

The Shared Libraries page appears in the right pane.
9. Under Scope, select the Server option, and then click Apply.

10. Click the New button. The New page appears.
11. In the Name field, enter GLUE.jar in the Name field.
12. In the Classpath field, enter c:\tme\glue\lib\GLUE.jar, and then click OK.
13. The Messages section appears at the top of the right pane. Click the Save link.
14. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.

� To install the XBikesWebApp enterprise archive file

1. In the left pane of the Admin console, expand Applications, and then click
the Install New Application link.

2. Ensure the Local Path is selected, and then click Browse.
3. In the C:\Xbikes folder, click XBikesWebApp.ear, and then click Next.
4. On the Preparing for the application installation page, click Next.
5. On each page for Steps 1–3, accept the default settings by clicking Next.
6. On the Step 4 page, click Finish.
7. After the application installs, click the Manage Applications link in the right pane.
8. On the Enterprise Applications page, click the XBikesWebApp link.
9. In Additional Properties box at the bottom of the page, click the Libraries link.

10. Click the Add button. The New page appears in the right pane.
11. The GLUE library should already be selected next to Library Name. Click OK.
12. The Messages section appears at the top of the right pane. Click the Save link.
13. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.

� To start the XBikes Presentation tier component

1. In the left pane, click Enterprise Applications.
2. Select the XBikesWebApp check box, and then click Start. The XBikes

Presentation Tier component should start.
3. Close the administration console.

 Appendix A: Installing XBikes on J2EE 309

Deploying the Business Tier Components
To install the XBikes Business tier components on the Business tier computer,
complete the following procedures:
1. Configure the WebSphere server.
2. Install the XBikesBLL enterprise archive file.
3. Start the XBikes Business tier component.

� To configure the WebSphere server

1. Open a command prompt and navigate to the C:\Was\WebSphere\AppServer
\Bin folder.

2. Type startserver server1, and then press Enter.
3. After a few seconds a message displays that indicates that server1 is open for

e-business.
4. In Notepad or another text editor, open the C:\Xbikes\Config\BLLConfig.xml

file.
5. Change the localhost entry within the <iiop>, <j2eews>, and <netws> tags to the

name of the Data tier computer. This entry should now read as follows.

<iiop>iiop://DataTierComputerName</iiop>
<j2eews>http://DataTierComputerName:9080/XBikesResWS/services/DALWSServiceInter
face.wsdl</j2eews>
<netws>http://DataTierComputerName/XBikes-DAL-
WSServiceInterface/DALWSServiceInterface.asmx?WSDL</netws>

6. Open a Web browser window and navigate to http://localhost:9090/admin.
For convenience, add this URL to your favorites.

7. In the User ID field, enter admin, and then click OK.
8. In the left pane, expand Environment, and then click the Shared Libraries link.

The Shared Libraries page appears in the right pane.
9. Under Scope, select the Server option, and then click Apply.

10. Click the New button. The New page appears.
11. In the Name field, enter GLUE.jar.
12. In the Classpath field, enter c:\tme\glue\lib\GLUE.jar, and then click OK.
13. The Messages section appears at the top of the right pane. Click the Save link.
14. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.
15. In the left pane, expand Naming, and then click the Name Space Bindings link.
16. Under Scope, select the Server option, and then click Apply.
17. Click the New button. The New page appears.

http://localhost:9090/Admin

310 Application Interoperability: Microsoft .NET and J2EE

18. Click EJB, and then click Next. The New Name Space Binding page appears.
19. In the Binding Identifier field, enter BusinessServiceFacade.
20. In the Name in Name Space field, enter BusinessServiceFacade.
21. In the Enterprise Bean Location enter, the name of your WebSphere host.

This should appear at the top of the navigation tree in the left pane of the
Administrative console.

22. In the Server field, enter server1.
23. In the JNDI name field, enter ejb/xbikes/bll/façade

/BusinessServiceFacadeHome, and then click Next.
24. On the Summary page, click Finish.
25. The Messages section appears at the top of the right pane. Click the Save link.
26. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.

� To configure WebSphere MQ support

1. In the left pane, expand Resources, and then click WebSphere MQ JMS Provider.
2. Under Scope, select the Server option, and then click Apply.
3. Under Additional Properties, click the WebSphere MQ Queue Connection

Factories link. The WebSphere MQ Queue Connection Factories page appears.
4. Click the New button. Next to the Name and JNDI Name fields, enter

XBikesQCF.

Note: JNDI Name is case sensitive.

5. In the Queue Manager field, enter the name of your Queue Manager. Typically
this is QM_DataTierComputerName.

6. In the Host field, enter the name of the Data tier server.
7. In the Port field, enter 1414.
8. In the Transport Type field, choose CLIENT, and then click OK.
9. Under Resources in the left pane, click the WebSphere MQ JMS Provider link.

The WebSphere MQ JMS Provider page displays.
10. Under Additional Properties, click the WebSphere Queue Destinations link.

The WebSphere MQ Queue Destinations page displays.
11. Click the New button. In the Name, JNDI Name, and Base Queue Name fields,

enter XBikesQ.

Note: These fields are case sensitive.

12. In the Base Queue Manager field, enter the name of your Queue Manager,
and then click OK.

 Appendix A: Installing XBikes on J2EE 311

13. In the Messages section, click the Save link.
14. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.
15. Click the Logout link at the top of the page to leave the Web Admin tool, and then

close your browser window.

� To install the XBikesBLL enterprise archive file

1. In the left pane of the Admin console, expand Applications, and then click
the Install New Application link.

2. Ensure the Local Path option is selected, and then click Browse.
3. In the C:\Xbikes folder, click XBikesBLL.ear, and then click Next.
4. On the Preparing for the application installation page, click Next.
5. On the Step 1 page, select the Deploy EJBs check box, and then click Next.
6. On each page for Steps 2–7, accept the default settings by clicking Next.
7. On the Step 8 page, click Finish. The application then installs and a blank

command window displays.
8. After the application installs, click the Manage Applications link in the right pane.
9. On the Enterprise Applications page, click the XBikesBLL link.

10. In Additional Properties box at the bottom of the page, click the Libraries link.
The Library Ref page appears.

11. Click the Add button. The New page appears in the right pane.
12. The GLUE.JAR library should already be selected next to Library Name.

Click OK.
13. The Messages section appears at the top of the right pane. Click the Save link.
14. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.

� To start the XBikes Business tier component

1. In the left pane, click Enterprise Applications.
2. Select the XBikesWebApp check box, and then click Start. The XBikes Business

tier component should start and a message in the Messages section at the top of
the right pane should confirm this.

3. Close the administration console.

312 Application Interoperability: Microsoft .NET and J2EE

Configuring the Data Tier Computer
To set up the Data tier computer, complete the following procedures:
1. Configure the WebSphere server.
2. Configure the EJB bindings.
3. Configure the paths for the Microsoft JDBC driver.
4. Configure the SQL Server login.
5. Configure the XBikes JDBC data source.
6. Install the XBikesDAL enterprise archive file.
7. Start the XBikes Data tier component.

After you complete these procedures, you should be able to test the XBikes
application.

Note: Ensure you have installed the XBikes database tables.

� To configure the WebSphere server

1. Open a command prompt and navigate to the C:\Was\WebSphere\AppServer
\Bin folder.

2. Type startserver server1, and press Enter.
3. After a few seconds a message displays that indicates that server1 is open for

e-business.
4. Open a Web browser window and navigate to http://localhost:9090/admin.

For convenience, add this URL to your favorites.
5. In the User ID field, enter admin, and then click OK.
6. In the left pane, expand Environment, and then click the Shared Libraries link.

The Shared Libraries page appears in the right pane.
7. Under Scope, select the Server option, and then click Apply.
8. Click the New button. The New page appears.
9. In the Name field, enter GLUE.jar.

10. In the Classpath field, enter c:\tme\glue\lib\GLUE.jar, and then click OK.
11. The Messages section appears at the top of the right pane. Click the Save link.
12. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.

� To configure the EJB bindings

1. In the left pane, expand Environment, expand Naming, and then click the
Name Space Bindings link.

2. Under Scope, select the Server option, and then click Apply.

http://localhost:9090/Admin

 Appendix A: Installing XBikes on J2EE 313

3. Click the New button. The New page appears.
4. Click EJB, and then click Next.
5. In the Binding Identifier field, enter DalServiceFacadeHome.
6. In the Name in Name Space field, enter DalServiceFacadeHome.
7. In the Enterprise Bean Location field, enter the name of your WebSphere host

name. This should appear at the top of the navigation tree in the left pane of the
Administrative console.

8. In the Server field, enter server1.
9. In the JNDI name field, enter ejb/xbikes/dal/façade/DalServiceFacadeHome,

and then click Next.
10. On the Summary page, click Finish.
11. The Messages section appears at the top of the right pane. Click the Save link.
12. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.

� To configure the paths for the Microsoft JDBC driver

1. In the left pane, expand Environment, and then click the Manage WebSphere
Variables link. The WebSphere Variables window appears in the right pane.

2. Click the MSSQLSERVER_JDBC_DRIVER_PATH link. The
MSSQLSERVER_JDBC_DRIVER_PATH window appears in the right pane.

3. In the Value field, enter C:\Program Files\Microsoft SQL Server 2000 Driver for
JDBC\lib, and then click OK.

4. The Messages section appears at the top of the right pane. Click the Save link.
5. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.

� To configure the SQL Server login

1. In the left pane, expand Security, expand JAAS Configuration, and then click
J2C Authentication Data.

2. The right pane changes to J2C Authentication Data Entries. Click the New
button.

3. Click the Configuration tab.
4. Enter dhb in the alias field, enter dhb in the User ID field, enter bikes in the

password field, and then click OK.
5. The Messages section appears at the top of the right pane. Click the Save link.
6. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.

314 Application Interoperability: Microsoft .NET and J2EE

� To configure the XBikes JDBC data source

1. In the left pane, expand Resources, and then click JDBC Providers. The right pane
changes to JDBC Providers.

2. Under Scope, select the Server option, and then click Apply.
3. Click the New button.
4. In the JDBC Providers list, click Microsoft JDBC driver for MSSQLServer 2000,

and then click OK. The Microsoft JDBC driver for MSSQLServer 2000 window
appears in the right pane.

5. Under Configuration, change the value of the Name field to XBikesDB.
6. Make sure the value of the Implementation Classname field is set to

com.microsoft.jdbcx.sqlserver.SQLServerDataSource, and then click OK.
7. The Messages section appears at the top of the right pane. Click the Save link.
8. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.
9. In the left pane, click JDBC Providers again. The right pane changes to JDBC

Providers.
10. Click the XBikesDB link. The right pane changes to XBikesDB.
11. At the bottom of the page under Additional Properties box, click the Data

Sources link. The right pane changes to the Data Sources page. Click the New
button.

12. The right pane changes to New. In the name and JNDI Name fields, type
XBikesDB. Select the Use this Data Source in Container Managed Persistence
(CMP) check box.

13. Next to Component-managed Authentication Alias, select the only option
available from the drop down list box, which is in the form servername/dhb.
Do the same for the Container-managed Authentication Alias field, and then
click OK.

14. On the Data Sources page, click the XBikesDB link. The XBikesDB page appears.
15. At the bottom of the page under Additional Properties, click the Custom

Properties link.
16. Click the databaseName link. The databaseName page appears.
17. In the Value field, enter XBikes, and then click OK.
18. Click the serverName link. The serverName page appears.
19. In the Value field, enter localhost, and then click OK.
20. In the Messages section, click the Save link.
21. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.

 Appendix A: Installing XBikes on J2EE 315

� To configure WebSphere MQ support

1. In the left pane, expand Resources, and then click WebSphere MQ JMS Provider.
2. Under Scope, select the Server option, and then click Apply.
3. Under Additional Properties, click the WebSphere MQ Queue Connection

Factories link. The WebSphere MQ Queue Connection Factories page appears.
4. Click the New button. Next to the Name and JNDI Name fields, enter

XBikesQCF.

Note: JNDI Name is case sensitive.

5. In the Queue Manager field, enter the name of your Queue Manager. Typically
this is QM_YourComputerName.

6. In the Host field, enter localhost, and then click OK.
7. In the left pane under Resources, click the WebSphere MQ JMS Provider link.

The WebSphere MQ JMS Provider page displays.
8. Under Additional Properties, click the WebSphere Queue Destinations link.

The WebSphere MQ Queue Destinations page displays.
9. Click the New button. In the Name, JNDI Name, and Base Queue Name fields,

enter XBikesQ.

Note: These fields are case sensitive.

10. In the Base Queue Manager field, enter the name of your Queue Manager,
and then click OK.

11. In the Messages section, click the Save link.
12. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.
13. Click the Logout link at the top of the page to leave the Web Admin tool and then

close your browser window.

� To install the XBikesDAL enterprise archive file

1. In the left pane, expand Applications, and then click the Enterprise Applications
link. The Enterprise Applications page displays in the right pane.

2. Click the Install button, and then click Browse next to Local Path.
3. Navigate to C:\Xbikes and select the XBikesDAL.ear file. Click Open and the full

path to the XBikesDAL.ear file displays in the Local Path field. Click Next.
4. On the Preparing for the application installation page, click Next.
5. On the Step 1 page, select the Deploy EJBs check box, and then click Next.
6. On the Step 2 page, select MSSQLServer_2000 in the Database Type list box,

and then click Next.

316 Application Interoperability: Microsoft .NET and J2EE

7. On the Step 3 page, click Next.
8. On the Step 4 page, enter XBikesDB in the JNDI name field next to XBikesDal,

and then click Next.
9. Steps 5, 6, 7, 8 and 9 do not require any changes. Click Next on each of these steps,

and then click Finish on the Step 10 page. A command prompt window appears
and messages display on the Installing page in the right pane.

Note: Do not do anything else until the deployment process completes and the command prompt
window disappears.

10. Click the Save to Master Configuration link.
11. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.
12. In the left pane, expand Applications.
13. Click the Enterprise Applications link. The Enterprise Applications page

displays in the right pane.
14. Click the XBikesDal link. The XBikesDal page displays in the right pane.
15. In the Additional Properties section, click the Libraries link. The Library Ref

page displays in the right pane.
16. Click the Add button. The New page displays.
17. Ensure that GLUE.jar appears next to the Library Name field, and then click OK.
18. In the Messages section, click the Save link.
19. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.

� To start the XBikes Data tier component

1. In the left pane, click Enterprise Applications.
2. Select the XBikesDal check box, and then click Start. The XBikes Business Tier

component should start and a message in the Messages section at the top of the
right pane should confirm this.

3. Close the administration console.

Testing the XBikes Application
You are now ready to test the XBikes application. To do this, open a browser window
and enter http://localhost:9080/XBikesWeb.

Note: XBikesWeb is case sensitive.

After the XBikes Web site displays, you can change the configuration files to test Web
service, message queuing, and interoperability functionality just as you did in the
single tier section.

http://localhost:9080/XBikesWeb

Appendix B
Installing XBikes on .NET

Introduction
There are two ways in which you can deploy the .NET Framework version of the
XBikes sample application using Microsoft Windows Installer (.msi). This appendix
describes the following deployment scenarios
● Deploying XBikes on a Single Computer
● Deploying XBikes on Multiple Computers

This appendix also describes how to configure the various XML files that control
configuration and interoperability choices. There are also sections on how to execute
and uninstall the application.

Deploying XBikes on a Single Computer
Using the XBikes .NET sample code on a single computer requires the following
software to be installed:
● Windows Server 2003 or Windows 2000 Server with Service Pack 3 or later in

Workgroup mode
● .NET Framework 1.1 (Windows 2000 only; included in Windows 2003)
● .NET Framework 1.1 SDK or Visual Studio 2003
● Internet Information Services — World Wide Web Server
● ASP.NET Application Server component (Windows 2003 only)
● Microsoft Enterprise Instrumentation Framework (EIF)
● Microsoft Message Queuing (also known as MSMQ)
● Microsoft SQL Server 2000 with mixed mode security and Service Pack 3
● JNBridgePro version 1.4 Enterprise Edition (run time only)

318 Application Interoperability: Microsoft .NET and J2EE

Note: ASP.NET Session State Service should be running and its startup type should be set to
automatic.

Installing the XBikes Application
To install the XBikes application for the .NET platform on a single computer,
complete the following steps.

� To install XBikes for the .NET platform

1. Open Windows Explorer, and then double-click xbikes3tier.msi.
2. On the xbikes3tier wizard page, click Next.
3. On the Select Installation Folder page, make sure C:\Xbikes is the installation

path, select the Everyone option to install XBikes for all users on the computer,
and then click Next.

4. On the Confirm Installation page, click Next.
5. On the Install Options page, make sure Single Tier is selected, and then

click Next.
6. In the Winzip Self Extractor dialog box, make sure Unzip to folder is set

to C:\xbikes, and then click Unzip.
7. The dialog box shows that files were unzipped successfully, click OK.
8. In the Winzip Self-Extractor dialog box, click Close.
9. The installation program continues the setup process for a few seconds.

10. On the Installation Complete page, click Close.

Configuring the XBikes Web Application
The XBikes application is now installed. Before you execute the application, you will
need to modify the identity of the COM+ to Network Service to allow the application
to execute without the need for someone to be logged in.

� To configure the COM+ Application

1. In Control Panel, double-click Administrative Tools, and then double-click
Component Services. The Component Services Manager loads.

2. In the tree on the left, expand Component Services, expand Computers, and then
expand My Computer.

3. Expand COM+ Applications. A list of installed COM+ applications is shown in
the tree view.

4. Right-click XBikes, and then click Properties. The XBikes Properties dialog box
appears.

 Appendix B: Installing XBikes on .NET 319

5. Click the Identity tab, and then click the Network Service option.
6. Click OK. The XBikes Properties dialog box closes.
7. Close Component Services Manager.

Now you have the COM+ Application configured, the next task is to check the
database connection string is correct for your system.

� To configure the database connection string

1. In Notepad, open the Dllhost.exe.config file from the C:\Windows\System32
folder.

2. Find the start tag of the <SqlServer> element.
3. Check to make sure the connection string includes the correct server name.

The server name is shown in bold below to help you.

<SqlServer>
 <connection>
 <add
 key="connectionString"
 value="server=localhost;database=xbikes;user id=dhb; password=bikes"
 />
 </connection>
</SqlServer>

If you need to change the connection string, modify the value attribute
appropriately.

4. Locate the <QueueNames> tag. Change the NET-MSMQ value to include the
correct IP address of your computer.

<Queue>
 <QueueNames>
 <add key="NET-MSMQ"
value="FormatName:DIRECT=TCP:192.168.0.5\Private$\XBikes-OrderQueue" />

5. Save Dllhost.exe.config.
6. Using Notepad, open XBikes-DAL-MSMQServiceInterface.exe.config from the

C:\Xbikes\Net\Xbikes-Dal-Msmqserviceinterface\Bin\Debug folder.
7. Repeat steps 2 through 4, and then save the file.

This completes the configuration of the XBikes Web application.

320 Application Interoperability: Microsoft .NET and J2EE

Running XBikes on a Single Tier
To test the installation and execute XBikes complete the following steps.

� To execute XBikes

1. Load Internet Explorer.
2. In the Address field, enter the URL http://localhost/XBikes-Web.

The XBikes Web application allows you to browse bikes by type, order bikes,
change quantities and check out your order.

When orders are written, they go to the message queue. To move orders from the
.NET Message Queue into the SQL Server database, you must run a DOS console
application. Complete the following steps on the .NET computer.

� To run the DOS console application

1. Open a command prompt.
2. Type cd /D C:\xbikes\net\xbikes-dal-msmqserviceinterface\bin\Debug,

and then press ENTER.
3. Execute XBikes-DAL-MSMQServiceInterface.exe. One message is read from

the queue. The XML representation of the Order is displayed.
4. If there are more messages on the queue press Y; otherwise press any other key

to exit the application.

Deploying XBikes on Multiple Computers
This section describes how to install XBikes in a distributed environment, so that the
Presentation tier, Business tier, and Data tier are installed on different computers.

Another configuration option is to set up the database on a separate computer. In this
case, the configuration settings for the Data tier connection string must to be set
appropriately to point to this computer.

Note: In a distributed setup, none of the in-memory adapters work. This is by design because they
can work only when all three tier processes run on the same computer. For a .NET Framework-only
setup, use the .NET Remoting adapters instead.

Identifying Requirements for Each Computer
This section describes the components that must be installed on each computer in
a distributed environment before you install the XBikes application.

http://localhost/XBikes-Web

 Appendix B: Installing XBikes on .NET 321

Presentation Tier Computer Setup
The Presentation tier computer requires the following components:
● Windows Server 2003 or Windows 2000 Server with Service Pack 3 or later

in Workgroup mode
● .NET Framework 1.1
● .NET Framework 1.1 SDK or Visual Studio 2003
● Internet Information Service — World Wide Web Server
● ASP.NET Application Server component (Windows 2003 only)
● Microsoft Enterprise Instrumentation Framework (EIF)
● JNBridgePro v1.4 Enterprise Edition (run time only)

Note: ASP.NET Session State Service should be running and its startup type should be set to
automatic.

Installing XBikes on the Presentation Tier

To install XBikes on the presentation tier computer, complete the following steps.

� To install XBikes on the Presentation tier computer

1. Open Windows Explorer, and then double-click xbikes3tier.msi.
2. On the xbikes3tier wizard page, click Next.
3. On the Select Installation Folder page, make sure C:\Xbikes is the installation

path, select the Everyone option to install XBikes for all users on the computer,
and then click Next.

4. On the Confirm Installation page, click Next.
5. On the Install Options page, select Web Tier Only, and then click Next to

continue.
6. In the Winzip Self Extractor dialog box, make sure Unzip to folder is set

to C:\xbikes, and then click Unzip.
7. In the dialog box that shows how many files were unzipped successfully,

click OK.
8. In the Winzip Self-Extractor dialog box, click Close.

The installation program continues the setup process for a few seconds.
9. On the Installation Complete page, click Close.

Configuring XBikes on the Presentation Tier

The XBikes Web application uses .NET Remoting to communicate between the tiers
when deployed across multiple machines. Before executing the application, you must
change the configuration for .NET Remoting to point to the correct machine.

322 Application Interoperability: Microsoft .NET and J2EE

� To configure the .NET Remoting on the Presentation tier

1. Using Notepad, open the Remoting.config from the C:\Xbikes\Net\Xbikes-Web
folder.

2. Find the <wellknown> element, and then set its url attribute to the URL of the
.NET Remoting Business tier service interface. You must set the server name to the
name of the computer where the Business tier components are installed as shown
in the following example.

<wellknown
 url="http://BusinessTierComputer/XBikes-BLL-
RemotingServiceInterface/BLLRemotingServiceInterface.rem"
 type="XBikes.BLL.ServiceInterface.Net.Remoting.BLLRemotingServiceInterface,
XBikes-BLL-RemotingServiceInterface"
/>

3. Save Remoting.config.

This completes the configuration of the Presentation tier computer.

Business Tier Computer Setup
The Business tier computer requires the following components:
● Windows Server 2003 or Windows 2000 Server with Service Pack 3 or later in

Workgroup mode
● .NET Framework 1.1
● .NET Framework 1.1 SDK or Visual Studio 2003
● Internet Information Service — World Wide Web Server
● ASP.NET Application Server component (Windows 2003 only)
● Microsoft Enterprise Instrumentation Framework (EIF)
● JNBridgePro v1.4 Enterprise Edition (run time only)

Installing XBikes on the Business Tier

To install XBikes on the Business tier computer complete the following steps.

� To install XBikes on the Business tier computer

1. Open Windows Explorer, and then double-click xbikes3tier.msi.
2. On the xbikes3tier wizard page, click Next.
3. On the Select Installation Folder page, make sure c:\xbikes is the installation

path, select the Everyone option to install XBikes for all users on the computer,
and then click Next.

4. On the Confirm Installation page, click Next.
5. On the Install Options page, select Business Logic Layer Only. Click Next.

 Appendix B: Installing XBikes on .NET 323

6. In the Winzip Self Extractor dialog box, make sure Unzip to folder is set
to C:\xbikes, and then click Unzip.

7. In the dialog box that shows how many files were unzipped successfully,
click OK.

8. In the Winzip Self-Extractor dialog box, click Close.
The installation program continues the setup process for a few seconds.

9. On the Installation Complete page, click Close.

Configuring XBikes on the Business Tier

The XBikes application is now installed on the Business tier computer. Before
you execute the application, you will need to modify the identity of the COM+ to
Network Service to allow the application to execute without the need for someone
to be logged in. You will also have to configure .NET Remoting.

� To configure the COM+ application on the Business tier

1. In Control Panel, double-click Administrative Tools, and then double-click
Component Services. The Component Services Manager loads.

2. In the tree on the left, expand Component Services, expand Computers, and then
expand My Computer.

3. Expand COM+ Applications. A list of installed COM+ applications is shown in
the tree view.

4. Right-click XBikes, and then click Properties. The XBikes Properties dialog box
appears.

5. Click the Identity tab, and then click the Network Service option.
6. Click OK. The XBikes Properties dialog box closes.
7. Close Component Services Manager.

� To configure .NET Remoting on the Business tier

1. In Notepad, open the Remoting.config file. This file is located in the System32
directory located under the system folder, such as C:\Windows, of the computer
hosting the Business tier components.

2. Find the <wellknown> element, and set its url attribute to the URL of the .NET
Remoting Data tier service interface. You must set the server name to the name
of the computer where the Data tier components are installed as shown in the
following example.

<wellknown
 url="http://DataTierComputer/XBikes-DAL-
RemotingServiceInterface/DALRemotingServiceInterface.rem"
 type="XBikes.DAL.ServiceInterface.Net.Remoting.DALRemotingServiceInterface,
XBikes-DAL-RemotingServiceInterface"
/>

324 Application Interoperability: Microsoft .NET and J2EE

3. Save Remoting.config.

This completes the configuration of the Business tier computer.

Data Tier Computer Setup
The Data tier computer requires the following components:
● Windows Server 2003 or Windows 2000 Server with Service Pack 3 or later

in Workgroup mode
● .NET Framework 1.1
● .NET Framework 1.1 SDK or Visual Studio 2003
● Microsoft Message Queuing (also known as MSMQ)
● Microsoft SQL Server 2000 with mixed mode security and Service Pack 3
● Internet Information Service — World Wide Web Server
● ASP.NET Application Server component (Windows 2003 only)
● Microsoft Enterprise Instrumentation Framework (EIF)

Installing XBikes on the Data Tier

To install XBikes on the Data tier computer, complete the following steps.

� To install XBikes on the Data tier computer

1. Open Windows Explorer, and then double-click xbikes3tier.msi.
2. On the xbikes3tier wizard page, click Next.
3. On the Select Installation Folder page, make sure C:\Xbikes is the installation

path, select the Everyone option to install XBikes for all users on the computer,
and then click Next.

4. On the Confirm Installation page, click Next.
5. On the Install Options page, select Data Access Layer Only. Click Next.
6. In the Winzip Self Extractor dialog box, make sure Unzip to folder is set

to C:\xbikes, and then click Unzip.
7. In the dialog box that shows how many files were unzipped successfully,

click OK.
8. In the Winzip Self-Extractor dialog box, click Close.

The installation program continues the setup process for a few seconds.
9. On the Installation Complete page, click Close.

Configuring XBikes on the Data Tier

The XBikes application is now installed on the Data tier. Before you can execute
the application you must configure the queue and database connection settings.
To perform the configuration, complete the following steps.

 Appendix B: Installing XBikes on .NET 325

� To configure the database connection string

1. In Notepad, open the Dllhost.exe.config file from the C:\Windows\System32
folder.

2. Find the start tag of the <SqlServer> element.
3. Check to make sure the connection string includes the correct server name.

The server name is shown in bold below to help you.

<SqlServer>
 <connection>
 <add
 key="connectionString"
 value="server=localhost;database=xbikes;user id=dhb; password=bikes"
 />
 </connection>
</SqlServer>

If you need to change the connection string, modify the value attribute
appropriately.

4. Locate the <QueueNames> tag. Change the NET-MSMQ value to include the
correct IP address of your computer.

<Queue>
 <QueueNames>
 <add key="NET-MSMQ"
value="FormatName:DIRECT=TCP:192.168.0.5\Private$\XBikes-OrderQueue" />

5. Save Dllhost.exe.config.
6. Using Notepad, open XBikes-DAL-MSMQServiceInterface.exe.config from

the C:\Xbikes\Net\Xbikes-Dal-Msmqserviceinterface\Bin\Debug folder.
7. Repeat steps 2 through 4, and then save the file.

Running XBikes on Multiple Computers
To test the installation and execute XBikes complete the following steps on the
Presentation tier computer.

� To execute XBikes

1. Load Internet Explorer.
2. In the Address field, enter the URL http://localhost/XBikes-Web.

The XBikes Web application allows you to browse bikes by type, order bikes,
change quantities, and check out your order.

When orders are written, they go to the message queue. To move orders from the
.NET Message Queue into the SQL Server database, you must run a DOS console
application. Complete the following steps on the Data tier computer.

http://localhost/XBikes-Web

326 Application Interoperability: Microsoft .NET and J2EE

� To run the DOS console application

1. Open a command prompt.
2. Type cd /D C:\xbikes\net\xbikes-dal-msmqserviceinterface\bin\Debug,

and then press ENTER.
3. Execute XBikes-DAL-MSMQServiceInterface.exe. One message is read from the

queue. The XML representation of the Order is displayed.
4. If there are more messages on the queue press Y; otherwise press any other key

to exit the application.

Changing Interoperability Methods
When you have the XBikes application operating correctly, you can change the
interoperability methods so that XBikes uses different use case adapters or resource
interoperability adapters. This section describes the possible options in the following
topics:
● Using Web Services Adapters
● Using Ja.Net Adapters
● Using JNBridgePro Adapters

The following sections describe how to use each kind of adapter.

Using Web Service Adapters
You can use Web services adapters in the following scenarios.
● Using Web Service Adapters between the Web and Business Tiers
● Using Web Service Adapters between the Business and Data Tiers

To change XBikes to use Web services adapters, you must modify the application
configuration to use the Web services adapters, update the application configuration
with the URLs of the Web services, and then restart the application. The following
sections describe how to perform these tasks.

Using Web Service Adapters between the Web and Business Tiers
This section describes how to use Web services between the Web and Business tiers.
You can either use .NET Web services or J2EE Web services; complete the steps in one
of the following procedures.

� To use .NET Framework Web services between the Web and Business tiers

1. In Notepad, open the Web.config file for the XBikes application. This file is located
in the C:\Xbikes\Net\XBikes-Web folder.

2. Find the start tag of the <appSettings> element in the Web.config file.

 Appendix B: Installing XBikes on .NET 327

3. Find the <add> child element that specifies the URL of the .NET Framework Web
service Business tier service interface. Set the value attribute to the correct URL as
show in the following example.

<add
 key="XBikes-UseCaseInteropAdapters.Net.BLLWSSI.BLLWSServiceInterface"
 value="http://localhost/XBikes-BLL-
WSServiceInterface/BLLWSServiceInterface.asmx"
/>

4. Locate the <adapters> tag. Locate the <!-- .NET WS Adapters --> comment and
remove the comments from configuration information located immediately below
this comment.

5. Within the <adapters> section. Locate an existing group of tags that have not been
commented out. Wrap the section with comments.

6. Save Web.config.

� To use J2EE Web services between the Web and Business tiers

1. In Notepad, open the Web.config file for the XBikes application. This file is located
in the C:\Xbikes\Net\XBikes-Web folder.

2. Find the start tag of the <appSettings> element in the Web.config file.
3. Find the <add> child element that specifies the URL of the J2EE Web service

Business tier service interface. Set the value attribute to the correct URL as shown
in the following example.

<add
 key="XBikes-UseCaseInteropAdapters.J2EE.BLLWSSI.BLLWSServiceInterface"
 value="http://192.168.99.199:9080/XBikesBLLServiceInterface/
services/BLLWSServiceInterface"
/>

4. Locate the <adapters> tag. Locate the <!-- J2EE WS Adapters --> comment and
remove the comments from configuration information located immediately below
this comment.

5. Within the <adapters> section. Locate an existing group of tags that have not been
commented out. Wrap the section with comments.

6. Save Web.config.

328 Application Interoperability: Microsoft .NET and J2EE

Using Web Service Adapters between the Business and Data Tiers
This section describes how to use Web services between the Business and Data tiers.
You can either use .NET Web services or J2EE Web services; complete the steps in one
of the following procedures.

� To use .NET Framework Web services between the Business and Data tiers

1. In Notepad, open the Dllhost.exe.config file from the C:\Windows\System32
folder.

2. Find the start tag of the <appSettings> element in the file.
3. Find the <add> child element that specifies the URL of the .NET Framework Web

service Data tier service interface. Set the value attribute to the correct URL as
shown in the following example.

<add
 key="XBikes-ResourceInteropAdapters.Net.DALWSSI.DALWSServiceInterface"
 value="http://localhost/XBikes-DAL-WSServiceInterface/
DALWSServiceInterface.asmx"
/>

4. Locate the <adapters> tag. Locate the <!-- .NET WS Adapters --> comment and
remove the comments from configuration information located immediately below
this comment.

5. Within the <adapters> section. Locate an existing group of tags that have not been
commented out. Wrap the section with comments.

6. Save Web.config.

� To use .NET Framework Web services between the Business and Data Tiers

1. In Notepad, open the Dllhost.exe.config file from the C:\Windows\System32
folder.

2. Find the start tag of the <appSettings> element in the file.
3. Find the <add> child element that specifies the URL of the J2EE Web service Data

tier service interface. Set the value attribute to the correct URL as shown in the
following example.

<add
 key="XBikes-ResourceInteropAdapters.J2EE.DALWSSI.DALWSServiceInterface"
 value="http://192.168.99.199:9080/XBikesResWS/services/
DALWSServiceInterface"
/>

4. Locate the <adapters> tag. Locate the <!-- J2EE WS Adapters --> comment and
remove the comments from configuration information located immediately below
this comment.

 Appendix B: Installing XBikes on .NET 329

5. Within the <adapters> section. Locate an existing group of tags that have not been
commented out. Wrap the section with comments.

6. Save Web.config.

Using Ja.NET Adapters
You can use Ja.NET adapters in the following scenarios:
● Using Ja.NET Adapters between the Web and Business Tiers
● Using Ja.NET Adapters between the Business and Data Tiers

To change XBikes to use Ja.NET adapters, you must modify the application
configuration to use the Ja.NET adapters, update the application configuration with
the URLs of the Ja.NET service, and then restart the application. You must also
reconfigure the J2EE application to allow Ja.NET to function, because out of the box,
the J2EE application is configured for J2EE to .NET interoperability. The following
sections describe how to perform these tasks.

Reconfiguring the J2EE Application for Ja.NET
To enable the Ja.NET adapters to communicate with the J2EE version of XBikes,
you must complete one of the following tasks depending upon your configuration.

� To change the WebSphere Studio Application Developer 5.0 configuration

1. Start WebSphere Application Developer Studio 5.0 by clicking Start, pointing
to All Programs, pointing to IBM WebSphere Studio, and clicking Application
Developer 5.0.

2. A WebSphere Studio dialog box appears. Change the workspace to c:\xbikes
\j2ee-ibm and then click OK.

3. The J2EE – IBM WebSphere Studio Application Developer window appears.
4. In the left window, click the J2EE Hierarchy tab. The J2EE Hierarchy window

appears.
5. Expand Server Configurations, and then double-click WebSphere v5.0 Server

Configuration. The WebSphere v5.0 Server Configuration appears in the main
window.

6. Click the Paths tab from the bottom of the main window. The Paths configuration
screen appears.

7. Click c:\xbikes\J2EE-IBM\janet_libs\janetNetDalProxies.jar, and then
click Remove.

8. Repeat step 7 for c:\xbikes\J2EE-IBM\janet_libs\JanetNetBllProxies.jar and
c:\xbikes\J2EE-IBM\janet_libs\janet.jar.

9. Click the Environment tab from the bottom of the main window.
The Environment Options configuration screen appears.

330 Application Interoperability: Microsoft .NET and J2EE

10. Remove all the entries from the Java VM Arguments field.
11. Close the WebSphere v5.0 Server Configuration window. The Save Resource

dialog box appears. Click Yes to save your changes.
12. Switch to the J2EE Navigator view in the left pane.
13. Expand JaNetBLL, expand Java Source, and then expand com.intrinsyc.janet.
14. Open JaNet.xml.
15. Locate the <URI> tag and replace http://192.168.0.200:9080/JaNetBLL with

http://<ipaddress>/JaNetBLL, where <ipaddress> is the IP address of the
computer hosting the JaNetBLL.

16. Repeat steps 13–15 for both JaNetDAL and JaNetJMS.
17. You may now restart or start your server.

� To change the WebSphere application server configuration

1. On the computer hosting the Ja.NET service interfaces, open a command prompt
and navigate to the C:\Was\Websphere\Appserver\Bin folder.

2. Type startserver server1, and then press ENTER. After a short period of time,
a message displays indicating that server1 is open for e-business.

3. Open a Web browser window and navigate to http://localhost:9080/admin.
4. In the User ID field, enter admin, and then click OK.
5. In the left pane, expand Servers, and then click Application Servers.

The Application Servers window appears in the right pane.
6. In the right pane, click server1. The server1 window appears.
7. In the right pane, click Process Definition. The Process Definition window

appears.
8. In the right pane, click Java Virtual Machine. The Java Virtual Machine window

appears.
9. Remove all entries from the Classpath field EXCEPT the entry c:\tme\glue\lib

\GLUE.jar.
10. Remove the entry from the Generic JVM arguments field. The field should be

empty.
11. Click OK. The Messages section appears at the top of the right pane. Click the

Save link.
12. In the Save pane, click the Save button. The right pane reverts to the WebSphere

Application Server home page.
13. Close your browser and restart the server for the changes to take effect.

You must now update the EAR that contains the Ja.NET adapters you want to access.
To do this you must have access to the source code.

http://localhost:9080/admin

 Appendix B: Installing XBikes on .NET 331

� To update the EAR that contains the Ja.NET adapters you want to access

1. Start WebSphere Application Developer Studio 5.0 by clicking Start, pointing to
All Programs, pointing to IBM WebSphere Studio, and then clicking Application
Developer 5.0.

2. A WebSphere Studio dialog box appears. Change the workspace to c:\xbikes
\j2ee-ibm and then click OK.

3. The J2EE – IBM WebSphere Studio Application Developer window appears.
4. Close the WebSphere v5.0 Server Configuration window. In the Save Resource

dialog box, click Yes to save your changes.
5. Switch to the J2EE Navigator view in the left pane.
6. Expand JaNetBLL, expand Java Source, and then expand com.intrinsyc.janet.
7. Open JaNet.xml.
8. Locate the <URI> tag and replace http://192.168.0.200:9080/JaNetBLL with

http://<ipaddress>/JaNetBLL, where <ipaddress> is the IP address of the machine
hosting the JaNetBLL.

9. Repeat steps 13–15 for both JaNetDAL and JaNetJMS.

You must now recreate the EARs. To do this, follow the steps for manual deployment
in Appendix A, and then deploy the EAR to the server. If you have already installed
the EARs using the installer, or if you manually installed the EARs, you must
uninstall the EARs. This can be done using the Web-based Administrative Console.

Note: To revert back to the original J2EE configuration, you must add the entries you removed in
the previous steps. The quickest way to do this is to uninstall, and then reinstall, the J2EE version
of XBikes.

Using Ja.NET Adapters between the Web and Business Tiers
This section describes how to use Ja.NET between the Business and Data tiers.
To enable the Ja.NET adapters, complete the following steps.

� To configure the Ja.NET use case interoperability adapters

1. In Notepad, open the Remoting.config file for the XBikes application. This file is
located in the C:\Xbikes\Net\XBikes-Web folder.

2. Find the <client url="…"> element, and then set its url attribute to the URL of the
Ja.NET BLL service interface as shown in the following example.

<client url="http://192.168.99.199:9080/JaNetBLL">

3. Save Remoting.config.

332 Application Interoperability: Microsoft .NET and J2EE

4. In Notepad, open the Web.config file for the XBikes application. This file is located
in the C:\Xbikes\Net\XBikes-Web folder.

5. Locate the <adapters> tag. Locate the <!-- JaNET Adapters --> comment and
remove the comments from configuration information located immediately below
this comment.

6. Within the <adapters> section. Locate an existing group of tags that have not been
commented out. Wrap the section with comments.

7. Save Web.config.

Using Ja.NET Adapters between the Business and Data Tiers
This section describes how to use Ja.NET between the Business and Data tiers.
To enable the Ja.NET adapters, complete the following steps.

� To configure the Ja.NET resource interoperability adapters

1. In Notepad, open the Remoting.config file. This file is located in the System32
directory located under the system folder, such as C:\Windows, of the computer
hosting the Business tier components.

2. Find the <client url="…"> element that sets the URL for the Ja.NET Data tier
service interface, and set its url attribute to the correct URL as shown in the
following example.

<client url="http://192.168.99.199:9080/JaNetDAL">

3. Find the <client url="…"> element that sets the URL for the Ja.NET queue service
interface, and then set its url attribute to the correct URL as shown in the
following example.

<client url="http://192.168.99.199:9080/JaNetJms">

4. Save Remoting.config.
5. In Notepad, open the Dllhost.exe.config file for the XBikes application. This file is

located in the C:\Windows\System32 folder.
6. Locate the <adapters> tag. Locate the <!-- JaNET Adapters --> comment and

remove the comments from configuration information located immediately below
this comment.

7. Within the <adapters> section. Locate an existing group of tags that have not been
commented out. Wrap the section with comments.

8. Save Dllhost.exe.config.

 Appendix B: Installing XBikes on .NET 333

� To configure the queue name

1. In Notepad, open the Dllhost.exe.config file. This file is located in the System32
directory located under the system folder, such as C:\Windows, of the computer
hosting the Business tier components.

2. Find the <QueueNames> element. If the name of the MQSeries queue or queue
factory has been changed in the J2EE application, define <add> elements to
specify the MQSeries queue name and queue factory name for the Ja.NET queue
resource interoperability adapter as shown in the following example.

<add key="JaNET-MQSeries-QName" value="XBikesQ" />
<add key="JaNET-MQSeries-QFactoryName" value="XBikesQCF" />

3. Save Dllhost.exe.config.

Using JNBridgePro Adapters
You can use JNBridgePro adapters in the following scenarios.
● Using JNBridgePro Adapters between the Web and Business Tiers
● Using JNBridgePro Adapters between the Business and Data Tiers

To change XBikes to use JNBridgePro adapters, you must modify the application
configuration to use the JNBridgePro adapters, update the application configuration
with the URLs of the JNBridgePro, and then restart the application. The following
sections describe how to perform these tasks.

Using JNBridgePro Adapters between the Web and Business Tiers
This section describes how to use JNBridgePro between the Business and Data tiers.
To enabled the JNBridgePro adapters, complete the following steps.

� To configure the JNBridge use case interoperability adapters

1. In Notepad, open the JNBProxy.config from the C:\Inetpub\Wwwroot folder.
2. Find the <wellknown> element, and then set its url attribute to the URL of the

JNBridge BLL service interface as shown in the following example.

<wellknown
 url="jtcp://192.168.99.199:8085/JNBDispatcher"
 type="com.jnbridge.jnbcore.JNBDispatcher, JNBShare"
/>

3. Save JNBProxy.config.
4. In Notepad, open the Web.config file for the XBikes application. This file is located

in the C:\Xbikes\Net\XBikes-Web folder.

334 Application Interoperability: Microsoft .NET and J2EE

5. Locate the <adapters> tag. Locate the <!-- JNBridge Adapters --> comment and
remove the comments from configuration information located immediately below
this comment.

6. Within the <adapters> section. Locate an existing group of tags that have not been
commented out. Wrap the section with comments.

7. Save Web.config.

Using JNBridgePro Adapters between the Business and Data Tiers
This section describes how to use Web services between the Business and Data tiers.
To enabled the JNBridgePro adapters, complete the following steps.

� To configure the JNBridge resource interoperability adapters

1. In Notepad, open the Dllhost.exe.config file from the C:\Windows\System32
folder.

2. Find the <jnbridge> element.
3. Make sure the <add> child element specifies the URL for the JNBridge Data tier

service interface as shown in the following example.

<add
 key="DAL_PrimaryURL"
 value="jtcp://javabox:8086/JNBDispatcher"
/>

4. Find the <QueueNames> element. If the name of the MQSeries queue or queue
factory has been changed in the J2EE application, define <add> elements to
specify the MQSeries queue name and queue factory name for the JNBridge
queue resource Interoperability adapter as shown in the following example.

<add key="JNBridge-MQSeries-QName" value="XBikesQ" />
<add key="JNBridge-MQSeries-QFactoryName" value="XBikesQCF" />

5. Locate the <adapters> tag. Locate the <!-- JNBridge Adapters --> comment and
remove the comments from configuration information located immediately below
this comment.

6. Within the <adapters> section. Locate an existing group of tags that have not been
commented out. Wrap the section with comments.

7. Save Dllhost.exe.config.

 Appendix B: Installing XBikes on .NET 335

Uninstalling XBikes
To uninstall the .NET XBikes Web application, complete the following steps.

� To uninstall XBikes

1. In Control Panel, double-click Add or Remove Programs.
2. In the Add or Remove Programs window, click xbikes3tier in the list of currently

installed programs, and then click Remove.
3. Click Yes to confirm that you want to remove this program from your computer.

Next, the following items must be removed manually.

� To delete additional items on a single computer

1. Delete the Com+ application named XBikes:
a. In Control Panel, double-click Administrative Tools, and then double-click

Component Services.
b. In the Component Services node, expand the tree until you see My Computer.
c. Expand COM+ Applications, right-click XBIKES, and then click Delete.

2. Delete the following virtual directories:
● XBikes-Web
● XBikes-BLL-RemotingServiceInterface
● XBikes-BLL-WSServiceInterface
● XBikes-DAL-WSServiceInterface
● XBikes-DAL-RemotingServiceInterface
● xbikes-bll-janetserviceinterface
● xbikes-dal-janetserviceinterface

3. In Control Panel, double-click Administrative Tools, and then double-click
Internet Information Services. Expand the tree for your computer, click Web
sites, and then click Default Web site. Right-click each entry listed in step 2, and
click Delete for each one.

4. Delete the following from the global assembly cache:
● xbikes-common
● jnbridgebllproxies
● jnbridgeDALProxies
● jnbshare
● janetBllEjb
● janetDalEjb
● JaNetJms

336 Application Interoperability: Microsoft .NET and J2EE

5. In Control Panel, double-click Administrative Tools, and then double-click
Microsoft .NET Framework 1.1 Configuration. Click Assembly Cache in the
left pane, and then click Assembly Cache or View List of Assemblies in the
right pane. Right-click each entry in step 4, and click Delete for each one.

6. In Windows Explorer, delete the following folders:
● C:\Xbikes
● C:\Windows\System32\Dllhost.exe.config
● C:\Windows\System32\Dllhost.exe.config.xsd
● C:\Windows\System32\EnterpriseInstrumentation.config
● C:\Windows\System32\Remoting.config
● C:\Inetpub\Wwwroot\Jnbproxy.config

7. Delete the SQL database named XBIKES:
a. Click Start, point to All Programs, point to Microsoft SQL Server, and then

click Enterprise Manager.
b. Expand Console Root, expand Microsoft SQL Servers, and then expand

SQL Server Group. You should see your computer — if not, you need to
register your SQL instance. For information about how to do this, see the
article “How to register a server (Enterprise Manager)” on MSDN.

c. Expand your computer, and then expand databases.
d. Right-click XBikes, and then click Delete.

8. Delete the private message queue named XBikes-orderqueue:
a. In Control Panel, double-click Administrative Tools, and then double-click

Computer Management.
b. Expand Services and Applications, expand Message Queuing, and then

expand Private Queue.
c. Right-click XBikes-orderqueue, and then click Delete.

� To delete additional items on a Web tier computer

1. Delete the virtual directory named XBikes-Web:
a. In Control Panel, double-click Administrative Tools, and then double-click

Internet Information Services.
b. Expand the tree for your computer, expand Web sites, and then click

Default Web site.
c. Right-click each entry listed in step 2 of the preceding procedure, and click

Delete for each one.

 Appendix B: Installing XBikes on .NET 337

2. Delete the following from the global assembly cache:
● xbikes-common
● jnbridgebllproxies
● jnbshare
● janetBllEjb

3. In Control Panel, double-click Administrative Tools, and then double-click
Microsoft .NET Framework 1.1 Configuration. Click Assembly Cache in the
left pane, and then click Assembly Cache or View List of Assemblies in the
right pane. Right-click each entry listed in step 2 (of this procedure), and click
Delete for each one.

4. In Windows Explorer, delete the C:\Xbikes folder and the file C:\Inetpub
\Wwwroot\Jnbproxy.config.

� To delete additional items on a Business tier computer

1. Delete the Com+ application named XBikes:
a. In Control Panel, double-click Administrative Tools, and then double-click

Component Services.
b. In the Component Services node, expand the tree until you see My Computer.
c. Expand COM+ Applications.
d. Right-click XBIKES, and then click Delete.

2. Delete the following virtual directories:
● XBikes-BLL-RemotingServiceInterface
● XBikes-BLL-WSServiceInterface
● xbikes-bll-janetserviceinterface

3. In Control Panel, double-click Administrative Tools, and then double-click
Internet Information Services. Expand the tree for your computer, expand
Web sites, and then click Default Web site. Right-click each entry listed in step 2,
and click Delete for each one.

4. Delete the following from the global assembly cache:
● xbikes-common
● jnbridgeDALProxies
● jnbshare
● janetDalEjb
● JaNetJms.dll

338 Application Interoperability: Microsoft .NET and J2EE

5. In Control Panel, double-click Administrative Tools, and then double-click
Microsoft .NET Framework 1.1 Configuration. Click Assembly Cache in the
left pane, and then click Assembly Cache or View List of Assemblies in the
right pane. Right-click each entry listed in step 4, and click Delete for each one.

6. In Windows Explorer, delete the following folders:
● C:\Xbikes.
● C:\Windows\System32\Dllhost.exe.config.
● C:\Windows\System32\Dllhost.exe.config.xsd.
● C:\Windows\System32\EnterpriseInstrumentation.config.
● C:\Windows\System32\Remoting.config.
● C:\Inetpub\Wwwroot\Jnbproxy.config.

� To delete additional items on a Data tier computer

1. Delete the following virtual directories:
● XBikes-DAL-WSServiceInterface
● XBikes-DAL-RemotingServiceInterface
● xbikes-dal-janetserviceinterface

2. In Control Panel, double-click Administrative Tools, and then double-click
Internet Information Services. Expand the tree for your computer, expand
Web sites, and then click Default Web site. Right-click each entry listed in step 1,
and click Delete for each one.

3. Delete the following from the global assembly cache:
● xbikes-common
● jnbshare

4. In Control Panel, double-click Administrative Tools, and then double-click
Microsoft .NET Framework 1.1 Configuration. Click Assembly Cache in the
left pane, and then click Assembly Cache or View List of Assemblies in the
right pane. Right-click each entry listed in step 3, and click Delete for each one.

5. In Windows Explorer, delete C:\Xbikes.
6. Delete the SQL database named XBIKES:

a. Click Start, point to All Programs, point to Microsoft SQL Server, and then
click Enterprise Manager.

b. Expand Console Root then Microsoft SQL Servers and then SQL Server
Group. You should see your computer — if not, you need to register your SQL
instance. For information about how to do this, see the article “How to register
a server (Enterprise Manager)” on MSDN.

c. Expand the tree under your computer, and then expand the tree under
databases.

d. Right-click XBikes, and then click Delete.

 Appendix B: Installing XBikes on .NET 339

7. Delete the private message queue named XBikes-orderqueue:
a. In Control Panel, double-click Administrative Tools, and then double-click

Computer Management.
b. Expand Services and Applications, expand Message Queuing, and then

expand Private Queue.
c. Right-click XBikes-orderqueue, and then click Delete.

Index
/class switch, 238, 239
/dataset switch, 214, 238
/namespace switch, 238
<appSettings>, 101
__Finally clause, 23
_TransparentProxy class, 74
[WebMethod] attribute, 96, 110

A
abstraction layers

and connection points, 177
and Data Access Logic Components, 170
interoperability layers in a multi-tiered

application, 182
and JMS, 134
and Web services interoperability best

practices, 108
Account, 87
acronyms of Java terms, 37
Active Directory

accessing directory services, 34
administering MSMQ, 128
choosing between private and public queues, 129
MSMQ-MQSeries Bridge, 152–153, 264

Active Directory Group Policy, 20
Active Directory Service Interface. See ADSI
Active Server Pages. See ASP
ActiveX Data Objects. See ADO.NET
adapter classes, creating J2EE interoperability

adapters, 250
Add Web Reference dialog box, 99
additional resources, 340–345
ADO.NET

connecting databases with, 116–119
connecting to Microsoft SQL Server 2000

with, 119
database drivers, 118
DataSet class, 116–117
design goals of, 33, 116–117
and .NET Framework, 33
sharing data with JDBC, 119–122

ADSI, 34
Amqmdnet.dll, 146–147
ANT, 38–39
Apache Cocoon, 56
Apache Jakarta project, 38–39

application architecture
design in .NET Framework, 160–161
for J2EE version of XBikes, 174
for .NET Framework and J2EE, 172–174
for .NET Framework version of XBikes, 173

application_OnStart event, 232
applications. See also XBikes

building, 27–29
data passing options, 68–69
deploying for J2EE, 44
interoperability points in multi-tiered, 177
on Ja.NET, 226
shared databases, 113–114
using callbacks in, 125

Application_Start method, 73
<appSettings>, 101
architecture

J2EE, 159–161
J2EE Business and Data tiers, 189
J2EE Presentation and Business tier, 185
for J2EE version of XBikes, 174
.NET Framework, 159–161
.NET Framework best practice design, 160–161
.NET Framework Presentation and Business

tier, 193
.NET Framework version of XBikes, 173
Web services, 93

ASP vs. JSP, 31
ASP.NET

data types, 204
linking application to the service interface, 205
Presentation tier

J2EE application, 203
linking to J2EE business tier, 50–51

Web applications, 31
AsyncCallBack, 137
asynchronous communications

data formats, 266
interoperability adapters, 263
message consumer, 266–267
role of Ja.NET in, 273
role of JNBridge in, 270
service interfaces, 263

asynchronous interoperability. See also asynchronous
interoperability adapters; interoperability

asynchronous interoperability
implementation, 261–275

calls between .NET and Java
applications, 123–125

342 Application Interoperability: Microsoft .NET and J2EE

asynchronous interoperability, continued
choosing data formats, 262
Data tier implementation, 122–150
HIS, 149–153
implementation overview, 5
main types of, 123
message queues for, 125–149
between .NET Framework and Java

applications, 129
scenario, 13
transactional support, 171
using message queues for, 125–127, 172

asynchronous interoperability adapters
for asynchronous interoperability, 263–264
J2EE, 268–269
for Ja.NET, 274–275
for JNBridge, 271–272

attributes described, 30
auditing, 128
AuthenticateCustomer business method, 44
AuthenticateCustomer use case

business façade in XBikes, 168
creating Java class from, 207–208
creating .NET interoperability adapters, 215–216
GLUE, 207–208
interoperability adapters, 237
J2EE interoperability adapters, 186–188
Ja.NET, 226–227
service interface for JNBridgePro, 218–220, 222
in XBikes, 158

AuthenticateCustomerCommand use case
command, 162

AuthenticateCustomerCommandAdapter adapter
class, 250, 260

AuthenticateCustomerInteropAdapter class, 223
authentication, 104–105

B
Basic Profile 1.0

overview, 94, 107
protocol support, 97
transactional support, 136
XBikes compliance with, 244

Bean Managed Persistence beans. See BMP
Begin method, 124
BeginGetProductsByCategory method, 124
BeginReceive method, 137
best practices

ADO.NET and JDBC, 120
architecture design in .NET Framework, 160–161
data exchange recommendations, 63–65
ideals and reality, 159
Ja.NET, 81–82

best practices, continued
JNBridgePro, 84–89
multi-tiered applications, 160–161
.NET Framework, 160–161
Web services, 107–108

binary communications protocol, 85
binary protocol for .NET Remoting, 81
binary serialization, 52
Binary/TCP communication, 85
bit collections, 34
Bllconfig.xml, 192
BLLServiceInterface object, 223

BusinessServiceFacade, 220
BMP

described, 42–43
LDAP, 43
vs. CMP, 170

BodyStream property, 130
bridges. See Ja.NET; JNBridge; MSMQ-MQSeries

Bridge; runtime bridges
bridging products and JMS, 147–149
brokers

integration brokers described, 14–15
table in interoperability scenarios, 15
WebSphere MQ, 144–145

build errors in WebSphere Studio Application
Developer 5.1, 283–285

business components, 162–163
business entities

comparison table, 175
introduction, 163–164
in XBikes, 164–166
in the XBikes application, 170

business façades, 168. See also façades
business logic

abstracting database code from, 120
and reflection, 35–36
service interfaces, 167, 179
and session beans, 42

Business tier
abstracting Data Access Logic Components

from, 120
adding J2EE to, 184–188
adding .NET Framework Presentation

to, 192–193
components in XBikes, 309
configuring COM+ application on, 323
configuring .NET remoting on, 323–324
and Data Access Logic tier, 122
Data tier interoperability, 13
deleting items from computer, 337–338
element implementation, 162–168
integrating .Net components in, 12
integrating .Net in, 4, 235–260
JNDI lookups, 293

 Index 343

Business tier, continued
mulitple computer setup, 322–324
and .NET Framework Presentation, 193
.NET Framework Web service interface to

expose in, 243
Web tiers with Web service adapters, 326–327
WebSphere Application Server 5.0 on multiple

computers, 291–292
XBikes on, 322–323

business workflows, 163
BusinessServiceFacade EJB, generating proxies, 220
BusinessServiceFacade method, integrating .NET in

the business tier, 242
BusinessServiceFacade session bean

Java class as Web service, 210, 213
service interface for Ja.NET, 226–227
service interface for JNBridgePro, 218–220
and service interfaces, 204–205
Web services implemention, 210–213

C
Callbacks

calling End methods, 124
in client applications, 125
and .NET Remoting, 109
and Web services, 90

Caspol.exe, 24
Catch clause, 23
CategoriesData, 164
CategoriesDataAdapterBean, 170
CD, 159
channels in .NET Remoting, 68–69, 72
/class switch, 238, 239
classes

binary serialization, 52
building a Java application, 38–39
collections classes, 34
data helper classes, 211
evaluating Ja.NET, 74
exposing an existing class as a Web

service, 96–97
garbage collection, 22
Java wrapper classes, 87
libraries in .NET, 19
locating and sharing, 39
making Java classes serializable, 56
mapping in Java, 61
mapping in .NET, 60
Runtime bridges, 14
server component classes, 71
servlets, 41
ThreadPool class, 25
wrapper classes, 220, 227, 252, 273–274

ClassNotFoundException, 39
CLASSPATH statement, 25
CLASSPATH value, 29
CLASSPATH variable, 39
clients

applications and using callbacks in, 125
components

configuring, 73
and connection points, 177
creating, 72
and WebSphere MQ, 139

CLR, 20–22
main functions of, 20
and MSIL, 22

CMP
described, 42–43
and .NET Framework, 32
vs. BMP, 170

Code Access Security Policy tool. See Caspol.exe
code-behind files, 96
collections classes, 34
collections described, 33–34
COM+

application, .NET platform, 318–319
configuring on Business tier, 323
Ja.NET asynchronous interoperability

adapter, 274
transactional support, 32

com.ibm.mq, 141–142
com.instrinsyc.janet.RemoteException, 79
Command design pattern, 162–163
command line compilers, 28–29
Command object, 119
Command pattern, 215, 250
common data representation, 117
common databases. See shared databases
common language runtime. See CLR
common namespaces, 59
common type system. See CTS
compatibility. See type compatibility
complex data types, 49–50, 62, 151
complex types

linking new to existing applications, 63–64
and Web services interface, 206, 237

Component Designer, 95–96
components

hosting, 42
J2EE Presentation and Business tier, 184–185
in presentation tiers, 161
services, 32

configuration
in Ja.NET, 80, 273
with MSMQ-MQSeries Bridge, 264

configuration files, 72
connection handle, 138

344 Application Interoperability: Microsoft .NET and J2EE

Connection object, 119
connection points, 177–178
connectivity

APIs for, 14
at the Data tier, 113
between .NET Framework and Java

applications, 149
scenario for point-to-point, 178
using .NET remoting for, 67–72

console applications
DOS, 320, 325–326
message queues, 172
.NET Framework service interface, 198
WebSphere MQ, 190

constructor method, .NET interoperability
adapters, 215–216

container managed persistence. See CMP
container managed persistence beans. See CMP
conventions used in this book, 3
cost lowering, 8–9
create, read, update, and delete. See CRUD
cross language integration

in CLR, 22
CTS, 25

CRUD, 120–121, 169
CSC.EXE, 28
CTS, 25
CustomerData, 164

creating Java class from, 207–208
and JNBridgePro, 221

CustomerData class
converting into an XML stream, 55
how to create and serialize an

instance of, 240–241
CustomerData custom data class, 239
CustomerData object, 163
CustomerData type, 238
CustomerData typed dataset, 180, 217
CustomerData XSD based classes, 208–210
CustomerDataAdapterBean, 170
CustomerData.map, 207–210
CustomerData_TYPE.Java, 207–208
Customers_TYPE.Java, 207–210

D
DAAB, 121
DALMSMQServiceInterface, 198
DAO pattern, 120, 169
data access APIs, 114
Data Access Application Block. See DAAB
Data Access Logic Components, 169–170

benefits of, 121–122
implementing, 120–121, 169–171
OrderData object, 120–121

Data Access Logic service façade, 171
Data Access Logic tier

and Business tier, 122
implementing components, 169–172
in J2EE Data tier, 190

Data Adapter object, 119
data exchange

formats and types in .NET in the Business
tier, 236

formats and types in .NET in the Presentation
tier, 204

recommendations, 63–65
data formats

asynchronous communications, 266
business entities, 164
implementing asynchronous interoperability, 262
integrating .NET in the Business tier, 237–238
integrating .NET in the Presentation tier, 206
Ja.NET, 273
Ja.NET for interoperability, 251–252
JNBridge, 270
JNBridgePro, 218
service interfaces, 180
Web services for interoperability, 237–238

data helper class, 211. See also helper class
Data Reader object, 119
data readers, 117–118
Data tier. See also interoperability

adding J2EE Business interoperability, 188–189
adding .NET Framework Business

interoperability, 196–197
to Business tier interoperability, 13
Business tier interoperability, 13
configuring computers for XBikes on J2EE, 312
deleting items from computer, 338–339
interoperability components on, 196–197
interoperability technologies, 4, 113–153
and J2EE Business tier, 189
mulitple computer setup, 324–325
starting XBikes data tier component, 316
WebSphere Application Server 5.0 on multiple

computers, 290–291
data types. See also XSD

ASP.NET, 204
based on an XML Schema, 238–241
creating for J2EE, 207–208
limitations of XML, 58
packaging with XML, 206
primitive and complex data type

mappings, 49–50
and service interfaces, 108

database helper class, 121, 169. See also helper class

 Index 345

databases. See also shared databases
abstracting code from business logic, 120
CMP code, 42
connection strings

mulitple computer setup, 325
XBikes on .NET, 319

drivers, 114–115
drivers on ADO.NET, 118

DataReader class, 116, 117
DataSet class

ADO.NET, 116–117
choosing data formats, 251

DataSet object
across .NET Remoting calls, 194
XBikes, 252
XMLSerializer class, 239

/dataset switch, 214, 238
DataSets. See also typed DataSet

and Ja.NET, 226
and JNBridgePro, 218
reflection, 35
using to define business entities, 164–166
vs. ResultSets, 115
XSLT, 118

de-serialization. See serialization
Deserialize method, 55
design elements. See interoperability
directly mapped collections, 88
directory services, 34
DISCO, 99
disconnected data cache model, 33, 116
discovery of Web service. See DISCO
Dllhost.exe, 73
Dllhost.exe.config, 200
document conventions, 3
DOS console applications

on mulitple computer setup, 326
running XBikes on a single tier, 320

Downhill Bikes. See XBikes

E
EAR

acronym defined, 44
creating file for single computer XBikes, 300
updating, 331
XBikes on J2EE, 306–307

EJB
accessing from .NET Framework, 77
building, 43–44
and Java platform, 42–43
and .NET Framework, 31
session beans in XBikes, 168
WAR package deployment, 81

EJB bindings
configuring Data tier computers, 312–313
manually configuring XBikes on WebSphere

application server, 303
Electric XML, 56

mapping data types, 61, 62
End method, 124
EndGetProductsByCategory method, 124
EndReceive method, 137
Enterprise Archive files. See EAR
Enterprise Java Beans. See EJB
Enterprise JavaBeans. See EJB
enterprise platforms, 3, 17–46
entities, 163–164
entity beans

Data Access Logic Components, 170
described, 42
using to define business entities, 164

environmental variables, 40
Error handling, 128
events

in Ja.NET, 79
in .NET Remoting, 109

exception handling
in CLR, 23
in Ja.NET, 79

Execute()
Ja.NET, 229
JNBridgePro, 223

execute method
creating J2EE interoperability adapters, 250
creating .NET interoperability adapters, 216
.NET interoperability adapters, 215–217

ExecuteReader method, 119
explicit and factored object model, 33
explicit object model, 116
Extensible Stylesheet Language Transformations.

See XSLT

F
façade design pattern, 167, 179
façades

business façades, 168
in Business tier of the .NET Framework, 243–244
design pattern, 167, 179
service interfaces, 167

factored object model, 116
Factory design pattern, 181
__Finally clause, 23
Format Name, 131
Formatter property, 130

346 Application Interoperability: Microsoft .NET and J2EE

formatters
binary serializers, 52
and MSMQ, 151
in .NET Remoting, 68–69, 72

FreeBSD, 36

G
Gacutil.exe, 26, 29
garbage collection, in CLR, 22–23
Gen 0, 22–23
Gen 1, 23
Gen 2, 23
generic collections, 34
GenJava, 78
GenNet, 77, 228, 258
GenService, 77
get method, 87
GetAllMessages method, 132
GetCategories method, 244
GetCategories use case, 188, 237

in XBikes, 158
GetCategoriesCommand, 162
GetCustomerOrders use case command, 171

GetCategories use case, 159
GetCustomerOrdersCommand, 162
GetMessageEnumerator method, 132
GetProductsByCategory, 158
GetProductsByCategory method, 124
GetProductsByCategory use case, 158
GetProductsByCategoryCommand, 162
GetSearchResults use case, 159
GetSearchResultsCommand, 162
GetValue method, 119
GetXml, 242
GetXML method, 166, 239
global assembly cache

described, 25–26
Ja.NET, 79
Java platform, 39
viewing assemblies in, 29

Global Assembly Cache tool. See Gacutil.exe
GLUE, 102–103, 206–208

AuthenticateCustomer use case, 207–208
further references, 233
Java Web service proxies, 249
schema2java tool, 246
Web services implemention, 210–213

Glue.jar, 285, 290
adding file for XBikes on J2EE, 302

H
helper class. See also data helper class; database helper

class; Java helper class
creating, 208
data helper class in a Web service, 211
WSDL2Java, 103
XML Schemas, 246

HIS 2000
bridging with MSMQ and WebSphere

MQ, 150–152
using MSMQ-MQSeries Bridge to enable

asynchronous interoperability, 149–150
Host Integration Server 2000. See HIS 2000
how to use this book, 3–5
HTTP

authentication, 104
and MSMQ, 127
reliable messaging, 135
for transport, 91
vs. JTCP, 85

HTTP-GET protocol, 97–98
HTTP/binary, 81

I
IAsyncResult.AsyncWaitHandle object, 124
IAsyncResult.IsCompleted property, 124
IBLLWSServiceInterface, 212
IBM Application Server installation, 299–305
IBM Web Services Toolkit, 105
IBM WebSphere MQ 5.3, 278–280

installing, 287–288
installing the XBikes sample code, 289–290
XBikes message queue, 289

IDE
to implementing JSP-based application, 41
Java Web service creation, 102
other vendor products, 40
Web Matrix, 31

IDL, 30
IIS

accessing components from Java, 76
ASP.NET applications, 31
for hosting .NET Remoting objects, 71
for hosting presentation and business tier

components, 32
security features of, 110

Ildasm.exe, 28
ILS, 105
Initialise()

Ja.NET, 229
JNBridgePro, 223

 Index 347

initialise method
creating J2EE interoperability adapters, 250
.NET interoperability adapters, 215–216

InProc
J2EE Business tier business service façade, 186
J2EE Data Access Logic service façade, 191
.NET business façade, 195
.NET Framework Data Access Logic service

façade, 199
integrated design environment. See IDE
integrated development environment. See IDE
integration brokers. See brokers
Interface Definition Language. See IDL
interfaces. See JNDI; service interfaces; Web service

service interfaces
Internet Information Services. See IIS
Internet Locator Services. See ILS
interoperability. See also asynchronous

interoperability; Business tier; data tier;
point-to-point interoperability; use case
interoperability adapters

achieving lower project costs, 8–9
adding components to multi-tiered

applications, 182–183
asynchronous interoperability implemention, 13
benefits of UDDI, 106
Business scenario linking, 15
changing methods, 294–299, 326–334
components on .NET Framework Business and

Data tiers, 196–197
connection points described, 177–178
defining, 9–10
design elements implementation, 4, 157–201
diagram of points in multi-tiered

applications, 177
facing challenges of, 49–51
fundamentals, 4, 49–65
identifying business need for, 6–8
implementing, 176–183
JNBridgePro for, 83, 218–225
layers and components, 178–183
listing technologies, 15
major scenarios described in this book, 10–13
Microsoft .Net Components in the Business

Tier, 12
Microsoft .Net Components in the Presentation

Tier, 11
migrating to Microsoft .NET, 8
overview, 9–15
points in multi-tiered applications, 177
proof of concept studies, 7–8
reuse of existing systems, 7
scenarios, 10–13, 164–165
technologies listed, 14
XBikes implemention, 184–200

interoperability adapter factories, 181–182, 195.
See also interoperability adapters

Interoperability Adapter/Service Interface
patterns, 108

interoperability adapters. See also interoperability
adapter factories; resource interoperability adapters

in asynchronous communications, 263
asynchronous interoperability adapter, 268–269
building with Ja.NET, 227–232
building with JNBridgePro, 221–225
described, 180–182
implementing with JNBridgePro, 223–225
J2EE asynchronous interoperability

adapter, 268–269
J2EE interoperability adapter factories, 191–192
J2EE overview, 245–251
J2EE procedure, 249–251
J2EE Resource interoperability adapters, 190–191
J2EE use case interoperability adapters, 187–188
J2EE XML configuration file, 192
Ja.NET, 227–232, 258–260
.NET, 213–217
.NET Framework, 268–269
.NET Framework asynchronous interoperability

adapter, 268
.NET Framework use case interoperability

adapters, 194–195
.NET in the Business tier, 237
.NET in the Presentation tier, 205

interoperability factories, 200
Intrinsyc, 68, 73, 134, 203
introduction, 1–16
IUseCaseCommand interface, 163, 250

Ja.NET, 229

J
J2EE. See also J2EE applications; .NET

adding to Business tier interoperability, 184–188
architecture, 159–161
architecture and .NET Framework, 159–175
asynchronous interoperability adapter, 268–269
building service interface in, 206–213
connecting to MSMQ, 133–135
data types for, 207–208
defining, 5–6
diagram of comparison to Microsoft .Net, 10
elements of, 6
features compared with .NET, 45–46
fundamentals for .NET developers, 35–44
fundamentals of Microsoft .NET for J2EE

developers, 18–35
goal of, 18
installing XBikes on, 277–316

348 Application Interoperability: Microsoft .NET and J2EE

J2EE, continued
interoperability method changing, 294–299
J2EE interoperability adapters overview, 245–251
J2EE interoperability adapters

procedure, 249–251
Ja.NET adapter, 199
Ja.NET service interface, 195
Java-side component in application server, 85
JNBridge adapter, 199
JNBridge service interface, 195
message consumer, 267
resource interoperability adapters, 190–191
resource interoperability factories, 191–192
service interfaces, 186, 190
shared databases, 113–114
use case interoperability adapter factory, 187
use case interoperability adapters, 186
vs. Microsoft .NET, 17
Web services in, 101–103
Web tier, 297–298
XML configuration file, 188, 192
XML mapping for, 207–208

J2EE applications
connecting to WebSphere from, 141–142
issues of adding ASP.NET Presentation

tier to, 203
reconfiguring for Ja.NET, 329–331
with Web service proxy operation, 245–246

J2EE Business tier
to Data tier interoperability, 188–189
and Data tiers with interoperability elements

added, 189
linked to ASP.NET Presentation tier, 50–51
linking to the .NET Presentation tier, 205
and .NET Framework Data tier with Ja.NET

adapters, 298–299
J2EE Data tier, 190–191, 199
J2EE Presentation tier

Business tier interoperability, 184–188
Business tier with interoperability elements

added, 185
Data tier interoperability, 188–192

J2EE Web services
adapter, 195
between the Business and Data tiers, 296
J2EE Access Logic resource WS service

interface, 191
J2EE Business tier WS service interface, 186
between Web and Business tier, 294–295, 327

J2SE, 28, 35, 56, 115

Ja.NET
asynchronous interoperability adapter

for, 274–275
building interoperability adapters using, 227–232
building service interfaces in the Business

tier, 252–258
building service interfaces in the Presentation

tier, 226–227
configuring message queues, 273
configuring resource interoperability

adapters, 332
considerations when choosing, 203
Data Access Logic resource in the .NET Data

tier, 191
data format for, 273
and DataSets, 226
deciding on data formats, 226
evaluating, 74–81
events and exceptions, 79–80
Execute(), 229
global assembly cache, 79
implementing best practices, 81–82
Initialise(), 229
interoperability adapters, 228–231
IUseCaseCommand interface, 229
J2EE Data Access Logic tier, 190
Java proxy classes, 228
message consumer for, 274
message queues, 273
.NET Framework Business tier by way of

Ja.Net, 194
.NET Framework Business tier Ja.NET service

interface, 186
.NET Framework Data Access Logic resource

though a runtime bridge, 198
.NET integration in Business tier, 251–260
.NET integration in Presentation tier, 226–232
proxy generation tool, 221
role in asynchronous communications, 273
runtime, 78
TCP server, 78
toolset, 77–78
using, 272–275
vs. JNBridgePro, 73
between Web and Business tier, 331

Ja.NET adapters
between the Business and Data tiers, 332–333
between the J2EE Business tier and the

.NET Framework Data tier, 298–299
and .NET Framework Business tier using

J2EE Web tier, 297–298
using, 297–299
XBikes on .NET, 329–333

 Index 349

Ja.NET-JMS, WebSphere MQ message queuing
resource, 190

Janetor, 78
JAR, 29, 38
Java 2 Enterprise Edition. See J2EE
Java 2 Platform Standard Edition. See J2SE
Java. See also runtime bridges

accessing IIS Components from, 76
accessing .NET Framework servers from, 75
building applications, 38–39
consuming Web service in, 103
creating Web service in, 102–103
data type mapping to .NET Framework data

types, 78–79
data types from the XML Schema, 246–249
goal of, 18
IDEs, 40
Java-side component in J2EE application

server, 85
Java-side components with .NET Framework, 86
Java-to-COM bridge, 134
language and syntax, 37
making Java classes serializable, 56
mapping XSDs and classes in, 60
SDK, 38
using WebSphere MQ classes for, 141–142
vs. Microsoft .NET, 36
Web services stacks, 102, 103

Java applications
asynchronous interoperability with

.NET Framework, 129
sending messages from .NET

Framework, 151–152
sending messages to .NET Framework, 152

Java Architecture for XML Binding. See JAXB
Java Archive. See JAR
Java Community Process, 101–102
Java helper class, 206–208. See also helper class

creating, 208
serialization code in, 246–249

Java Messaging Service. See JMS
Java Naming and Directory Interface. See JNDI
Java platforms

editions of, 35–36
global assembly cache, 39
understanding, 37

Java proxy classes
creating, 221–222
creating Java Web service proxies, 249
Ja.NET, 228

Java Runtime Environment. See JRE
Java Specification Requests. See JSR
Java Virtual Machine. See JVM

Java Web service
creating and building, 206–213
creation, 102
proxies, 249

Java wrapper class, 87
java2schema tool, 61
Javac.exe, 38, 39, 40
Java.exe, 38, 39, 221
java.lang.String, vs. System.String, 50
JavaServer Faces, 9, 31
java.util.collections, 33
java.util.EventListener, 79
java.webservices package, 101
javax.jms.BytesMessage type, 141
javax.jms.MapMessage type, 141
javax.jms.Message interface, 141
javax.jms.ObjectMessage type, 141
javax.jms.Queue type, 140
javax.jms.StreamMessage type, 141
javax.jms.TextMessage type, 141
javax.jms.Topic class, 140
JAXB, 56, 61
JBoss, 37
jdata namespace, 223
JDBC

configuring the XBikes JDBC data source, 314
connecting to Microsoft SQL Server 2000

with, 116
connecting with, 114–116
database drivers, 115
sharing data with ADO.NET, 119–122

JIT
compilation to native code, 21
debugging, 23

JMS
accessing messages from .NET Framework

clients, 148
acronym defined, 2
configuring queues, 281–282
messages to a WebSphere MQ queue using

JMS, 152
MSMQ-MQSeries Bridge, 264
for Publish/Subscribe Messaging, 144–145
role of, 139–140
and third-party bridging products, 147–149
using provider for MSMQ, 134
vs. MSMQ, 45
WAR package deployment, 81
and XBikes, 172

jnbcore.jar, 85
JNBProxy tool, 221
jnbproxy_tcp.config, 222

350 Application Interoperability: Microsoft .NET and J2EE

JNBridge
Asynchronous Interoperability Adapter

for, 271–272
data format for, 270
message consumer for, 271
role in asynchronous communications, 270

JNBridge Inc., 14, 68, 73, 203
JNBridge-JMS, 190
JNBridgePro

architecture of, 82
Binary Communications Protocol, 85
building interoperability adapters with, 221–225
building service interface for, 218
considerations when choosing, 203
and CustomerData, 221
and DataSets, 218
evaluating, 81–89
Execute(), 223
implementing best practices, 84–89
Initialise(), 223
integrating with .NET Remoting, 82–83
J2EE Business tier, 186
J2EE Data Access Logic tier, 190
proxies, 82–83
proxy generation tool, 221
resource interoperability adapters, 334
selecting, 84
transactional support, 83
understanding features of, 83
using, 269–272
using for interoperability, 218–225
vs. Ja.NET, 73

JNBridgePro adapters
using between the Business and Data tiers, 334
using between the Web and Business

tier, 333–334
XBikes on .NET, 333–334

JNDI
acronym defined, 2
Business tier lookups, 293
Ja.NET, 227
JNBridgePro, 220
namespace, 143
Web tier lookups, 293

JRE, 37
JSC.EXE, 28
JSP

JSP-based applications, 41
vs. ASP, 31

JSP/Struts
business service façade, 168
as part of XBikes, 172, 184

JSR, 101–102

JTCP vs. HTTP, 85
Just-in-time. See JIT
JVM, 20, 21

role of, 37

L
languages. See cross language integration
layers and components, 176, 178–183

abstraction layers, 177
LDAP

accessing directory services, 34
BMP, 43

lifecycle practices current titles, 345
Lightweight Directory Access Protocol. See LDAP
local clients, 43–44
local queues, 139, 265. See also queues

M
managed code

accessing Web services from, 99, 100
ADO.NET, 118
operation, 23, 25
PInvoke, 146

managed code operation, 23
managed providers, 118–119, 121
mappings

compared to XSLT, 56
directly mapped collections, 88
Electric XML, 62
mapping classes in Java, 61
mapping XSDs and classes in .NET, 60
.NET data types, 62
.NET Framework data types to Java, 78–79
primitive data types, 49–50
XML mapping for J2EE, 207–208
XSD mapping types, 62
XSDs and classes in .NET, 60

MarshalByRefObject class, 71, 80
MDB, 43–44
memory management, 22–23
Message class, 130
message consumers

asynchronous communications, 266–267
creating for J2EE, 267
creating for .NET Framework, 266–267
for Ja.NET, 274
for JNBridge, 271

message orientated middleware, 14
Message Q, 126–127
Message Queue Interface. See MQI

 Index 351

message queuing. See also messages; queues
adapters in XBikes, 299
configuring, 265–266
diagram of an application, 126
IBM WebSphere MQ 5.3, 289
implementing services, 171–172
Ja.NET, 273
Place Order functionality, 299
through a Java-to-COM bridge, 134
using for asynchronous interoperability, 125–149
WebSphere Application Developer

Studio 5.0, 280
message-driven beans. See MDB
MessageConsumer object, 143–144
MessageEnumerator class, 130–131
MessageProducer object, 143–144
MessageQueue class, 130, 132, 133, 137
MessageQueue.Formatter, 133
messages

formatting in HIS 2000, 151
from Java client to .NET Framework, 152
from .NET Framework to Java client, 151
table in interoperability scenarios, 15
transport, 127

Messaging_trial_for_nt.zip, 285
Microsoft Host Integration Server 2000. See HIS 2000
Microsoft Intermediate Language. See MSIL
Microsoft JDBC driver path configuration, 313
Microsoft Management Console. See MMC
Microsoft Message Queuing. See MSMQ
Microsoft .NET. See .NET
Microsoft .NET Framework. See .NET Framework
Microsoft rivalry with Sun, 17
Microsoft SQL Server 2000

connecting with ADO.NET, 119
connecting with JDBC, 116
login

configuring Data tier computers, 313
WebSphere Application Server, 301

Microsoft Windows Installer. See .msi
MMC, 139
model queue, 139
MQCHLLIB environment variable, 266
MQCHLTAB environment variable, 266
MQI, 138, 141, 266–267
MQQueueManager class, 149
MQSeries. See MSMQ-MQSeries Bridge;

WebSphere MQ
Mscorcfg.msc, 24
MSCORSVR described, 25–26
MSCORWKS described, 25–26
.msi

other installation strategies, 20
XBikes on J2EE, 277
XBikes on .NET, 317

MSIL
acronym defined, 18
and CLR, 22
necessity of, 21

MSMQ, 126–137
accessing by using a Web service

interface, 134–135
application requirements fulfilled by, 127–128
basics of understanding, 126–129
bridging with HIS 2000 to WebSphere

MQ, 150–152
choosing between public and private, 129
connecting from J2EE, 133–135
connecting from .NET Framework

applications, 129–131
connecting MQ Series, 265
features and releases of, 127–128
and HIS 2000, 150–151
and HTTP, 127
JMS provider for, 134
.NET Framework Business tier, 198
retrieving queue messages, 132–133
sending queue messages to, 132
transactional support, 127–128, 135
vs. JMS, 45
working with queues, 131

MSMQ-MQSeries Bridge, 150
configuration requirements, 264
formatting messages, 151–152
implementing, 152–153
manager, 150
using, 264–269
using in HIS 2000to enable asynchronous

interoperability, 150–153
multi-tiered applications

adding interoperability components to, 182–183
architectural best practices for .NET and

Java, 159
interoperability points in, 177
J2EE specification model, 5
layers recommended for best practice, 160–161
.NET and Java, 157

multi-tiered deployment, 305–306
multiple levels of support in Web services, 90
MyPrivateQueue, 140

N
/namespace switch, 238
namespaces, 59
naming proxy classes, 221
ndata namespace, 223

352 Application Interoperability: Microsoft .NET and J2EE

.NET. See also business tier; .NET Framework;
.NET remoting; presentation tier

building applications based on, 27–29
components, 5, 18
components in the Business Tier, 12
components in the Presentation tier, 11
configuring the COM+ application on

.NET platform, 318–319
Data tier resources for XBikes, 196
defining, 5
diagram of comparison to J2EE, 10
directory services, 34
features compared with J2EE, 45–46
fundamentals for J2EE developers, 18–35
fundamentals of J2EE for .NET developers, 35–44
goal of, 18
installing XBikes on, 317–335
installing XBikes on platform, 318
integrating in the Business tier, 235–260
integrating in the Presentation tier, 203–233
interoperability adapters and initialise

method, 215–216
linking Presentation tier to the J2EE Business

tier, 205
mapping data types, 62
mapping XSDs and classes in, 60
migrating to, 8
Presentation tier linked to J2EE Business tier, 11
shared databases, 113–114
unifying vision, 18
using WebSphere MQ Classes for, 146–147
vs. J2EE, 17, 18
vs. Java, 36
Web services adapter to address Data Access

Logic resource in the .NET Framework Data
tier, 199

Web services between the Web and Business
tier, 295

.NET Framework
accessing EJB from, 77
accessing JMS Messages from clients, 148
accessing servers from Java, 75
and ADO.NET, 33
architecture, 159–161
architecture and XBikes implementations, 175
asynchronous interoperability adapter, 268
asynchronous interoperability with Java

applications, 129
availability, 20
best practice design of application

architecture, 160–161
Business and Data tiers with interoperability

elements added, 197
business service façade in the Business tier, 243

.NET Framework, continued
CLR, 20
connecting to WebSphere MQ from, 146–147
creating asynchronous interoperability

adapters, 268–269
creating Web services in, 95–96
cross language integration, 22
custom service interfaces for the business service

façade, 252
data types definition based on an XML

Schema, 238–241
distributed and multi-tiered architecture, 159
and EJB, 31
installation choices, 20
investigating, 19–27
and J2EE Application Architecture, 159–175
Java-side component with, 86
key features of, 19
linking types with Java, 78–79
mapping data types to Java data types, 78–79
message consumers, 266–267
resource interoperability adapters, 198–199
resource interoperability factories, 200
sending messages from Java Applications, 152
sending messages to Java Applications, 151–152
service interfaces, 194
service interfaces for the .NET Framework

business service façade, 242
use case interoperability adapter factory, 195
use case interoperability adapters, 194–195
Web service client in, 98–99
XML configuration file, 196, 200
XMLSerializer in typed DataSets, 239

.NET Framework Business tier
adding to Data tier interoperability, 196–197
and J2EE Web tier with Ja.NET adapters, 297–298
services interfaces of, 194

.NET Framework Data tier
and J2EE Business tier with Ja.NET

adapters, 298–299
service interfaces, 198

.NET Framework Presentation tier
adding interoperability to Business tier, 192–196
adding interoperability to Data tier, 196–200
adding to Business tier interoperability, 192–193
and Business tier with interoperability elements

added, 193
.NET Framework Web service

between the Business and Data tiers, 328–329
Data Access Logic resource WS service interface

in the .NET Framework Data tier, 191
encapsulating the .NET Framework business

service façade, 241–242
.NET Framework Business tier, 186

 Index 353

.NET Remoting
advantages of, 67
channels, 68–69, 72
comparing to Web services, 108–110
configuration files, 72–73
configuring on Business tier, 323–324
described, 26–27
diagram of typical implementation, 70
hosting objects as ASP.NET components

on IIS, 71
implementing, 69–73
.NET Framework Business tier, 194
.NET Framework Data Access Logic

resource, 198
on the Presentation tier, 321–322
Remoting calls and DataSet object, 194
understanding, 68–69
using for connectivity, 67–72
vs. SOAP, 81

.NET Remoting adapter
Data Access Logic resource in the

.NET Framework Data tier, 199
.NET WS service interface, 195

non-blocking asynchronous calls, 123–125
non-existent data types, 49–50

O
OASIS, 93
Object type, 33–34
ObjectMessage type, 264
OLE DB, 119
OleDbDataReader class, 117
One-way operations, 123
open standards, 18, 176, 204
Open XML Framework. See OXF
OracleDataReader class, 117
Order object, 246
OrderConverter class, 267
OrderData business entity, 164
OrderData class, 268, 269
OrderData custom data type, 267
OrderData Data Access Logic component, 171
OrderData data type, 51
OrderData data type class, 57
OrderData message object, 172
OrderData messages, 198
OrderData object, 121

Data Access Logic Components, 120–121
serialization, 57

OrderData type, on different platforms, 58
OrderDataAdapterBean, 170
OrderDetailsDataAdapterBean, 170

Organization for the Advancement of Structured
Information Standards. See OASIS

outgoing queues, 128
OXF, 56

P
parsers, 53–54
Pass By Reference. See PBR
Pass By Value. See PBV
patient disconnection, 128
patterns

Command design pattern, 162–163
Command pattern, 215, 250
current titles, 342
DAO pattern, 120, 169
façade design pattern, 167, 179
Factory design pattern, 181
Interoperability Adapter/Service Interface

patterns, 108
service agent pattern, 181
service gateway pattern, 181
Service Interface pattern, 96, 97
Value Object pattern, 164–165

patterns and practices, 340–341
current titles, 342–345

PBR, 69
and PBV, 81
and value objects, 87

PBV, 69
and PBR, 81

PE, 21
PeekCompleted event, 133
pilot studies, 7–8
PInvoke calls, 146
Place Order functionality

configuring to use message queues, 299
to use Web services, 297

PlaceOrder use case, 172, 191, 199
in XBikes, 159

PlaceOrderCommand, 162
platforms

Microsoft vs. Sun, 17
OrderData type on different, 58

point-to-point interoperability, 4, 67–111. See also
interoperability; queue-based messaging support

JNBridgePro for, 84
main categories, 67
scenario, 179
using WebSphere MQ Classes for

messaging, 143–144
portable executable. See PE
prerequisites, 2

354 Application Interoperability: Microsoft .NET and J2EE

Presentation tier
configuring XBikes on multiple

computers, 321–322
elements of, 161
integrating .NET in, 4, 11, 203–233
multiple computer setup, 321–322
WebSphere Application Server 5.0 on multiple

computers, 292–294
XBikes component, 308
XBikes deployment, 307

primitive data types
mappings, 49–50
Web services, 206–207, 237
WebSphere MQ classes, 142

Private method, 35, 96
private queues, 128. See also queues
ProductsData, 164
ProductsDataAdapterBean, 170
programmatic elements for point to point

interoperability, 179
proof of concept studies, 7–8
protocol standards, 89
proxy classes. See also Java proxy classes

communicating with a Web service, 98
generating, 99–100
naming, 221
and SOAP, 100
using, 100

proxy generation tool
of Ja.NET, 221
of JNBridgePro, 221, 271–272

public declaration, 96
Public key token, 29
public queues, 128. See also queues
Publish/Subscribe messaging

issues, 148–149
support, 140–141
using WebSphere MQ Classes for, 144–145

Q
queue-based messaging support, 140–141
queues. See also message queuing

alias queues, 139
choosing between public and private, 129
configuring names, 333
creating for XBikes, 289
local queues, 139, 265
message queueing through a Java-to-COM

bridge, 134
outgoing queues, 128
resilient queues, 127
system queues, 128

QueueSender, 144
QueueSession, 144

R
ReadXML method, 166
ReceiveCompleted event, 133
reference architecture titles, 342–343
reference building blocks and IT Services

titles, 343–345
reference design, 174–175
reflection, 35–36
reliable messaging, 135
remote clients, 43–44
Remote Method Invocation. See RMI
Remote Method Invocation over Internet Inter-ORB

Protocol. See RMI-IIOP
remote queue definition, 139
remoting configuration files, 73
remoting server components, 70–71
Remoting.config file, 73, 232
RemotingConfiguration.Configure, 73
resource interoperability adapters. See also

interoperability adapters
to communicate with the Data Access Logic

resource, 199
J2EE resource interoperability adapters, 190–191
Ja.NET, 332
JNBridgePro, 334
.NET Framework, 198–199
.NET Framework resource interoperability

factories, 200
resource interoperability factories

J2EE, 191–192
.NET Framework resource interoperability

factories, 200
ResultSet JDBC class, 87, 115
ResultSet JDBC object, 117
ResultSets vs. DataSets, 115
return arrays, 86–87
reuse of existing systems, 7
RMI, 26
RMI-IIOP

J2EE Business tier RMI-IIOP service
interface, 186

J2EE Data Access Logic resource by way of
RMI-IIOP, 190

J2EE Data Access Logic resource RMI-IIOP
service interface, 191

RMI-IIOP-JMS, 190
Rotor, 36
round trips, 84, 86, 87, 88
runtime bridges. See also Ja.NET; JNBridgePro

to access WebSphere MQ, 148
activating ServicedComponents, 97
for asynchronous interoperability, 269
classes, 14, 15
described, 14

 Index 355

runtime bridges, continued
implementing, 73–89
interoperability adapters, 181
most popular, 67, 68
overview, 14
table in interoperability scenarios, 15

runtime type safety checks, 24–25

S
sample application. See XBikes
sample code

IBM WebSphere MQ 5.3, 289–290
WebSphere Application Developer

Studio 5.0, 280–281
WebSphere Application Server 5.0 on a Single

Computer, 289–290
scenarios

asynchronous connectivity, 171–172
Business tier and Data Access Logic tier, 122
exchanging data between .NET and J2EE, 63
interoperability, 164–165
interoperability table, 15
linking a new application to an existing

application, 63–64
linking business scenarios to Interoperability

Technologies, 15
linking existing applications, 64–65
linking new applications, 63
major scenarios described in this book, 10–13,

176
point-to-point interoperability, 179
server component as remotable object, 68
WebSphere MQ messages using JMS, 264
XBikes application, 158

schema2java tool
example of use, 208, 246–247
overview, 61

security, 24, 104–105
serialization. See also XML serialization

binary serialization, 52
deserializing from XML to .NET, 55–56
deserializing objects into XML, 57
of Java objects into XML, 57
serializing .NET objects into XML, 55
using, 52–57

serialization code
into a helper class method, 208
in Java helper class, 246–249

server component
classes, 71
configuring, 72–73
creating, 71
and java.util.EventListener, 79

server component, continued
and one-way asynchronous operations, 123
as remotable object, 68

service agent pattern, 181
service gateway pattern, 181
Service Interface pattern, 96, 97
service interfaces

for asynchronous interoperability, 262–263
business logic, 167
DALMSMQServiceInterface, 198
described, 166–167
J2EE, 186, 190, 206–213
for Ja.NET in the Business tier, 252–258
for Ja.NET in the Presentation tier, 226–227
for JNBridgePro, 218–220
linking to the ASP.NET application, 205
.NET Framework, 238–244
.NET Framework Business tier, 194
.NET Framework Data tier, 198
.NET in the Business service façade, 236
.NET in the Presentation tier, 204–205
overview, 179
and Web services, 90

ServicedComponent
business components, 162
exposing existing class as Web service, 97

servlets, 41
session beans

business component, 162
and business logic, 42
described, 42, 44

shared databases
described, 14
linking through, 113–122
table in interoperability scenarios, 15

SingleTierApp enterprise archive file, 303–304
SingleTierXBikes, 211
SN.exe, 26
SOAP

and proxy classes, 100
ServicedComponent, 97
for standard structure, 92
vs. Binary/TCP communication, 85
vs. .NET Remoting, 81
and Web services, 89, 90, 91–92
WS-ReliableMessaging, 135

SOAP Reliable Messaging Protocol. See SRMP
specialized collections, 34
SQL Server 2000. See Microsoft SQL Server 2000
SQL Server managed provider classes, 119
SqlCommand class, 119
SqlConnection class, 119
SqlDataReader class, 117
SqlDataReader object, 119
SRMP, 127

356 Application Interoperability: Microsoft .NET and J2EE

StringCollection type, 34
Strong Name Tool. See SN.exe
strong names

in Ja.NET, 79
overview, 26

Struts, described, 161. See also JSP/Struts
sub-classed dataset, 214
Sun. See J2EE
Sun ONE Application Server, 37
Sun rivalry with Microsoft, 17
supporting proxies, 88–89
synchronous communications. See asynchronous

communications
System.Data namespace, 117
System.Data.DataSet class, 239
System.Data.dll, 117
System.Data.SqlClient namespace, 119
System.InvalidOperationException, 56
System.Messaging namespace, 129–130, 131, 137
System.Runtime.Remoting.RemotingException

function, 79
System.String, vs. java.lang.String, 50
System.Web.Service.Protocols.SoapHttpClientProtocol

class, 100
System.Web.Services.WebService, 241–242
System.Xml.dll, 117
System.Xml.Serialization namespace, 240
System.Xml.Serialization.XmlSerializer class, 54–55

T
tables

data types, 62
interoperability scenarios, 15
.NET and J2EE, 46
.NET Remoting and Web services, 108–109

Tabular Data Stream interface. See TDS
targetClient, 264–265
TDS, 119
The Mind Electric, 102, 206

Web services implemention, 210–213
thread management, 25
ThreadPool class, 25
tiers. See Business tier; Data tier; multi-tiered

applications; presentation tier
topic management, 141
Topic object, 145
TopicConnection object, 145
TopicConnectionFactory object, 145
TopicPublisher object, 145
TopicSession object, 145
TopicSubscriber object, 145
transactional messages, 128

transactional support
asynchronous connectivity, 171
Basic Profile 1.0, 136
COM+, 32
Data Access Logic Components, 121
EJBs, 42
JNBridgePro, 83
MSMQ, 127–128, 135
.NET Remoting, 109
table, 46

transactions
business workflows, 163
handling using a Web service, 136–137

_TransparentProxy class, 74
true callback, 135, 137
Try clauses, 23
type compatibility

challenges of, 49–51
using XML Schemas to ensure, 58–62

type definitions, 89
type safety, 24–25
typed DataSets. See also DataSets

CustomerData, 180, 217
in .NET Framework using XMLSerializer, 239
to use ASP.NET, 204
using to define business entities, 164–166
XML Schemas, 238–239

U
UBR, 105–106
UDDI

for discovery, 92
interoperability benefits of, 106
registries, 106–107
for Web services, 105–108

UDDI Business Registry. See UBR
UI, 161
Universal Description, Discovery, and Integration.

See UDDI
unmanaged code, 23–24
URL Behavior property, 101
URLs, 100–101, 105
use case commands, 162
use case interoperability adapter factories, 187
use case interoperability adapters, 186–187, 195.

See also interoperability adapters
configuring Ja.NET, 331–332
.NET Framework, 194–195

User Interface. See UI
userAcct account object, 87

 Index 357

V
Value Object pattern, 164–165
value objects, 87–88
VBC.EXE, 28
VB.NET Server component, 75
Visual Studio .NET 2003, 28
Visual Studio .NET

accessing a Web service in, 99
designing a Web service in

.NET Framework, 95–96
XML Designer tool, 59

W
W3C, 59, 93
WaitHandle method, 124
WAR

acronym defined, 41
deploying applications, 44
package deployment, 81

Web Application Archive. See WAR
Web applications

creating for ASP.NET, 31
creating for Java, 41
running XBikes on single tier, 320

Web Matrix, 31
Web Reference URL property, 100–101
Web references with URLs, 100–101
Web service interfaces

interoperability, 206–217
MSMQ, 134–135
reusing existing equipment, 7

Web service service interfaces, 167
GetCategories method in, 244
and J2EE, 190
.NET Web Service Proxies, 215

Web service stacks, 102, 103, 206
Web services

in a .NET Framework, 95–96
accessing in Visual Studio .NET, 99
architecture of, 93
asynchronous calls, 123–125
and Callbacks, 90
calling methods, 101
client creation, 97–98
client in .NET Framework, 98–99
connecting with, 89–110
considerations when choosing, 203
consuming in Java, 103
described, 89–90
diagram of elements, 93
diagram of layers, 91
exposing an existing class, 96–97

Web services, continued
handling transactions with, 136–137
implementing, 95–101
interface creation, 134–135
interoperability best practices, 107–108
interoperability in Business tier, 237–251
interoperability in Presentation tier, 206–217
J2EE, 101–103
J2EE Business tier, 186
J2EE Data Access Logic tier, 190
Java, 102–103
.NET Framework Business tier by way of a Web

services, 194
.NET Framework Data Access Logic resource

through a Web services, 198
in .NET Framework using Visual Studio

.NET, 95–96
.NET remoting comparison, 108–110
Place Order functionality, 297
Place Order functionality to use message

queues, 299
proxy classes to communicate with, 98
proxy operations

with J2EE applications, 245–246
with .NET Framework

applications, 213–214
securing, 104–105
and service interfaces, 90
and SOAP, 89, 90, 91–92
supporting, 32–33
UDDI for, 105–107
understanding, 90–92

Web services adapters, 294–295
between the Business and Data tiers, 296
between Business and Data tiers, 328–329
using, 294–297
WebSphere Application Server 5.0 on multiple

computers, 294–297
XBikes on .NET, 326–329

Web Services Description Language. See WSDL
Web Services Enhancements. See WSE
Web Services Interoperability Organization. See WS-I
Web Services Transaction. See WS-Transaction
Web tiers

connecting to Business tier with Web services
adapters, 326–327

deleting items from computers, 336–337
JNDI lookups, 293

Web.config, 196, 244, 258
WebConfig.xml, 188
WebLogic, 37
Weblogic Workshop, 105
WebMethod attribute, 30
[WebMethod] attribute, 96, 110

358 Application Interoperability: Microsoft .NET and J2EE

WebSphere
list of other vendors, 37
and other Java Web services stacks, 102, 103

WebSphere Application Developer Studio 5.0
installing sample code, 280–281
running XBikes, 282
XBikes on, 278–285

WebSphere Application Server 5.0
on a single computer

deploying, 285
installing, 285–287
installing sample code, 289–290

on multiple computers
Business tier, 291–292
changing interoperability methods, 294–299
data tier computer setup, 290
installing, 290–294
Presentation tier computer setup, 292–294
running XBikes application, 294
Web services adapters, 294–297
XBikes application, 293–294

WebSphere Application Server
Business tier on XBikes on J2EE, 309–310
changing configuration, 330
Data tier server, 312
manually configuring XBikes on, 300
manually configuring XBikes on IBM

Application Server, 301
Presentation tier on XBikes on J2EE, 307–308
restarting for XBikes on J2EE, 305
XBikes on J2EE, 301, 307–308

WebSphere MQ
accessing from remote computer, 139
bridging with HIS 2000, 150–152
brokers, 145
and client component, 139
connecting from J2EE Applications, 141–142
connecting MSMQ, 265
Data tier computers support, 315
HIS 2000, 150–151
interfaces for message queuing, 190
.NET Framework applications, 146–147
runtime bridges to access JMS functionality, 148
using, 138–139
XBikes Business tier components

support, 310–311
XBikes on J2EE support, 304–305

WebSphere MQ Classes
for Java, 141–142
for JMS for Publish/Subscribe

Messaging, 144–145
for .NET, 146–147
for point-to-point Messaging, 143–144

WebSphere Studio Application Developer 5.0, 329–330
WebSphere Studio Application Developer 5.1, 283–285

who should read this book?, 2
Wldap32.dll, 34
workflows, 163
World Wide Web Consortium. See W3C
wrapper classes. See classes
WS-I, 93–94
WS-Transaction, 137
WSDL, 98, 99

for description, 92
WSDL2Java, 103, 249
WSDL.exe, 100, 124, 215
WSE, 105
WS-ReliableMessaging, 135

X
XBikes. See also J2EE; .NET

architecture for .NET Framework and
J2EE, 172–174

business entities in, 164–166
DataSet objects, 252
Downhill Bikes, 158
implementations and .NET Framework

architecture, 175
implementing interoperability in, 184–200
introducing, 15–16
on J2EE

Business tier component, 311
changing interoperability methods, 294–299
data source, 301–302
deploying on WebSphere Application

Developer Studio 5.0, 278–285
IBM WebSphere MQ 5.3, 278–280
installing on J2EE, 277–316
manual installation, 299–316
testing application, 305
testing the application, 316
WebSphere Application Server 5.0

 on a single computer, 285–290
 on multiple computers, 290–294

WebSphere Studio Application
Developer 5.1, 283–285

on .NET
on a single tier, 320
changing interoperability methods, 326–334
Data tier resources, 196
deploying on a single computer, 317–320
deploying on multiple computers, 320–326
installing on the Data tier, 324–325
on multiple computers, 325–326
uninstalling, 333–334

understanding, 157–159
user actions in, 158–159
WebSphere Application Server 5.0 on multiple

computers, 293–294

 Index 359

XBikesBLL enterprise archive file, XBikes on J2EE, 311
XBikesBLLServiceInterface class, 212
XBikesBLLServiceInterface Web project, 211
xbikes.bll.serviceinterface.j2ee.ws, 212
xbikes.common.dataconverters.customers, 208–210
XBikesDAL enterprise archive file, 315–316
XBikesQ Queue, 280
XBikesWebApp enterprise archive file, 308
XML

data type mappings, 62
encoding for packaging data types, 206
J2EE configuration file, 188
mapping for J2EE, 207–208
mapping from the XML Schema, 246–249
namespaces, 59
.NET Framework configuration file, 200
Order object in formatted string, 246
parsing documents, 53–54
support with ADO.NET, 33, 117
for transport, 92
using documents to define business entities, 164

XML Designer tool, 59
XML Schema Documents. See XSD
XML Schemas

creating Java data types and XML mapping
from, 246–249

helper class, 246
.NET Framework Data Types based on, 238–241
typed DataSets, 238–239
using to ensure type compatibility, 58–62

XML serialization, 52–57. See also serialization
on the Java platform, 56–57
on the .NET platform, 54–55

XML Web services
described, 14
locating, 99
point-to-point interoperability, 67
table in interoperability scenarios, 15

XmlSerializer class
converting instance of CustomerData

class, 55, 56
described, 240, 242
typed dataset in .NET Framework, 239

XSD
ensuring class compatability, 59–60
mapping in Java, 61
mapping in .NET, 60
mapping types, 62
primitive and complex data types, 237
understanding, 58–61

XSD Schemas, 206
XSD.EXE

generating sub-classed datasets, 214
mapping XML Schemas and .NET classes, 60
similar Java tools, 61
two ways to use, 238–239

XSLT
datasets, 118
serialization, 56

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

About Microsoft patterns & practices

Microsoft patterns & practices guides contain specific recommendations illustrating how to design,
build, deploy, and operate architecturally sound solutions to challenging business and technical
scenarios. They offer deep technical guidance based on real-world experience that goes far beyond
white papers to help enterprise IT professionals, information workers, and developers quickly
deliver sound solutions.

IT Professionals, information workers, and developers can choose from four types of patterns &
practices:

● Patterns—Patterns are a consistent way of documenting solutions to commonly occurring
problems. Patterns are available that address specific architecture, design, and implementation
problems. Each pattern also has an associated GotDotNet Community.

● Reference Architectures—Reference Architectures are IT system-level architectures that
address the business requirements, LifeCycle requirements, and technical constraints for
commonly occurring scenarios. Reference Architectures focus on planning the architecture
of IT systems.

● Reference Building Blocks and IT Services—References Building Blocks and IT Services are
re-usable sub-system designs that address common technical challenges across a wide range
of scenarios. Many include tested reference implementations to accelerate development.
Reference Building Blocks and IT Services focus on the design and implementation of sub-
systems.

● Lifecycle Practices—Lifecycle Practices provide guidance for tasks outside the scope of
architecture and design such as deployment and operations in a production environment.

Patterns & practices guides are reviewed and approved by Microsoft engineering teams, consultants,
Product Support Services, and by partners and customers. Patterns & practices guides are:

● Proven—They are based on field experience.

● Authoritative—They offer the best advice available.

● Accurate—They are technically validated and tested.

● Actionable—They provide the steps to success.

● Relevant—They address real-world problems based on customer scenarios.

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Patterns & practices guides are designed to help IT professionals, information workers, and
developers:

Reduce project cost
● Exploit the Microsoft engineering efforts to save time and money on your projects.

● Follow the Microsoft recommendations to lower your project risk and achieve predictable
outcomes.

Increase confidence in solutions
● Build your solutions on proven Microsoft recommendations so you can have total confidence in

your results.

● Rely on thoroughly tested and supported guidance, but production quality recommendations and
code, not just samples.

Deliver strategic IT advantage
● Solve your problems today and take advantage of future Microsoft technologies with practical

advice.

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

patterns & practices: Current Titles
October 2003

Title Link to Online Version Book

Patterns

Enterprise Solution Patterns http://msdn.microsoft.com/practices/type/Patterns
using Microsoft .NET /Enterprise/default.asp

Microsoft Data Patterns http://msdn.microsoft.com/practices/type/Patterns
/Data/default.asp

Reference Architectures

Application Architecture for http://msdn.microsoft.com/library/default.asp?url=
.NET: Designing Applications /library/en-us/dnbda/html/distapp.asp
and Services

Enterprise Notification http://msdn.microsoft.com/library/default.asp?url=
Reference Architecture for /library/en-us/dnentdevgen/html/enraelp.asp
Exchange 2000 Server

Improving Web Application http://msdn.microsoft.com/library/default.asp?url=
Security: Threats and /library/en-us/dnnetsec/html/ThreatCounter.asp
Countermeasures

Microsoft Accelerator http://www.microsoft.com/technet/treeview
for Six Sigma /default.asp?url=/technet/itsolutions/mso/sixsigma

/default.asp

Microsoft Active Directory http://www.microsoft.com/technet/treeview
Branch Office Guide: /default.asp?url=/technet/prodtechnol/ad
Volume 1: Planning /windows2000/deploy/adguide/default.asp

Microsoft Active Directory http://www.microsoft.com/technet/treeview
Branch Office Series /default.asp?url=/technet/prodtechnol/ad
Volume 2: Deployment and /windows2000/deploy/adguide/default.asp
Operations

Microsoft Content Integration http://msdn.microsoft.com/library/default.asp?url=
Pack for Content Management /library/en-us/dncip/html/cip.asp
Server 2001 and SharePoint
Portal Server 2001

Microsoft Exchange 2000 Online Version not available
Server Hosting Series
Volume 1: Planning

Microsoft Exchange 2000 Online Version not available
Server Hosting Series
Volume 2: Deployment

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Title Link to Online Version Book

Microsoft Exchange 2000 http://www.microsoft.com/technet/treeview
Server Upgrade Series /default.asp?url=/technet/itsolutions/guide
Volume 1: Planning /default.asp

Microsoft Exchange 2000 http://www.microsoft.com/technet/treeview
Server Upgrade Series /default.asp?url=/technet/itsolutions/guide
Volume 2: Deployment /default.asp

Microsoft Solution http://www.microsoft.com/technet/treeview
for Intranets /default.asp?url=/technet/itsolutions/mso

/msi/Default.asp

Microsoft Solution for http://www.microsoft.com/downloads
Securing Wireless LANs /details.aspx?FamilyId=CDB639B3-010B-47E7-B23

4-A27CDA291DAD&displaylang=en

Microsoft Systems http://www.microsoft.com/technet/treeview
Architecture— /default.asp?url=/technet/itsolutions/edc
Enterprise Data Center /Default.asp

Microsoft Systems http://www.microsoft.com/technet/treeview/
Architecture— default.asp?url=/technet/itsolutions/idc/default.asp
Internet Data Center

The Enterprise Project http://www.microsoft.com/technet/treeview
Management Solution /default.asp?url=/technet/itsolutions/mso/epm

/default.asp

UNIX Application http://msdn.microsoft.com/library/default.asp?url=
Migration Guide /library/en-us/dnucmg/html/ucmglp.asp

Reference Building Blocks and IT Services

.NET Data Access http://msdn.microsoft.com/library/default.asp?url=
Architecture Guide /library/en-us/dnbda/html/daag.asp

Application Updater http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnbda/html/updater.asp

Asynchronous Invocation http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnpag/html/paiblock.asp

Authentication in ASP.NET: http://msdn.microsoft.com/library/default.asp?url=
.NET Security Guidance /library/en-us/dnbda/html/authaspdotnet.asp

Building Interoperable Web http://msdn.microsoft.com/library/default.asp?url=
Services: WS-I Basic /library/en-us/dnsvcinter/html/wsi-bp_msdn_
Profile 1.0 landingpage.asp

Building Secure ASP.NET http://msdn.microsoft.com/library/default.asp?url=
Applications: Authentication, /library/en-us/dnnetsec/html/secnetlpMSDN.asp
Authorization, and Secure
Communication

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Title Link to Online Version Book

Caching Application Block http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnpag/html/Cachingblock.asp

Caching Architecture Guide for http://msdn.microsoft.com/library/default.asp?url=
.Net Framework Applications /library/en-us/dnbda/html/CachingArch.asp?frame=

true

Configuration Management http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnbda/html/cmab.asp

Data Access Application Block http://msdn.microsoft.com/library/default.asp?url=
for .NET /library/en-us/dnbda/html/daab-rm.asp

Designing Application-Managed http://msdn.microsoft.com/library/?url=/library
Authorization /en-us/dnbda/html/damaz.asp

Designing Data Tier Components http://msdn.microsoft.com/library/default.asp?url=
and Passing Data Through Tiers /library/en-us/dnbda/html/BOAGag.asp

Exception Management http://msdn.microsoft.com/library/default.asp?url=
Application Block for .NET /library/en-us/dnbda/html/emab-rm.asp

Exception Management http://msdn.microsoft.com/library/default.asp?url=
Architecture Guide /library/en-us/dnbda/html/exceptdotnet.asp

Microsoft .NET/COM Migration http://msdn.microsoft.com/library/default.asp?url=
and Interoperability /library/en-us/dnbda/html/cominterop.asp

Microsoft Windows Server http://www.microsoft.com/downloads/
2003 Security Guide details.aspx?FamilyId=8A2643C1-0685-4D89-B655-

521EA6C7B4DB&displaylang=en

Monitoring in .NET Distributed http://msdn.microsoft.com/library/default.asp?url=
Application Design /library/en-us/dnbda/html/monitordotnet.asp

New Application Installation http://www.microsoft.com/business/reducecosts
using Systems Management /efficiency/manageability/application.mspx
Server

Patch Management using http://www.microsoft.com/technet/treeview/
Microsoft Systems Management default.asp?url=/technet/itsolutions/msm/swdist/
Server - Operations Guide pmsms/pmsmsog.asp

Patch Management Using http://www.microsoft.com/technet/treeview/
Microsoft Software Update default.asp?url=/technet/itsolutions/msm/swdist/
Services - Operations Guide pmsus/pmsusog.asp

Service Aggregation Application http://msdn.microsoft.com/library/default.asp?url=
Block /library/en-us/dnpag/html/serviceagg.asp

Service Monitoring and Control http://www.microsoft.com/business/reducecosts
using Microsoft Operations /efficiency/manageability/monitoring.mspx
Manager

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Title Link to Online Version Book

User Interface Process http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnbda/html/uip.asp

Web Service Façade for http://msdn.microsoft.com/library/default.asp?url=
Legacy Applications /library/en-us/dnpag/html/wsfacadelegacyapp.asp

Lifecycle Practices

Backup and Restore for http://www.microsoft.com/technet/treeview/default.asp
Internet Data Center ?url=/technet/ittasks/maintain/backuprest/Default.asp

Deploying .NET Applications: http://msdn.microsoft.com/library/default.asp?url=
Lifecycle Guide /library/en-us/dnbda/html/DALGRoadmap.asp

Microsoft Exchange 2000 http://www.microsoft.com/technet/treeview/default.
Server Operations Guide asp?url=/technet/prodtechnol/exchange/exchange

2000/maintain/operate/opsguide/default.asp

Microsoft SQL Server 2000 http://www.microsoft.com/technet/treeview
High Availability Series: /default.asp?url=/technet/prodtechnol/sql/deploy
Volume 1: Planning /confeat/sqlha/SQLHALP.asp

Microsoft SQL Server 2000 http://www.microsoft.com/technet/treeview
High Availability Series: /default.asp?url=/technet/prodtechnol/sql/deploy
Volume 2: Deployment /confeat/sqlha/SQLHALP.asp

Microsoft SQL Server 2000 http://www.microsoft.com/technet/treeview
Operations Guide /default.asp?url=/technet/prodtechnol/sql/maintain

/operate/opsguide/default.asp

Operating .NET-Based http://www.microsoft.com/technet/treeview
Applications /default.asp?url=/technet/itsolutions/net/maintain

/opnetapp/default.asp

Production Debugging for http://msdn.microsoft.com/library/default.asp?url=
.NET-Connected Applications /library/en-us/dnbda/html/DBGrm.asp

Security Operations for http://www.microsoft.com/technet/treeview
Microsoft Windows 2000 Server /default.asp?url=/technet/security/prodtech

/win2000/secwin2k/default.asp

Security Operations Guide for http://www.microsoft.com/technet/treeview
Exchange 2000 Server /default.asp?url=/technet/security/prodtech

/mailexch/opsguide/default.asp

Team Development with Visual http://msdn.microsoft.com/library/default.asp?url=
Studio .NET and Visual /library/en-us/dnbda/html/tdlg_rm.asp
SourceSafe

This title is available as a Book

	Title Page
	Contributors
	Contents
	Chapter 1: Introduction
	Welcome
	Who Should Read This Book
	Prerequisites
	Document Conventions
	How to Use This Book
	Chapter 2: “Understanding Enterprise Platforms”
	Chapter 3: “Interoperability Fundamentals”
	Chapter 4: “Interoperability Technologies: Point
	Chapter 5: “Interoperability Technologies: Data T
	Chapter 6: “Implementing Interoperability Design
	Chapter 7: “Integrating .NET in the Presentation
	Chapter 8: “Integrating .NET in the Business Tier�
	Chapter 9: “Implementing Asynchronous Interoperab

	What Is Microsoft .NET?
	What Is Java 2 Enterprise Edition?
	Identifying the Business Need for Interoperability
	Achieving Reuse of Existing Systems
	Implementing Proof of Concept Studies
	Migrating to Microsoft .NET
	Achieving Lower Project Costs

	Defining Interoperability
	Understanding Interoperability Scenarios
	Listing Interoperability Technologies
	Linking Interoperability Technologies to Business Scenarios

	Introducing the Sample Application
	Summary
	References

	Chapter 2: Understanding Enterprise Platforms
	Introduction
	Microsoft .NET Fundamentals for J2EE Developers
	Comparing .NET to J2EE
	Investigating the .NET Framework
	Building a .NET-based Application
	Understanding Attributes
	Creating Web Applications
	Hosting Components
	Supporting Web Services
	Connecting to Databases
	Implementing Collections
	Accessing Directory Services
	Reflection

	J2EE Fundamentals for .NET Developers
	Understanding the Java Platform
	Implementing the Java SDK
	Building a Java Application
	Locating and Sharing Classes
	Implementing Other Environment Variables
	Using Java Integrated Design Environments
	Creating Web Applications
	Hosting Components
	Building Enterprise JavaBeans
	Deploying Applications

	Comparing .NET and J2EE Features
	Summary
	References

	Chapter 3: Interoperability Fundamentals
	Introduction
	Facing Interoperability Challenges
	Using Serialization
	Understanding Binary Serialization
	Understanding XML Serialization

	Using XML Schemas to Ensure Type Compatibility
	Understanding XML Schema Documents
	Mapping XSD Types

	Data Exchange Recommendations
	Linking New Applications
	Linking a New Application to an Existing Application
	Linking Existing Applications

	Summary
	References

	Chapter 4: Interoperability Technologies: Point to Point
	Using .NET Remoting for Connectivity
	Understanding .NET Remoting
	Implementing .NET Remoting

	Implementing Runtime Bridges
	Evaluating Ja.NET
	Evaluating JNBridgePro

	Connecting with Web Services
	Understanding Web Services
	Web Services Interoperability Organization
	Implementing Web Services
	Creating Web Services in J2EE
	Securing Web Services
	Using Universal Description, Discovery, and Integration
	Implementing Web Services Interoperability Best Practices
	Comparing .NET Remoting to Web Services

	Summary
	References

	Chapter 5: Interoperability Technologies: Data Tier
	Introduction
	Linking through a Shared Database
	Connecting with JDBC
	Connecting with ADO.NET
	Sharing Data Between ADO.NET and JDBC

	Implementing Asynchronous Interoperability
	Connecting with Web Services Using Asynchronous Calls
	Using Message Queues for Asynchronous Interoperability

	Using Host Integration Server 2000
	Bridging MSMQ and WebSphere MQ with HIS 2000
	Implementing the MSMQ-MQSeries Bridge

	Summary
	References

	Chapter 6: Implementing Interoperability Design Elements
	Introduction
	Understanding the XBikes Sample Application
	Reviewing .NET Framework and J2EE Application Architecture
	Implementing Presentation Tier Elements
	Implementing Business Tier Elements
	Implementing Data Access Logic Tier Components
	Implementing Message Queuing Services
	XBikes Application Architecture for .NET Framework and J2EE
	Linking to the Reference Design

	Implementing Interoperability
	Describing Interoperability Connection Points
	Interoperability Layers and Components

	Implementing Interoperability in XBikes
	Adding J2EE Presentation to Business Tier Interoperability
	Adding J2EE Business to Data Tier Interoperability
	Adding .NET Framework Presentation to Business Tier Interoperability
	Adding .NET Framework Business to Data Tier Interoperability

	Summary
	References

	Chapter 7: Integrating .NET in the Presentation Tier
	Introduction
	Determining Data Exchange Formats and Types
	Designing and Building the Service Interface
	Designing and Building the Interoperability Adapters

	Using Web Services for Interoperability
	Deciding on a Data Format
	Building the Service Interface in J2EE
	Creating the Interoperability Adapters in .NET

	Using JNBridgePro for Interoperability
	Deciding on a Data Format
	Building the Service Interface for JNBridgePro
	Building the Interoperability Adapters using JNBridgePro

	Using Ja.NET for Interoperability
	Deciding on a Data Format
	Building the Service Interface for Ja.NET
	Building the Interoperability Adapters using Ja.NET

	Summary
	References

	Chapter 8: Integrating .NET in the Business Tier
	Introduction
	Determining Data Exchange Formats and Types
	Designing and Building the Service Interface
	Designing and Building the Interoperability Adapters

	Using Web Services for Interoperability
	Deciding on a Data Format
	Building the Service Interface in .NET Framework
	Creating the Interoperability Adapters in J2EE

	Using Ja.NET for Interoperability
	Deciding on a Data Format
	Building the Service Interface for Ja.NET
	Creating the Interoperability Adapters using Ja.NET

	Summary

	Chapter 9: Implementing Asynchronous Interoperability
	Introduction
	Determine Data Exchange Formats and Data Types
	Designing and Building the Service Interface
	Designing and Building the Asynchronous Interoperability Adapters
	Using the MSMQ-MQSeries Bridge
	Configuring the Message Queues
	Selecting a Data Format
	Creating the Message Consumer
	Creating the Interoperability Adapter

	Using JNBridgePro
	Deciding on a Data Format for JNBridgePro
	Creating the Message Consumer for JNBridgePro
	Creating the Asynchronous Interoperability Adapter for JNBridgePro

	Using Ja.NET
	Configuring the Message Queues
	Deciding on a Data format for Ja.NET
	Creating the Message Consumer for Ja.NET
	Creating the Ja.NET Asynchronous Interoperability Adapter

	Summary
	References

	Appendix A: Installing XBikes on J2EE
	Introduction
	Deploying XBikes on WebSphere Application Develop
	Configuring IBM WebSphere MQ 5.3
	Creating the XBikesQ Queue
	Installing the XBikes Sample Code
	Configuring the JMS Queues
	Running XBikes
	Using WebSphere Studio Application Developer 5.1 with XBikes

	Deploying XBikes on WebSphere Application Server 5.0 on a Single Computer
	Installing WebSphere Application Server 5.0
	Installing and Configuring IBM WebSphere MQ 5.3
	Creating the XBikesQ Queue
	Installing the XBikes Sample Code
	Running the XBikes Application

	Deploying XBikes on WebSphere Application Server 5.0 on Multiple Computers
	Data Tier Computer Setup
	Installing XBikes into the Data Tier
	Business Tier Computer Setup
	Presentation Tier Computer Setup
	Configuring the XBikes Application
	Running the XBikes Application

	Changing Interoperability Methods
	Using Web Services Adapters
	Using Ja.NET Adapters
	Using Message Queue Adapters

	Manual Installation Instructions
	Manually Configuring XBikes on IBM Application Server
	Preparing XBikes for Multi-Tier Deployment
	Deploying XBikes on the Presentation Tier Computer
	Deploying the Business Tier Components
	Configuring the Data Tier Computer

	Appendix B: Installing XBikes on .NET
	Introduction
	Deploying XBikes on a Single Computer
	Installing the XBikes Application
	Configuring the XBikes Web Application
	Running XBikes on a Single Tier

	Deploying XBikes on Multiple Computers
	Identifying Requirements for Each Computer
	Running XBikes on Multiple Computers

	Changing Interoperability Methods
	Using Web Service Adapters
	Using Ja.NET Adapters
	Using JNBridgePro Adapters

	Uninstalling XBikes

	Index
	Additional Resources

