
Programming VB.NET:
A Guide for Experienced

Programmers

GARY CORNELL AND JONATHAN MORRISON

Programming VB.NET: A Guide for Experienced Programmers

Copyright ©2002 by Gary Cornell

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-893115-99-2

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Editorial Directors: Dan Appleman, Gary Cornell, Jason Gilmore, Karen Watterson

Technical Reviewers: Ken Getz, Tim Walton

Managing Editor and Production Editor: Grace Wong

Copy Editors: Steve Wilent, Tracy Brown Collins

Compositor: Susan Glinert Stevens

Artist: Allan Rasmussen

Indexer: Valerie Haynes Perry

Cover Designer: Karl Miyajima

Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc.,175 Fifth
Avenue, New York, NY, 10010

and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112
Heidelberg, Germany

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 901 Grayson Street, Suite 204,
Berkeley, CA 94710.

Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Down-
loads section.

iii

Dedication

To the people at Apress: the best group of people I can ever imagine working with.

iv

Contents at a Glance

Dedication .. iii

Contents ..v

Acknowledgments ... viii

About This Book..ix

Chapter 1 Introduction...1

Chapter 2 The VB .NET IDE: Visual Studio .NET11

Chapter 3 Expressions, Operators, and Control Flow47

Chapter 4 Classes and Objects (with a Short Introduction
to Object-Oriented Programming)97

Chapter 5 Inheritance and Interfaces ... 177

Chapter 6 Event Handling and Delegates ...237

Chapter 7 Error Handling the VB .NET Way:
Living with Exceptions ...265

Chapter 8 Windows Forms, Drawing, and Printing279

Chapter 9 Input/Output ..333

Chapter 10 Multithreading ..379

Chapter 11 A Brief Introduction to Database Access
with VB .NET ..423

Chapter 12 A Brief Overview of ASP .NET ...443

Chapter 13 .NET Assemblies, Deployment, and COM Interop463

Index...479

v

Contents

Dedication .. iii

Acknowledgments .. xiii

About This Book .. xv

Chapter 1 Introduction .. 1

Visual Basic Then and Now .. 1
The Versions of Visual Basic .. 2
The .NET Mentality Shift .. 3

The Common Language Runtime .. 4
Completely Object Oriented ... 5
Automatic Garbage Collection: Fewer Memory Leaks 6

Structured Exception Handling ... 6
True Multithreading ... 6
Why You Will Need To Learn a Whole Lot of New Concepts

to Use VB .NET ... 7
Should You Use C# and Not Bother with VB .NET? 9

Chapter 2 The VB .NET IDE: Visual Studio .NET 11

Getting Started .. 12
Creating a New Solution ... 13

A Tour of the Main Windows in the IDE .. 17
The Editor ... 19
The Solution Explorer .. 24
Properties Window .. 25
References and the Reference Window ... 26
Output Window and Command Window .. 27

Working with a Solution .. 28
Adding Projects to a Solution .. 33

Compiling ... 34
Multiple Compilations .. 36
Build Options ... 38
Debug vs. Release Versions ... 39
Output Files .. 40

Contents

vi

Debugging in VB .NET ..40
New Debugger Features ...41

Chapter 3 Expressions, Operators,
and Control Flow ...47

Console Applications ..48
Statements in VB .NET ..51
Comments ..52
Variables and Variable Assignments ...52
Literals and Their Associated Data Types ..54

Non-Numeric Literals ..58
Declaring Variables ..59

Conversion between Values of Different Types ...61
Strings ..64

String Functions ...65
Formatting Data ...68

Arithmetic Operators ..69
Parentheses and Precedence ...72
Math Functions and Math Constants ...73

Constants ..75
Repeating Operations—Loops ...75

Determinate Loops ...75
Indeterminate Loops ..77

Conditionals—Making Decisions ..79
Scoping Changes ..80
Short Circuiting ..81

Select Case ...81
The GoTo ..82
The Logical Operators on the Bit Level ..83
Arrays ..84

 The For-Each Construct ..86
Arrays with More than One Dimension ..87

Procedures: User-Defined Functions and Subs87
Functions ..88
Sub Procedures ...90
Using Arrays with Functions and Procedures ..92
Procedures with a Variable or Optional Number of Arguments93

Recursion ..94

Contents

viivii

Chapter 4 Classes and Objects (with a Short
Introduction to Object-Oriented
Programming) .. 97

Introduction to OOP ... 98
Classes As (Smart) User-Defined Types ... 99

The Vocabulary of OOP ... 101
The Relationships between Classes in Your Programs 101

How to Objectify Your Programs ... 107
What about Individual Objects? ... 109
Advantages to OOP .. 110
Creating Object Instances in VB .NET .. 111

More on Constructors: Parameterized Constructors 114
Example: The String Class .. 115
Example: The StringBuilder Class .. 115

Namespaces ... 120
Imports ... 120

Help and the (Vast) .NET Framework .. 124
Example: The Framework Collection Classes ... 127

More on Object Variables .. 134
Is and Nothing .. 136
TypeName and TypeOf ... 137
Subtleties of Passing Object Variables by Value .. 138

Building Your Own Classes .. 140
Overloading Class Members ... 144
More on Constructors ... 147
More on Properties .. 148
Scope of Variables .. 150
Nested Classes .. 152

Shared Data and Shared Members Inside Classes 155
Shared Members .. 157

The Object Life Cycle ... 158
Object Death .. 160

Value Types ... 161
Enums ... 163
Structure Types .. 165

Namespaces for Classes You Create ... 168
The Class View Window ... 169
Debugging Object-Based Programs ... 170
Summary ... 175

Contents

viii

Chapter 5 Inheritance and Interfaces177

Inheritance Basics ..178
Getting Started with Inheritance ...180
Overriding Properties and Methods ...184
Abstract Base Classes ...195

Object: The Ultimate Base Class ..201
The Most Useful Members of Object ..202

The Fragile Base Class Problem: Versioning209
Overview of Interfaces ...215

Mechanics of Implementing an Interface ..217
When to Use Interfaces, When To Use Inheritance?222
Important Interfaces in the .NET Framework222

ICloneable ...223
IDisposable ...225

Collections ...225
For Each and IEnumerable ..226

Chapter 6 Event Handling and Delegates237

Event Handling from an OOP Point of View ..237
What Goes into the Functions Called by Events? ..239

Basic Event Raising ..241
Hooking Up the Listener Objects to Event Source Objects243
Building Your Own Event Classes ...247
Dynamic Event Handling ..249
Handling Events in an Inheritance Chain ..253

Delegates ..254
Building Up a Delegate ..255
A More Realistic Example: Special Sorting ...257
Delegates and Events ...264

Chapter 7 Error Handling the VB .NET Way:
Living with Exceptions ...265

Error Checking vs. Exception Handling ...266
First Steps in Exception Handling ...267
Analyzing the Exception ..269
Multiple Catch Clauses ..269

Throwing Exceptions ..272
Exceptions in the Food Chain ...275

And Finally…Finally Blocks ...277
Some Tips for Using Exceptions ..278

Contents

ixix

Chapter 8 Windows Forms, Drawing,
and Printing ... 279

First, Some History ... 280
Form Designer Basics ... 281

Keeping Things in Proportion: The Anchor and Dock Properties 284
The Tab Order Menu ... 287

Returning to a Simple Program ... 287
More Form Properties ... 292

Menu Controls and the New Visual Studio Menu Editor 294
Context Menus ... 297
MDI Forms ... 298
ColorDialog .. 301
FontDialog .. 302
FileDialogs .. 302
Adding Controls at Run Time ... 303

Form Inheritance: AKA Visual Inheritance ... 305
Building Custom Controls through Control Inheritance 306

Overriding an Event ... 306
The Inheritance Chains in the

System.Windows.Forms Assembly .. 313
Basic Control Class Functionality .. 316

Graphics: Using GDI+ ... 318
Simple Drawing ... 320
Drawing Text .. 321

Printing ... 325

Chapter 9 Input/Output .. 333

Directories and Files ... 334
The Path Class .. 335
The Directory Class .. 336
The File Class ... 338

The DirectoryInfo and FileInfo Classes .. 340
Working Recursively through a Directory Tree ... 341
The Most Useful Members of the FileSystemInfo, FileInfo,

and DirectoryInfo Classes .. 344
Streams ... 347

Writing to Files: File Streams .. 350
Getting Binary Data into and out of Streams:

BinaryReader and BinaryWriter .. 355
TextReader, TextWriter, and Their Derived Classes 358
Object Streams: Persisting Objects .. 361
Simple Serialization ... 362

Contents

x

Simple Deserialization ...364
Network Streams ..370

Writing a File System Monitor ..375
Going Further with File Monitoring ...378

Chapter 10 Multithreading ..379

Getting Started with Multithreading ...380
The Mechanics of Thread Creation ..383
Join ...388
Thread Names, CurrentThread, and ThreadState ...389
The Threads Window ...390
Putting a Thread to Sleep ...391
Ending or Interrupting a Thread ...392
A More Serious Example: Screen Scraping Redux ...394

The Big Danger: Shared Data ..397
The Solution: Synchronization ..401
More on SyncLock and the Monitor Class ...403
Deadlock: the Danger of Synchronization ...404
Sharing Data as It Is Produced ..410

Multithreading a GUI Program ..415

Chapter 11 A Brief Introduction to Database Access
with VB .NET ...423

Why ADO .NET Is Not ADO++ ...423
Disconnected Data Sets: The New Way to Use Databases424
The Classes in System.Data.DLL ..425

System.Data.OleDb ..425
System.Data.SqlClient ...429

Calling a Stored Procedure ...430
A More Complete VB .NET Database Application431

Chapter 12 A Brief Overview of ASP .NET443

Some History ...443
A Simple ASP .NET Web Application ...444

What Gets Sent to the Client? ..448
The Web.config File ..451

A Simple Web Service ..455
Client-Side Use of a Web Service ..458

Contents

xixi

Chapter 13 .NET Assemblies, Deployment,
and COM Interop ... 463

How COM Works .. 464
.NET Assemblies .. 465

The Manifest .. 467
Drilling Down into a Manifest .. 469

Shared Assemblies and the GAC ... 471
Adding and Removing Assemblies from the GAC ... 473
Strong Names = Shared Names .. 473
Generating a Key Pair .. 474
Signing an Assembly .. 476

COM Interoperability and Native DLL Function Calls 476
DLL Function Calls .. 477

xiii

Acknowledgments

ONE OF THE BEST PARTS of writing a book is when the author gets to thank those who
have helped him or her, for rarely (and certainly not in this case) is a book solely
the product of the names featured so prominently on the cover. First and foremost, I
have to thank my friends and colleagues at Apress, but especially Grace Wong,
whose efforts to get this book out under quite stressful conditions was nothing
short of amazing! I would also like to thank Steve Wilent, Tracy Brown Collins,
Susan Glinert Stevens, Valerie Haynes Perry for all their efforts on my behalf.

Next, Ken Getz did an amazingly thorough job of reviewing this book under terri-
bly tight constraints. He caught dozens of obscurities and helped me avoid dozens of
false steps (any errors that remain are solely my responsibility!). Karen Watterson
and Tim Walton made comments that were very useful as well. Rob Macdonald,
Carsten Thomsen, and Bill Vaughn all helped me to understand how ADO .NET
relates to classic ADO. Thanks also go to my friend Dan Appleman—suffice it to say
that not only have I learned an immense amount about every version of Visual
Basic from him, but his general guidance on so many things have helped me over
many difficult spots during these stressful times. While my friend Jonathan Morrison
had to step away from this project before it could be completed, his insights into
VB were very helpful as I worked to finish this book.

Finally, thanks to all my family and friends who put up with my strange ways
and my occasionally short temper for lo so many months.

Gary Cornell
Berkeley, CA
September 2001

xv

About This Book

THIS BOOK IS A COMPREHENSIVE, hands-on guide to the Visual Basic .NET programming
language addressed to readers with some programming background. No background
in Visual Basic is required, however.

While I show you the syntax of VB .NET, this book is not designed to teach you
syntax. I have taken this approach because trying to force VB .NET into the frame-
work of older versions of VB is ultimately self-defeating—you cannot take advantage of
its power if you continue to think within an older paradigm.

First off, I have tried to give you a complete treatment of object-oriented
programming in the context of the VB .NET language. I feel pretty strongly that
without a firm foundation here, it is impossible to take full advantage of the power
that VB .NET can bring to you.

Also, I have tried to cover at the least the fundamentals of every technique that a
professional VB .NET developer will need to master. This includes topics like multi-
threading, which are too often skimped on in most books. This does not mean that
I cover all the possible (or even the majority of) applications of VB .NET to the .NET
platform; that would take a book two or three times the size of this one. This is a book
about the techniques you need to master, not the applications themselves. (I have
tried to make most of the examples realistic, avoiding toy code as much as possible.)

Finally, since most people reading this book will have programmed with some
version of Visual Basic before, I have also tried to be as clear about the differences
between VB .NET and earlier versions of VB as I could. However, I want to stress
that this book does not assume any knowledge of earlier versions of VB, just some
programming experience.

How This Book Is Organized

Chapter 1, “Introduction,” explains what is so different about VB .NET. Experienced
VB programmers will benefit from reading this chapter.
Chapter 2, “The VB .NET IDE: Visual Studio .NET,” introduces you to the Visual
Studio .NET Integrated Development Environment (IDE).
Chapter 3, “Expressions, Operators, and Control Flow,” covers what I like to call
the “vocabulary” of VB .NET. This is the basic syntax for code including variables,
loops, and operators.
Chapter 4, “Classes and Objects (with a Very Short Introduction to Object-Oriented
Programming),” is the first of the core object-oriented programming chapters. It
shows you how to construct objects and use them.
Chapter 5, “Inheritance and Interfaces,” covers the other key parts of object-oriented
programming in VB .NET: inheritance and interfaces. This chapter also contains an

About This Book

xvi

introduction to the useful .NET collection classes which allow you to efficiently
manage data inside a program.
Chapter 6, “Event Handling and Delegates,” takes up events and the new .NET
notion of a delegate. Event-driven programming is still the key to good user interface
design, and .NET depends on it just as much as Windows did.
Chapter 7, “Error Handling the VB .NET Way: Living with Exceptions,” covers
exceptions, the modern way of dealing with errors that lets you banish the archaic
On Error GoTo syntax that has plagued VB since its start.
Chapter 8, “Windows Forms, Drawing, and Printing,,” takes up building Windows
user interfaces, graphics and printing. Although the browser is obviously becoming
more important as a delivery platform, traditional Windows-based clients aren’t going
away, and this chapter gives you a firm foundation to build them under .NET.
Chapter 9, “Input/Output,” presents I/O, with a complete treatment of streams,
which are at the root of .NET’s way of handling I/O.
Chapter 10, “Multithreading,” is a concise treatment of the fundamentals of mul-
tithreading. Multithreading is an amazingly powerful technique of programming
that is nonetheless fraught with peril. I hope this chapter does not just teach you
enough “to be dangerous,” but rather, enough so that you can use this powerful
technique safely and effectively in your programs.
Chapter 11, “A Brief Introduction to Database Access with VB .NET,” and Chapter 12,
“A Brief Overview of ASP .NET,” are very brief introductions to two of the most
important applications of .NET: ASP .NET and ADO .NET. Please note these chapters
are designed to give you just a taste, and you will have to look at more detailed
books to learn how to use ASP .NET or ADO .NET in production-level code.
Chapter 13, “.NET Assemblies, Deployment, and COM Interop,” is a brief intro-
duction to what goes on under the hood in .NET that includes a look the idea of
assemblies and COM Interop. While I have tried to give you a flavor of these
important topics, you will also need to consult a more advanced book to learn
more about the topics.

Contacting Me

I would love to hear about your experiences with this book, suggestions for
improvements, and any errata you may find. (The current list of errata may be found
at the Apress Web site at www.apress.com). You can contact me at gary@thecornells.com.

Gary Cornell
Berkeley, CA
September 2001

1

CHAPTER 1

Introduction

WE HOPE THIS BOOK will be useful to experienced programmers of all languages,
but this introduction is primarily aimed at Visual Basic programmers. Other
programmers can jump to Chapter 2, to begin delving into an incredibly rich
integrated development environment (IDE) backed by the first modern fully
object-oriented language in the BASIC1 family. Programmers accustomed to
Visual Basic for Windows may need some convincing that all the work they face
in moving to VB .NET is worth it. Hence this chapter.

Visual Basic Then and Now

Visual Basic for Windows is a little over ten years old. It debuted on March 20, 1991,
at a show called “Windows World,” although its roots go back to a tool called Ruby
that Alan Cooper developed in 1988.2

There is no question that Visual Basic caused a stir. Our favorite quotes came
from Steve Gibson, who wrote in InfoWorld that Visual Basic was a “stunning new
miracle” and would “dramatically change the way people feel about and use
Microsoft Windows.” Charles Petzold, author of one of the standard books on
Windows programming in C, was quoted in the New York Times as saying: “For those
of us who make our living explaining the complexities of Windows programming to
programmers, Visual Basic poses a real threat to our livelihood.” (Petzold’s com-
ments are ironic, considering the millions of VB books sold since that fateful day
in 1991.) But another quote made at Visual Basic’s debut by Stewart Alsop is more
telling: Alsop described Visual Basic as “the perfect programming environment
for the 1990s.”

But we do not live in the 1990s anymore, so it should come as no surprise that
Visual Basic .NET is as different from Visual Basic for Windows as Visual Basic for
Windows Version 1 was from its predecessor QuickBasic. While we certainly feel
there is a lot of knowledge you can carry over from your Visual Basic for Windows
programming experience, there are as many changes in programming for the

1. Read BASIC as meaning “very readable-with no ugly braces.…”

2. Its code name, “Thunder,” appeared on one of the rarest T-shirts around—it says “Thunder
unlocks Windows” with a lightning bolt image. You may also see a cool screen saver that looks
like the shirt.

Chapter 1

2

.NET platform3 using Visual Basic.NET (or VB .NET for short) as there were in
moving from QuickBasic for DOS to VB1 for Windows.

The Versions of Visual Basic

The first two versions of Visual Basic for Windows were quite good for building
prototypes and demo applications—but not much else. Both versions tied excellent
IDEs with relatively easy languages to learn. The languages themselves had rela-
tively small feature sets. When VB 3 was released with a way to access databases
that required learning a new programming model, the first reaction of many
people was, “Oh great, they’ve messed up VB!” With the benefit of hindsight, the
database features added to VB3 were necessary for it to grow beyond the toy stage
into a serious tool. With VB4 came a limited ability to create objects and hence a
very limited form of object-oriented programming. With VB5 and VB6 came more
features from object-oriented programming, and it now had the ability to build
controls and to use interfaces. But the structure was getting pretty rickety since
the object-oriented features were bolted on to a substructure that lacked support
for it. For example, there was no way to guarantee that objects were created correctly
in VB—you had to use a convention instead of the constructor approach used by
practically every other object-oriented language. (See Chapter 4 for more on what
a constructor does.) Ultimately the designers of VB saw that, if they were going to
have a VB-ish tool for their new .NET platform, more changes were needed since,
for example, the .NET Framework depends on having full object orientation.

We feel that the hardest part of dealing with the various changes in VB over
the years is not so much in that the IDE changed a little or a lot, or that there were
a few new keywords to learn, the pain was in having to change the way that you
thought about your VB programs. In particular, to take full advantage of VB5 and
VB6, you had to begin to move from an object-based language with an extremely
limited ability to create your own objects to more of an object-oriented language
where, for example, interfaces was a vital part of the toolset. The trouble really
was that many VB programmers who grew up with the product had never pro-
grammed using the principles of object-oriented programming before. When
classes were introduced in VB, most VB developers had no idea what a class really
was—never mind why they would ever want to use one.

Still, even with the limited object-oriented features available to you in VB5
and 6, when you learned how to use them they made programming large projects
easier. For example, you could build reusable objects like controls, or on a more
prosaic level, you could do neat things to help make maintaining your programs
easier. You could also banish the Select Case statement from maintenance hell.

3. Microsoft takes the word platform seriously. It even calls Windows a platform.

Introduction

33

What we mean is that instead of having to write code that worked more or less
like this:

Select Case kindOfEmployee

Case Secretary

 RaiseSalary 5%

Case Manager

 RaiseSalary 10%

Case Programmer

 RaiseSalary 15%

Case Architect

 RaiseSalary 20%

'etc

End Select

which was a pain to maintain because whenever you added a new type of employee
you had to change all the corresponding Select Case statements, the compiler
could do the work for you. This was finally possible because starting with VB5,
you could use the magic of interface polymorphism (see Chapter 5 for more on
this) and write code like this:

For Each employee in Employees

 employee.RaiseSalary

Next

and know that the compiler would look inside your objects to find the right
RaiseSalary method.

Classes let you create VB apps in a much more efficient and maintainable
manner. Whether you stick with VB5 or shift to VB .NET we cannot imagine
writing a serious VB app without them.

The .NET Mentality Shift

What does all of this have to do with .NET? Quite a lot. You see, .NET is going to
change the way you design your applications as much as the introduction of
classes to VB changed the best way to build your VB5 or 6 applications. And just as
we VB programmers suffered through the change from the classless to class-
enabled incarnations of VB, so will we feel some pain in the transition to .NET!4

4. There is a conversion tool supplied with VB .NET, but we guarantee it will not ease the pain much.
Any serious program will not convert well—you’re better off redoing them from scratch.

Chapter 1

4

With that in mind, let us look at some of the things to watch out for—or take
advantage of—when switching from VB6 to VB .NET.

The Common Language Runtime

Visual Basic has always used a runtime, so it may seem strange to say that the
biggest change to VB that comes with .NET is the change to a Common Language
Runtime (CLR) shared by all .NET languages. The reason is that while on the sur-
face the CLR is a runtime library just like the C Runtime library, MSVCRTXX.DLL,
or the VB Runtime library, MSVBVMXX.DLL, it is much larger and has greater
functionality. Because of its richness, writing programs that take full advantage of
the CLR often seems like you are writing for a whole new operating system API.5

Since all languages that are .NET-compliant use the same CLR, there is no
need for a language-specific runtime. What is more, code that is CLR can be written
in any language and still be used equally well by all .NET CLR-compliant languages.6

Your VB code can be used by C# programmers and vice versa with no extra work.
Next, there is a common file format for .NET executable code, called Microsoft

Intermediate Language (MSIL, or just IL). MSIL is a semicompiled language that
gets compiled into native code by the .NET runtime at execution time. This is a
vast extension of what existed in all versions of VB prior to version 5. VB apps used
to be compiled to p-code (or pseudo code, a machine language for a hypothetical
machine), which was an intermediate representation of the final executable code.
The various VB runtime engines, interpreted the p-code when a user ran the
program. People always complained that VB was too slow because of this,7 and
therefore, constantly begged Microsoft to add native compilation to VB. This
happened starting in version 5, when you had a choice of p-code (small) or
native code (bigger but presumably faster). The key point is that .NET languages
combine the best features of a p-code language with the best features of compiled
languages. By having all languages write to MSIL, a kind of p-code, and then
compile the resulting MSIL to native code, it makes it relatively easy to have
cross-language compatibility. But by ultimately generating native code you still
get good performance.

5. Dan Appleman, the wizard of the VB API, intends to write a book called something like The VB
.NET Programmers Guide to Avoiding the Windows API. The .NET Framework is so full-
featured that you almost never need the API.

6. Thus, the main difference between .NET and Java is that with .NET you can use any language,
as long as you write it for the CLR; with Java, you can write for any platform (theoretically at
least—in practice there are some problems) as long as you write in Java. We think .NET will be
successful precisely because it leverages existing language skills.

7. Actually, this was not the bottleneck in a lot of cases. People can only click so fast and
compiled code was irrelevant in most UI situations.

Introduction

55

Completely Object Oriented

The object-oriented features in VB5 and VB6 were (to be polite) somewhat limited.
One key issue was that these versions of VB could not automatically initialize the
data inside a class when creating an instance of a class. This led to classes being
created in an indeterminate (potentially buggy) state and required the programmer
to exercise extra care when using objects. To resolve this, VB .NET adds an important
feature called parameterized constructors (see Chapter 4).

Another problem was the lack of true inheritance. (We cover inheritance in
Chapter 5.8) Inheritance is a form of code reuse where you use certain objects that
are really more specialized versions of existing objects. Inheritance is thus the
perfect tool when building something like a better textbox based on an existing
textbox. In VB5 and 6 you did not have inheritance, so you had to rely on a fairly
cumbersome wizard to help make the process of building a better textbox tolerable.

As another example of when inheritance should be used is if you want to
build a special-purpose collection class. In VB5 or 6, if you wanted to build one
that held only strings, you had to add a private instance field that you used for
the delegation process:

Private mCollection As Collection 'for delegation

Then you had to have Initialize and Terminate events to set up and reclaim the
memory used for the private collection to which you delegated the work. Next,
you needed to write the delegation code for the various members of the specialized
collection that you wanted to expose to the outside world. For example:

Sub Add(Item As String)

 mCollection.Add Item

End Sub

This code shows delegation at work; we delegated the Add method to the private
collection that we used as an instance field.

The sticky part came when you wanted a For-Each. To do this you had to add
the following code to the class module:

Public Function NewEnum As IUnknown

 Set NewEnum = mCollection.[_NewEnum]

End Function

and then you needed to set the Procedure ID for this code to be –4!

8. Inheritance is useful , but you should know that this is not the be-all, end-all of object-oriented
programming, as some people would have you believe. It is a major improvement in VB .NET
but not the major improvement.

Chapter 1

6

(Obviously, “and then magic happens” is not a great way to code. With inherit-
ance, none of this nonsense is necessary.) In VB .NET you just say

Class MyCollection

 Inherits Collection

and you get a For Each for free (see Chapter 5).

Automatic Garbage Collection: Fewer Memory Leaks

Programmers who used Visual Basic always had a problem with memory leaks
from what are called circular references. (A circular reference is when you have
object A referring to object B and object B referring to object A.) Assuming this
kind of code was not there for a reason, there was no way for the VB compiler to
realize that this circularity was not significant. This meant that the memory for
these two objects was never reclaimed. The garbage collection feature built into
the .NET CLR eliminates this problem of circular references using much smarter
algorithms to determine when circular references can be “cut” and the memory
reclaimed. Of course, this extra power comes at a cost, and Chapter 4 will explain
the advantages and disadvantages of automatic garbage collection.

Structured Exception Handling

All versions of Visual Basic use a form of error handling that dates back to the first
Basic written almost 40 years ago. To be charitable, it had problems. To be unchar-
itable (but we feel realistic), it is absurd to use On Error GoTo with all the spaghetti
code problems that ensue in a modern programming language. Visual Basic adds
structured exception handling (see Chapter 7) the most modern and most powerful
means of handling errors.

True Multithreading

Multithreaded programs seem to do two things at once. E-mail programs that let
you read old e-mail while downloading new e-mail are good examples. Users
expect such apps, but you could not write them very easily in earlier versions of
VB. In Chapter 10 we introduce you to the pleasures and pitfalls of this incredibly
powerful feature of VB .NET.

Introduction

77

Why You Will Need to Learn a Whole Lot of New Concepts
to Use VB .NET

You may be tempted to think that you can use the conversion tool and a little bit of
fiddling to move your VB programs to VB .NET. Do not go down this path. To really
take advantage of VB .NET, you need to understand object-oriented principles and
how the .NET Framework works. Note that we do not mean you have to memorize
the many, many thousands of methods that are in the .NET Framework. However,
in order to read the documentation or to take advantage of the IntelliSense feature of
the IDE, you really do need to understand how the .NET “ticks.” To use the various
Windows and Web form designers in the IDE, you really have to understand these
issues.

The best way to help you see the massive changes that have come is to com-
pare the code you saw when you activated a button in earlier versions of VB. All
you needed to code (and all you saw as a result) was code inside a Button1_Click
event procedure.

Fair warning: if you add a button to a form in VB .NET, you will get a lot more
code generated by the VB .NET IDE. One of the main purposes of this book is to
show you why all this extra code is worth understanding—and of course, how to
understand it as easily as you can the simple Button1_Click of yore.

Here is the code you get (luckily most is automatically generated for you) for
adding a button to a form and having it display a message box when you click on
it.. (The circled numbers in the code are not from the IDE—they are pointers to
where the concepts relevant to that block of code are explained in this book):

! Public Class Form1

@ Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

$ Public Sub New()

% MyBase.New()

 'This call is required by the Windows Form Designer.

^ InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

Chapter 1

8

 'Form overrides dispose to clean up the component list.

& Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

 If disposing Then

 If Not (components Is Nothing) Then

 components.Dispose()

 End If

 End If

 MyBase.Dispose(disposing)

 End Sub

* Friend WithEvents Button1 As System.Windows.Forms.Button

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.Container

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

(<System.Diagnostics.DebuggerStepThrough()> Private Sub _

InitializeComponent()

 Me.Button1 = New System.Windows.Forms.Button()

 Me.SuspendLayout()

 '

 'Button1

 '

 Me.Button1.Location = New System.Drawing.Point(109,224)

 Me.Button1.Name = "Button1"

 Me.Button1.Size = New System.Drawing.Size(200, 48)

 Me.Button1.TabIndex = 0

 Me.Button1.Text = "Click me!"

 '

 'Form1

 '

 Me.AutoScaleBaseSize = New System.Drawing.Size(5,13)

 Me.ClientSize = New System.Drawing.Size(292, 266)

 Me.Controls.AddRange(New System.Windows.Forms.Control() {Me.Button1})

 Me.Name = "Form1"

 Me.Text = "First Windows Application"

 Me.ResumeLayout(False)

 End Sub

 #End Region

Introduction

99

_ Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As _ System.EventArgs) Handles Button1.Click

 MsgBox("Welcome to Visual Basic .NET!")

 End Sub

Q End Class

! Classes are explained in Chapter 4.

@ The keyword Inherits is discussed in Chapter 5, and Windows Forms are
 discussed in Chapter 8.

The new IDE has the ability to define collapsible regions (Chapter 2).

$ The constructor New is explained in Chapter 4.

% This is based on inheritance, which is explained in Chapter 5.

^ This is explained in the Windows Forms chapter (Chapter 8)

& This is explained in the Inheritance chapter (Chapter 5), but the key idea of a
Dispose method is explained in Chapters 4 and 5.

* Events are explained in Chapter 6. Event handling for GUI applications is
covered in Chapter 8.

(All the important code in this sub is explained in Chapter 8.

_ This is also explained in Chapter 8.

Q This is explained in Chapter 4.

Should You Use C# and Not Bother with VB .NET?9

There is certainly something to be said for switching to C#.10 Most of the .NET
Framework is written in it, so one can argue that C# is the .NET language. Although
C# is a wee bit more powerful than VB .NET, 99 percent of programmers will never
use its extra features.

But for those who have never programmed in a C-style language, C# will look
strange and might be harder to learn than VB .NET. Besides, there are some definite
pluses to VB .NET over C#. Here is our top five countdown:

5. Inclusion of many of the familiar VB/VBScript functions such as Mid,
Sin(x) instead of Math.Sin(x), or FormatNumber instead of the more cryptic
and often harder to use functions in the .NET Framework.

9. Dan Appleman has a e-book that goes into this question at some length (available at
www.desaware.com). Still, if you are browsing this chapter in a bookstore trying to decide,
we hope the following are sufficient reasons for choosing VB .NET.

10. We are writing a book tentatively entitled C# for the Experienced (VB) Programmer for those
who want to do this, but VB remains our first love, which is why we wrote this book first.

Chapter 1

10

4. Readability. VB .NET uses human-readable words for everything. For
example, C# uses a “:”, and VB .NET uses “inherits” or “implements.”
C# uses words like abstract, sealed, and virtual, while VB .NET uses
MustInherit, NotInheritable, Overridable, Overrides, Shadows. Which are
clearer to you—even without knowing what the terms mean?

3. You still have background compilation of your code. This means you get
immediate feedback from the compiler. (This is much better than simply
parsing your code, as is done in C#.)

2. VB .NET is case insensitive and has a smart editor that changes the case
to reflect your declarations. C#, like all languages in the C family, is case
sensitive, which, for those inexperienced with case-sensitive languages,
is guaranteed to drive you nuts.

and the #1 reason in our opinion is:

1. It still looks pretty much like Visual Basic 6, the most popular program-
ming language in the world!

11

CHAPTER 2

The VB .NET IDE:
Visual Studio .NET

IF YOU ARE ACCUSTOMED TO using an earlier version of VB, then the .NET IDE
(integrated development environment)—Visual Studio .NET—will look some-
what familiar. The concept of a rapid application development (RAD) tool with
controls that you to drag onto forms is certainly still there, and pressing F5 will
still run your program, but much has changed and mostly for the better. For
example, the horrid Menu Editor that essentially has been unchanged since VB1
has been replaced by an in-place menu editing system that is a dream to use (see
Chapter 8).

Also, VB .NET, unlike earlier versions of VB, can build many kinds of applications
other than just GUI-intensive ones. For example, you can build Web-based appli-
cations, server-side applications, and even console-based (in what looks like an
old-fashioned DOS window) applications. Moreover, there is finally a unified
development environment for all of the “Visual” languages from Microsoft. The
days when there were different IDEs for VC++, VJ++, Visual InterDev, Visual Basic,
and DevStudio are gone. (Actually, Visual Interdev is now subsumed into VS
.NET.) Another nice feature of the new IDE is the customization possible via an
enhanced extensibility model. VS .NET can be set up to look much like the IDE
from VB6, or any of the other IDEs, if you like those better.

The purpose of this chapter is to give you an overview of the IDE, not to bore
you to death with details. The best way to get comfortable with the IDE is to use it,
working with the online help as needed. We suggest skimming this chapter and
returning to it for reference as needed. Also, note that the parts of the IDE that are
connected with specific programming elements such as GUI design are covered
in greater depth in later chapters.

NOTE If you have never used Visual Basic, you may need to read this chapter
more closely.

Chapter 2

12

Getting Started

Users of earlier versions of VB (like us, for example) will probably want the IDE to
resemble and work like the traditional VB6 IDE as much as possible. You can do
this by selecting Visual Basic Developer from the Profile dropdown list on the My
Profile link on the VS home page, as shown in Figure 2-1.

Notice that you can also customize the keyboard and the window layout for the
IDE, and that you can save these in different profiles. You can always change your
profile by going to Help|Show Start Page and then choosing My Profile.

In VB .NET, every project is part of what Microsoft calls a solution. You cannot
do anything in the VB .NET IDE without your code being part of a specific solution.
Think of a solution as the container that holds all information needed to compile
your code into a usable form. This means a solution will contain one or more
projects; various associated files such as images, resource files, metadata (data

Figure 2-1. Visual Studio home page

The VB .NET IDE: Visual Studio .NET

1313

that describes the data in your program), XML documentation; and just about
anything else you can think of. (People coming from VB5 or 6 should think of a
solution as analogous to a program group.) Although solutions are cumbersome
at first, and in all honesty are always cumbersome for small projects, once you get
used to using solutions, enterprise development will be much easier. This is
because with a solution-based approach you can more easily dictate which files
you need to deploy in order to solve a specific problem.

Creating a New Solution

The first step in creating a new solution is to select File|New. At this point you have
two choices: create a New Project or a Blank Solution. Note that even when you
choose New Project, you get a solution. The difference is that the VS .NET IDE
builds a bunch of bookkeeping files and adds them to the solution container if
you choose a specific type of project. (The kind of files you get depends on what
kind of project you choose.)

Most of the time you will choose New Project. When you do so, you will see a
dialog box like the one shown in Figure 2-2, where we scrolled roughly halfway
through the list of possible projects. This dialog box shows the many different
kinds of projects VB .NET can build. (As we write this, there are ten types.) These
project templates work in much the same way as templates did in VB6. For
example, they often contain skeleton code but always contain bookkeeping infor-
mation such as which files are part of the solution.

Figure 2-2. New Project dialog box

Chapter 2

14

Since we scrolled down the New Project Dialog box, the icon for a Console
Application is actually shown in Figure 2-2. Notice that when you choose Console
Application (or any item but the last one, New Project in Existing Solution) from
the New Project dialog, you are not asked if you want to create a solution. This is
because, when you create a new project outside of an existing solution, the IDE
creates the basic structure of a solution for you. (Most .NET programmers put each
solution in a separate directory whose name matches the name of the solution,
and this is the default behavior for solutions created in the IDE.)

We named this sample solution vb_ide_01, but any legal filename is accept-
able. So, if you prefer spaces or capital letters in your solution names, that is fine.
Of course, like everything in the Windows file system, case is ignored (but retained for
readability). By making sure that the Create Directory for Solution box is checked, the
IDE will automatically create a subdirectory for the solution using the name of the
solution in the home directory you specify. In this case, our choices led to a directory
named C:\vb net book\Chapter 2\vb_ide_01. At this point, your IDE should look
similar to Figure 2-3.

NOTE In order to focus on the new features of the VB .NET language instead of
getting bogged down in the complexities of GUI applications under .NET, we
will only build console applications in the first part of this book. These are text-
based applications that write and read to, what is for all practical purposes, a
DOS window (they read from standard in and write to standard out).

The VB .NET IDE: Visual Studio .NET

1515

Figure 2-3. The basic Visual Studio IDE

TIP Remember that the IDE has context-sensitive help. For example, Figure 2-4
shows you roughly what you will see if you hit F1 when the focus is in the Solution
Explorer. There is also a “Dynamic Help” (use Ctrl+F1) feature that automati-
cally monitors what you are doing and attempts to put likely help topics into
focus. Figure 2-5 shows the list of dynamic help topics you see when you are
starting to work with a project. The downside to dynamic help is that it is CPU
intensive. Once you get comfortable with the IDE, you might want to turn it off
to improve performance.

Chapter 2

16

The View menu on the main menu bar is always available to bring a specific
window of the IDE into view (and into focus). Note that all windows on the IDE
can be dragged around and actually “free float.” Interestingly enough, these are
not MDI (multiple document interface) child windows that must live inside a
parent window—you can move any window in the IDE outside the main window.

Figure 2-4. Context-sensitive help at work

Figure 2-5. Dynamic help at work

The VB .NET IDE: Visual Studio .NET

1717

Another cool feature is that if you dock a window and it completely overlaps
an existing window, you are not as lost as you sometimes were in VB6. The reason
is that you automatically see the hidden windows as tabs. As an example, notice
where the cursor is pointing in Figure 2-6. To reveal one of the hidden windows
simply click and drag on the tab for that window. To recombine windows—for
example, to preserve real estate—simply drag one on top of the other. The use of
tabs in this way is a welcome change from the VB6 IDE, where overzealous
docking occasionally caused the IDE to become practically unusable, forcing you
to tweak the Registry in order to get things back to normal. Also note the use of
tabs in the main window gives you another way to access the IDE Start page.

A Tour of the Main Windows in the IDE

We cover the basic windows in this section and address specialized windows, such as
the ones for debugging, later in this chapter or in subsequent chapters. Before we go

Figure 2-6. Docked windows with tabs

Chapter 2

18

any further, however, we want to remind you that in the VS .NET IDE, as with most
modern Windows applications, you get context menus by right clicking. We strongly
suggest that you do a little clicking to become comfortable with each context menu.
For example, the context menu available in the editor is shown in Figure 2-7.

As you can see, this context menu makes a mixture of editing tools and
debugging tools available.

Next, the various icons on the menu bars have tool tips.1 A few of the icons
have little arrows on them indicating they actually serve as mini menus. For example,
the second item (Add New Item) has a list of the items you can add to a solution,
as you can see in Figure 2-8.

1. It has struck us, from time to time, that the need for tool tips shows that GUIs have their
limitations. We wonder if the next trend in UI design will be to have these things called
words on buttons dispensing with the icons completely??

Figure 2-7. The editor context menu

Figure 2-8. Icon mini menus

The VB .NET IDE: Visual Studio .NET

1919

The Toolbox is used mostly for GUI applications (Chapter 8), but it also holds the
new Clipboard Ring that we describe in the next section. You can also store code
fragments directly on the Toolbox. We cover these features in the next section too.

The Editor

The code editor has all the features you might expect in a program editor, such as
cut, paste, search, and replace.2 You access these features via the usual Windows
shortcuts (Ctrl+X for cut, Ctrl+V for paste, and so on). If you like icons, you have
them as well, on the context menu inside the Code window or the Edit menu.
Check out the Edit menu for the keyboard shortcuts or look at the Help topic on
“Editing, shortcut keys” for a full list. The shortcut Ctrl+I activates an incremental
search facility, for example.

You also have the amazingly useful IntelliSense feature, which tells you what
methods are available for a given object or what parameters are needed for a
function, as you can see in Figure 2-9. You usually see IntelliSense at work when
you hit the “.”, which is ubiquitous in accessing functionality in Visual Basic.

2. You can even automatically add line numbers by working with the dialog box you get by
choosing Tools|Option|Text Editor

TIP If you are accustomed to using the incredibly useful Comment Block and
Uncomment Block tools introduced in VB5, they are again available. Only now,
thankfully, these default to being available in the standard toolbars that show up
in the IDE as opposed to being on the Edit toolbar, where they were relegated to
obscurity in VB6.

NOTE Certain options, such as Option Explicit, are now the defaults and do not
show up in your Code window as they did in VB6. (Although we still have a habit
of putting them in to make sure!) See the next chapter for more on these options.

Chapter 2

20

You usually get the global features of the editor by working with the Tools|Options
dialog box and choosing the Text Editor option, as shown in Figure 2-10. This
Options dialog box is quite different from its counterpart in earlier versions of
VB6, so we suggest exploring it carefully. To set tab stops, for instance, click on the
Text Editor option as shown in Figure 2-10. Once you do that, you can either set
tabs on a language-by-language basis or solely for VB. You can also change how the
indentation of the previous line affects the next line from None to Block (where
the cursor aligns the next line with the previous line) to a Smart setting (where the
body of a loop is automatically indented) as good programming style would indicate.
(You can select tabs and apply smart formatting after the fact using Ctrl+K, Ctrl +F
or via the Edit|Advanced|Format Selection option. Note that when you are using
Smart Tabs, selecting a region and pressing Shift+Tab (to manage indents) also
reformats.)

Figure 2-9. IntelliSense at work

Figure 2-10. The Options dialog box

The VB .NET IDE: Visual Studio .NET

2121

One neat new feature in the Editor is the ability to “collapse” regions of code
so that all you see is the header. Notice the lines of code in Figure 2-11 with the + signs
next to them. Clicking on one of these would expand the region, as it is called in
VS .NET. Hovering the mouse over the ellipses (the three dots) would show the
collapsed code. The Edit|Outlining submenu controls this feature.

There are a few other nifty features of the VS .NET editor that will be new to
experienced VB programmers, and we take them up next.

Figure 2-11. Collapsed regions in the editor

TIP You can create your own named regions as well by simply mimicking what
you see in Figure 2-11. Place a #Region "NameOfRegion" at the beginning of the
block you want to potentially collapse, and place a # End Region line after it.

TIP The online help topic called “Editing Code and Text” and its various links
are particularly useful for learning how to use the editor in the IDE. There are
quite a few very useful rapid navigation features available, for example.

Chapter 2

22

The Clipboard Ring

You now have the ability to collect multiple items in a Clipboard Ring (Office 2000
and Office XP have similar features). Whenever you cut or copy text, it goes into
the Clipboard Ring that is available on the Toolbox. You can see what is in the ring
by clicking the Clipboard Ring tab on the Toolbox. The ring holds the last fifteen
pieces of text that you cut or copied. To use the Clipboard Ring:

• Use Ctrl+Shift+V to paste the current item into the current document.

Repeatedly pressing Ctrl+Shift+V lets you cycle through the Clipboard Ring.
Each time you press Ctrl+Shift+V, the previous entry you pasted from the Clipboard
Ring is replaced by the current item.

Code Fragments

You can store any piece of code for instant reuse in the Toolbox. (Most people use
the General tab for this, but you can easily create your own tab by right-clicking
and choosing Add Tab from the context menu.) Storing code can be incredibly
useful since it is very common to repeatedly use the same code fragment inside
programs, and it is time consuming to constantly retype it. You store code fragments
by highlighting them and dragging them to the Toolbox (see Figure 2-12). The frag-
ments remain in the Toolbox until you delete them using the context menu. To reuse
code, simply drag a fragment back to the correct insertion point in the Code window,
or select the insertion point first and then double-click on the code fragment.

Figure 2-12. Code stored in the Toolbox

The VB .NET IDE: Visual Studio .NET

2323

Task List and TODO, HACK, and UNDONE Comments

Visual Studio now comes with a Task List feature that it inherited from Visual
InterDev and Visual J++. The idea is that you can list in a comment what you need
to do using special keywords right after the comment symbol. The built-in task
comments include TODO, HACK, and UNDONE. These comments will then show up
in the Task List window, which you display by choosing View|Other Windows|Task
List (or Ctrl+Alt+K). An example is shown in Figure 2-13.

Figure 2-13. Task List at work

Chapter 2

24

You can set up a custom keyword for use in the Task List such as “FOR_KEN”
if it is code that Ken needs to look over. (Note that no spaces are allowed in Task
keywords, hence the underscore). To set up a custom keyword for the Task List:

1. Select Tools|Options|Environment|Task List.

2. Enter FOR_KEN for your custom token (this enables the Add button).

3. Select the priority level.

4. Click Add and then OK.

The Solution Explorer

The Solution Explorer window, shown in Figure 2-14, lets you browse the files that
make up your solutions. The default name of the solution is the same as the first
project created in it. As you can see in the Solution Explorer window, we also have
a project named vb_ide_01, which contains a file named Module1.vb.

Figure 2-14. Solution Explorer and Properties windows for File Properties

The VB .NET IDE: Visual Studio .NET

2525

Note that in VB .NET, the .vb file extension is what is used for all VB .NET
files, regardless of their type: no more .frm, .bas, or .cls files. One important feature is
unchanged however: .vb files are still text files, just as in VB6. (And, in fact, the free
.NET SDK comes with a standalone VB compiler that compiles VB programs that
you can write with a text editor.)

Properties Window

The Properties window in VS .NET (also shown in Figure 2-14) is now much more
than the place where you go to set properties of controls. The item you select
determines what the Properties window shows. The combo box at the top of the
Properties window describes the item you are working with. To edit a property,
click in the cell to its right and start typing. The usual Windows editing shortcuts
work within the Properties window.

As you can see in Figure 2-14, the Properties window now lets you set the proper-
ties of the Module1.vb file. You can also use it to set the properties of designers such as
the ones you use for building Web applications or server-side solutions.

ICON DESCRIPTION

Displays a Property Page for the property if one is supplied. (As in VB6,

Property Pages are an aid to setting more complicated properties.)

Gives an alphabetical list of all properties and property values arranged by

category. Categories can be collapsed or expanded at will.

Sorts the properties and events.

Displays the properties for an object. When you are dealing with objects

that have events associated with them, you can see them here as well.

NOTE Later in the book you will see how the IDE deals with designing forms
and how it knows which parts of a file are visual and which parts are not. For
now, you need only know that all VB .NET files end in .vb.

TIP You can create an empty solution without first creating a project by choosing
the Visual Studio Solutions|Blank Solution option from the New Project dialog
box. Using this option is the easiest way to create a solution when you do not want
the solution to have to have the same name as one of the projects.

Chapter 2

26

References and the Reference Window

If you look at the list of files in the Solution Explorer, you can see that there is a
branch of the Solution Explorer tree named References that holds a list of the current
assemblies you can use. (Think of an assembly as being analogous to a DLL.
Chapter 13 has a lot more about assemblies.) Think of the References dialog box
in a VB .NET solution as being analogous to the References dialog box you used to
import COM libraries into your VB6 project.) Visual Studio always includes a ref-
erence to the basic .NET assemblies needed for any project, and they are the ones
currently listed in the Solution Explorer. If you expand the tree by clicking on the
+ icon, you should see something similar to Figure 2-15. Notice that almost all of
the assemblies that Visual Studio is referencing are named System.<Something>.

Now right-click on the References branch of the Solution Explorer tree and
choose Add Reference. (You can also choose Project|Add Reference.) You will see a
dialog box like the one pictured in Figure 2-16. Notice that you can add three types of
references: .NET, COM, and Projects.

Figure 2-15. Drilling down in the Solution Explorer

NOTE Yes, you can use traditional COM components in your .NET apps and thus
use ActiveX controls, including ones you may have built yourself. This is done
through the magic of “interop”; see Chapter 13. However, just because you can do
something does not necessarily mean that you should do it. Using COM compo-
nents in .NET applications adds significant overhead to your application.

The VB .NET IDE: Visual Studio .NET

2727

Output Window and Command Window

The Output window (choose View|Other Windows or Ctrl+Alt+O) displays status
messages. When you (try to) build a solution (see the section on this later in this
chapter) this where you see the results of the compilation process, both good
and bad.

The Command window (choose View|Other Windows or Ctrl+Alt+A) is analo-
gous to VB6’s Immediate window and remains useful when debugging (more on
this later). Unfortunately we think it fair to say that the Command window is
much less useful than the Immediate window was in VB6, mostly because it does
not supply real IntelliSense, nor does it work at design time. (IntelliSense does
work in a very limited way when you use the Command window but only for
menus and macros, and not for objects or while debugging.)

However, the Command window has gained the ability to interact with the
IDE environment. You can actually issue commands like this:

File.AddNewProject

which brings up the New Project dialog box (although we are not sure why anyone
would do this).

The Command window has two modes: Command and Immediate. You switch
back and forth between them by typing either a greater-than sign (>) followed by

Figure 2-16. The Add Reference tabbed dialog box

Chapter 2

28

cmd into the window or typing immed�into the window (without the greater-than sign).
You can navigate through the Command window using the following keystrokes:

Working with a Solution

Let us return to the simple vb_ide_01 you saw earlie in this chapter. Even for this
simple a solution , the folder containing the vb_ide_01 solution (which you can
view via Windows Explorer) has quite a few files and folders that were created
automatically. Here is a list of everything in our folder; yours should be similar
although not identical.

943 AssemblyInfo.vb

 <DIR> bin

 79 Module1.vb

 <DIR> obj

 1,354 vb_ide_01.sln

 7,168 vb_ide_01.suo

 3,008 vb_ide_01.vbproj

 1,643 vb_ide_01.vbproj.user

 6 File(s) 14,195 bytes

As you can see, there are two subdirectories named bin and obj that are used
for compiled code, plus the four files that make up the solution. The bin directory
contains the compiled code. The obj directory contains a subdirectory for debugging
code. The Module1.vb file contains the source code. In this case, all you would see if

NAVIGATION MOVEMENT COMMAND

Move through the list of previously entered commands. Up Arrow or Down Arrow

Scroll up the window. Ctrl+ Up Arrow

Scroll down the window. Ctrl+ Down Arrow

TIP You can copy part or all of a previously issued command to the current
action line by scrolling to it, highlighting it, and then pressing Enter.

The VB .NET IDE: Visual Studio .NET

2929

you looked at it in a text editor is the following (we will explain how to put mean-
ingful code into the file in the next chapter):

Module Module1

 Sub Main()

 End Sub

End Module

The vb_ide_01.sln file is the equivalent of the .vbp project file from VB6. It
contains all the bookkeeping information needed to compile your solution. For
example, this file contains information about all of the projects and files in the
solution. It will look something like this when viewed in a text editor:

Microsoft Visual Studio Solution File, Format Version 7.00

Project("{F184B08F-C81C-45F6-A57F-5ABD9991F28F}") = "vb_ide_01", _

"vb_ide_01.vbproj", "{F40E94D3-09CA-4E17-9DEA-7A514E991F93}"

EndProject

Project("{F184B08F-C81C-45F6-A57F-5ABD9991F28F}") = "vb_ide_02", _

"..\vb_ide_02\vb_ide_02.vbproj", "{926DC073-167F-49D0-8A30-AF27E27BA2B4}"

EndProject

Global

GlobalSection(SolutionConfiguration) = preSolution

 ConfigName.0 = Debug

 ConfigName.1 = Release

 EndGlobalSection

 GlobalSection(ProjectDependencies) = postSolution

 EndGlobalSection

 GlobalSection(ProjectConfiguration) = postSolution

 {F40E94D3-09CA-4E17-9DEA-7A514E991F93}.Debug.ActiveCfg = Debug|.NET

 {F40E94D3-09CA-4E17-9DEA-7A514E991F93}.Debug.Build.0 = Debug|.NET

 {F40E94D3-09CA-4E17-9DEA-7A514E991F93}.Release.ActiveCfg = Release|.NET

 {F40E94D3-09CA-4E17-9DEA-7A514E991F93}.Release.Build.0 = Release|.NET

 {926DC073-167F-49D0-8A30-AF27E27BA2B4}.Debug.ActiveCfg = Debug|.NET

 {926DC073-167F-49D0-8A30-AF27E27BA2B4}.Debug.Build.0 = Debug|.NET

 {926DC073-167F-49D0-8A30-AF27E27BA2B4}.Release.ActiveCfg = Release|.NET

 {926DC073-167F-49D0-8A30-AF27E27BA2B4}.Release.Build.0 = Release|.NET

 EndGlobalSection

 GlobalSection(ExtensibilityGlobals) = postSolution

 EndGlobalSection

 GlobalSection(ExtensibilityAddIns) = postSolution

 EndGlobalSection

EndGlobal

Chapter 2

30

The file named vb_ide_01.vbproj, which is actually written in XML, contains
information about the project, including descriptions of properties. These can
usually be changed by choosing Project|Properties or by right-clicking on the
project name in the Solution Explorer.

Here is what a project file looks like in text form. Notice the constant repetition of
the keyword Assembly. We explain the other important keywords used here,
Imports and Namespaces, in Chapter 4:

<VisualStudioProject>

 <VisualBasic

 ProjectType = "Local"

 ProductVersion = "7.0.9148"

 SchemaVersion = "1.0"

 >

 <Build>

 <Settings

 ApplicationIcon = ""

 AssemblyKeyContainerName = ""

 AssemblyName = "vb_ide_01"

 AssemblyOriginatorKeyFile = ""

 AssemblyOriginatorKeyMode = "None"

 DefaultClientScript = "JScript"

 DefaultHTMLPageLayout = "Grid"

 DefaultTargetSchema = "IE50"

 DefaultServerScript = "VBScript"

 DefaultSessionState = "True"

 DelaySign = "false"

 OutputType = "Exe"

 OptionCompare = "Binary"

 OptionExplicit = "On"

 OptionStrict = "On"

 RootNamespace = "vb_ide_01"

 StartupObject = "vb_ide_01.Module1"

NOTE XML is actually omnipresent throughout .NET. Wherever possible, items
built with .NET are described (and even transported over the Web) via XML.

The VB .NET IDE: Visual Studio .NET

3131

 >

 <Config

 Name = "Debug"

 BaseAddress = "0"

 DefineConstants = ""

 DefineDebug = "true"

 DefineTrace = "true"

 DebugSymbols = "true"

 Optimize = "false"

 OutputPath = "bin\"

 RemoveIntegerChecks = "false"

 TreatWarningsAsErrors = "false"

 WarningLevel = "1"

 />

 <Config

 Name = "Release"

 BaseAddress = "0"

 DefineConstants = ""

 DefineDebug = "false"

 DefineTrace = "true"

 DebugSymbols = "false"

 Optimize = "false"

 OutputPath = "bin\"

 RemoveIntegerChecks = "false"

 TreatWarningsAsErrors = "false"

 WarningLevel = "1"

 />

 </Settings>

 <References>

 <Reference Name = "System" />

 <Reference Name = "System.Data" />

 <Reference Name = "System.XML" />

 </References>

 <Imports>

 <Import Namespace = "Microsoft.VisualBasic" />

 <Import Namespace = "System" />

 <Import Namespace = "System.Collections" />

 <Import Namespace = "System.Data" />

 <Import Namespace = "System.Diagnostics" />

 </Imports>

Chapter 2

32

 </Build>

 <Files>

 <Include>

 <File

 RelPath = "AssemblyInfo.vb"

 BuildAction = "Compile"

 />

 <File

 RelPath = "Module1.vb"

 SubType = "Code"

 BuildAction = "Compile"

 />

 </Include>

 </Files>

 </VisualBasic>

</VisualStudioProject>

The file named vb_ide_01.suo is a binary file that contains user settings for the
solution, such as current breakpoints and open documents. If you delete the .suo file,
you will lose these cached settings, but it will not break the solution. The analogous
vbproj.user file is for user settings at the project level, such as how and where to
start it, and whether it should be compiled for debugging. Notice how it, too, is
written in XML.

<VisualStudioProject>

 <VisualBasic>

 <Build>

 <Settings

 OfflineURL = "/vb_ide_01_Offline"

 ReferencePath = ""

 >

 <Config

 Name = "Debug"

 EnableASPDebugging = "false"

 EnableASPXDebugging = "false"

 EnableUnmanagedDebugging = "false"

 EnableSQLServerDebugging = "false"

 StartAction = "Project"

 StartArguments = ""

 StartPage = ""

 StartProgram = ""

 StartURL = ""

 StartWorkingDirectory = ""

 StartWithIE = "false"

 />

The VB .NET IDE: Visual Studio .NET

3333

 <Config

 Name = "Release"

 EnableASPDebugging = "false"

 EnableASPXDebugging = "false"

 EnableUnmanagedDebugging = "false"

 EnableSQLServerDebugging = "false"

 StartAction = "Project"

 StartArguments = ""

 StartPage = ""

 StartProgram = ""

 StartURL = ""

 StartWorkingDirectory = ""

 StartWithIE = "false"

 />

 </Settings>

 </Build>

 <OtherProjectSettings

 CopyProjectDestinationFolder = ""

 CopyProjectUncPath = ""

 CopyProjectOption = "0"

 ProjectView = "ProjectFiles"

 />

 </VisualBasic>

</VisualStudioProject>

Adding Projects to a Solution

Adding an existing project to a solution is easy. With the preceding solution still
open, simply select File|New|Project. You should see the now-familiar New Project
dialog box, but if you look closely at Figure 2-17, you will see that two radio buttons
have been added that let you choose whether to Close Solution or Add to Solution. If
you choose Close Solution, you get a new project within a new solution as before.
But if you choose Add to Solution, the IDE adds the new project to the already
open solution.

Chapter 2

34

Suppose you choose Add to Solution and then select Console Application as
before. At this point, as you can see in Figure 2-18, a new project named vb_ide_02
is added to our vb_ide_01 solution. So, we have a solution named vb_ide_01,
which contains two projects named vb_ide_01 and vb_ide_02, respectively. This is
similar to a Project Group in VB6. These multiple projects can interact with each
other, and you can use them for testing components; for example, in the IDE.

Compiling

As mentioned in Chapter 1, when you compile .NET code you first get an inter-
mediate language called MSIL, which is then compiled into native code. Suppose
we want to create an executable from our solution. In this case, we have two
compilation units—our two projects. We can create an executable from either
project; each project is capable of being independently compiled. The easiest way

Figure 2-17. Adding to an existing solution

Figure 2-18. Multiple projects, single solution

The VB .NET IDE: Visual Studio .NET

3535

to do this is to right-click on one of the projects in the Solution Explorer window
and select Build or Rebuild from the menu. Choosing Build tells the compiler to
compile only those parts of the project that have changed since the last build,
while Rebuild recompiles all parts of the project. Using Build is often better,
because it is faster than Rebuild. (If you choose F5 to run the project, the project
gets Built, not Rebuilt.)

Once the project is compiled, you can see how things went during the build
process by looking at the Output window. When we compiled the vb_ide_01 project,
we got the output shown in Figure 2-19.

As Figure 2-19 shows, our project compiled successfully. What happens if
things do not go so well? Figure 2-20 shows a build after a bogus function call.

 Note that because of the background compilation feature of VB .NET you would
see a squiggly line under the bad line of code. You can get detailed information in
the Output window as well as a task-oriented view of the build errors in the Task
List window, as shown in Figure 2-21. This is much more detailed than the output
from the VB6 compiler.

Figure 2-19. Output of a successful build

Figure 2-20. Output of an unsuccessful build

Chapter 2

36

Multiple Compilations

You will occasionally want to build all or some of the projects in a given solution
without having to do individual builds of each part. This is where the Build Solution
and Batch Build features of VB .NET come into play. When you select Build|Build
Solution, all projects in the solution will be compiled. We do this when we are
close to the end of the development process and getting ready to build all of the
projects in our solution for deployment (see Chapter 13 for more on Deployment).

The Batch Build option lets you select which projects in the solution you want
to build. This cool feature is especially useful when you are working on one or two
projects and you do not want to have to wait for a Build Solution compilation, but
also do not want to have to build each project by hand. When we used Build Solution
on the vb_ide_01 solution, the Output window looked like Figure 2-22.

Figure 2-21. Details of a unsucessful build in the Task List window

TIP If you double-click on any item in the Task List build errors list, you will be
taken to the code that caused the error.

Figure 2-22. Details of a multiple build

The VB .NET IDE: Visual Studio .NET

3737

In this case, you can see that both of the projects in our solution have been
built successfully. Had there been errors in either of the projects in the solution,
they would have been tagged in the Output window.

If you choose Select Build|Batch Build, then you will see the dialog box shown
in Figure 2-23. If you ever have a solution with several projects and have problems
with one or two of the projects, you will really grow to love the Batch Build option.

Most of the general options for compiling a project are available by right-clicking
the name of the project in the Solution Explorer and choosing Properties (or
Project|Properties). This opens up the Property Pages screen shown in Figure 2-24.
We cover the most important ones pertaining to building projects here, but we
encourage you to explore all the possibilities available in the Common Properties
and Configuration Properties items. For example, you can:

• Set the Application Icon (Common Properties|Build).

• View or change the libraries that are automatically imported (Common
Properties|Imports).

• Control various features of the Assembly and Namespace that your project
will become part of (Common Properties|General). See Chapters 4 and 13
for more on these important topics.

Figure 2-23. Selecting what to build

NOTE The default names used for the assembly name and root namespace are
derived automatically from the name of your solution. These cannot have
spaces in them, so VB .NET automatically replaces spaces with underscores.

Chapter 2

38

Build Options

Now that you have seen the different ways to compile projects and solutions,
we want to show you the options for compiling an individual project. When
you right-click on a project in the Solution Explorer window and choose
Properties|Configuration Properties|Build, you see the options that are available
to you when you compile. For example, the Debugging option lets you set command-
line arguments. Figure 2-25 shows the available build options for our project.

Figure 2-24. Project properties

Figure 2-25. Build options

The VB .NET IDE: Visual Studio .NET

3939

Note how few options there are compared to VB6. This is not necessarily a
bad thing: the CLR handles a lot of the stuff that you had to worry about in VB6.
The main options are that you can choose whether to create debug info (which we
cover next), define the DEBUG and TRACE constants, and whether you want to see
warnings.3 The point of defining the DEBUG and TRACE constants is similar to VB6:
they let you write conditionally compiled code like this:

#If DEBUG Then

 Debug.WriteLine(“In debug mode”)

#End If

#If TRACE Then

 Trace.WriteLIne("Tracing”)

#End If

Of course, if you have not checked off the DEBUG constant, then the line above
with Debug.WriteLine code does not execute. The same happens to the line that
tests the TRACE constant.

By clicking on the Optimizations item in the Configuration Properties listbox,
you can turn off integer overflow checks—again, not a very good idea. Hopefully,
Microsoft will add more optimizations before the final version of VB .NET is released
or provide them in service packs.4

Debug vs. Release Versions

At the top of the Project Properties|Configuration Properties|Build dialog box is a
dropdown listbox called Configuration, with three options: Release, Debug, and
All Configurations. Having these settings available is simply a matter of convenience.
They let you set different options for different kinds of builds. For example, when
you get ready to ship, you may want to change some of the options you previously
set for a Debug build. In this case, you choose Release build and reconfigure the
options. Clicking the Configuration Manager button lets you set the Build options
for multiple projects at once.

3. We cannot imagine a situation when you would disable this option, and offer a free glow-in-
the-dark Apress t-shirt for the first rational answer.

4. <advertisement>Remember to register for free electronic updates to this book at
http://www.apress.com</advertisement>

Chapter 2

40

Output Files

What do you get when you finally compile a project? Figure 2-26 shows the directory
structure generated by the IDE for our vb_ide_01 solution. As we mentioned previ-
ously, the source files are kept in the root of the vb_ide_01 folder. The bin folder gets
the binary output files after compilation—in this case, we get an .exe file and a .pdb
file. The .pdb file is the debug info file that gets created whenever you choose to create
debugging information via the Project|Configuration Properties|Build dialog box.

Debugging in VB .NET

We cover this important topic in more depth in later chapters when we have
some meaningful code to debug. Still, we want to give you a quick overview of the
changes and features of VB .NET debugging. Unfortunately, we have to start by

TIP Generally, the difference between these two builds will be the inclusion of
debugging information or the turning on or off of optimizations. We suggest you
do all development under the debug configuration and then build your shipping
product under a release build configuration. For example, in a debug configuration
you may want to turn on the “Treat warnings as errors” feature. You may want to
turn it off in your release configuration.

Figure 2-26. Directory structure after a build

The VB .NET IDE: Visual Studio .NET

4141

saying that the Edit and Continue feature that lets you make changes while a program
is stopped in Break Mode and then continue running the program with those
changes having gone into effect is gone in Beta 2. You can edit at debug time, but
those edits will not affect debugging until you recompile Luckily, the various
forms of stepping through or breaking your program are still available, such as
procedure stepping or conditional breakpoints.

Still, without a doubt, the existence of a common debugger for all of VS .NET,
whose power is at the level of the VC++ editor, is one of the greatest improvements
in VB .NET over previous versions of VB. You now have much tighter control over
all elements of your applications while you are debugging them. You can drill
down to the loaded module and thread level.

New Debugger Features

The VB .NET debugger has several features that were not available in VB6. Here is
an overview of them.

Memory Window

A Memory window lets you look at a memory address or a variable so that you can see
what is actually there, byte by byte. No version of VB prior to VB .NET had this feature,
which is amazingly helpful in some situations, such as when you have to go through
the low-level code running and try to figure out exactly what is going on. You access
the Memory window in the IDE by selecting Debug|Windows|Memory|Memory1 (or 2
through 4). When you do this, you will see a window similar to Figure 2-27. When
you right-click on the Memory window, you get lots of choices about to display
the memory, such as 1-64 byte display, No data display, and Unicode display.

NOTE To take advantage of the power of the debugger, you need to make sure the
.pdb file is created with Debug Symbols. You do this by making sure “Generate
symbolic debug information” on the Build Options dialog box is checked. The .pdb
file contains the information necessary for the debugger to know what line you are
on in the source code and what the values of your variables are. Without symbolic
debug information, you are usually forced to resort to looking at assembly listings to
figure out what the heck has gone wrong in your application.

Chapter 2

42

Process Debugging

Every time you debug code you are technically debugging a process (see Chapter 10
for more on processes). Prior to VB .NET, VB never had the ability to drill down
into a running process—only the debugger supplied with VC++ could do this. In
VB .NET selecting Debug|Processes gives you the dialog shown in Figure 2-28.

To start debugging, select a process from the list and click Attach. Once attached,
you select Break to see the current state of the application. If you have not generated
debug symbols, you will be looking at a disassembly listing of the code. Also, after
you click Attach, you will get a dialog that asks what you want to debug (for instance,
native code, CLR code, script, and so on). In most cases, you will want to debug

Figure 2-27. The Memory window

Figure 2-28. Process debugging

The VB .NET IDE: Visual Studio .NET

4343

either native code or CLR code. As an example, we started an instance of Notepad.exe
and attached it to the VB .NET debugger so we could “debug” it. Figure 2-29 is
what we saw.

It is pretty ugly, because we do not have debug symbols for Notepad.exe. If we
did have them, we would have seen the source line and function names of the func-
tions that were in call when we stopped the application to look at it in the debugger.

Threads

Another important feature of the VB .NET debugger is the ability to view all running
threads for an application. When you are trying to debug multithreaded applications,
the ability to switch threads in the debugger is invaluable. We will look a bit more at
this feature in Chapter 10, which deals with multithreaded programming.

Figure 2-29. Process debugging of Notepad

Chapter 2

44

Exception Flow Management

Exception flow management seems like an esoteric feature until you are stuck in a
situation where numerous exceptions (see Chapter 7) occur during the testing
cycle. In this case you definitely want to fine-tune what happens when an exception
occurs. You manage exception flow by selecting Debug|Windows|Exceptions (see
Figure 2-30). This dialog box lets you control what the debugger does when specific
exceptions occur For example, suppose you are trying to track down an access
violation in your application. You need to:

1. Select the Win32 Exceptions|0xc0000005 exception.

2. Then select the “Break into the debugger” radio button under the “When
the exception is thrown” frame.

This triggers the debugger every time a 0xc0000005 access violation occurs. You
would then know exactly which line of code caused the access violation to occur.

Figure 2-30. Exception management

The VB .NET IDE: Visual Studio .NET

4545

...

Debugging Managed vs. Unmanaged Code

Managed code is what .NET calls code that is run through the CLR and is “safe.”
You cannot use pointers, and you let the CLR manage memory. Unmanaged
code (which C# and C++ can build but VB .NET cannot) is code that breaks out
of the boundary of the CLR.

When you are working with managed code, some debugging options may be
difficult to use. The reason is that the CLR runtime environment optimizes a lot
of the code that it runs. This can make it hard for the debugger to build good
stack frames (the addresses of all of the functions being called). Also, depending
on what you are doing, your code may have been so optimized that the code the
debugger shows is hard to relate to your original code. At any rate, these few
problems are negligible compared with the benefits of the new debugging

...

environment in VB .NET.

47

CHAPTER 3

Expressions,
Operators, and
Control Flow

IN THIS CHAPTER, we will show you what might be called the basic vocabulary of VB
.NET. Most of this chapter is simply a quick overview of vocabulary common to all
programming languages, such as variables and loops, and the fundamental data
types, such as the various kinds of numbers and strings. Readers familiar with VB6
might want to just skim this chapter.

Note that few of the examples in this chapter contain the kind of code you
would use in a serious VB .NET program. This is because serious VB .NET pro-
gramming depends on stamping out cooperating object instances from cookie
cutter templates called classes that you build, and we will not be doing any of this
until Chapter 4. The reason we chose to cover the basic language constructs first is
that, without a basic vocabulary, it is impossible to build anything but the most
trivial classes, and the objects they stamp out would be pretty useless. In this
chapter, we offer no user-defined classes and hence no user-defined objects, and
we show only the simplest uses of the amazingly powerful built-in objects and
classes from the .NET Framework.

Ironically, what all this means is that in this chapter we are writing code that,
except for some strange (but required) syntax, is fairly close in style to traditional
programming from the early days of BASIC (or even from the days of Fortran and
COBOL before that). In particular, unlike programs in future chapters, the ones in
this chapter have a “top” and a “bottom” and except for the various branches,
execution proceeds from top to bottom.

Finally, we want to remind you again that, as we said in the introduction to
this book, we are making every effort to write code that looks like native .NET
code and avoids the VB6 compatibility layer as much as possible.

Chapter 3

48

Console Applications

Every VB .NET application must have a place to use as an entry point. This entry
point contains the code that gets executed automatically when the program runs.
Any other code that will run would be orchestrated from this entry point. When
we start building GUI applications, this can be a startup form just like in VB6.
However, as you saw in the introduction to VB .NET in Chapter 1, the code to
build a Windows form is tricky and the entry point none too obvious. In this
chapter, we build only console applications (an application that writes to a DOS-style
console window). And yes, this means VB .NET can easily write traditional con-
sole-style applications such as those used for much of server-side scripting.

The entry point for a console application is the Sub Main in a module. This is
similar to starting a VB6 application from Sub Main. For example, if you choose a
Console Application from the New Project dialog box, you get a framework for a
Sub Main in a module as the entry point, as shown here:

Module Module1

 Sub Main()

 End Sub

End Module

Notice that, unlike in VB6, the module name is given in the first line (shown in
the code in bold). Here we accepted the default name of Module1. The custom is
that this name matches the name given the file. So, for example, if you changed
the line of code to read:

Module Test1

and tried to run the console application, you would get this error message:

Startup code 'Sub Main' was specified in 'Test.Module1',

but 'Test.Module1' was not found

To change the name of a module after you created it, follow these steps:

1. Change the name of the module in the code window.

2. Change the name of the module in the Solution Explorer.

3. Right-click the ConsoleApplication line in the Solution Explorer and
choose Properties.

4. In the dialog box that appears (see Figure 3-1), make sure the Startup
Object is set to the name of the module.

Expressions, Operators, and Control Flow

4949

As with VB6, you can have multiple modules in a VB .NET program (or solution),
but only one of them can have a Sub Main. The application ends when the End Sub
of the Sub Main is reached. For example, the proverbial “Hello world” program
looks like this:

Module Module1

 Sub Main()

 Console.WriteLine("Hello world")

 End Sub

End Module

and when the program runs within the IDE, you will see (very quickly) a DOS window
appear with the words “Hello world” before that console window disappears. (It
disappears when the End Sub is finished being processed.)

Figure 3-1. The Properties dialog box

Chapter 3

50

If you add the line that is shown here in bold, the console window will stay
around until you press the Enter key (because the ReadLine()at least waits for the
user to hit the Enter key—more on this useful method later.)

Module Module1

 Sub Main()

 Console.WriteLine("Hello world")

 Console.ReadLine()

 End Sub

End Module

Simple as these two programs are, they illustrate one of the key features of VB
.NET programming (or in any fully object-oriented language for that matter):
asking objects and classes to do things. Just as in VB6, the period (“.”) lets you
access a facility of an object or a class when this is permitted. Although you usually
work with object instances, as in this case, certain special facilities can also be
used with classes rather than the objects you stamp out from a class. For example,
in this line:

Console.WriteLine("Hello world")

we are asking the Console class to use its WriteLine method that can display text
followed by a carriage return (as in VB6, facilities are usually called methods in
object-oriented programming). WriteLine is an example of a shared, or class,
method. Shared methods are described in detail in Chapter 4. With the shared
WriteLine method, the text you want displayed must be surrounded by double
quotes and surrounded by parentheses. The line added to the second version of
the “Hello world” program uses the ReadLine method to wait for the Enter key to
be pressed. (The ReadLine method is more commonly used together with an
assignment to a variable in order to get information from the console—see the
following Note.)

Expressions, Operators, and Control Flow

5151

Statements in VB .NET

If you use a text editor to write a VB .NET program, then you do not benefit from
the IntelliSense features built into the editor. Our suggestion is to use the IDE,
because the IntelliSense feature is really useful in dealing with a framework as rich
as .NET. (Of course, you will need to upgrade from the free .NET SDK to a version
of the Visual Studio product.) The IDE editor even corrects some common typos,
such as leaving off the () in certain method calls.

Nonetheless, the VS .NET IDE will try to impose its own conventions on your
VB .NET programs. It capitalizes the first letter of keywords and often adds extra
spaces for readability. For example, no matter how you capitalize End SUB, you will end
up with End Sub. Methods in VB .NET use the capitalization that is usually called
Pascal casing (initial caps). The alternative form, writeLine, which is not commonly
used in .NET for methods, is called camel casing. (It is called such because names
written using camel casing tend to have a “hump” in the middle, just like a camel.)

NOTE A couple of subtleties are being pushed under the table here. As we just
mentioned, you usually need an actual object instance to use a method of the
object. However, as we just said and as you will see in Chapter 4, there is an
exception to this rule for certain special class methods called shared methods. Think
of shared methods as part of the cookie cutter rather than the cookie. For example, if
the cookie cutter kept a counter of the number of cookies being stamped out, this
number would be the equivalent of a shared method of the class (the cookie cutter)
and not a method of an individual object (the cookies). The other subtlety we are
hiding is that Console is part of the System namespace, so the complete incantation
to use this method is System.Console.WriteLine("Hello world"). This is
unnecessary here for reasons that will be explained in Chapter 4, which covers
namespaces in more detail.

NOTE Users of previous versions of VB .NET should note that the parentheses
are not optional in method calls—they are usually added automatically by the
IDE if you forget them, but it is good to get into the habit of remembering. Also
the Call keyword is allowed, but is now somewhat superfluous.

NOTE As with all versions of BASIC, unless the text occurs within quotation
marks, VB .NET is not case sensitive. Also, white space within a line that is not
surrounded by quotes is irrelevant to VB .NET.

Chapter 3

52

Next, statements in VB .NET rarely—if ever—use line numbers, although line
numbers are possible, and each statement generally occurs on its own line. Lines
can be extended to the next line by using the underscore character (_) as long as
the underscore is preceded by one or more spaces. Thus, unless a line ends with
an underscore, pressing the Enter key indicates the end of a line. (There is no
semicolon statement separator, as in some other languages in the VS .NET family.)
You can combine statements on one line by placing a colon (:) between them, but
this is rarely done. If you use a line with more characters than can fit in the
window, the IDE scrolls the window to the right, as needed.

Comments

As with any programming language, commenting your code is up to you. Comment
statements are neither executed nor processed by VB .NET. As a result, they do not
take up any room in your compiled code. There are two ways to indicate a comment.
The usual way is with a single quote as in the line in bold:

 Sub Main()

 Console.WriteLine("Hello world")

 ‘throw away the return value of ReadLine

 Console.ReadLine()

 End Sub

(Interestingly enough, you can still use the older Rem keyword that dates back to
the original days of BASIC in the early 1960s!)

When adding comments to the end of a line, it is easier to use the single
quotation mark because the Rem form requires a colon before it. VB .NET does not
have a way to comment out multiple lines except through the comment tool on
the toolbar.

Variables and Variable Assignments

Variable names in VB .NET can be up to 255 characters long and usually begin
with a Unicode letter (see www.unicode.org for more on Unicode), although an
underscore is also permitted as the first character. After that, any combination of

NOTE Unlike C#, which has XML comments built into its parser, it is likely that
VB .NET will use an add-in to build XML documentation into your program
rather than have it as part of the base parser.

Expressions, Operators, and Control Flow

5353

letters, numbers, and underscores is allowed. All characters in a variable name are
significant, but as with most things in VB .NET, case is irrelevant. firstBase is the
same variable as firstbase. Assignments are done with an = sign, just as in earlier
versions of VB:

theYear = 2001

You also cannot use names reserved by VB .NET (see Table 3-1 for the current
list) for variable names unless you surround them with brackets. For example,
Loop is not acceptable as a variable name, but [Loop] would work—even though
there is no good reason to do this. Embedded reserved words work fine. For
example, loopIt is a perfectly acceptable variable name. VB .NET will underline the
keyword and present an error message (via a tooltip) if you try to use a reserved word
as a variable name.

Table 3-1. Current VB .NET Keyword List

AddHandler AddressOf Alias And Ansi

As Assembly Auto Binary BitAnd

BitNot BitOr BitXor Boolean ByRef

Byte ByVal Call Case Catch

Cbool Cbyte Cchar Cdate Cdec

CDbl Char Cint Class CLng

Cobj Compare Const Cshort CSng

CStr Ctype Date Decimal Declare

Default Delegate Dim Do Double

Each Else ElseIf End Enum

Erase Error Event Exit Explicit

NOTE If you wish to follow the conventions used in the .NET Framework, then
your variable names will be quite different than they were in VB6. According to
the suggestions contained in the documentation, the prefix-laden Hungarian
notation is no longer recommended, and significant variable names—that is,
names other than letters such as i or t—should be in camel casing rather than
Hungarian. Pascal casing was most common in earlier versions of VB.

Chapter 3

54

Literals and Their Associated Data Types

A literal is simply a combination of keystrokes that can be interpreted by VB .NET
as the value of a primitive type. But types (even primitive ones) are not quite so
simple in practice in VB .NET as they were in earlier versions of VB.

Although any program language can interpret data directly, how it interprets
the data can be tricky. For example, we all agree that 3 is the number 3 and should
be interpreted this way. Well, sort of. What exactly is the number 3 to a computer?
How much space does it take up in memory, for example? In theory, you can store
the number 3 in two bits of memory, but of course that rarely happens in any
modern programming language.

ExternalSource False Finally For Friend

Function Get GetType GoTo Handles

If Implements Imports In Inherits

Integer Interface Is Lib Like

Long Loop Me Mod Module

MustInherit MustOverride MyBase MyClass Namespace

Next New Not Nothing NotInteritable

NotOverridable Object Off On Option

Optional Or Overloads Overridable Overrides

ParamArray Preserve Private Property Protected

Public RaiseEvent ReadOnly ReDim REM

RemoveHandler Resume Return Select Set

Shadows Shared Short Single Static

Step Stop Strict String Structure

Sub SyncLock Text Then Throw

To True Try TypeOf Unicode

Until When While With WithEvents

WriteOnly Xor

Table 3-1. Current VB .NET Keyword List (Continued)

Expressions, Operators, and Control Flow

5555

Thus, some analysis by the compiler has to occur, even for literals, and it is
best to be as explicit as you can about what you mean and not rely on compiler
defaults. Let us take that simple number 3 for example. In VB .NET it can be
(among other things):

• A byte: Meaning you are telling the compiler to store it in the smallest possible
amount of memory

• A short: This is the old VB6 Integer type

• A .NET integer: This is the old VB6 Long type, meaning the compiler should
store it four bytes

Thankfully, it will not ever be automatically interpreted as the numeral 3 (unless
you overrule the defaults in VB). In VB .NET, strings and numbers are not mixed up by
default—see the section on type conversions later in this chapter for more on this.

So, under the hood, things are quite a bit more subtle than saying “It’s the
number 3.” Of course, as with every programming language, VB .NET has ways for
you to tell the compiler exactly what you mean. For example, 3I is a literal with
value 3 of Integer type and the numeral 3—which you get by surrounding the
numeral 3 with quotes—is a String. (See more on the String type in VB .NET later
in this chapter—it works quite differently than strings did in earlier versions of VB.)

Variables corresponding to each primitive type hold values of that type. VB
.NET defines these primitive numeric types:

• Byte: 1-byte unsigned integer, values from 0 to 255.

• Short: 2-byte signed integer, values from –32,768 to 32,767. This is the old VB
Integer. Use an S at the end of the literal to force it to be stored as a short: 237S.

• Integer: 4-byte signed integer, values between –2,147,483,648 to 2,147,483,647.
Same as the old VB Long type. You can use an I at the end of the literal to force it
to be stored as an integer: 237I .

NOTE You can think of primitive types as the atomic elements in a language,
although in VB .NET they are actually aliases for instances of classes from the
System library.

Chapter 3

56

• Long: 8-byte signed integer, values between –9,223,372,036,854,775,808 and
9,223,372,036,854,775,807. No counterpart in earlier versions of VB. Use an
L at the end of the literal to force it to be stored as a long: 237L.

All integral literals can use hexadecimal encoding (base 16) by preceding the
literal by a &H. For example, &HF is decimal 15 stored as an Integer because there
is no identifier and it certainly fits into the range of integers. Octol (base 8) is also
permitted by proceeding the literal by an &O.

The floating-point value types are:

• Single: 4-byte floating point. Use an F to force a literal to be floating point.
For example, 1.23F or 3F.

• Double: 8-byte floating point. When you write a literal with a decimal point
and leave off the identifier, it will be stored as a Double. This is because it is
actually faster than using Single; on 32-bit processors, Double is a native
type for the floating point operations. Use a # (or an R) to force a literal to be
a Double.

NOTE If you leave off an identifier and the number fits into the range for Integer, it
will be stored as an Integer. Integer is the default type for literals that fit into
the correct range. Also note that Integer is actually the preferred type for other
reasons: on 32-bit processors, it is by far the fastest integral type to process.

NOTE You can also use the older % and similar identifiers such as & to indicate
an Integer or Long—for example, 1234% for a Long. But keep in mind that they
mean different things in VB6 and VB .NET, because the Integer data type in VB
.NET is like VB6’s Long. We strongly recommend not doing this.

Expressions, Operators, and Control Flow

5757

Finally, there is a new type called Decimal that replaces the older Currency
type used in earlier versions of VB. Use Decimal for calculations where no round-
off error should occur:

• The Decimal type (12-byte decimal value) is guaranteed to have no round-off
error in its (rather enormous) range of 28 significant digits. More precisely, the
Decimal type is a scaled integer in the range
±79,228,162,514,264,337,593,543,950,335 with no decimal point, but you
can scale by as many powers of 10 as you want, as long as the number of
significant digits is 28 or less. For example, the smallest number you can
represent is ±0.0000000000000000000000000001. Use a D to force a literal to
the Decimal data type.

We obviously recommend using the type identifier for literals so as to avoid
confusion and the occasional weird error you can get if you try to multiply
two numbers together and the result is too big. For example:

Console.WriteLine(12345678 * 4567)

gives the build error:

This constant expression produces a value that is not representable in type

 System.Integer.

You will need to write:

Console.WriteLine(12345678L * 4567)

TIP If you ever need to know the maximum or minimum values of a type, use
the MaxValue or MinValue shared methods attached to the type. For example:

Console.WriteLine(Integer.MaxValue)

Chapter 3

58

To summarize, Table 3-2 shows how the VB .NET numeric types correspond
to those in the .NET Framework, and also what they would be in VB6 if a corre-
sponding type exists.

Non-Numeric Literals

Non-numeric literals include Boolean, Date, and Char data types. The Boolean
data type represents True or False and takes up four bytes in VB .NET, as opposed
to two bytes in VB6.

Table 3-2. Correspondence between Numeric Types

VB .NET TYPE .NET FRAMEWORK TYPE VB6 TYPE

Byte System.Byte Byte

Boolean System.Boolean Boolean

Decimal System.Decimal NONE

NONE NONE Currency

Double System.Double Double

Short System.Int16 Integer

Integer System.Int32 Long

Long System.Int64 NONE

Single System.Single Single

CAUTION In VB .NET Beta 1, True was +1 (as in other .NET languages). Starting
in Beta 2, it goes back to –1. More precisely, in "logical operations" in VB and in
conversions to numeric types, True will be –1, not 1. However, when a Boolean in
VB .NET is passed out of VB , it is treated as 1 when it is converted to a number in
that language. We think this was the wrong decision, because the point of .NET
is to have as much cross-language compatibility as possible. As long as you use
the built-in constants for True and False, you will be fine. If you use numeric values,
you may run into problems!

Expressions, Operators, and Control Flow

5959

The Date data type represents a date and/or a time. As in VB5, you surround a
literal that represents a date and time by two #s, as in #Jan 1, 20001#. If you do not
specify a time, the date literal will be assumed to be that date at midnight.

The Char data type represents a single Unicode character. The Unicode system
allows 65,536 characters, which is enough to encompass all known alphabets. Char-
acters are usually surrounded by single quotes followed by a C, as in: “H”C, but if
you want to get an actual Unicode character, simply use the Chr built-in function.
For example, Chr(&H2153) is a 1⁄3 in the Unicode charts, although you may not see
it as such on some operating systems when the program runs. Note that if you use
one character within quotes without the “C” suffix, you get a String rather than a
Char and the two are not automatically convertible (more on Option Strict later in
this chapter).

Declaring Variables

The way to declare a variable in VB .NET within a procedure or function is with the
Dim plus As keywords, just as in VB6. You use the equals sign to make the assignment:

Dim foo As String

foo = "bar"

Note that unless you change the defaults for VB .NET, you must declare a variable
before using it. (The optional Option Explicit introduced in VB4 is now the default.)
In VB .NET, you can initialize a variable when you declare it. For example:

Dim salesTax As Decimal = 0.0825D

declares a variable called salesTax and gives it the initial value .0825 of the new
Decimal type. You can also use any valid VB .NET expression to give the initial
assignment. For example:

Dim startAngle As Decimal = Math.PI

gives startAngle the built-in value for the mathematical constant π by using a con-
stant built into the System.Math class.

NOTE Dates in VB .NET are no longer convertible to doubles. This means, for
example, you cannot perform mathematical operations on dates, such as Today + 1
to get tomorrow’s date.

Chapter 3

60

If you do not initialize a variable, it gets the default value for the type: numeric
types get the value 0 for example. Because VB .NET allows the declare-and-initialize
syntax, it makes sense to always initialize rather than rely on default values. For
example, consider the following code, which also uses the same & that was used in
VB6 to concatenate text:

Sub Main()

 Dim salesTax As Decimal = 0.0825D

 Dim state As String = "California"

 Console.WriteLine("The sales tax in " & state & " is " & salesTax)

 Console.ReadLine()

End Sub

When you run this program, you see:

The sales tax in California is 0.0825

You can combine multiple declarations on a single line and, for those coming
from earlier versions of VB, this does what you expect instinctively. That is:

Dim i, j, k As Integer

makes i, j, and k all integer variables. Note that you cannot use an initialization
when you do multiple declarations on the same line, so lines such as this are
not allowed:

Dim i, j, k As Integer = 1

As in earlier versions of VB, you can still use the type identifier instead of the
As. For example:

Dim i%, myName$

makes i an Integer variable (= old VB Long) and myName a String variable, but most
VB .NET programmers avoid this.

Finally, as all programmers know, naming conventions for variables have also
inspired quite a lot of flaming. Many complicated systems of prefixes (usually
called Hungarian) exist that indicate, at a glance, the type of a variable. Generally,
Hungarian notation is discouraged in the .NET Framework guidelines, and thus
seems not to be very common in the .NET code we have seen so far. We will follow
this trend and use prefixes only in a very limited way for instance variables.

NOTE The Deftype statements, such as DefInt, are not supported in VB .NET.

Expressions, Operators, and Control Flow

6161

Conversion between Values of Different Types

Most programmers thought that earlier versions of VB were way too permissive
when it came to converting between types. This led to the phenomena of “evil
type conversion” where, for example, VB6 allowed you to multiply, say, a string of
numerals by an integer.

The option you have in VB .NET to make type conversion safe is called
Option Strict. You can turn this feature on by using:

Option Strict On

as the first line of code in any program you write. (You can also use the Build tab
of the Projects Properties dialog box.) Once you turn this option on (and you
should!), VB .NET requires you to explicitly make a conversion (sometimes called
a cast) whenever there is the possibility of loss of information (a lossy conversion,
to say it in the jargon). For example, when you convert a Single to an Integer, there
is the possibility of losing information. On the other hand, if there is no potential
of information loss (for instance, from an Integer to a Long or Decimal), VB .NET
automatically makes the conversion. The documentation for VB .NET refers to
these lossless conversions as widening conversions. Table 3–3 lists the permissible
widening conversions for basic types.

What is more, if you have the default of Option Strict on, then you cannot
have lines of code like:

Dim foo As Boolean

foo = 3

Table 3–3. Permissible Widening Conversions for Basic Types

TYPE WIDENS TO

Byte Byte, Short, Integer, Long, Decimal, Single, Double

Short Short, Integer, Long, Decimal, Single, Double

Integer Integer, Long, Decimal, Single, Double

Long Long, Single, Decimal, Double

Single Single, Double

Date Date, String

Chapter 3

62

which tries to give foo the value True by assigning to it a non-zero number, as was
common in VB6. Instead you must use a conversion function to do the conversion:

Dim foo As Boolean

foo = CBool(3)

Nor will VB .NET automatically convert between characters and a string with
one character.

When it is acceptable to convert the contents of a variable from one type to
another, you do the cast with a conversion function such as the CBool you just saw.
The ones you need are shown in Table 3-4.

Table 3-4. Conversion (Cast) Functions

CONVERSION FUNCTION WHAT IT DOES

CBool Makes an expression a Boolean.

Cbyte Makes an expression a byte.

Cint Makes a numeric expression an integer by rounding.

CLng Makes a numeric expression a long integer by rounding.

CSng Makes a numeric expression single precision.

Cdate Makes a date expression a date.

CDbl Makes a numeric expression double precision.

CDec Makes a numeric expression of the currency type.

CStr Makes any expression a string.

CChar Converts the first character in a string to a Char.

CAUTION Although we do not recommend it, you can return to the sloppy days
of yore by putting the statement

Option Strict Off

before any other code in the module.

Expressions, Operators, and Control Flow

6363

VB .NET performs numeric conversions only if the numbers you are trying to
convert are in the range of the new type; otherwise, it generates an error message.

For example, in the proverbial Celsius (centigrade) to Fahrenheit converter
that follows, we assume that:

1. The user hits the Enter key after entering the text.

2. What he or she enters is picked up in its entirety by the call to ReadLine().

3. The user enters a number, so we can use CDec to convert the text entered
to a number. (Obviously, a more realistic program would have to parse
the data entered before blindly using it.)

'Degree converter

Option Strict On

Module Module1

 Sub Main()

 Dim cdeg As Decimal

 Console.Write("Enter the degrees in centigrade...")

 cdeg = CDec(Console.ReadLine())

 Dim fdeg As Decimal

 fdeg = (((9@ / 5) * cdeg) + 32)

 Console.WriteLine(cdeg & " is " & fdeg & " degrees Fahrenheit.")

 Console.ReadLine()

 End Sub

End Module

Notice the use of the @ sign to force the calculation to be done for decimals. If
you remove it, you will get an error message with Option Strict on! (The simple "/"
we used for division has a couple of hidden gotchas in VB .NET. See the section on
"Arithmetic Operators" for more on them.)

NOTE You may be tempted to think of the Char type as an unsigned, short integer
(i.e., an integer between 0 and 65535), but you shouldn’t. Starting in beta 2, you
cannot use a C-conversion function such as CInt to convert a Char to a number;
instead, you must use the built-in function Asc.

Chapter 3

64

...

The Object Type (and the Death of Variants)

You may have noticed that we have not mentioned variants. That is because they
are gone—and good riddance to them! In VB6, the variant data type holds any
type of data, is prone to misuse, and is a source of subtle bugs. In VB .NET, every
data type is actually a special case of the Object data type—even numeric types
such as Integer—making it tempting to think of the Object type as the VB .NET
equivalent of variants. Do not. As you will see in Chapters 4 and 5, the Object
type is far more important to .NET programmers than variants—and far more

...

interesting. Stay tuned to Chapters 4 and 5 for more on the Object type!

Strings

String variables hold groups of Unicode characters. A string can contain up to
about 2 billion (2 ^ 31) Unicode characters. As you have seen, you now assign a
string to a variable using double quotes:

Dim message as String

message = "Help"

and the simplest way to concatenate (join them together) is to use the &. The older
+ will also work, but can lead to major problems if you leave Option Strict off, so
we do not recommend using a + sign for string concatenation. The older way to
identify string variables (which are occasionally still used for temporary variables)
is to use a dollar sign ($) at the end of the variable name: aStringVariable$.

CAUTION Rather than being base type, strings in VB .NET are instances of the
String class. We offer more on their subtleties in the Chapter 4, but here is a hint
of what you need to know to use VB .NET efficiently: every time you make a
change to a string in VB .NET, a new string must be created. Because this could
cause a big performance penalty whenever a string needs to be repeatedly
changed, VB .NET comes with a StringBuilder class to manipulate strings that
require change (such as picking up data from a buffer and stringing it together
in a variable).

NOTE VB .NET does not support fixed-length strings as did earlier versions of VB.

Expressions, Operators, and Control Flow

6565

String Functions

You have access to all the traditional VB6 string functions, such as Left, Right, Mid,
and so on, but note that the versions of these functions that end with $ are now
gone. The most important functions in the String class that can be used to replace
the VB6 string functions are summarized in Table 3-5. (Keep in mind that, if you
have to modify a string repeatedly with Mid, such as in a loop, you should use the
StringBuilder class described in Chapter 4.) Note that some of these methods rely
on arrays, which we cover later in this chapter.

Table 3-5. String Functions in the VB Compatibility Layer

FUNCTION DESCRIPTION

Asc Returns the character code corresponding to the first letter in

a string.

Chr Converts a number to Unicode.

Filter Takes a string array and a string to search for, returns a one-

dimensional array containing all the elements that match the

search text.

GetChar Returns a Char representing a character from a specified index

in a string. The index for GetChar begins with 1. Example:

GetChar("Hello", 2) returns a Char containing the character “e.”

InStr Returns the position of the first occurrence of one string

within another.

InStrRev Returns the position of the last occurrence of one string

within another.

Join Lets you build a larger string out of smaller strings.

LCase Converts a string to lowercase.

Left Finds or removes a specified number of characters from the begin-

ning of a string.

Len Gives the length of a string.

LTrim Removes spaces from the beginning of a string.

Mid Finds or removes characters from a string.

Replace Replaces one or more occurrence of a string inside another.

Right Finds or removes a specified number of characters from the end of

a string.

RTrim Removes spaces from the end of a string.

Chapter 3

66

Still, it is more in keeping with the flavor of .NET to use the methods and
properties of the String class built into the .NET Framework, if possible. The most
common of these are listed in Table 3-6 (note the lack of “s” in the name of the class).

Space Generates a string of spaces.

Split Lets you break up a string at specified places, such as spaces.

Str Returns the string equivalent of a number.

StrComp Another way to do string comparisons.

StrConv Converts a string from one form to another, such as proper case.

String Returns a repeated string of identical characters.

Trim Trims spaces from both the beginning and end of a string.

UCase Converts a string to uppercase.

Table 3-6. Common String Methods in the .NET Framework

MEMBER DESCRIPTION

Chars Gets the character at a specified position in the string.

Compare Compares two strings.

Copy Creates a new string by copying a string.

CopyTo Copies a specified number of characters from a specified position in

this string to a specified position in an array of characters.

Empty A constant representing the empty string.

EndsWith Tells you whether the specified string matches the end of this string.

IndexOf Returns the index of the first occurrence of a substring within

the string.

Insert Returns a new string with a substring inserted at the specified place.

Join Lets you join together an array of strings with a specified separator.

LastIndexOf Gives the index of the last occurrence of a specified character or

string within the string.

Length Gets the number of characters in the string.

Table 3-5. String Functions in the VB Compatibility Layer (Continued)

FUNCTION DESCRIPTION

Expressions, Operators, and Control Flow

6767

PadLeft Right-aligns the characters in this string, padding on the left with

spaces or a specified character to a specified total length.

PadRight Left-aligns the characters in this string, padding on the right with

spaces or a specified character to a specified total length.

Remove Deletes the specified number of characters from this string,

beginning at the specified location.

Replace Replaces all occurrences of a substring with a different substring.

Split Splits a string into an array of substrings.

StartsWith Determines whether a specified substring starts the string.

Substring Returns a substring from the current string from the position

indicated.

ToCharArray Copies the characters in this string to a character array.

ToLower Returns a lowercase copy of this string.

ToUpper Returns an uppercase copy of this string.

Trim Either removes spaces or removes all occurrences of a set of

characters specified in a Unicode character array from the

beginning and end of the string.

TrimEnd Either removes spaces or all occurrences of a set of characters specified

in a Unicode character array from the end of the string.

TrimStart Either removes spaces or all occurrences of a set of characters

specified in a Unicode character array from the beginning of

the string

Table 3-6. Common String Methods in the .NET Framework (Continued)

MEMBER DESCRIPTION

CAUTION Unlike VB6, where most string functions assumed "1" as the first position
in a string, the .NET Framework methods use "0" for the first position.

Chapter 3

68

Because the .NET Framework treats strings as objects, the syntax for using
these methods is rather neat: you can actually “dot a string.” For example, if you
run this program:

Sub Main()

 Dim river As String = " Mississippi " one space on left

 Console.WriteLine(river.ToUpper())

 Console.WriteLine(river.ToLower())

 Console.WriteLine(river.Trim())

 Console.WriteLine(river.EndsWith("I"))

 Console.WriteLine(river.EndsWith("i"))

 Console.WriteLine(river.IndexOf("s")) 'REMEMBER 0 based!

 Console.WriteLine(river.Insert(9, " river"))'REMEMBER 0 based!

 Console.ReadLine()

End Sub

You will see:

MISSISSIPPI MISSIPPI

mississippi missippi

Mississippi Missippi

False

True

3

Mississi riverppi Missippi

Formatting Data

All formatting functions return a new string in the format specified. VB .NET has
equivalents to the older Format functions from VB6 and VBScript, so you can continue
to use: Format, FormatNumber, FormatCurrency, FormatPercent, and FormatDateTime.
The last four in particular remain quite convenient for simple formatting. Even so,
we often prefer to use the even more powerful formatting capabilities built into
the .NET Framework.

The syntax for using the formatting capabilities of the .NET Framework will
seem strange at first. Here is an example to get you started:

Dim balance as Decimal = 123456

Dim creditLimit As Decimal = 999999

Console.WriteLine("Customer balance is {0:C}, credit limit is {1:C} ", _

balance, creditLimit - balance)

Expressions, Operators, and Control Flow

6969

gives:

Customer balance is $123,456.00, credit limit is $876,543.00

If you change the key line in bold to read:

Console.WriteLine("Customer credit is {1:C}, balance is {0:C} ", _

balance, creditLimit - balance)

you will see:

Customer credit is $876,543.00, balance is $123,456.00

The idea is that you indicate the variables you want formatted in the order
you want them to appear. So in the second example {1:C}, the “1” meant format
the second variable listed and the {0:C} meant format the first variable listed.
(The .NET Framework is zero based, of course.) The “C” means format as cur-
rency using the current Locale as set in Windows.

Arithmetic Operators

Table 3-7 gives you the symbols for the six fundamental arithmetic operations.

Table 3-7. Arithmetic Operations

OPERATOR OPERATION

+ Addition

– Subtraction (and to denote negative numbers)

/ Division (conversion to double—cannot cause a DivideByZero

exception—see Chapter 7 for more on exceptions)

\ Integer division (no conversion to double—can cause a DivideByZero

exception)

* Multiplication

^ Exponentiation

Chapter 3

70

You can see all this using the useful GetType method built into .NET, which,
when used in a print statement such as WriteLine, returns a human-readable form
of the type name. For example, if you run this program:

Module Module1

 Sub Main()

 console.WriteLine((4 / 2).GetType())

 Console.ReadLine()

 End Sub

End Module

you will see:

System.Double

in the console window.

Or, for a more serious example of where you need to remember that a / gives
you a Double, consider the line in bold in the following simple (but broken) ver-
sion of the program to convert Celsius (centigrade) to Fahrenheit, where we leave off
the @ in the bolded line in order to force the answer to be a decimal.

CAUTION The ordinary division symbol (/) gives you a value that is a double,
even if the division is perfect. The integer division symbol (\) only returns an
integer. This means you will often need to use a conversion function if you’re
working with decimals or integral types.

NOTE GetType is actually a very powerful method that you can use to do reflection.
See Chapter 4 for an introduction to reflection.

Expressions, Operators, and Control Flow

7171

Option Strict On

Module Module1

 Sub Main()

 Dim cdeg As Decimal

 Console.Write("Enter the degrees in centigrade...")

 cdeg = CDec(Console.ReadLine())

 Dim fdeg As Decimal

 fdeg = ((9 / 5) * cdeg) + 32

 Console.WriteLine(cdeg & " is " & fdeg & " degrees Fahrenheit.")

 Console.ReadLine()

 End Sub

End Module

The problem is, because of the division symbol, the line in bold makes the
fdeg variable a Double. This in turn means that with Option Strict on, you see this
error message at compile time:

Option Strict disallows implicit conversions from Double to Decimal.

To fix it, do not turn off Option Strict—it is one of the best features of .NET: no
more evil type conversions. Instead, use the @ or rewrite the code with a cast
around any of the elements (or the whole thing). For example:

fdeg = (CDec(9 / 5) * cdeg) + 32

forces the whole result to be a Decimal, because one of the parts is a Decimal. One
final point about this simple example: note how we used the Write method rather
than the WriteLine method, because it does not throw in a carriage return-line
feed combination. (Also note that in a more realistic program we would have to
parse the result, because users rarely enter data correctly.)

Finally, floating-point division now conforms to the IEEE standard, which means
that what used to be a divide by zero error is just strange. Here is an example:

Sub Main()

 Dim getData As String

 Dim x, y As Double

 x = 4

 y = 0

 Console.WriteLine("What is 4/0 in VB .NET? " & x / y)

 Console.ReadLine()

End Sub

Chapter 3

72

gives:

What is 4/0 in VB .NET? Infinity

Divide 0/0 and you get NaN (not a number) as the result.
For integers and long integers, there is one symbol and one keyword for the

arithmetic operations unique to numbers of these types, as shown in Table 3-8:

The backslash (\), on the other hand, throws away the remainder in order to give
you an Integer if the answer fits into the range of this type. For example, 7\3 = 2I.
Because a / gives a Double, use a \ or cast if you want to work with an Integer type.

The Mod operator is the other half of integer division. This operator gives
you the remainder after integer division. For example, 7 Mod 3 = 1. When one integer
perfectly divides another there is no remainder, so the Mod operator gives zero:
8 Mod 4 = 0.

Parentheses and Precedence

In performing calculations, you have two ways to indicate the order in which you
want operations to occur. Use parentheses and you will not have to remember
priority of operations. As with all programming languages, VB .NET allows you to
avoid parentheses, provided you follow rules that determine the precedence of
the mathematical operations. For example, multiplication has higher precedence
than addition. This means 3 + 4 * 5 is 23 rather than 35 because the multiplication
(4 * 5) is done before the addition.

Here is the order (hierarchy) of operations:

1. Exponentiation (^)

2. Negation (making a number negative)

3. Multiplication and division

4. Integer division

Table 3-8. Unique Integral Arithmetic Operators

OPERATOR OPERATION

\ Integer division for any integral data type. (This symbol is a backslash).

Mod The remainder after integer division.

Expressions, Operators, and Control Flow

7373

5. Remainder (Mod) function

6. Addition and subtraction

Operations are carried out in order of precedence. If two operations have the
same precedence, they are carried out from left to right.

...

VB Shortcuts

With VB .NET, Microsoft has adopted some of the shortcuts for combining oper-
ators with assignment statements. They have not adopted shortcuts such as the
++ operator, however, which gave C++ its name. These are the VB .NET short-
cuts:

...

Math Functions and Math Constants

The built-in functions from VB6 still work, but we prefer to use the ones built into
the Math class of the .NET Framework. This class also has useful constants such as
Math.PI and Math.E. Table 3-9 summarizes the most useful math functions in the
Math class. All of these functions are shared, so they belong to the Math class and
not to an instance of the Math class (which turns out not to be creatable anyway—
see Chapter 4).

SHORTCUT EQUIVALENT

A *= B A = A * B

A += B A = A + B

A /= B A = A / B

A -= B A = A-B

A \= B A = A \ B

A ^= B A = A ^ B

A &= B A = A & B (string concatenation)

Chapter 3

74

Because these are shared methods of the Math class, you need to use the
"Math." prefix, as in Math.Log10(10), which yields a 1.

Table 3-9. Shared Math Functions in the Math Class

MATH FUNCTION DESCRIPTION

Abs Returns the absolute value.

Acos Returns the angle whose cosine is the specified number.

Asin Returns the angle whose sine is the specified number.

Atan Returns the angle whose tangent is the specified number.

Ceiling Returns the smallest whole number greater than or equal to the

specified number.

Cos Returns the cosine of the specified angle.

Exp Returns e (approximately 2.71828182845905) raised to the speci-

fied power.

Floor Returns the largest whole number less than or equal to the

specified number.

Log Returns the natural logarithm.

Log10 Returns the base 10 logarithm.

Max Returns the larger of two specified numbers.

Min eturns the smaller of two numbers.

Round Returns the number nearest the specified value.

Sign Returns a value indicating the sign of a number.

Sin Returns the sine of the specified angle.

Sqrt Returns the square root.

Tan Returns the tangent of the specified angle.

NOTE VB .NET has another useful group of methods for generating various
kinds of random numbers. We will look at this group in Chapter 4, when you
learn how to create object instances.

Expressions, Operators, and Control Flow

7575

Constants

VB .NET also has the capability to create named constants that allow you to use
mnemonic names for values that never change. Constants are declared in the
same way as variables, and the rules for their names are also the same: 255 char-
acters, first character a letter, and then any combination of letters, underscores,
and numerals. Our convention is to use capitals plus underscores for constants.

Note that in VB .NET, with Option Strict on, you must declare the type of
constants. So:

Const PIE = 3.14159 'won't compile with Option Strict

Const PIE As Double = 3.14159 'correct but Math.PI is better :-)

You can even use numeric expressions for constants, or define new constants
in terms of previously defined constants:

Const PIE_OVER_2 As Double = PIE / 2

And you can set up string constants:

Const USER_NAME As String = "Bill Gates"

The .NET Framework also has many built-in, predefined global constants that
you can use in your programs. Many are similar to the ones that were given using
the prefix of vb in VB6, but are shared members of various classes and so must be
accessed a little differently. You can use vbCrLf in VB .NET, for example, as well as
the constants built into the ControlChars class, such as ControlChars.CrLf.

Repeating Operations—Loops

VB .NET, like most programming languages, has language constructs for loops that
repeat operations a fixed number of times, continuing until a specific predeter-
mined goal is reached or until certain initial conditions have changed. This involves
only minor changes from earlier versions of VB. For one, the While-Wend construct is
changed—but there is no need for it anyway.

Determinate Loops

Use the keywords For and Next to set up a loop to repeat a fixed number of times.
For example, this code:

Chapter 3

76

Sub Main()

 Dim i As Integer

 For i = 1 To 10

 Console.WriteLine(i)

 Next i

 Console.ReadLine()

End Sub

prints the numbers 1 to 10 on the console window.
In general, VB .NET first sets the counter variable to the starting value, and

then it determines whether the value for the counter is less than the ending value.
If the value is greater than the ending value, nothing is done. If the starting value
is less than the ending value, VB .NET processes subsequent statements until it
comes to the keyword Next. (The variable name is optional.) At that point, it
defaults to adding 1 to the counter variable and starts the process again. This
process continues until the counter variable is larger than the ending value. At
that point, the loop is finished, and VB .NET moves past it.

You do not always count by 1, the default. Sometimes it is necessary to count by
twos, by fractions, or backward. As with all versions of VB, you do this by adding the
Step keyword to a For-Next loop. The Step keyword tells VB .NET to change the
counter by a specified amount. For example, a space-simulation program would not
be complete without the inclusion, somewhere in the program, of this fragment:

Sub Main()

 Dim i As Integer

 For i = 10 To 1 Step -1

 Console.WriteLine("It's t minus " & i & " and counting.")

 Next i

 Console.WriteLine("Blastoff!")

 Console.ReadLine()

End Sub

When you use a negative step, the body of the For-Next loop is bypassed if the
starting value for the counter is smaller than the ending value. This is most useful
when performing an operation such as deleting items from a list. If you went from 0 to

TIP Although you can use variables of any numeric type for the counters, choose
Integer variables whenever possible. Doing so allows VB .NET to spend as little
time as possible on the arithmetic needed to change the counter and thus speeds
up the loop.

Expressions, Operators, and Control Flow

7777

ListCount, you would run out of items at the midpoint while going from ListCount
to 0 while step –1 removes the highest item to the lowest item correctly.

You can use any numeric type for the Step value. For example:

For yearlyInterest = .07 To .09 Step .0125D

begins a loop that moves from 7 percent to 9 percent by one-eighth-percent
increments. Note that we used the Decimal type to avoid any potential for
round-off error.

As with earlier versions of VB, VB .NET lets you nest loops to essentially
unlimited depths. A fragment such as:

Sub Main()

 Dim i, j As Integer

 For j = 2 To 12

 For i = 2 To 12

 Console.Write(i * j & " ")

 Next i

 Console.WriteLine()

 Next j

 Console.ReadLine()

End Sub

gives a somewhat primitively formatted multiplication table. (We used the Write
method rather than the WriteLine method in the inner loop because it does not
throw in a carriage return-line feed combination.)

Indeterminate Loops

Loops often need to either keep on repeating an operation or not, depending on the
results obtained within the loop. Use the following pattern when you write an indeter-
minate loop in VB .NET that executes at least once (with the test at the bottom):

Do

 '0 or more VB .NET statements

Until condition is met

Chapter 3

78

Of course, you usually need ways to check for something besides equality. You
do so by means of the relational operators, shown in Table 3-10.

For strings, these operators default to testing for Unicode order. This means
that “A” comes before “B,” but “B” comes before “a” (and a space comes before
any typewriter character). The string “aBCD” comes after the string “CDE” because
uppercase letters come before lowercase letters.

You can replace the Until keyword with the While keyword in a loop. For example:

Do

 '0 or more VB .NET statements

Loop Until X <> String.Empty

is the same as:

Do

 '0 or more VB .NET statements

Loop While X = String.Empty

where we are using the constant String.Empty instead of the harder-to-read (and
more error prone) "". To do the test at the top (so the loop may not be executed at all),
move the While or Until keywords to the top. For example:

Table 3-10. Relational Operators

SYMBOL CHECKS (TESTS FOR)

< > Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

NOTE As in VB6, you can make all comparisons in the code attached to a module
or form case insensitive by putting the statement Option Compare Text
before any statement (including the one that names the module or form).
Option Compare Binary returns the default behavior of comparing strings by
ANSI order. Option Compare Text uses the order determined by the country
character set you specified when you installed Windows.

Expressions, Operators, and Control Flow

7979

Do While Text1.Text <> String.Empty

 'process the nonempty text

Loop

When you have to combine conditions in a loop, use the Or, Not, and And key-
words. For example:

Do While count < 20 And savings < 1000000

Conditionals—Making Decisions

Conditionals in VB .NET are identical to those in VB6, allowing both single line
and multiple line versions:

If X < 0 Then Console.WriteLine("Number must be positive!")

You can also use the keywords And, Or, and Not in an If-Then statement. More
often than not, you will want to process multiple statements if a condition is True
or False. For this, use the block If-Then, which looks like this:

If thing to test Then

 Zero or more VB Statements

End If

or add one or more Else clauses:

If thing to test Then

 Zero or more VB statements

Else

 Zero or more VB statements

End If

NOTE If you still want to use the old While-Wend construction, be aware that
the Wend keyword has been replaced with the End While statement.

Chapter 3

80

or to have multiple Else statements use the ElseIf:

If thing to test Then

 lots of statements<<Continue as above>>

ElseIf thing to test Then

 lots of statements

ElseIf thing to test Then

 more statements

Else

 lots of statements

End If

Scoping Changes

The scope of variables and methods in VB .NET is a little subtler than in earlier
versions of VB, and will be completely covered in Chapters 4 and 5. You can see
one of the places where new subtleties have been introduced when you declare a
variable inside the body of a loop or in a block in an If-Then. If you do this, then
that variable is invisible to other code outside the block in which it was declared.
For example, consider this code, which assumes that only one version of the String
variable Risk would be created and then tries to use it:

If income < 100000 Then

 Dim risk As String = "too much risk"

Else

 Dim risk As String = "love to make a deal"

End If

Console.WriteLine("Your risk level is " & Risk)

In fact you get the error message:

The name 'risk' is not declared.

because the visibility of both versions of the risk variable ends when the block
they are declared in exits! The moral is, do not declare variables inside blocks
without good reason.

TIP The If-Then gives you a way to write a loop that tests in the middle if you
are so inclined: combine the If-Then with an Exit Do or Exit For statement.
Whenever VB .NET processes an Exit Do or Exit For, it pops you out of the loop
and takes you directly to the statement following the keyword Loop or the keyword
Next, as the case may be.

Expressions, Operators, and Control Flow

8181

Short Circuiting

Short circuiting refers to the compiler not evaluating another expression if the first
is enough. In this code, for example, if foo is false, short-circuit evaluation would
imply that bar never got evaluated:

If foo And bar then …

This is the way it was in VB .NET beta 1, but not the way it was in earlier versions
of VB. After many complaints, Microsoft changed it back so that the older key-
words do not short circuit. Instead, they added new keywords, AndAlso and OrElse,
which do short circuit:

If foo AndAlso bar then …

Select Case

As an alternative to multiple ElseIfs, VB .NET continues to offer the Select Case
statement, which gives you a clearer way of selecting on the state of a variable or
expression, as long as the value of the expression is either numeric or string. Here
is an example:

Select Case average

Case Is > 90

 Console.WriteLine("A")

 Case Is > 80

 Console.WriteLine("B")

 Case Is > 70

 Console.WriteLine("C")

 Case Else

 console.WriteLine("You fail")

End Select

Users coming from C or Java should note that no break statements are needed.
because only one clause in a Select statement will be executed. Using commas lets
you give a discrete set of variables, and the keyword To lets you give a range of values:

Select Case yourChoice

 Case 1 To 9

 'ok you get it

 Case -1, 0

 'huh??

End Select

Chapter 3

82

The GoTo

The final control structure is, of course, the GoTo. To paraphrase the old joke about
split infinitives: Modern programmers may be divided into three groups: those
who neither know nor care about when they should use the GoTo, those who do
not know but seem to care very much, and those who know when to use it.

Routine use of the GoTo leads to “spaghetti code,” meaning code that is hard to
read and harder to debug. On the other hand, one can argue that there is one time
when using the GoTo actually makes your code cleaner and easier to understand.
In VB .NET, this situation could occur when you are deep inside a nested loop and
some condition forces you to leave all the loops simultaneously. You cannot use
the various forms of the Exit statement, because all that does is get you out of the
loop you are currently in.

To use a GoTo in VB .NET, you must label a line. Labels must begin with a letter,
end with a colon, and start in the first column. You should use as descriptive a
label as possible. Here is an example:

BadInput:

 'Code we want to process can GoTo here

Suppose we are using a nested For loop to input data and want to leave the
loop if the user enters I am done:

Sub Main()

 Dim getData As String

 Dim i, j As Integer

 For i = 1 To 10

 For j = 1 To 100

 Console.Write("Type the data, hit the Enter key between " & _

 "ZZZ to end: ")

 getData = Console.ReadLine()

 If getData = "ZZZ" Then

 Goto BadInput

 Else

 'Process data

 End If

NOTE We would argue that you should use exceptions (see Chapter 7) for this
situation and not a GoTo, but some people prefer the older approach.

Expressions, Operators, and Control Flow

8383

 Next j

 Next i

Exit Sub

BadInput:

 Console.WriteLine("Data entry ended at user request")

 Console.ReadLine()

End Sub

Notice how using an Exit For keyword would be cumbersome here—for
example, it would require extra code in order to break completely out of the
nested loop. Also notice that the Exit Sub statement then prevents us from “falling
into” the labeled code.

The Logical Operators on the Bit Level

Beginning in beta 2, the logical operators (Not, And, Or, and so on) go back to the
way they were in earlier versions of VB. In beta 2, they are again functions that
work on the bit (binary-digit) level. Suppose you are given two integers, X and Y.
X And Y make a binary digit 1 only if both binary digits are 1; otherwise, the result
is zero. For 32-bit integers, each bit is compared one at a time. For example, if:

X = 7 'in decimal= 0111 in binary

Y = 12 'in decimal= 1100 in binary

then

X And Y = 0100

in binary (4 in decimal), because only in the third position are both bits 1. Because
And gives a 1 only if both digits are 1, using And with a number whose binary digit is
a single 1 and whose remaining digits are all zero lets you isolate the binary digits
of any integer. For example:

(X And 1) = 1: Tells you whether the least significant bit is on.

(X And 2) <> 2: Because 2 in decimal = 10 in binary. This tells you whether
the next significant bit is off.

X And 255: Because 255 = 11111111, this gives you the low order byte.

X And 65280 =: Because 65280 = 1111111100000000, this would give you
the high order byte.

This process is usually called masking.

Chapter 3

84

Arrays

In VB .NET, the name of an array must follow the rules for variable names. For
an item in the array, the notation is simply the name of the array followed by a
number in parentheses that indicates the position.

Elements in arrays in VB .NET are significantly different than in VB6. The
changes are both obvious and not so obvious. The obvious ones are that:

• All array indexes start at 0 (and as we write this, the keyword To
has vanished—hopefully it will be brought back!).

Dim stringList(7) will, starting in beta 2, gives you eight elements numbered 0 to
7. Because array indexes are always zero-based in VB .NET, the third entry in this
string array is accessed via stringList(2), and the previous entries are stringList(0)
and stringList(1).

• All arrays in VB .NET are dynamic and can be resized at will using
either ReDim, which loses the current contents, or ReDim Preserve,
which keeps them.

For example:

Dim x() As Single

ReDim x(20) 'gives 21 slots starting in beta 2

ReDim Preserve x(50) 'keeps the 21 values Intact

• You can initialize and declare an array at the same time, as in this
code:

Dim weekend() As String = {Saturday,Sunday}

The not-so-obvious changes happen because arrays, like strings, are actually
instances of the Array class. These subtleties will be covered in Chapter 4, but this
does allow you to “dot” an array with very useful methods such as Sort, as in
this code:

NOTE ReDim no longer allows an As clause to change the type of an array, nor
can you use ReDim as a declaration. You must first use Dim or an equivalent state-
ment before you can use ReDim.

Expressions, Operators, and Control Flow

8585

Sub Main()

 Dim stuff() As Integer = {9, 7, 5, 4, 2, 1, -37, 6}

 Array.Sort(stuff)

 Dim i As Integer

 For i = 0 To UBound(stuff)

 Console.WriteLine(stuff(i))

 Next

 Console.ReadLine()

End Sub

which prints out the array in sorted order using a very fast "QuickSort."

...

Building VB6-like Arrays with Upper and Lower Bounds

It is not quite correct to say that array indices must start at 0. It is possible to
build arrays with upper and lower bounds, but the current syntax and current
performance implications make it unlikely that you will ever do that. The following
lines of code create an array with bounds 1995 to 2002:

Sub Main()

Dim anArray As Array

Dim i As Integer

Dim l(0) As Integer

Dim lowerBounds(0) As Integer

l(0) = 7

lowerBounds(0) = 1995

'creates an array of objects numbered 1995 - 2002

anArray = Array.CreateInstance(GetType(System.Int32), l, lowerBounds)

anArray.SetValue(200000, 1995)

anArray.SetValue(1000000, 2001)

Console.WriteLine("The entry in position 1995 is " & _

(anArray.GetValue(1995).ToString))

NOTE VB .NET inherits from the .NET Framework some extraordinarily powerful
data structures that give you capabilities way beyond what simple arrays can
bring. They make the simple collections of VB5 and later seem trivial by
comparison. These structures, such as array lists (a smart array that grows
automatically) and dictionaries (keyed access to data), are often preferable to
using a simple array. We will cover many of these in Chapters 5 and 6.

Chapter 3

86

Console.WriteLine("The entry in position 2002 is " & _

(anArray.GetValue(2001).ToString))

Console.ReadLine()

End Sub

As you can see you then use the SetValue (value,entryPosition) method to add
items to the array and the GetValue(position) method to retrieve them. However,
because arrays created this way this store objects you also need to convert them

...

to the correct type if Option Strict is on!

The For-Each Construct

Although you often will use a For-Next loop running from 0 to UBound(arrayName) to
iterate through the elements in an array, you can also use the For Each construct,
which has syntax like this:

For Each variableOfProprType In arrayName

 [statements]

 [Exit For if needed]

 [statements]

Next

For Each is quite a general construct and will be available whenever the data
structure has a way to iterate through its elements. More about this in Chapter 6.

NOTE Microsoft claims that, unlike VB6, there will be no significant perfor-
mance penalties in using a For Each for array access compared to a For-Next!

Expressions, Operators, and Control Flow

8787

Arrays with More than One Dimension

You can also have arrays with more than one dimension. Suppose you want to
store a multiplication table in memory as a table. You could code this as:

Dim multTable(11,11) As Integer ' makes a 12x12 array

Dim i As Integer, j As Integer

For i = 0 To 11

 For j = 0 To 11

 multTable(i, j) = (i+1)*(j+1)

 Next j

Next i

Although the size of an array can change in VB .NET, the number of dimensions
must be fixed.

To make a general multidimensional array, use empty commas. This example
shows how to declare a three-dimensional array:

Dim salesByDivision(, ,) As Decimal

The ReDim statement sets or changes the size of each dimension, but the array
must always remains the same number of dimensions.

Procedures: User-Defined Functions and Subs

The distinction used to be you used a function when you needed to return a value
and a sub if you did not. We recommend keeping to this model, although you can
“throw away” the return value of a function and thus make it for all practical
purposes into a sub (“C” style functions). Functions and subs are usually lumped
into what are called the members of the class or module. Within classes (see
Chapter 4) they are also sometimes called the methods of the class or module.

As with many programming languages, there are two ways to pass a variable
argument to a procedure or function: passing by value or passing by reference.
When an argument variable is passed by reference, any changes to the corre-
sponding parameter inside the procedure change the value of the original argument
when the procedure finishes. The default in VB .NET is now pass by value as
opposed to VB6’s pass by reference.

NOTE You can change only the size of the last dimension in a multidimen-
sional array while preserving the contents with Redim Preserve.

Chapter 3

88

Functions

The easiest way to start a function or a sub in the code window is to go someplace
inside the module that is not already inside a sub or function and then start
typing. The moment you hit Enter after typing the header of the function or sub,
the IDE editor obliges with an End statement of the correct type. For example, this
is the header for a function that takes an integer by value and returns True or
False, depending on whether the number passed in is between 1 and 10:

Function IsBetween1And10(ByVal num As Integer) As Boolean

Here is an example of a module that uses this simple function to tell you if a
number entered at the console is between 1 and 10. Notice how the order of the
code is unimportant—the Sub Main can occur after the definition of the function
that it uses.

Module Module1

Function IsBetween1And10(ByVal num As Integer) As Boolean

 If num >= 1 And num <= 10 Then

 Return True

 Else

 Return False

 End If

 End Function

CAUTION When passed by value, the naïve notion is that the argument variable
retains its original value after the procedure terminates, regardless of what was
done to the corresponding parameter inside the procedure. Well, sort of. For
object variables in VB .NET, the state of the object can change even if you pass it
by value. Because VB .NET changes the defaults from earlier versions of VB to
passing by value instead of by reference, you might expect any changes you make
to the parameters inside the body of the procedure to be discarded, but this may
not happen to objects being passed to procedures and functions. Look for more
on this subtle source of bugs in Chapter 4.

NOTE With Option Strict on, you must supply a type for the return value.
(Boolean in the previous example.)

Expressions, Operators, and Control Flow

8989

Sub Main()

 Console.WriteLine(IsBetween1And10(3))

 Console.ReadLine()

End Sub

End Module

In VB .NET, parentheses are always required around a nonempty parameter list
in any function or sub call, hence this was needed in the Console.WriteLine method:

IsBetween1And10(3)

Notice the use of the Return keyword. When you use the Return keyword, the
function ends1 and the value following the Return keyword is the value of the
function. (You must supply a value; returning the equivalent of a “void” is not
allowed.) The method used in earlier versions of VB of assigning to the function
name is still allowed:

Function IsBetween1And10(ByVal num As Integer) As Boolean

 If num >= 1 And num <= 10 Then

 IsBetween1And10 = True

 Else

 IsBetween1And10 = False

 End If

 End Function

Using Return is a matter of taste; we think using Return is a whole lot clearer
but the older technique leaves you in the function, which is sometimes convenient.)

The general form of a function definition is as follows:

Function FunctionName(argument1, argument2, ...) As Type

 statements

 Return expression 'or FunctionName = Expression

End Function

where argument1 and argument2 are variables. Function names must follow the
same rules as variable names. When you use a function, VB .NET executes the

1. Unless you have a Finally clause; see Chapter 7.

Chapter 3

90

statements in the function definition; the value following the Return (or the last
value assigned to FunctionName) is the return value of the function.

You can usually call a function only when you use the same number of argu-
ments as there are parameters in the function definition. The types must be
compatible as well, so only widening conversions will be made automatically.
For example, these two lines are allowed:

Dim bar As Short = 3

Console.WriteLine(IsBetween1And10(bar))

because going from Short to Integer is a lossless conversion.
VB .NET lets you to create your own procedures with optional, or a varying

number of, arguments. More information on this later in this chapter.

Sub Procedures

A sub does not return anything, so it exists only for its side effects. You call it with
its name and, as with functions, parentheses are always required around a non-
empty parameter list in any sub call. Here is an example with the key calling line
in bold:

Option Strict On

Module Module1

Sub ShowBottlesOfBeer(ByVal nbot As Integer)

 Console.WriteLine(nbot & " bottles of beer on the wall")

 Console.WriteLine(nbot & " bottles of beer.")

 Console.WriteLine("if one of those bottles should happen to fall")

 Console.WriteLine(nbot - 1 & " bottles of beer on the wall")

End Sub

NOTE Although you usually use the return value of a function, VB lets you
simply call a function for its side effects with a statement such as foo(3) without
an assignment.

Expressions, Operators, and Control Flow

9191

Sub Main()

 Dim I As Integer

 For I = 10 To 1 Step -1

 ShowBottlesOfBeer(I)

 Next

 Console.WriteLine("All beer gone…")

 Console.ReadLine()

End Sub

End Module

When using sub calls, the Call keyword is optional. The key calling line (in
bold) in the preceding example can be rewritten as:

Call ShowBottlesOfBeer(I)

More generally, a sub procedure must have a header that gives its arguments
and either has a ByVal or ByRef keyword with ByVal the default.

Sub SubprocedureName(ByVal argument1 As Type, ByVal argument2 As Type, ...)

 statement(s)

End Sub

When VB .NET executes statements in this form:

SubprocedureName(argument1, argument2,...)

or this:

Call SubprocedureName (argument1, argument2, ...)

it makes a copy of the data in the arguments and then executes the code in the
body of the procedure (because pass by value is now the default).

Leaving Functions or Procedures Prematurely

You do not have to give every function an explicit value. Sometimes you are forced
to exit a function prematurely. Once a Return statement is processed, the function
ends (except if there is a so called Finally clause waiting—see Chapter 7 for more
on these).

Chapter 3

92

Function BailOut (X As Double) As Double

 If X < 0 Then

 Return 0 'must return something

 Else

. 'stuff

 End If

End Function

When you leave a function prematurely, it has the last assigned value or the
appropriate default value as its return value. Use Exit Sub to leave a Sub prematurely.

Using Arrays with Functions and Procedures

VB .NET continues the VB tradition of having an extraordinary facility to use both
one- and multidimensional arrays in procedures and functions. There are, how-
ever, some subtleties in how pass by value versus pass by reference works, but we
will address those in Chapter 4. The key is to use either the For Each construct or
(more commonly) the UBound function, the highest entry in an array. For example,
you can easily write this function to find the maximum element in an array:

Function FindMax(ByVal a() As Integer) As Integer

 Dim finish As Integer = UBound(a)

 Dim max As Integer = a(0)

 Dim i As Integer

 For i = 0 To finish

 If a(i) > max Then max = a(i)

 Next i

 Return max

End Function

In general, UBound(NameOfArray, I) gives the lower and upper bound for the
I’th dimension. For a list (a one-dimensional array), the I is optional, as in the pre-
ceding example.

NOTE The Length method built into the array class is an alternative, but this
will return the number of elements and not the upper bound (and they are not
necessarily the same, for multidimensional arrays).

Expressions, Operators, and Control Flow

9393

Procedures with a Variable or Optional Number
of Arguments

You can use subs and functions with optional arguments, but in VB .NET (as
opposed to VB6), every optional parameter must specify a default value. This
example shows an optional parameter declaration:

Sub ProcessAddress(TheName As String, _

 Address As String, City As String, State As String, _

 ZipCode As String, Optional ZipPlus4 As String = "0000")

In this case, the last argument (for a ZipPlus4 code) is optional but defaults
to "0000".

You can also have procedures and functions that accept an arbitrary number
of arguments. For this, use the ParamArray keyword with an array, as in this example:

Function AddThemUp(ByVal ParamArray stuff() As Double) As Double

 Dim total As Double = 0

 Dim number As Double = 0

 Dim I As Integer

 For I = 0 To UBound(stuff)

 total = total + stuff(I)

 Next

Return total

End Function

and you can use this function for example in a line like:

x = AddThemUp(3, 4, 5, 6)

which would give x the value 18.

Named Arguments

Named arguments give you an elegant way of dealing with functions and procedures
that have many parameters—especially optional ones. In general, when you call a

NOTE See Chapter 4 for information on overloading, another way to deal with
functions with optional arguments.

Chapter 3

94

procedure using named arguments use a :=�(a colon plus an equal sign) together
with the name of the argument, so you do not have to worry about the order of the
arguments. (Although the spelling of the argument must match, case is irrelevant.)
Named arguments work in every part of VB .NET, unlike earlier versions of VB, in
which they sometimes worked and sometimes did not.

You separate named arguments from each other by a comma. If you are
careful in selecting parameter names, using named arguments help make your
code easier to read. This is especially true if you use lots of optional arguments.
For example, consider a header to our ZipCode function that looks like this:

Sub ProcessAddress(TheName As String, _

 Address As String, City As String, State As String, _

 ZipCode As String, Optional ZipPlus4 As String = "0000")

We call this procedure as follows:

ProcessAddress(Address:="The Whitehouse" _

Name :="GeorgeW", _

City :="DC", _

State := String.Empty _

ZipCode := "12345"

even though the order of the arguments in the definition of the procedure is different.

Recursion

As with all versions of VB (or any serious programming language), VB .NET supports
recursion��a method of solving problems by reducing them to simpler problems of
a similar type. One common use of recursion is in dealing with the subdirectory
structure of a disk (see the I/O chapter).

The general framework for a recursive solution to a problem looks like this:

Solve recursively (problem)

 If the problem is trivial then

 do the obvious

 Else

 Simplify the problem to be of the same type--only simpler

 Solve recursively (simpler problem)

 End If

 (Possibly) combine the solution to the simpler problem(s) into a solution

of the original problem

Expressions, Operators, and Control Flow

9595

A recursive procedure constantly calls itself, each time in a simpler situation,
until it gets to the trivial case, at which point it stops. For the experienced pro-
grammer, thinking recursively presents a unique perspective on certain problems,
often leading to particularly elegant solutions and, therefore, equally elegant
programs. (For example, most fast sorts, such as the QuickSort, built into the .NET
Array class Sort method are recursive.)

As an example, we will look at the greatest common divisor (GCD) of two inte-
gers. (For those who have forgotten their high-school mathematics, this is defined
as the largest number that divides both of them. It is used when you need to add
fractions.) For example:

• GCD(4,6) = 2 (because 2 is the largest number that evenly divides both 4
and 6)

• GCD(12,7) = 1 (because no integer greater than 1 divides both 12 and 7)

Around 2,000 years ago, Euclid gave the following method of computing the
GCD of two integers, a and b:

If b divides a, then the GCD is b. Otherwise, GCD(a,b) = GCD(b, a mod b)

Next recall that the Mod function gives the remainder after integer division and
is zero precisely when b divides a. Therefore:

GCD(126, 12) = GCD(12, 126 Mod 12) = GCD(12, 6) = 6

Here is the code for writing and using a recursive GCD function. The line in
bold is the recursive call that uses the GCD function itself in a simpler situation:

Option Strict On

Module Module1

 Function GCD(ByVal P As Long, ByVal Q As Long) As Long

 If Q Mod P = 0 Then

 Return P

 Else

 Return GCD(Q, P Mod Q)

 End If

 End Function

 Sub Main()

 Console.WriteLine("The GCD of 36 and 99 is " & GCD(36, 99))

 Console.ReadLine()

 End Sub

End Module

Chapter 3

96

Here, the pattern is to first take care of the trivial case. If Q Mod P does not
equal 0, then you are not in the trivial case; so, the code allows us to call the same
GCD function in a simpler case, because using the Mod function always leads to
smaller numbers. (In this example, there is no need to combine results as there
would be in, say, a sorting routine.)

97

CHAPTER 4

Classes and Objects
(with a Short
Introduction to
Object-Oriented
Programming)

THIS CHAPTER, ALONG WITH Chapters 5 and 6, forms the core of this book. The reason
is simple: VB .NET is the first fully object-oriented version of VB, and if you are not
comfortable with OOP, you will find it extremely hard to take advantage of VB .NET’s
new powers. Of course, you may be wondering: because VB could create classes
and then make objects from these classes since VB4, what is so different about VB
.NET that it requires rethinking your programming style? The short answer is
“plenty.” A more detailed answer will be presented in these next three chapters.

We also think it fair to say, especially in light of our own consulting experience,
that many VB programmers did not take full advantage of the OOP features in ear-
lier versions of VB. This was partly because of the clumsy and, to be honest, half-
baked implementation of OOP in earlier versions of VB, and partly because pro-
grammers did not understand how to use OOP successfully. With the improvements
in VB .NET, you no longer have to worry about the former problem. As for the
latter, well, that is why we start this chapter with an introduction to the OOP way
of thinking. In any case, you cannot write VB .NET code very well without fully
using its OOP nature.

This chapter, with Chapters 5 and 6, covers OOP from a practical, VB .NET
programmer’s point of view, without getting bogged down in OOP theory. We
stress practical examples and techniques that a VB .NET programmer can use to
solve real problems. And we try not to fall into the seductive trap of discussing
everything from an abstract point of view and being needlessly complete. (There
are dozens of books out there that teach the theory of OOP if you are interested in
this approach.) Still, you need to understand a fair amount of terminology to

Chapter 4

98

make sense of OOP, so we will start with a discussion of the key concepts and
terms. (If you are experienced with OOP, you might want to skip this discussion.)

After that, we will move on to using existing classes and the objects that you
can create from them. For example, we will show you how to use the important
StringBuilder class, and how to use some of the nifty new collection classes in the
.NET Framework, such as hashtables and array lists. We will also discuss some of
the subtleties that come with passing objects to functions and procedures. Then
we will discuss building your own classes and the objects that you stamp out from
them. (Although we introduce you to inheritance and interfaces in this chapter,
we only cover these key OOP concepts in detail in Chapter 5.)

Introduction to OOP

OOP is a vast extension of the event-driven, control-based model of programming
used in early versions of VB. With VB .NET, your entire program will be made up of
self-contained objects that interact. These objects are stamped out from factories
called classes. These objects will:

• Have certain properties and certain operations they can perform.

• Not interact with each other in ways not provided by your code's public
interface.

• Only change their current state over time, and only in response to a specific
request. (In VB .NET this request is made through a property change or a
method call.)

The point is as long as the objects satisfy their specifications as to what they
can do (their public interface) and thus how they respond to outside stimuli, the
user does not have to be interested in how that functionality is implemented. In
OOP-speak, you only care about what objects expose.

NOTE C# and VB .NET are very similar languages from an OOP point of view,
even if they look very different. If you master the techniques we show you in this
chapter and in Chapter 5, moving to C# (or Java for that matter) will be easy.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

9999

Finally, one of the great advantages of .NET is that you can use your favorite
language to build classes, and everyone can use them equally well. If you build a
control in VB .NET, it can be used in C#, for example, or vice versa. Moreover,
because of the magic of the Common Language Runtime, there should not be any
significant difference in performance, regardless of the language that you choose.

Classes As (Smart) User-Defined Types

Another way to approach classes is to think of them as an extension of user- defined
types where, for example, the data that is stored inside one can be validated
before any changes take place. Similarly, a class is able to validate a request to
return data before doing so. Finally, imagine a type that has methods to return
data in a special form rather than simply spew out the internal representation.

From this point of view, an object is then simply a generalization of a specific
(data-filled) user-defined type with functions attached to it for data access and
validation. The key point you need to keep in mind is that:

• You are replacing direct access to data by various kinds of function calls
that do the work.

For example, in a user-defined type such as this:

Employee Info Type

 Name As String

 Social Security Number As String

 Address as String

End Employee Info Type

the pseudocode that makes this user-defined type "smart" would hide the actual
data and have functions instead to return the values. The pseudocode might look
like this:

NOTE VB programmers know all about the value of self-contained packets of code
with well-defined functionality (or controls). The reusability of the code packaged
into controls helped make VB programmers, on average, far more productive than
programmers working with a more traditional (procedural) model.

Chapter 4

100

Employee Info as a CLASS

 (hidden) Name As String - instead has functions that validate and return and
change name

 (hidden)Social Security Number As String - instead has functions that validate
and return and change the Social Security number

 (hidden) Address as String - instead has functions that validate and return
and change the address and also return it in a useful form

End Employee Info as CLASS

Of course, as you get more sophisticated in your approach to OOP, objects can
and will do more than merely validate or return internal data.

How Should Objects Interact with Other Objects?

One key practice in OOP is making each class (= object factory) responsible for
carrying out only a small set of related tasks. You spend less time designing the
class and debugging it when your classes are designed to build small objects that
perform relatively few tasks, rather than architected with complex internal data
along with many properties and methods to manipulate the internal data. If an
object needs to do something that is not its responsibility, make a new class
whose objects will be optimized for that task instead of adding the code to the first
object and thus complicating the original object. If you give the first object access to
the second type of object, then the first object can ask the second object to carry out
the required task.

If you have used earlier versions of VB, you have already seen such requests
between objects. For example, this is exactly what merely calling the methods or
setting the properties of a control does. More generally, from the point of view of
the user of an object, the request to another object is made by accessing a property or
calling a method of the second object. Internally, the second object carries out the
task using generalized versions of the function and procedures that you saw the
VB .NET versions of in Chapter 3. The point is, the second object can hide the gory
details from the world if there is no reason to expose the plumbing.

NOTE Although having functions to return the data instead of giving users
direct access to the data might seem like a lot of extra effort and might sound
more complex, the advantages of having validation and access-control code
more than outweigh the extra layer of complexity.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

101101

OOP jargon says it this way:

• Objects should only send messages to other objects.1

We cannot stress this enough: an object should never directly manipulate the
internal data of another object. All communication between objects should be
done via messages (property settings and method calls). Design your objects to
handle a specific set of messages with the actual implementation as a black box to
the outside world. To sum it up:

• Manipulate the objects in your program only by changing their proper-
ties or calling their methods. Use no public (global) variables inside the
classes or objects that you create from them.

The Vocabulary of OOP

It is worth repeating that the most important OOP term is class:

• A class is a template from which objects are made.

Each object you make from this template is said to be an instance of the class.
The methods, properties, and events inside your class are called the class's members.
For example, suppose you were designing a personnel management program for
a company. You would certainly have a class called Employee; each instance of the
Employee class would correspond to a specific employee. The members of the
Employee class would be properties such as Name or methods such as RaiseSalary.

The Relationships between Classes in Your Programs

Traditional OOP provides three possible relationships between classes:

• Use: dependency

• Containment: “has a”—this is sometimes called aggregation

• Inheritance: “is a”

1. Here is the standard joke to check whether you really understand OOP thinking. Question:
How many OOP programmers does it take to change a light bulb? Answer: None. A properly
OOP-compliant light bulb socket would accept a ChangeBulb message.

Chapter 4

102

Back to the classic three for the moment: the use relationship is both the most
obvious and the most common, because it is just a fancy way of saying one class
depends on another. Whenever an object sends a message to another object, the
two obviously depend on each other. For example, an object of the CheckRegister
class (an actual check register) uses objects of the DepositSlip class, because a
check register needs to know what has been deposited. But the DepositSlip class
does not use the Check class, because deposit slips have nothing to do with checks.
While a class obviously uses another class if it manipulates objects of that class,
more generally, a class A uses a class B if:

• A member of class A sends a message to an object of class B.

or

• A member of class A creates or returns objects of class B.

Containment (aggregation) means that objects of class A contain objects of
class B. For example, a specific CheckRegister object could contain Check and
DepositSlip objects.

Containment is used to carry out delegation: you can delegate to the internal
contained object the tasks that need to be carried out. Aggregation with method
delegation was extremely common in earlier versions of VB, because that was how
you built controls with VB5 and VB6. (Recall that you made a better textbox by
placing a textbox inside a user control form and then running the control interface
wizard to write the delegation code for you automatically.)

NOTE For languages such as VB .NET, C#, and Java, there is a fourth relation-
ship between classes to add to the classic three. We usually call it “supports a”—
more precisely, implementing an interface. The idea of implementing an inter-
face is that your class supports certain functionality by making a contract that
your class will have certain types of members. Interfaces have existed in VB since
VB5, and you will still use them frequently in VB .NET. We will have much more
to say about them in Chapter 5.

TIP It is best to minimize the number of classes that use each other. In other
words, do not make your classes needlessly or overly intertwined. (In OOP-speak,
this is called the loose coupling of classes.) The reason to do this is that if a class A
does not use a class B, it does not care about any changes to B. (And this also means
that changes to B will not introduce bugs into A!)

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

103103

Aggregation is still common in VB .NET, but inheritance takes its place in
many situations. Inheritance is not only one of the three ways classes depend on
each other, it is also one of the four sacred buzzwords of OOP. Abstraction, encap-
sulation, and polymorphism are the other three, and we take them up in the
following sections.

Abstraction

Abstraction is a fancy term for building a model of an object in code. In other
words, it is the process of taking concrete day-to-day objects and producing a
model of the object in code that simulates how the object interacts in the real
world. For example, the first object-oriented language was called Simula
(http://java.sun.com/people/jag/SimulaHistory.html), because it was invented to
make simulations easier. Of course, the more modern ideas of virtual reality carry
abstraction to an extreme. (Check out the influential book Mirror Worlds, or the
Day Software Puts the Universe in a Shoebox by David Gelernter for more on this.)
Abstraction is necessary because:

• You cannot use OOP successfully if you cannot step back and abstract
the key issues from your problem.

Always ask yourself: What properties and methods will I need to mirror in
the object’s code so that my code will model the situation well enough to solve
the problem?

Encapsulation

Encapsulation is the formal term for what we used to call data hiding. It means
hide data, but define properties and methods that let people access it. Remember
that OOP succeeds only if you manipulate data inside objects, only sending requests
to the object. The data in an object is stored in its instance fields. Other terms you
will see for the variables that store the data are member variables and instance
variables. All three terms are used interchangeably, and which you choose is a matter
of taste; we usually use instance fields. The current values of these instance fields
for a specific object define the object’s current state. Keep in mind that you should:

• Never ever give anyone direct access to the instance fields.

Chapter 4

104

As a simple example, we will now return to the design of an object-oriented,
personnel management program in which we have a class called Employee. The
instance fields in an Employee class might be variables that hold the:

• Name

• Date hired

• Current salary

Instead of direct access to these instance fields, users of your class would modify
properties such as TheName, or use methods such as RaiseSalary. The RaiseSalary
method would obviously manipulate a currentSalary instance field, but it is possible
in a more sophisticated Employee class that a method such as RaiseSalary might
work with more than one instance field. For example, the RaiseSalary method
might look at a person’s sales record and hire date as well as their current salary.

To sum up:

• The behavior (functionality) of encapsulation is a way of describing
what an object can do, which in turn corresponds to its members
(methods, events, and properties) in VB .NET.

Inheritance

As an example of inheritance, imagine specializing the Employee class to get a
Programmer class, a Manager class, and so on. Classes such as Manager would inherit
from the Employee class. The Employee class is called the base (or parent) class, and
the Manager class is called the child class. Child classes are:

• Always more specialized than their base (parent) classes.

• Have at least as many members as their parent classes (although the behavior
of an individual member may be very different).

CAUTION At the risk of repeating ourselves too often, we still cannot stress enough
that the key to making encapsulation work is to make sure that the other parts of
your programs never directly access the instance fields (variables) in your classes.
Programs should interact with these variables through the object’s members.
Keeping data private is the only way to give an object its black box behavior. Data
hiding is critical to both successful reuse and long-term reliability.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

105105

For example (alas), the RaiseSalary method of the Manager class may give a
larger increase than the RaiseSalary method of the Programmer class for the same
amount of time and performance rating. You can also:

• Add new methods to the inherited class that have no counterpart in the
base (parent) class.

For example, a Manager class might have a Secretary property.
Developers have wanted inheritance in VB for a long time and have bemoaned

loudly the lack of it. Although this was not much ado about nothing, neither was it
as important as people made it out to be. The reason is that inheritance, when you
get down to it, is just a way to avoid having to recode common functionality:
inheritance is not a mystical process—it is all about simplifying code reuse. In our
example, both the Employee and Manager classes share common behavior, such as
having a hire date, a salary, and so on. Why recode a Salary property in two places
if they use exactly the same code? With true inheritance, almost no code needs to
be written in the child class to gain access to the same functionality present in the
parent class: the extended class starts out with all the members of its parent. You
then pick and choose which methods of the parent class to override by recoding
in order to change their behaviors. For example, if managers automatically get an
8 percent raise when ordinary employees get a 4 percent raise, the RaiseSalary
method in the Manager class must override the RaiseSalary method in the parent
Employee class. On the other hand, methods such as GetName do not need to change
at all, so you do not do any recoding.

We will end this brief introduction to inheritance with a warning: Do not use
inheritance where it is not absolutely clear that an “is a” relationship holds. For
example, do not have a Contractor class that inherits from an Employee class to
save yourself the trouble of duplicating the code for, say, Social Security or name
properties. A good way to keep this vital point in mind is that the Internal Revenue
Service (IRS) has also made this point very clear: contractors are not employees,
and if you treat them the same way, you will bring yourself no end of grief from
the IRS. Similarly, if you use inheritance where the “is a” relationship does not
hold, you will also bring your programs a lot of grief. (More on this in Chapter 5.)

NOTE Because inheritance is really all about code reuse, whenever source code
is available, many influential OOP thinkers would argue that you should avoid
inheritance in favor of using only interfaces (both of which are supported in VB
.NET, of course). This is because of the fragile base class problem, which .NET
goes a long way toward solving (more on this in Chapter 5)). Using interfaces in
place of classic inheritance is sometimes called interface inheritance; classic inher-
itance involving automatic code reuse is called implementation inheritance.

Chapter 4

106

Polymorphism

Traditionally, polymorphism (from the Greek “many forms”) means that inherited
objects know what methods they should use, depending on where they are in the
inheritance chain. For example, as we noted before, an Employee parent class and,
therefore, the inherited Manager class both have a method for changing the salary
of their object instances. However, the RaiseSalary method probably works differently
for individual Manager objects than for plain old Employee objects.

The way polymorphism works in the classic situation where a Manager class
inherits from an Employee class is that an Employee object would know if it were a
plain old employee or really a manager. When it got the word to use the RaiseSalary
method, then:

• If it were a Manager object, it would call the RaiseSalary method in the Manager
class rather than the one in the Employee class.

• Otherwise, it would use the usual RaiseSalary method.

The point is that in both cases the object knows which method to use based
on the message it gets. You do not need to know what class an object ultimately
belongs to when you send it a message; you just send all Employee objects a message
and leave the gory details of choosing the right polymorphic method in individual
Employee objects to the compiler. The importance of this feature cannot be overstated.

Here is an example of why this feature is so important: One of us once did
some consulting for a vendor of medical testing programs. Every time they intro-
duced a new chemical (called a reagent in their jargon) for testing, they had to
search through many thousands of lines of code for a bunch of different Select Case
statements. They then had to add to all of them a case for how the new reagent
worked. And if they missed one, well, we would not want to be the person whose
blood was being tested using that new reagent. In any case, there was no question
that adding code to multiple Select Case statements was a maintenance nightmare
requiring countless hours of testing and recoding.

NOTE If you are coming from VB5 or VB6, the term polymorphism has been
extended to not only cover inheritance-based polymorphism but also interface-
based polymorphism, where objects that satisfy an interface know how to use
the interface methods rather than some other method with a similar name. If an
object satisfies the Manager interface, it would choose the correct RaiseSalary
method based on how it was used.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

107107

With polymorphism, you can write a program that needs to make only one
change for this situation. You merely:

• Add a new class corresponding to the new reagent with the correct
code for the methods that you need to override or add.

Why? Because if you write code in your main program that looks like this:

For Each reagent in Reagents

 reagent.Method

Next

it will work automatically with the new reagent—no more Select Case hunting
parties.

Select Case reagent

 Case iodine

 'work with iodine

 Case benzene

 'work with benzene

'etc etc for a 100 more cases in 100 different places

The For Each presumably loops through the collection of all possible testing
chemicals and, through the magic of polymorphism, the compiler will find the
right method to call in all the different reagent instances, depending on exactly
which class a specific reagent was an instance of. Use polymorphism correctly,
and you will never need to search for or those evil Select Case (switch) statements that
look at an object’s type in order to determine what to do.

How to Objectify Your Programs

In the really old days we practiced what we called structured, procedure-oriented
programming. We identified what needed to be done and then did one of two
things, either:

1. Broke the task to be accomplished into subtasks, and these into smaller
subtasks, until the subtasks were simple enough to be implemented
directly (in other words, the top-down approach).

or

2. Wrote procedures to solve simple tasks and combine them into more
sophisticated procedures, until we had the functionality we wanted (the
bottom-up approach).

Chapter 4

108

Most experienced programmers did not do what the professors suggested, of
course (which was the top-down approach), and instead used a mixture of the
top-down and bottom-up strategies to solve a programming problem.2

There are two important differences between OOP and procedure-oriented
programming:

1. In OOP, you first isolate the classes. Only then do you look for the meth-
ods and properties of the class.

2. You then associate each method or property with the class that is respon-
sible for carrying out the operation.

Which leads to the obvious question: How do you find the classes? A good rule
of thumb is that classes are the nouns in your analysis of the problem. In our
example, employees are one of the obvious nouns. The methods in your objects
correspond to the verbs that describe actions that affect the noun, as in RaiseSalary
(verb) which affects an Employee (noun). The properties are the adjectives that
describe the noun. Of course, the noun-verb-adjective correspondence to classes,
methods, and properties is only a first step. Only experience can help you decide
which nouns, verbs, and adjectives are the important ones.

Here is another example: Suppose you want to design a program to manage your
checking account using an object-oriented approach. Some obvious nouns are:

• Account

• Check

• Check register

• Deposit slip

These would lead to classes called Account, Check, CheckRegister, DepositSlip,
and so on. Next, look for verbs. Accounts need to be opened or closed. Checks need
to be added�to the register. The check register needs to be reconciled. Deposit slips
need to be totaled. With each verb, such as add, reconcile, and total, you have to
identify the one object that has the major responsibility for carrying it out. For
example, the deposit slip has the major responsibility for totaling itself up. Thus,
Total should be a method of the DepositSlip class.

At this point, we want to repeat one golden rule of programming that has not
changed in the march to OOP: keep things simple. Object-oriented programming
is much easier when the classes you build are not complex. A class with a simple

2. Sometimes called the “meet in the middle” approach to programming

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

109109

internal structure and limited relationships (coupling is the buzzword) to other
classes is much easier to grasp (and hence to code).

Describing relationships between classes is so important in OOP that a whole
industry has sprung up to explain how to make diagrams that make class relation-
ships clearer. The most common tool is called the uniform modeling language
(UML). These diagramming tools are usually part of the computer-assisted software
engineering (CASE) tools, such as Microsoft's Visual Modeler, Visio, and Rational
Software’s Rational Rose. (A version of Visual Modeler is included with some ver-
sions of VS .NET.)

A UML-based CASE tool can go from the diagram to actually building
the code skeletons for your classes. We recommend the Rational Web site
(www.rational.com/uml) for general overviews of UML.

What about Individual Objects?

Now that you have decided on the classes in your project, you will soon be
working with objects that are specific instances of these classes. The key to
working with specific objects is to identify the three “what’s” of an object:

1. What is the object’s state?

2. What is the object’s identity?

3. What is the object’s behavior?

Objects have information in their instance fields about what they do; you can
use special instance fields to store information about the object's history. Together,
this information defines what is usually called the object’s state. An object’s state
is not fixed forever, but, as we have said before, any change in the state of an
object must happen because of a message sent to the object.

The current state of an object does not completely describe it. Despite two
objects appearing to be in the same state and thus even looking, feeling, and
reacting the same, they are still different objects (as are two arrays with the same

TIP One common low-tech method for finding (and documenting) the classes in
your program is to start with a stack of index cards. You brainstorm on individual
index cards the various possible classes, using one card for each class. Make sure
each index card lists the name of the class, its responsibilities, and the other classes
it uses. You can use the back of each card for the instance fields. (Hence the name
CRC cards for them: CRC stands for class, responsibility, and collaboration.)

Chapter 4

110

data, for example.) Thus, each object also has a distinct identity. The behaviors of
an object are what it can do at a given moment and what it can potentially do in
the future. These are the members of the object, and in VB .NET this corresponds
to an object's properties, methods, and events.

These three characteristics obviously influence each other, so inside the class
your code needs to take this into account. For example, the behavior an object
can exhibit is influenced by its current state: a textbox that is disabled has quite
different behavior than one that is enabled, and your code must take this into
account when building the class. Or, if a deposit slip has not been totaled, it may
send out a caution message before allowing itself to be added to the check register.

Advantages to OOP

At first glance, the OOP approach that leads to classes and their associated
methods and properties is much like the structured approach that leads to
modules. But the key difference is that:

• Classes are factories for making objects whose states can diverge
over time.

Sound too abstract? Sound as though it has nothing to do with VB program-
ming? Well, this is exactly what the Toolbox is! Each control on the Toolbox in
earlier versions of VB was a little factory for making objects that are instances of
that control’s class.

Suppose the Toolbox was not a bunch of little class factories waiting to churn
out new textboxes and command buttons in response to your requests. Can you
imagine how convoluted your VB code would been if you needed a separate code
module for each textbox? After all, the same code module cannot be linked into
your code twice, so you would have to do some fairly complicated coding to build
a form with two identical textboxes whose states can diverge over time.

Because of the existence of the Toolbox, VB has always been object-based
and, since VB4, has had the ability to build certain kinds of objects. However, VB
.NET is the first version of VB that lets you build a class (factories) that can churn
out any kind of object using the full power of OOP—and do it on an equal footing
with C++ and C#. Moreover, as far as performance goes, all .NET languages are essen-
tially equally good at turning out classes.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

111111

Creating Object Instances in VB .NET

Except for strings and arrays where there is a shorthand for creating objects, you
use the New keyword every time you create an object in VB .NET, just as you did in
earlier versions of VB.

• Ιn OOP-speak, this is called instantiating a class.

This term makes sense because, after all, you are making an instance of the object.
For example, the .NET Framework comes with a useful Random class that has

quite a bit more functionality than the Rnd function that comes with the VB com-
patibility layer. You can fill an array of bytes with random numbers from 0 to 255
in one stroke, for example, or get a random positive integer in a specified range.
But Random is not a function; it is a class with methods that you can call on Random
object instances. And you can do this only after you make an instance of the
Random class.

So, before you can use the Random class’s nifty new features, you need to have
an instance of the Random class. There are various ways to do this, and they all
require calling the special New method. A longwinded way, but often the clearest,
way is to separate the declaration from the call to New:

Dim aRandomInstance As Random 'a declaration

aRandomInstance = New Random() 'followed by an instantiation

However, often you will see code that takes advantage of VB .NET’s ability to
initialize a variable at declaration:

Dim aRandomInstance As New Random 'combine declare and instantiation

which is functionally equivalent to the previous, except that it takes advantage of
VB .NET’s ability to initialize a variable at declaration.

In OOP-speak, the New method is called a constructor method or a constructor
for short (because you use it to construct instances of classes).

CAUTION Users coming from earlier versions of VB should note that:

• The Set keyword is gone (see the section on “Properties” later in this chapter for
a side effect of this departure).

• There is no functional difference between the two syntaxes for using New
except if an exception occurs (see Chapter 7) when instantiating the object.

Chapter 4

112

Some people, especially C# and Java programmers, like to code with a third
version that looks like a combination of the other two:

 Dim foo As Random = new Random() ‘very C#/Java like

This works exactly like the second form of object construction above.
You can also use the New method to construct an object in any VB .NET expression

in which the result makes sense. For example, the following is perfectly legal VB .NET
code (if not particularly easy to understand and hence a style we think to be avoided):

Console.WriteLine(New Random().Next())

(Of course, because you might see this style in code you have to maintain, it is
good to know it is possible. People coming with a C++/Java background often code
this way.)

Once you have an instance of the Random class, you access its functionality
with the familiar dot notation. Given the richness of the various classes in the
.NET Framework, IntelliSense will, of course, be there to show you what you can
do with instances of a class, as you can see in Figure 4-1.

CAUTION In earlier versions of VB, the shorthand form of object construction
had subtle differences from the longer form. These differences occurred because
the shorthand form did not actually create the object until it was first used. This
inconsistent behavior has been banished—VB .NET no longer allows for the
possibility of implicit creation of objects.

Figure 4-1. IntelliSense on the Random class

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

113113

For example, unlike the Rnd function from earlier versions of VB, you will not
have to convert numbers between 0 and 1 to useful positive integers. Instead, you
call the Next method, which returns a positive integer. Want a random integer
between 1 and 6? Use this code:

Dim aRandomInstance As New Random()

Dim die As Integer

die = aRandomInstance.Next(1, 6)

Console.WriteLine(die)

A reminder: while you usually must have an object instance to get access to
the power built into the class, there is an exception to the rule. The exception is
that certain functionality can be built into the class itself. You saw that in Chapter 4
with the Math class, where we were able to use Math.PI or Math.Sin() without using
the New method. Recall that members that belong to the class and not an instance
of the class are called shared members. Shared members may be accessed either
by using the name of the class or the name of an object variable that is declared to
be of the appropriate type. For example, if there is a class called Bar which has a
shared method called Foo you can use either:

Bar.Foo()

or

Dim test As Bar

test.Foo()

TIP The Random class is not useful for serious cryptography because the algo-
rithm it uses to generate the next random number is easily broken. The .NET
Framework is actually rich enough to include a (slower of course) cryptographi-
cally secure random number generator in the RandomNumberGenerator Class,
which is part of the System.Security.Cryptography namespace. (More on
namespaces later in this chapter.)

NOTE Shared members are called static members in some other languages,
such as C# and Java. Another term you will see occasionally is class member.

Chapter 4

114

More on Constructors: Parameterized Constructors

On the surface, the New constructor method does not seem all that different than it
was in earlier versions of VB. Under the hood, however, a lot has changed. The
most exciting change is that New can now take parameters. As you will shortly see,
when you create your own classes, your custom version of New replaces the Initialize
event from earlier versions of VB, which did not support parameters.

For example, the Random class has two versions of its constructor available. You
can use it without a parameter as we just did. In this case, you get random numbers
generated from a random seed based on the system clock. The other version looks
like this:

Dim aRandomInstance As Random

aRandomInstance = New Random(42)

You get a version of the Random class that generates repeatable values using 42 as
the seed (being able to use the same seed and thus getting the same sequence of
random numbers is absolutely necessary for debugging).

Ironically, the adding of parameterized constructors to VB is probably more
important to fully implementing OOP than is inheritance. You can work around
inheritance (often by aggregation), but it is a lot harder to work around not having
parameterized constructors. The point of adding parameterized constructors is to
prevent you from inadvertently creating an object in an indeterminate state. This
was always a problem in earlier versions of VB, because the Initialize event did
not take parameters. All you could do was use the convention of adding a routine
(often called Create) to your class to initialize objects, and it was up to the user of
your class to remember to call it. If they did not, then your object may not have
been properly conceived and its instance fields would have their default values.
This in turn could lead to subtle, hard-to-track-down bugs.

In VB .NET, as in all fully object-oriented languages, the only way to create an
object is with a constructor and, as you will see later in this chapter, you can require
that parameters be used for constructor methods in order to insure that your
objects are not created in an indeterminate state.

NOTE Having multiple versions of a function that differ only in their parameters is
called overloading. As you will see a little later on in this chapter, VB .NET supports
overloading in any function or procedure, not just the special New constructor
method. Overloading also can replace the use of optional parameters.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

115115

Example: The String Class

The String class is another good example of a class that comes with multiple
constructors. Although you can make a string by the shorthand means of simply
surrounding a bunch of characters with double quotes, for more specialized
string construction, it is best to change to the constructor approach. For example,
one of the constructors makes multiple copies of the same character:

Dim str As String = New String(CChar(" "), 37)

which gives you a string consisting of 37 spaces. Using this constructor is thus
equivalent to using the Space function. (Note that having Option Strict On requires
that you convert the string that contains a single space character to an actual
character using a conversion function.)

The general version of this constructor is:

 New(ByVal c As Char, ByVal count As Integer)

The other common String constructor is New(ByVal value() As Char), which
takes an array of characters and converts it to a string.

Example: The StringBuilder Class

The next example, a built-in class, is the very useful StringBuilder class that is part
of the utility System.Text namespace. (See the next section for more on namespaces.)
You should use this class instead of the ordinary String class whenever you need
to constantly change a string. The reason is, every time you change a string say by
adding a new character to it, VB .NET needs to create a new string and that takes
time. With an instance of the StringBuilder class, VB .NET just keeps on adding to
the original StringBuilder object.

TIP Since a string variable is now an object variable, remember that when you
add the “.” at the end of any string variable, IntelliSense will help you with a list of
the members of the String class.

Chapter 4

116

When you create an empty StringBuilder object with New, VB .NET sets aside
space for 16 characters and automatically adds space when you add more infor-
mation to the StringBuilder. Think of a StringBuilder object as being a very smart
array of characters that grows and shrinks as needed, and is thus in a way far
closer to what the String type did in VB6. The current size is called the capacity.
The StringBuilder class has six constructors that are described in Table 4-1.

Table 4-1. Six Constructors of the StringBuilder Class

CONSTRUCTOR DESCRIPTION

New() Parameterless, makes an empty StringBuilder object

with a starting capacity of 16 characters.

New(ByVal value As String) Constructs a StringBuilder object whose initial state is

the specified string.

New(ByVal capacity

As Integer)

Makes an empty instance but sets aside space for a

specified number of characters. Can still grow if

needed. (This is more efficient then letting the

StringBuilder object grow itself from scratch if you

know beforehand that you will need at least this much

space.)

New(ByVal capacity As

Integer, ByVal maxCapacity

As Integer)

Makes an empty StringBuilder instance and sets aside

space for the specified number of characters beforehand,

but allows growth only to the specified maximum. Any

attempt to add more than the maximum number of

characters results in an exception (see Chapter 7).

New(ByVal value As String,

ByVal capacity As Integer)

Makes a new StringBuilder object from the specified

string, starting with the specified capacity.

New(ByVal value As String,

ByVal startIndex As Integer,

ByVal length As Integer,

ByVal capacity As Integer)

Constructs a StringBuilder object from a substring of

a given string with a given starting capacity.

NOTE How much more time does this take? We ran a test using some code, which
you can see in the sidebar that follows. We found that using a StringBuilder to
build a string of characters was usually hundreds of times faster than using a
String. This ratio could be even larger in practice, because we did not use any of the
extra power of the StringBuilder class to avoid constantly reallocating space. An
optimized use of the StringBuilder class could be even faster. (On the other hand,
using an ordinary String is faster than using a StringBuilder when you just want
to access parts of a string and do not need to change it.)

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

117117

To quickly make a StringBuilder with 25,000 copies of the letter A, for
example, you would write:

Dim bar As New String(“A”, 25000)

Dim foo As New System.Text.StringBuilder(Bar)

The Chars property allows you to get or set a specific character in a StringBuilder.
It is zero based, so, if foo is a StringBuilder instance, then:

foo.Chars(1) =”b”

replaces the second character with a b.
The Length property lets you get or set the current length of the StringBuilder.

If you specify a Length less than the current size, VB truncates the StringBuilder
object. If you have created a StringBuilder object with a maximum capacity, then
you get an exception if the length you specify is greater than the maximum
capacity. (See Chapter 7 for more on exceptions.)

The members of the StringBuilder class that you will use most frequently are
very overloaded. They come in so many versions so that you can, for example, add
or remove strings, numbers, characters, or an array of characters equally well. For
example, the useful Append method adds characters at the end of the StringBuilder:

Dim foo As New System.Text.StringBuilder()

foo = foo.Append("A")

foo.Append("hello") 'adds 5 character

foo.Append(37) 'adds two characters

foo.Append(new Random()) '??

As the last line in the example indicates, you can actually append generic
objects to a StringBuilder. When you do this, VB automatically figures out the
string representation of the object (more precisely it calls the ToString method of
the object) and adds that string to the StringBuilder. Of course, how useful the
string representation of an object is depends on the implementer of the class. In
our example code, you get the not very useful string System.Random rather than a
random number. (But foo.Append(New Random().Next works fine.)

An Insert method:

Insert(ByVal index As Integer, ByVal thing As Object)

inserts the specified object or value into the StringBuilder at the specified posi-
tion.

Chapter 4

118

The Remove method, which removes the specified number of characters
starting at the specified position, is similar:

Remove(ByVal startIndex As Integer, ByVal length As Integer)

The Replace method is overloaded to allow you do a bunch of neat things:

• Replace(ByVal oldChar As Char, ByVal newChar As Char): Replaces all
instances of the old character with the new one

• Replace(ByVal oldValue As String, ByVal newValue As String): Replaces all
instances of the old string with the new one

You can also use:

Replace(ByVal oldChar As Char, ByVal newChar As Char, ByVal startIndex As Integer, _

ByVal count As Integer)

and

Replace(oldValue As Stringr, ByVal newValue As String, ByVal startIndex As Integer, _

ByVal count As Integer)

to replace all instances of the string or the character in a specified range (the count
parameter gives you the length of the region).

You call the ToString method to convert a StringBuilder to a String when you
do not want to make any more changes to it and only want to look at its parts from
that point on.

CAUTION There is an Equals method in the StringBuilder class, but unlike
strings, two StringBuilder objects with the same content are not necessarily
equal. (The rationale is that in the .NET Framework, once a.Equals(b) is true it
must always be true, which obviously cannot happen for StringBuilder objects
because they can change.) We recommend not using the Equals method on
StringBuilder objects.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

119119

...

Timing Operations—And Just How Much Faster
Is a StringBuilder, Anyway?

Although Microsoft does not allow you to publish explicit timings with beta software
(for the very good reason they are pretty much meaningless due to the amount
of debugging code contained in beta builds), relative timings are often useful
and will almost certainly remain relatively true. (It is possible that optimizations
in the released version may slightly affect relative timings, but this is much less
likely than with absolute timings.)

Timing code in VB .NET is easily done by combining the Now method with the
Ticks method in the DateTime class. As you might expect, the Now method tells
you what time the system clock is reporting. The Ticks method returns a Long
equal to the number of 100-nanosecond intervals that have elapsed since 12:00
AM on 1/1/0001 (the year 1). (A nanosecond is 10^-9 of a second or 1 billionth of
a second in U.S. units.)

Here is the code we used to test how much faster appending to a StringBuilder
class is than appending to a String. (The larger the number of characters you
add to the string, the faster a StringBuilder will be; with 50,000 characters, we
were getting 800+ times improvement!)

Option Strict On

Module Module1

 Sub Main()

 Dim i As Integer

 Dim StartTime As New DateTime()

 Dim EndTime As New DateTime()

 StartTime = DateTime.Now()

 Dim theText As New System.Text.StringBuilder()

 For i = 1 To 50000

 theText = theText.Append("A")

 Next

 EndTime = DateTime.Now

 Dim answer1, answer2 As Long

 answer1 = EndTime.Ticks() - StartTime.Ticks() 'number of 100 nanosecond pulses

 StartTime = DateTime.Now()

 Dim aString As String

 For i = 1 To 50000

 aString = aString & "A"

 Next

 EndTime = DateTime.Now

 answer2 = (EndTime.Ticks() - StartTime.Ticks()) 'number of 100 nanosecond pulses

 Console.WriteLine("StringBuilder was " & answer2 / answer1 & " times faster.")

 Console.ReadLine()

 End Sub

...

End Module

Chapter 4

120

Namespaces

The potential for conflicts between method names exists whenever you use other
people’s code. And even forgetting about these kind of conflicts, you need some
way to group thousands of methods in such a way that you have some hope of
remembering how they fit together. Thus, there has to have a way of organizing
information in as rich a framework as is supplied with .NET. In .NET this is done
with namespaces. (You can create your own namespaces, and we show you how to
do so later in this chapter.)

The idea is that, just as every town seems to have its own Main Street, every
library of networking code might have its own Open method. Namespaces give you
a way to distinguish between them. For example, the System.IO namespace is
where you find methods to handle files and, as you might expect, there is a class
called File in it for handling files and it has an Open method. Its full name is:

System.IO.File.Open

because the File class is part of the System.IO namespace and will not conflict
with another File class that might be part of the Cornell.Morrison.NiftyClasses
namespace, which could have its own Open method.

Imports

Just as we normally do not use a person's full name when referring to people
familiar to us, .NET also has a way of avoiding a lot of superfluous verbiage. This is
done through the use of the Imports statement. With the right Imports statement, we
can replace all those uses of:

System.Text.StringBuilder

with just a simple:

StringBuilder

Note that the System class is automatically imported into every solution you
build with Visual Studio. This is why you can use:

Console.WriteLine()

rather than

System.Console.WriteLine()

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

121121

You can get or change the list of the namespaces that are automatically
imported for a solution by looking at the Imports page in the solution’s property
pages, as you can see in Figure 4-2:

In the Object Browser, the automatically imported Microsoft.VisualBasic
namespace contains the functions (such as the financial functions) that were part
of Visual Basic and were kept in VB .NET (see Figure 4-3).

If you import the Microsoft.VisualBasic.Constants, you can reuse most of the
VB constants that you have used before, such as vbCRLF. Note that the .NET versions of
many of these constants do not use a VB prefix (for example, CrLf) and are stored
in the Microsoft.VisualBasic.ControlChars namespace.

The Imports statement goes before any other declarations, such as the
ones defining the name of a module, but after any Option directives, such as
Option Strict On or Option Compare Text.

Figure 4-2. The Imports page in the solution’s property pages

TIP We have to confess that we were amazed to discover that IntelliSense
works with the Imports statement and shows you which namespaces you can
import into your project. It does this by looking at what assemblies are refer-
enced in the solution.

Chapter 4

122

Using Imports does not bloat your code, because it does not make all the code
in the namespace part of your project—it merely simplifies the typing of the
names of members of the classes in the namespace in your code. It does not affect
the speed of the resulting program either. Also, you can only import namespaces
that are part of a referenced assembly, which are what you get by working with the
Project|Add Reference dialog box. (See Chapter 13 for more on assemblies.)

Note that if two imported namespaces contain classes with identical names,
you have to give the full name of the class, including its namespace, to distinguish
them. (VB .NET will not allow you to create two classes with the same name in the
same namespace.)

Next, you can use a special version of Imports to simplify typing when you
have the potential for name conflicts with classes you have already imported. For
example, if you really wanted to use the VB6 compatibility layer (not that we
recommend it), you have to be aware that it will almost certainly introduce

Figure 4-3. The Microsoft.VisualBasic namespace in the Object Browser

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

123123

namespace conflicts. You can add a reference to the VB compatibility layer and
then use a line like this:

Imports VB6Stuff = Microsoft.VisualBasic.Compatibility.VB6

and start writing VB6Stuff followed by a “.” whenever you need a member of the
compatibility layer, without having to worry about name conflicts.

You cannot import an individual class to avoid typing the class name for its
members. A statement such as:

Imports System.IO.DirectoryInfo

to simply get at the members of the DirectoryInfo class is not allowed.

A DirectoryInfo Example

As an example of using Imports in some mildly interesting code, we will use
DirectoryInfo class in the System.IO namespace. As you might expect, Directory-
Info has methods to get subdirectory information inside a directory, print out the
full name of a directory, and so on. One of the constructors for this class takes a
string that gives the name of the directory you want to analyze. (If you do not give
the full path name, it resolves the name relative to the location of the program.)
With the correct Imports statement, you can replace the longwinded:

Dim dirInfo As New System.IO.DirectoryInfo("C:\")

with

Dim dirInfo As New DirectoryInfo("C:\")

which is shorter and easier to understand. The following small program uses
recursion and the DirectoryInfo class to display a list of all the directories on your
hard drive. The key to this code is that the GetDirectories() method returns a
collection of subdirectories. By using this collection, we can call our function
recursively on individual subdirectories.

Chapter 4

124

Option Strict On

Imports System.IO

Module Module1

 Sub Main()

 Dim dirInfo As New DirectoryInfo("C:\")

 ListDirectories(dirInfo)

 End Sub

 Sub ListDirectories(ByVal theDirectory As DirectoryInfo)

 Dim tempDir As DirectoryInfo

 Console.WriteLine(theDirectory.FullName())

 For Each tempDir In theDirectory.GetDirectories()

 ListDirectories(tempDir)

 Next

 End Sub

End Module

(If you are accustomed to using a cached version of the old Dir function to work
recursively with a directory structure, you will appreciate how short such a program
can be in .NET, with the power of the DirectoryInfo method!)

Help and the (Vast) .NET Framework

The .NET Framework provides hundreds of namespaces with many useful classes
inside each of them. The Framework’s size and power rivals that of the full Win32
API. It is so complex that to fully describe every piece of it in a single book is
impossible. Although we give you a glimpse of many of the Framework’s classes in
this chapter, you really need to start browsing the .NET documentation as soon as
possible. You might start by looking in the .NET Framework Class Library for
descriptions of the namespaces that interest you. The help system lists all the
classes in each namespace, as you can see in Figure 4-4.

CAUTION When we were developing this example, we originally named this
solution DirectoryInfo without thinking. This had the effect of essentially
preventing the Imports statement from working correctly! The moral of the hour
or so we lost in trying to figure out what was wrong is: do not give your solutions
the same names as classes in the .NET libraries!

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

125125

Each class name in the namespace page is a hyperlink to a description of the
class. Once you are in the class that interests you, a hyperlink to the members of
the class is shown at the bottom of the page that describes the class. Clicking on
the hyperlink takes you to a page that lists all the members of class, where the
name of each member is itself a hyperlink to a more detailed discussion of that
member. Note that the .NET Framework does not treat VB .NET as a second-class
citizen—the syntax for all members is given in VB, VC, and C#. Figure 4-5 shows
an example of the beta 2 documentation for the members of DirectoryInfo.

Figure 4-4. System.IO namespace in the Help system

Chapter 4

126

To figure out how to code the previous example, we clicked on the DirectoryInfo
members link at the bottom of the page and then on GetDirectories hyperlink to
look at the syntax for this method, shown in Figure 4-6. (We will explain terms in
the documentation such as “Private” later in this chapter.)

Figure 4-5. The Help system at work for the DirectoryInfo class

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

127127

Example: The Framework Collection Classes

We wanted to whet your appetite for studying the .NET Framework by briefly
discussing some of the framework’s collection classes. Collection classes give you
access to the typical data structures that many sophisticated programs need. They
are so important that they are automatically imported in every VB .NET solution
by default (as part of the System.Collections namespace).

Collectively, these classes go way beyond what you had with VB6’s primitive
Collection class. Table 4-2 summarizes the most useful collection classes. The next
two sections cover the fundamentals of two of the most useful classes (ArrayList
and HashTable); we will leave the very important DictionaryBase class to the next
chapter, when we cover inheritance.

Figure 4-6. The Help system at work for the GetDirectories method

Chapter 4

128

ArrayList

This class implements a smart array—an array that automatically grows and
shrinks as needed. Although a little slower than ordinary arrays, they make certain
coding tasks much, much easier. Also, unlike most arrays, an ArrayList is always
potentially heterogeneous. This means a basic ArrayList can always hold items of
differing types. (See Chapter 5 for how to make an ArrayList that can hold items of
only a single type, and for some of the subtleties that arise because an ArrayList
can hold generic objects.)

Using an ArrayList instead of a basic array means that you do not need to
constantly use ReDim Preserve in order to build up the data. Just call the Add method
and let ArrayList handle the bookkeeping. The class also has quite a few other
useful built-in methods. For example, AddRange lets you add all the items in an
array to an array list with a single command. You can always copy an array list
back to an array when you are finished. This gives you a quick way to merge two
arrays, for example. Table 4-3 describes the most important members of the
ArrayList class (consult the online Help for a complete list).

Table 4-2. Useful Collection Classes

CLASS NAME DESCRIPTION

ArrayList A smart array whose size dynamically increases and shrinks

as needed.

BitArray Useful for individual bit manipulations. (Very popular in

benchmarks for things such as primality testing.)

DictionaryBase The base (parent) class for various kinds of dictionaries.

Dictionaries let you store key/value pairs in a way that is usually

more useful then the various collection classes. (There is a

comparable CollectionBase class, however, for collection classes.)

DictionaryBase is similar to a PERL associative array. It can be

used only via inheritance (see Chapter 5).

Hashtable Represents a collection of associated keys and values that are

organized based on the hash code of the key.

Queue For first-in, first-out (FIFO) structures.

Stack For last-in, first-out (LIFO) structures.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

129129

Table 4-3. Important Members of ArrayList Class

MEMBER DESCRIPTION

Add Adds an object to the end of the ArrayList.

AddRange Allows you to add, for example, the contents of another array or

array list at the end of the current array list. This and InsertRange

allow let you to merge arrays quickly via an ArrayList helper class.

BinarySearch Implements a binary search to look for a specific element in a

sorted ArrayList or a portion of it.

Capacity Gets or sets the number of elements that potentially can be stored in

the ArrayList. Changes when you add items, of course, but changes

are made in gulps, or large increments for efficiency reasons.

Clear Removes all elements from the ArrayList.

Contains This useful method searches the array list to determines whether

an element is in the ArrayList.

CopyTo Copies the ArrayList or part of it to a one-dimensional array at a

specified index in the target.

Count Gives the actual number of elements currently stored.

GetRange Returns another ArrayList that is a continuous part of the current

ArrayList.

IndexOf ArrayLists, like arrays, are zero based so this returns the zero-

based index of the first occurrence of an item.

Insert Inserts an element into the ArrayList at the specified index.

InsertRange Inserts the elements of a collection into the ArrayList at the

specified index.

Item Gets or sets the element at the specified index. Is the default

property of ArrayList.

LastIndexOf Returns the (zero-based) index of the last occurrence of an item.

Length Returns the number of items.

ReadOnly Returns a new ArrayList that is read-only. (Use IsReadOnly to

check to see if an array list is read-only.)

Remove Removes the first occurrence of the specified item.

RemoveAt Removes the item at the specified index.

RemoveRange Removes a range of elements.

Chapter 4

130

One of the more interesting properties of ArrayList is the Item property, which
gives you the item at a specified (zero-based) index. For example:

Console.WriteLine(myList.Item(1))

Item is actually the default property of the ArrayList class. This means that
you do not have to use it explicitly. For example, the above line and this line:

Console.WriteLine(myList(1))

have the same effect. (See the section in this chapter on Properties for more on
how default properties have changed in VB .NET from the way they were in earlier
versions of VB.)

The following short program shows you how you can use an ArrayList to pick
up an indeterminate amount of data and store it without using the ReDim Preserve
that would be necessary with an ordinary array:

Option Strict On

Module Module1

 Sub Main()

 Dim myList As New ArrayList()

 Dim theData As String

 Console.Write("Please enter each item and hit Enter key," _

 & " enter ZZZ when done: ")

 theData = Console.ReadLine()

 Do Until theData = "ZZZ"

 myList.Add(theData)

Repeat Returns an ArrayList containing a specified number of elements,

all of which are the same.

Reverse Reverses the order of the elements in the ArrayList or a portion of it.

SetRange Copies the elements of a collection over a range of elements in the

ArrayList.

Sort Sorts the elements in the ArrayList (or a portion of it).

ToArray Overloaded. Copies the elements of the ArrayList to a new array.

TrimToSize Use this method after you are finished with the ArrayList in order

to trim the capacity to the actual number of elements currently

stored. (It can grow later, of course.)

Table 4-3. Important Members of ArrayList Class (Continued)

MEMBER DESCRIPTION

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

131131

 Console.Write("Please enter each item and hit Enter, " _

 & " enter ZZZ when done: ")

 theData = Console.ReadLine()

 Loop

 Console.WriteLine("You entered " & myList.Count() & " ITEMS.")

 Console.ReadLine()

 End Sub

End Module

Hashtables

One of the nifty features of arrays and array lists is the ability to go directly to an
item given its index. The trouble, of course, is that you have to know the index of
an item. Hashtables are a data structure that give you this kind of random access
to data from a key. The idea is, given a hashtable named theData, for example:

theData(“Bill's Address”)

you get back Bill’s address without having to write code for walking through every
item in the hashtable. Hashtables are therefore extremely useful when you need
quick access to a value by working backwards from a (unique) key. Of course,
implementing the code for a hashtable class is nontrivial, but thankfully, it is
already written for you as part of the .NET Framework.3

3. The problem is to come up with a good hashing function to compute the index of the data
from the key as well as dealing with the inevitable problem of two items having the same hash
code which causes a collision. Pretty colorful terminology…

NOTE A Dictionary is another kind of data structure you use to get at values
from keys. Dictionaries are most often implemented as hashtables with some
extra code for special purposes such as detection of duplicate values or keys.

Chapter 4

132

Table 4-4 describes the most useful methods in the Hashtable class (as before,
you will find the complete list in the on-line help):

An example of using the Hashtable class is to store the items returned by the
System.Environment class’s nifty Environment.GetEnvironmentVariables method.
Here is a little program that reports all the environment variables and their values.
(You can end the program at any time by closing the console window.) We will
explain a couple of subtle points after you have a chance to look at the code.

Table 4-4. Useful Methods in the Hashtable Class

NAME DESCRIPTION

Add Adds the key/value pair to the Hashtable.

Clear Removes all the items from the Hashtable.

ContainsKey Determines whether the Hashtable contains a specific key (case

sensitive).

ContainsValue Determines whether the Hashtable contains a specific value (case

sensitive).

CopyTo Copies the Hashtable entries to an array.

Count The number of key/value pairs in the Hashtable.

Item Default property. Gets or sets the value associated to with the

specified key.

Keys Returns an object you can iterate over (via For-Each) to get all the

keys in the Hashtable.

Remove Removes the value with the specified key from the Hashtable.

Values Returns an object you can iterate (via For-Each) to get all the keys/

values in the Hashtable.

CAUTION The methods in the basic Hashtable class are case sensitive for string
keys and this is not affected by any Option Compare Text statements in effect. (See
Chapter 5 for how to write a case-insensitive hashtable.)

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

133133

1 Option Strict On

2 Imports System.Environment

3 Module Module1

4 Sub Main()

5 Dim eVariables As Hashtable

6 eVariables = CType(GetEnvironmentVariables(), Hashtable)

7 Console.WriteLine("Press Enter to see the next item")

8 Dim thing As Object

9 For Each thing In eVariables.Keys

10 Console.WriteLine("The environment variable named " _

11 & thing.ToString()& " has value " & eVariables(thing).ToString())

12 Console.ReadLine()

13 Next

14 End Sub

15 End Module

First off, Line 6:

eVariables = CType(GetEnvironmentVariables(), Hashtable)

takes advantage of the Imports statement in order to simplify typing. Next, it uses
the CType function4 to convert the return value of the GetEnvironmentVariables()
method to a hashtable. Lines 8 and 9 use a variable of type Object to iterate over
the hashtable:

Dim thing As Object

For Each thing In eVariables.Keys

This is necessary because hashtables, out of the box, store only objects. However,
because everything in VB .NET is ultimately an object, you can store environment
strings in the thing variable. Next, the code iterates over the Keys collection to get
each key and then uses this key together with the default Item property to get the
value. Note that line 11 could have also been written:

eVariables.Item(thing)

Also, line 11 repeatedly uses the ToString method, which every class has (see
Chapter 5 for more on this important method) to print out a string representation
of the key.

4. It is possible this conversion will fail in future versions of .NET.

Chapter 4

134

More on Object Variables

When we use lines of code such as:

Dim thing As New Object

Dim aRandomInstance As New Random

to declare and instantiate two variables, we create two object variables called
thing and aRandomInstance. The former holds a new instance of Object type, and
the latter holds an instance of the Random class. Note that even with Option Strict On
(which you always should have set) the following line is acceptable, because
everything in VB .NET is ultimately an object:

thing = aRandomInstance

but this one is not

aRandomInstance = thing

because not every object is an instance of the Random class.
Think of an object variables as (potentially) being a handle on an area of

memory (although because memory can move around, it will not be a fixed area
of memory). Object variables are also referred to as references or smart pointers. In
most cases, once you use the equals sign together with New, you attach the handle
to the area of memory being used for that object. (There are some subtleties involved
with what are called value types, which we cover later in this chapter.)

Because you have a handle on an area of memory, assignment statements
between two object variables give you another handle on the same area of memory.
It is as if you have a piece of luggage with two handles and thus can lift it up by
either handle. Still, if you do not keep in mind that you are grabbing onto the
same chunk of memory with two different variable handles, this will come back
and bite you. More precisely, changes you make to the state of the object using
one of the variables that refers to it will also affect the other. In this code, for example:

TIP As you will see in the next chapter, every VB .NET type inherits from the
Object type. This is why you can store anything in VB .NET in a variable declared
as an Object type. You can also use the methods of the Object class on any object
you create in VB .NET. For example, because the Object class has a ToString
method, every class gives you (depending on the implementer of the class) a more
or less useful string representation of the object . ToString is automatically called
in code such as Console.WriteLine(foo).

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

135135

Sub Main()

 Dim A As New ArrayList()

 Dim B As ArrayList

 B = A

 B.Add("foo")

 Console.WriteLine(A.Count)

 Console.ReadLine()

End Sub

the A array list also contains the string foo and so returns a count of 1.

Because strings and arrays are objects in VB .NET, keep in mind that the variables
you used for them are now object variables. As you saw in Chapter 3, this has the
useful consequence that you can use the “.” to access features built into their
associated classes. For example, if anArray is a variable storing an array, you can
simply use anArray.Sort() and it is sorted by an awesomely efficient QuickSort.

As with earlier versions of VB, you can also use object variables to save typing.
For example, this lets you use the shorter aBox in code such as this:

Dim aBox As System.Windows.Forms.TextBox

aBox = MyForm.TextBox1

NOTE If you are familiar with languages that make extensive use of pointers,
such as C or Pascal, then you will see that object variables have many of the features
of pointers. The key differences are that object variables are automatically deref-
erenced and arithmetic is not possible on them.

CAUTION Nothing comes without a price, however; there are some hidden gotchas
for object variables that are passed into procedures by value, which therefore
affect commonplace objects such as arrays. We take this up in the section called
“Subtleties of Passing Object Variables by Value,” later in this chapter.

Chapter 4

136

This shortcut is often combined with the With keyword, as in:

 With aBox

 .AutoSize = False

 .Height = 1000

 .Width = 200

 .Text = "Hello"

 End With

Is and Nothing

The Is operator lets you determine whether two object variables are handles that
refer to the same area of memory. For example, the following code gives you True
twice, because all the object variables after the assignment statement refer to the
same area of memory:

Dim Object1 As New Object()

Dim Object2 As New Object()

Dim Object3 As New Object()

Object2 = Object1

Object3 = Object2

Console.WriteLine(Object1 Is Object2)

Console.WriteLine(Object1 Is Object3)

As in earlier versions of VB, you assign an object variable to Nothing in order to
remove its “attachment” to an area of memory. When an object variable “is” Nothing,
there is no object currently assigned to that variable. This is also the initial state of
object variables that you declare but have not yet initialized or assigned. You can
test to see whether an object variable is Nothing using code such as this:

If anObject Is Nothing Then

 ' nothing to work with so assign it

Else

 ' already assigned

End If

(See the section on “Garbage Collection and Termination” for more on what
assigning object variables to Nothing does.)

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

137137

TypeName and TypeOf

Because variables you declare as Object can hold varying things, you obviously
need a way of determining the type of object currently stored in an object variable. VB
.NET gives you two ways of doing this: the TypeName function and the TypeOf...Is
operator.

The TypeName function returns a string that describes the type. For all but basic
types, you must first use the New operator or Nothing is returned. For example, this
code displays the sting “Nothing” in a console window:

Dim anSBuilder As System.Text.StringBuilder

Console.WriteLine("My type name is " & TypeName(anSBuilder))

but this gives the string “StringBuilder” in the console window:

Dim anSBuilder As New System.Text.StringBuilder()

Console.WriteLine("My type name is " & TypeName(anSBuilder))

Note that TypeName does not give the full name of the class, which is why you do
not see

System.Text.StringBuilder

as the result of this call.
If you ask for the TypeName of an array that is dimensioned, you get a string fol-

lowed by empty parentheses. For example:

Dim aThing(5) As Integer

Console.WriteLine("My type name is " & TypeName(aThing))

returns Integer().
The TypeName function is usually the best choice for debugging, but the TypeOf…Is

operator is usually a better choice in production code, because using it is much
faster than doing the string comparison necessary when using TypeName. The
syntax looks like this:

If TypeOf aThing Is System.Text.StringBuilder Then

 ' is a StringBuilder

End If

Chapter 4

138

Subtleties of Passing Object Variables by Value

You cannot have programmed in earlier versions of VB (or most any other language)
without having a pretty clear idea in your mind about the difference between
passing by reference and passing by value into a procedure or function. (Remember
that in VB .NET, variables default to passing ByVal for every parameter if you do
not explicitly use ByVal.)

Still, most programmers use the rule of thumb that if you pass by reference,
any changes you make inside the procedure live back in the calling code, but if
you pass by value, then changes will be forgotten. Unfortunately, when it comes to
object variables, what you have always thought or used as a rule of thumb is no
longer unconditionally true. We strongly suggest you run the following code,
which passes an array to a procedure by value. Notice that it changes the array in
the original code after a “pass by value”!

Module Module1

 Sub Main()

 Dim a() As String = {"HELLO", "GOODBYE"}

 Console.WriteLine("Original first item in array is: " & a(0))

 Console.WriteLine("Original second item in array is: " & a(1))

 Yikes(a) 'call sub ByVal!

 Console.WriteLine("After passing by value first item in array now is: " _

 & A(0))

 Console.WriteLine("After passing by value second item in array is: " _

 & A(1))

 Console.ReadLine()

 End Sub

 Sub Yikes(ByVal Foo As String())

 Foo(0) = "GOODBYE"

 Foo(1) = "HELLO"

 End Sub

End Module

CAUTION The TypeOf…Is operator returns True if an object is of a specific type or
inherits from this type. So, because everything in .NET inherits from Object, if you
use this operator to determine whether something is an Object you will always get
True, even though it is probably a more sophisticated type than Object. If you need
to find out the exact type of an object variable, use the GetType method.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

139139

 You should see the ouput shown in Figure 4-7:

The behavior of this program is disconcerting to say the very least: we are passing
the array by value and yet changes persist back to the calling code. This would
certainly not have happened in earlier versions of VB. Just what is going on here?

The root cause of the strange behavior is that passing by value has always
meant that you make a copy of the variable, and when the procedure exits, you
lose the copy of the variable. But when you pass an object variable by value to a
procedure, you are telling VB .NET to make a copy of a handle to an area of memory.
And, for the duration of the procedure, you can use that temporary handle to
affect that area of memory. At the end of the procedure call, the copy of the original
handle is disposed of, but the changes made to the area of memory persist.

A good analogy to what goes on when you pass an object variable by value is
that you are temporarily attaching a new handle to an old piece of luggage; you
can move the luggage via the new handle and even after the new handle is taken
off, the luggage is still in its new position.

The one exception to this strange behavior is if the object type is immutable.
The only common immutable object type you will use on a daily basis is the
String class. Because immutable means unchangeable, passing by value does
what you expect, as the following code demonstrates:

Option Strict On

Module Module1

Sub Main()

 Dim A As String = "hello"

 NoProblem(A)

 Console.WriteLine("After passing by value the string is still " & A)

 Console.ReadLine()

End Sub

Sub NoProblem(ByVal Foo As String)

 Foo = "goodbye"

End Sub

End Module

Figure 4-7. Output from previous code

Chapter 4

140

Building Your Own Classes

It is now time to start building your own classes. You can choose Project|Add Class,
which gives you a way to have the code for the class in a separate class module file,
just as in VB6, or you can simply type the code for the class inside a module, such as
the startup module that contains the entry point to your console application.

VB .NET does not care how many class definitions you put into a file. Class
members typically include one or more constructors, properties for finding and
affecting the object’s state, and methods for actions you want to perform. For
example, consider the simplest possible Employee class, one that encapsulates
only a name and a salary, along with some test code to run it. The class has only
two read-only properties to give back the name and salary; it has no methods.

1 Module EmployeeTest1

2 Sub Main()

3 Dim Tom As New Employee("Tom", 100000)

4 Console.WriteLine(Tom.TheName & " salary is " & Tom.Salary)

5 Console.ReadLine()

6 End Sub

NOTE VB .NET does have what are called value types, such as ordinary numbers,
dates, and enumerated types. (You can also build your own value types, as you
will see later on in this chapter.) For a value type, passing by value works like
traditional passing by value. Only mutable reference types that you pass by
value have the unexpected behavior we just showed you.

TIP For testing purposes, we like the idea of tying each class to a Sub Main that
can test it. So, we tend not to put individual classes inside separate class modules
but rather place them inside a code module that contains a separate Sub Main to
test them. If you choose to follow us, keep in mind that code defined at the module
level is visible even without the module name, wherever the module itself is visible.
Thus, these form the equivalent of global variables and functions in VB .NET—
and have all the dangers associated with global data.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

141141

7 'define the class

8 Public Class Employee

9 Private m_Name As String

10 Private m_Salary As Decimal

11 Public Sub New(ByVal sName As String, ByVal curSalary As Decimal)

12 m_Name = Sname

13 m_Salary = curSalary

14 End Sub

15 Public ReadOnly Property TheName() As String

16 Get

17 Return m_Name

18 End Get

19 End Property

20 Public ReadOnly Property Salary() As Decimal

21 Get

22 Return m_Salary

23 End Get

24 End Property

25 End Class

26 End Module

First off, in lines 2–6 we again use a Sub Main in a module as the entry point for
the compiler. When a Sub Main is the startup object (which is the default, but you
can also you set in via the Project Properties dialog box), it is responsible for creating
the initial object instances. After that, the object created most often goes off and
creates other objects in response to messages they receive. This does not happen
in this simple program, of course.

The actual object creation is done in line 3, which is the key line for testing
this program. This line constructs a new Employee object by passing as parameters
into the New method the name of the employee and the initial salary. In line 4, we
access two properties, TheName and Salary, to verify that the employee object was
created with the correct initial state.

Lines 8–25 define the Employee class. As we said previously, for ease of testing
we decided to make this class code part of the original module, although we could
have selected Project|Add Class to get a separate file for the class.

Now we will dissect the definition of the class line by line. In line 8, the keyword
Public is an access control attribute that determines who can create instances of
the class. In this case, we are making this class Public so, in theory, anyone can use
the class once we compile it by adding a reference to the assembly that contains
it. (See Chapter 13 for more on assemblies.) To make this class usable only by the
code in our project and not by any outside code, we would replace the Public
access keyword with the Friend access keyword.

Chapter 4

142

Lines 9 and 10 define private instance fields in order to maintain the state of
the object. As we have said repeatedly, instance variables should always be private.
We always use an m_or simply an m prefix for instance fields in our class and
module definitions.

Lines 11–14 define the all-important constructor that we call to create an
instance of this class. As is usually the case, the constructor sets the values of the
hidden instance fields, depending on the parameters passed into it.

Lines 15–19 and 20–24 define two public read-only properties that let you
read the current state of the object. We use the new keyword Return, but you can
also use the older assignment statement form, using the name of the property:

Get

 TheName = m_Name

End Get

Even in this form the syntax for a property procedure is a little different than
in VB6: the old Property Get/Property Set syntax is gone.

We will now modify the program to change the salary property to be read-write.
All we have to do is remove the ReadOnly keyword and write:

Public Property Salary() As Decimal

 Get

 Return m_Salary

 End Get

 Set(ByVal Value As Decimal)

 m_Salary = Value

 End Set

End Property

The key point in this modified code is that you use the reserved word Value to
pick up the new value of the property. In other words, when you assign to this
property using a line like this:

Tom.Salary = 125000

the value of the Value parameter is automatically set to 125000.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

143143

Next, suppose we want to go back to having Salary as a read-only property
and add a method to raise the salary. A method is simply a function or sub, and we
do not need to return a value for this method, so we choose a sub:

Public Sub RaiseSalary(ByVal Percent As Decimal)

 m_Salary = (1 + Percent) * m_salary

End Sub

Members of a class can be either Public, Private, or Friend. Use the Private
modifier if that member is a helper member to be used internally only.

Instancing and Access Control Attributes

Access control attributes on the class control who can create objects of that type.
Roughly speaking, they are the VB .NET equivalent of the Instancing property
used in VB6, although you often have to use the correct one on the constructors in
your class in order to obtain a match to certain VB6 instancing values. Table 4-5
summarizes how the VB6 Instancing property matches to an access attribute of
the class combined with an access attribute on the constructors of the class.

NOTE Although they are unusual, you can use write-only properties as well.
Use the keyword WriteOnly before the name of the property and then use only
the Set part with no Get part.

NOTE Interestingly, you can also have private constructors. Under what cir-
cumstances would you have a private constructor? Make a constructor
private if that particular constructor should be used only within the class.

CAUTION Friend (accessible only from within the program) apparently is the
default access level in VB .NET for classes and their members. As you know, we
think leaving the access control modifiers off of your members is a very bad
programming practice—especially because the default is not Private.

Chapter 4

144

Me

Because you are using a class to stamp out object instances, you need a way to
refer to the object whose code is being executed. The Me reserved word always acts
as an object variable that refers to the current instance whose code is running.
Use Me to be sure that you will be executing code in the current class.

Having said that, we also have to point out that one of the most common,
annoying (we think) uses of Me is found in code like this:

Public Class Point

 Private x As Integer

 Private y As Integer

 Public Sub New(ByVal x As Integer, ByVal y As Integer)

 Me.x = x

 Me.y = y

 End Sub

 ' more code

End Class

Here the code uses Me.x to distinguish the instance field x from the parameter
x used in the New method. We think the m prefix convention is a whole lot clearer,
but C# uses this kind of code a lot, so you may see it in code you have to maintain.

Overloading Class Members

We can be a little more sophisticated in our approach to the RaiseSalary method
in our Employee class. For example, suppose a raise of up to 10 percent goes
through automatically, but anything larger requires a special password. In earlier
versions of VB, you would have used an optional parameter to do this. Although
you can still do this in VB .NET, your code will be much clearer if you use two different

Table 4-5. Instancing Properties and Access Control Attributes

VB6 INSTANCING VB .NET VERSION

Private Private class

PublicNotCreatable Class is Public but declare the constructor as Friend

MultiUse Class and constructors should be Public

SingleUse and

GlobalSingleUse

No counterparts in VB .NET

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

145145

RaiseSalary methods. The idea is to take advantage of VB .NET’s support for over-
loading to show that there are two methods involved.

VB .NET makes it pretty easy to indicate that a method is overloaded: you use
two methods with the same name and different parameters. However, we strongly
recommend using the Overloads keyword to tell users of your code that you are
deliberately overloading a method. For example, here is code that gives you the
two different methods for raising salaries we just described:

Public Overloads Sub RaiseSalary(ByVal Percent As Decimal)

 If Percent > 0.1 Then

 'not allowed

 Console.WriteLine("MUST HAVE PASSWORD TO RAISE SALARY MORE THAN 10%!!!!")

 Else

 m_Salary = (1 + Percent) * m_salary

 End If

 End Sub

 Public Overloads Sub RaiseSalary(ByVal Percent As Decimal, _

 ByVal Password As String)

 If Password = "special" Then

 m_Salary = (1 + Percent) * m_Salary

 End If

End Sub

Here is the code for our sample Employee class that overloads the RaiseSalary
method, along with some code to test it. (Note that we use a constant for the 10
percent limit instead of a hard-coded “magic number.”)

Option Strict On

Module Module1

 Sub Main()

 Dim Tom As New Employee("Tom", 100000)

 Console.WriteLine(Tom.TheName & " has salary " & Tom.Salary)

 Tom.RaiseSalary(0.2D) 'D necessary for decimal

 Console.WriteLine(Tom.TheName & " still has salary " & Tom.Salary)

 Console.WriteLine()

CAUTION You can overload members of a class only based on their parameters;
you cannot overload a member based on its return value type or access level.

Chapter 4

146

 Dim Sally As New Employee("Sally", 150000)

 Console.WriteLine(Sally.TheName & " has salary " & Sally.Salary)

 Sally.RaiseSalary(0.2D, "special") 'D necessary for decimal

 Console.WriteLine(Sally.TheName & " has salary " & Sally.Salary)

 Console.WriteLine()

 Console.WriteLine("Please press the Enter key")

 Console.ReadLine()

 End Sub

End Module

Public Class Employee

 Private m_Name As String

 Private m_Salary As Decimal

 Private Const LIMIT As Decimal = 0.1D

 Public Sub New(ByVal theName As String, ByVal curSalary As Decimal)

 m_Name = thename

 m_Salary = curSalary

 End Sub

 ReadOnly Property TheName() As String

 Get

 Return m_Name

 End Get

 End Property

 ReadOnly Property Salary() As Decimal

 Get

 Return m_Salary

 End Get

 End Property

 Public Overloads Sub RaiseSalary(ByVal Percent As Decimal)

 If Percent > LIMIT Then

 'not allowed

 Console.WriteLine("MUST HAVE PASSWORD TO RAISE SALARY MORE THAN LIMIT!!!!")

 Else

 m_Salary = (1 + Percent) * m_salary

 End If

 End Sub

 Public Overloads Sub RaiseSalary(ByVal Percent As Decimal, _

 ByVal Password As String)

 If Password = "special" Then

 m_Salary = (1 + Percent) * m_Salary

 End If

 End Sub

End Class

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

147147

More on Constructors

If you do not supply a constructor to your class, VB .NET automatically supplies
one that takes no arguments. This has the effect of initializing all instance fields to
their default values. These automatically created constructors are called default
or no-arg (because they have no arguments) constructors. If you create even one
constructor of your own, VB .NET will not create a default no-arg constructor for you.

Nothing prevents you from having constructors with different access levels in
your class. For example, you can have a Friend constructor that is a bit dangerous
to use and a Public constructor that is safe. Of course, to do this they would have
to have a different set of parameters, because it is the parameter list and not the
access modifiers that VB .NET users to distinguish among methods.

You can overload constructors, too, but you cannot use the Overloads keyword
here. For example, here is the beginning of a modified version of the Employee class
that allows a nickname in an alternative version of the constructor:

Public Class Employee

 Private m_Name As String

 Private m_NickName As String

 Private m_Salary As Decimal

 Public Sub New(ByVal sName As String, ByVal curSalary As Decimal)

 m_Name = sName

 m_Salary = curSalary

 End Sub

 Public Sub New(ByVal theName As String, ByVal nickName As String, _

 ByVal curSalary As Decimal)

 m_Name = theName

 m_NickName = nickName

 m_Salary = curSalary

 End Sub

The compiler chooses the nickname version only when you give it two string
parameters and a salary; otherwise, it picks the first constructor when you give it a
single string and a salary.

Overloading constructors leads to code duplication. For example, in the code
shown above we have the same assignments to m_Name and m_Salary in both versions
of the constructor. VB .NET lets you use a shorthand in this case: you use MyClass.New
to call another constructor in the class.5 For example:

5. As we write this, you can also use the reserved word Me, but MyClass seems like a better bet.

Chapter 4

148

Public Sub New(ByVal sName As String, ByVal curSalary As Decimal)

 m_Name = Sname

 m_Salary = curSalary

 End Sub

 Public Sub New(ByVal sName As String, ByVal nickName As String, _

 ByVal curSalary As Decimal)

 MyClass.New(sName, curSalary)

 m_NickName = nickName

End Sub

Note that when you use MyClass.New in this way to call another constructor in
the class, the order of the constructors inside your code is irrelevant. VB .NET
matches up the correct constructor by the parameters you use, not by any ordering.

More on Properties

One difference between the way properties work in VB6 and VB .NET is that the
Get and Set must have same access level. You are not allowed to have a Public Get
and a Private Set anymore.

Another difference is that in VB6 you could not change a property in a procedure
even if you passed it ByRef. In VB .NET, you can change properties passed ByRef.

The really big change, however, is how default properties work. Earlier versions of
VB had the seemingly neat idea of a default property. In practice, this frequently
led to really buggy code. For example, what does this next line mean?

Me.Text1 = Text2

CAUTION MyClass is a keyword, not a real object. You cannot assign MyClass to
a variable, pass it to a procedure, or use it in with the Is operator. Instead, use
the keyword Me, which gives you a way to refer to the specific object whose code is
being executed.

TIP It is easy to work around this by adding a bit of code to effectively make the
Set private, such as by making the property Public Read Only while having
another internal private property that is private for the Set.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

149149

As experienced users of VB learned by tracking down the bugs that lines of
code such as this caused, this line would assign the text property of the textbox
named Text1 to the value of the (presumed) variable Text2. Not only did default prop-
erties cause problems in code, they also required you to use the Set keyword to
make object assignments, because there had to be a way to distinguish object
assignments from property assignments. VB .NET eliminates the problematic
uses of default properties and allows them only where they make sense—where
parameters are involved. The idea is that if aTable is a hashtable, it is nice to be able
to write:

aTable(“theKey”)

and this is only possible if Item is the default property of the HashTable class. You
add a default property to a class by using the Default keyword. You can only do
this for a property that takes at least one parameter. If you overload the potential
default property, then all the overloaded versions must be marked as Default. The
most common use of default properties is when your object has a property whose
value is returned as an array or other object that can hold multiple values such as
a hashtable. For example, suppose you have a class called Sales and a property
called InYear that takes a year and returns a value. The class might look like this:

Public Class Sales

 Private m_Sales() As Decimal = {100, 200, 300}

 Default Public Property InYear(ByVal theYear As Integer) As Decimal

 Get

 Return m_Sales(theYear)

 End Get

 Set(ByVal Value As Decimal)

 m_Sales(theYear) = Value

 End Set

 End Property

 'lots more code

End Class

Now you can write:

Dim ourSales As New Sales()

Console.WriteLine(ourSales(1))

instead of:

Dim ourSales As New Sales()

Console.WriteLine(ourSales.InYear(1))

Chapter 4

150

Or you can use:

ourSales (2) = 3000

instead of:

ourSales.InYear(2) = 3000

Encapsulation and Properties

If you use public instance fields in VB .NET, they will seem to behave like properties. If
you have a public instance field in a class A called evil, people can say A.evil and
nobody will notice that you implemented the property as a public variable. And it
is true that sometimes it may seem a lot of work to provide both a Get and a Set
instead of simply having a public instance field. But:

• Do not succumb to the temptation. Encapsulation is not to be broken
lightly. (Actually, it should never be broken at all!)

However, if you are not careful you can break encapsulation inadvertently in
other ways. For example, you will break encapsulation if you do not watch the
return values of your properties. How? One way is that, if you have a mutable
object variable as an instance field (such as an array), returning it as the value of a
property breaks encapsulation because others can change the state of the instance
field using the object variable that you returned. Instead, return a clone of it (see
Chapter 5 for more on cloning objects). In sum:

• Do not return mutable objects that are instance fields as properties.

Scope of Variables

Variables inside a class (such as private instance fields) that are declared outside
member functions are visible to all the members of the class. Variables declared in
a member function are local to that member function.

NOTE Because Set is no longer needed, the designers of VB .NET decided to use
the Set keyword in the syntax for property procedures.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

151151

Thus, changes you make to these kinds of variables persist. For example:

Module Module1

 Dim aGlobal As Integer = 37

 Sub Main()

 Dim anA As New A()

 Dim aB As New B()

 Console.ReadLine()

 End Sub

 Public Class A

 Sub New()

 aGlobal = aGlobal + 17

 Console.WriteLine(aGlobal)

 End Sub

 End Class

 Public Class B

 Sub New()

 Console.WriteLine(aGlobal)

 End Sub

 End Class

End Module

Here, the integer variable aGlobal is defined at the module level, which means
that changes made to aGlobal in the A class persist in the B class. We think using
module-level variables is a bad idea—communication between classes should
only be carried out by messages!

CAUTION Variables defined at the module level are visible to all classes defined
in the module and to any code that has access to that module’s code.

TIP In earlier versions of VB, using global variables for shared class data was
standard operating procedure. VB .NET no longer requires this somewhat dan-
gerous practice. See the section on shared data in this chapter for more on this.

Chapter 4

152

Nested Classes

VB .NET programmers will occasionally want to nest class definitions. You do this
whenever you want to tightly couple two classes so that the “inner” class essen-
tially belongs to the outer class. Nested classes are usually helper classes whose
code is not relevant to the user of the outer class. A good rule of thumb is that, if
when looking at the outer class you usually have collapsed the code for the inner
class, an inner class works well. Of course, whenever you use an inner class,
encapsulation is slightly broken—the inner class can refer to private members of
the outer class (but not vice versa). If this is by design, then there is really nothing
wrong with it, because the inner class is merely a specialized member of the
outer class.

Linked Lists: An Example of Nested Classes at Work

Data structures are a common use of nested classes. For example, a linked list is a
data structure that is used when you need a chain of links, so that it is easy to find
the next link from a given link, but you will always look sequentially starting from
a specific link. Linked lists are obvious candidates for coding using nested classes
because the code for the class that defines the link objects is irrelevant to the users of
the LinkedList class, and Link objects have no real independent existence apart from
the LinkedList object that contains them. (A single link of a chain is not a chain…)

Here is some code for a very basic linked list class. We will explain the pieces
after you have a chance to look it over. Please note there is one important line in
the following code (line 49) that we have bolded; this line shows off a very unex-
pected feature of object-oriented programming that we will soon explain!

1 Option Strict On

2 Module Module1

3 Sub Main()

4 Dim aLinkedList As New LinkedList("first link")

5 Dim aALink As LinkedList.Link

6 aLink = aLinkedList.MakeLink(aLinkedList.GetFirstLink, "second link")

7 aLink = aLinkedList.MakeLink(aLink, "third link")

8 Console.WriteLine(aLinkedList.GetFirstLink.MyData)

9 aLink = aLinkedList.GetNextLink(aLinkedList.GetFirstLink)

CAUTION VB .NET does not allow you to increase the visibility of a nested class
via a member function. For example, a public member of an outer class cannot
return an instance of a private or friend nested class.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

153153

10 Console.WriteLine(aLink.MyData)

11 Console.WriteLine(aLink.NextLink.MyData)

12 Console.ReadLine()

13 End Sub

14 Public Class LinkedList

15 Private m_CurrentLink As Link

16 Private m_FirstLink As Link

17 Sub New(ByVal theData As String)

18 m_CurrentLink = New Link(theData)

19 m_FirstLink = m_CurrentLink

20 End Sub

21 Public Function MakeLink(ByVal currentLink As Link, ByVal _

22 theData As String) As Link

23 m_CurrentLink = New Link(currentLink, theData)

24 Return m_CurrentLink

25 End Function

26 Public ReadOnly Property GetNextLink(ByVal aLink As Link) _

27 As Link

28 Get

29 Return aLink.NextLink()

30 End Get

31 End Property

32 Public ReadOnly Property GetCurrentLink() As Link

33 Get

34 Return m_CurrentLink

35 End Get

36 End Property

37 Public ReadOnly Property GetFirstLink() As Link

38 Get

39 Return m_FirstLink

40 End Get

41 End Property

42

43 'nested class for link objects

44 Friend Class Link

45 Private m_MyData As String

46 Private m_NextLink As Link

47 Friend Sub New(ByVal myParent As Link, ByVal theData As String)

48 m_MyData = theData

49 myParent.m_NextLink = Me

50 End Sub

51 Friend Sub New(ByVal theData As String)

52 m_MyData = theData

53 End Sub

Chapter 4

154

54 Friend ReadOnly Property MyData() As String

55 Get

56 Return m_MyData

57 End Get

58 End Property

59 Friend ReadOnly Property NextLink() As Link

60 Get

61 Return m_NextLink

62 End Get

63 End Property

64 End Class

65 End Class

66 End Module

In line 4 we create the new linked list. In line 5 we make an object variable of
Link type. Note that because this class is nested inside the LinkedList, we must use
the dot notation to specify its “full name” as LinkedList.Link. Lines 6–12 are just
some code for testing.

Lines 17–20 define the constructor of the LinkedList class, which calls the
second constructor (lines 51–53) in the Link class. Because these were declared
with the Friend access modifier, the outer LinkedList class has access to it. If we
made it Private, the outer class could not use it.

Another interesting point is how, in the first constructor of the Link class
(lines 47–50), we insure that the newly created link has a reference to the previous
chain. We do that using the Me keyword in line 49 which we bolded because what
is happening here is so important! This line:

myParent.m_NextLink = Me

may seem impossible, because we are accessing a private instance field of the
myParent link class. Well, it is obviously not impossible, because this code runs.
You must keep in mind that:

• An instance of a class always has access to the private instance fields of
other objects of the same class.

NOTE You do not have to use this somewhat subtle feature of classes in VB .NET
to write this kind of class. You could instead add a member to the Link class that
allows you to set the next link. Which you choose to do is ultimately a matter of
programming style. However, because code that accesses a private member (such
as the previous example) can bite you if you are not aware of the possibility, we
chose to illustrate the more subtle approach here.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

155155

Shared Data and Shared Members Inside Classes

We will now go back to our Employee class. Imagine that you need to assign indi-
vidual employees consecutive ID numbers. In the old days of VB, you used a
global variable for this, which:

• Violated encapsulation

• Made it possible for someone to inadvertently change the ID number

It would have been better if the ID number was incremented only when you
created a new employee object.

VB .NET finally adds the ability to do this. The idea is: you have data within a
class that is accessible by all instances of the class, but only accessible to the out-
side world if you allow it (for example, through a property). Of course, you would
never make an instance field public….)

These special instance fields are called shared instance fields and are ideal for
use in situations such as our employee ID number. You also can have shared
members, such as properties, functions, and procedures. The downside is that
shared members cannot access the nonshared instance fields or nonshared members
of the class. In other words, they only access shared information. The reason for this
limitation is that shared data exists even before an object is created, so it would not
make sense to allow shared members to have access to individual objects.

Here are the key lines in a modified version of our employee class that use
shared data to implement an employee ID. Notice that there is a Private shared
integer variable that:

• Starts out as equal to 1

• Has a read-only property to get back its current value

• Is changed (incremented) only in the constructor of the class

Taken together, this means that you never have an employee #0 and the only
way you only can get a new ID number is when you make a new employee object—
which is exactly what you want.

Chapter 4

156

Public Class Employee

 Private m_Name As String

 Private m_Salary As Decimal

 Private Shared m_EmployeeID As Integer = 1

 Public Sub New(ByVal theName As String, ByVal curSalary As Decimal)

 m_Name = thename

 m_Salary = curSalary

 m_EmployeeID = m_EmployeeID + 1

 End Sub

 ReadOnly Property EmployeeId() As Integer

 Get

 EmployeeId = m_EmployeeID

 End Get

 End Property

End Class

Here is the full code for an employee class with a shared instance field that
includes a little test routine:

Option Strict On

Module Module1

 Sub Main()

 Dim Tom As New Employee("Tom", 100000)

 System.Console.WriteLine(Tom.TheName & " is employee# " & _

 Tom.EmployeeID & " with salary " & Tom.Salary())

 Dim Sally As New Employee("Sally", 150000)

 System.Console.WriteLine(Sally.TheName & " is employee# " & _

 Sally.EmployeeID & " with salary " & Sally.Salary())

 System.Console.WriteLine("Please press the Enter key")

 System.Console.Read()

 End Sub

End Module

Public Class Employee

 Private m_Name As String

 Private m_Salary As Decimal

 Private Shared m_EmployeeID As Integer = 1

 Public Sub New(ByVal theName As String, ByVal curSalary As Decimal)

 m_Name = thename

 m_Salary = curSalary

 m_EmployeeID = m_EmployeeID + 1

 End Sub

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

157157

 ReadOnly Property EmployeeId() As Integer

 Get

 EmployeeId = m_EmployeeID

 End Get

 End Property

 ReadOnly Property TheName() As String

 Get

 TheName = m_Name

 End Get

 End Property

 ReadOnly Property Salary() As Decimal

 Get

 Salary = m_Salary

 End Get

 End Property

End Class

Constants in classes are accessed in the same way that shared instance field
members are, but they use the Const keyword instead of the Shared keyword.
Constants can be public, of course, without violating encapsulation.

Shared Members

Private shared instance fields together with read-only properties are very useful,
but that does not exhaust the uses of the new Shared keyword. You can also have
shared members that belong to the class. As you have seen in the Math class, you
can access this kind of shared functionality either with the name of the class or an
object variable that refers to an instance of the class. For example, suppose our
employee class has a shared member called CalculateFICA6 with code that depends
on two public constants:

6. FICA is the official name for Social Security. See http://www.irs.ustreas.gov/tax_edu/faq
/faq-kw79.html

CAUTION Do not confuse shared data with static data. For shared data, there is
one copy for all instances of the class, so shared data implicitly has a kind of global
scope as far as instances of the class are concerned. Static variables are simply
variables whose state is remembered when a member is used again. You can have
static data in both shared members and nonshared members of a class.

Chapter 4

158

Public Const FICA_LIMIT As Integer = 76200

Public Const FICA_PERCENTAGE As Decimal = 0.062D

and code for the function like this:

Public Shared Function CalculateFICA(ByVal aSalary As Decimal) As Decimal

 If aSalary > FICA_LIMIT Then

 Return FICA_LIMIT * FICA_PERCENTAGE

 Else

 Return aSalary * FICA_PERCENTAGE

 End If

End Function

Then you can use the shared member without creating an instance of the
Employee class using the class name alone. For example:

System.Console.WriteLine(Employee.CalculateFICA(100000))

Or you could use it with a specific Employee instance:

System.Console.WriteLine(Tom.CalculateFICA(Tom.GetSalary())

You can also have a shared constructor by marking a New method with the key-
word Shared. Shared constructors:

• Do not use the Public or Private keyword.

• Cannot take parameters.

• Can only access or effect shared instance fields. You would normally use a
shared constructor only to initialize certain shared data. The code in a shared
constructor runs the first time you instantiate an object from this class. The
shared constructor runs before any other constructors are called.

The Object Life Cycle

As you have seen, you create an instance of a class by using the New operator, which
then calls the correct New constructor method in the definition of the class (pos-
sibly running a shared constructor first if you supplied one). The match with the
correct version of New inside your class is made by matching up the parameter list.
The New method corresponds to the old Class_Initialize event in earlier versions
of VB.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

159159

You do not always want to have public constructors in your classes. You can
even have a situation where all the constructors are private and the only way to
create object instances is through a shared method. In general, make a constructor
private if:

• Only the class itself should have access to it. For example, there may be
one public constructor which calls a private constructor under special
conditions, depending on the parameters it was passed.

or:

• There is no reason to create instances of your class. For example, a
class with only shared members should have only private constructors,
because there is no reason to create an object of that type. In this situation,
you must supply at least one private constructor or VB .NET will supply
a public no-arg constructor for you.

or:

• Where using a shared method to call the private constructor allows
you to validate the creation of the instance. This is especially useful if
the object is costly to create in terms of time and resources and you
want to make sure it is created only under special circumstances.

Finally, note that once you create an object using New, you cannot use New
again to change the state of the object. For example:

Dim Tom As New Employee(“Tom”, 100000)

Tom = New Employee(“Tom”, 125000)

actually creates two separate Employee objects and the first Tom is lost after the
second assignment. Whether this fits with what you want to do depends on the
specific situation. For example, if you were using a shared EmployeeID variable to
assign ID numbers, the second line would give a different ID number to the second
Tom than was originally assigned to him. In any case, you certainly cannot do this:

Dim Tom As New Employee(“Tom”, 100000)

Dim Tom As New Employee(“Tom”, 125000)

If you do, you will see this error message in the Build window:

The local variable 'Tom' is defined multiple times in the same method.

Chapter 4

160

Object Death

One metaphor for object death in VB .NET is that, in a way, objects do not die a
natural death; they sort of fade away over time. More precisely, the big change
from earlier versions of VB is that you cannot explicitly reclaim the memory used
for an object. The built-in garbage collector will (eventually) notice areas of memory
that are no longer referred to and automatically reclaim them. Automatic garbage
collection leads to some big changes in programming VB .NET. In particular:

• The garbage collection process should be regarded as totally and com-
pletely automatic and totally and completely out of your control.

Although you certainly can force a garbage collection to occur—using the
System.GC.Collect() method—it simply is not a good .NET programming practice to
do so. We recommend that you rely on the automatic garbage collection scheme.

Recall that in earlier versions of VB you had a Terminate event inside each
class. This event was guaranteed to be called when the number of references to it
fell to 0. (This process is called deterministic finalization in OOP speak.) VB .NET,
fortunately or unfortunately, only has nondeterministic finalization, which means
that you cannot count on the equivalent of a Terminate event to run at a specific
time. And, in fact, you should not count on anything like a Terminate event to run
at all!

You are probably thinking, “But I used the Terminate event all the time for cleanup
code, so where do I do my cleanup now?” The answer is a very strong convention
in .NET programming:

• If your class has to release resources other than pure memory (such as a
database connections, graphics contexts, or file handles or any unman-
aged resources), it must contain a method called Dispose that other
code can call.

We will have a lot more to say about Dispose methods Chapter 5, when we
cover the IDisposable interface. For now, we point out that any GUI application,

NOTE Although some people regard Finalize as a special method that you can
add to your classes as the equivalent of the Terminate event, this is a false analogy.
The Finalize method merely includes code that you want to run when your
object’s memory is garbage-collected. However, because you have no control over
when this happens, we strongly suggest only using them to repeat code (such as
in a Dispose method that the user of the class should explicitly call. We take up
Dispose methods next.)

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

161161

even one as simple as the one you saw way back in Chapter 1, is the kind of code
that needs a Dispose method. This is because graphics programs grab “graphics
contexts” that eventually need to be released in order to reclaim those resources.
(Graphics contexts are not areas of memory, so the automatic garbage-collection
process cannot help you.) This is why the automatically generated code you saw
in Chapter 1 included a call to Dispose. Nondeterministic finalization is one of the
more controversial aspects of .NET, but automatic garbage collection is part of
.NET and it would have been impossible for VB .NET to keep its earlier, deterministic
method of handling memory and remain .NET-compliant. In any case, the method
used in earlier versions of VB (called reference counting) had problems with
memory leaks caused by circular references. (This occurs when an object variable
A points to an object variable B, and vice versa as you can see in Figure 4-8.)

Value Types

Traditionally, fully object-oriented languages have had a problem with things such as
ordinary integers. The problem is that, in a fully object-oriented language, you
want everything to be an object. But creating an object requires a bit of time for

Figure 4-8. Two kinds of circular references

NOTE Languages such as Java have clearly shown that the advantages you gain
from automatic garbage collection are worth the small changes in programming
style required to counterbalance the lack of deterministic finalization.

Chapter 4

162

bookkeeping, such as for creating the area of memory used for the object. Similarly,
sending an “add” message is generally going to be slower than using arithmetic
operators and so on. (In languages with automatic garbage collection, you also pay a
small price for the automatic garbage collection scheme that cleans up after objects.)

The early object-oriented languages went the purist route. Smalltalk, for
instance, treated everything as an object. This tended to make these kind of languages
slower than languages that maintained the value/object distinction. Because of
performance issues, languages such as Java treat numbers differently from objects.
The trouble with that approach is that it leads to ugly code, because you have to
distinguish code that works with objects from code that works with values. The
result is that you need to do things like wrap integer values in an Integer object in
order to mix and match integers and objects. In Java, for example, to put a bunch
of values in the equivalent of an array list, you have to use code that would look
something like:

anArrayList.Add(Integer(5));

where you “wrap” the value 5 into an Integer object. This leads to both ugly and
slower performing code.

The .NET Framework combines the best of both worlds. It gives you the
ability to treat integers as ordinary integers when performance is important, and
it automatically treats values as objects when this is needed. This is why you can
“dot” an ordinary literal value or put it inside a hashtable without any extra work.
This magic process is called automatic boxing and unboxing of value types.

The significance of this to programmers is that, although everything in VB .NET
is ultimately an object, not every kind of object variable is a handle to an area of
memory and needs to be created with the New operator. Of course, nothing comes
for free: a programmer has to be alert to the distinction between value types and
reference types. One obvious difference is that you do not have to use New to create
a new instance of a value type. You do not have to (in fact, you cannot) write:

Dim a as New Integer(5)

The more serious distinction comes when passing variables into procedures
by value. As you have seen, when you pass a mutable object by value into a procedure,
the procedure can change the state of the object. When you pass a value type by
value into a procedure, it works in the traditional manner—all changes are discarded
when the procedure ends. (This is sometimes called value semantics versus
reference semantics.)

All numeric types in VB .NET are value types, as are types such as dates. As you
will see in a moment, you can create your own value types whenever you need light-
weight objects for performance reasons or want objects that have value semantics.7

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

163163

For value type objects, the equals operator should always return true if the
value objects have the same value. The syntax is:

a.equals(b)

Keep in mind that this generally is not true for reference types. For example,
two arrays can have the same values but may not be equal.

In VB .NET you can build two types of value types, enums and structures
(some people call these structs, after the term used for them in C#). We take up
enums first and then move on to structures, which are true lightweight objects.

Enums

Enums are useful when you want to have a series of named constants. Use an
enum type as shorthand for a bunch of related integral values. You create enums
using the Enum-End Enum pair of keywords together with an access modifier. Enums
can contain only integral types such as Integer or Long (they cannot contain Char
types). For example, the following code creates a public enum named BonusStructure:

Public Enum BonusStructure

 None = 0

 FirstLevel = 1

 SecondLevel = 2

End Enum

7. We think that you cannot use TypeOf directly with value types, as in
If TypeOf (a) Is System.ValueType Then This is bad, but since it is documented,
we suppose it is not a bug.

TIP You can find out whether an object has value semantics or reference seman-
tics by passing a variable of that type to the following function:7

Function IsValueType(ByVal foo As Object) As Boolean

 If TypeOf (foo) Is System.ValueType Then

 Return True

 Else

 Return False

 End If

End Function

Chapter 4

164

You can then declare a variable of type BonusStructure anywhere:

Dim bonusLevel As BonusStructure

(As with any value type, you do not need to use the New operator with an enum.)

Once you have the enum type in your project, you can write code like this:

Bonus = Tom.Sales* bonusLevel.SecondLevel

Because values in enum types are implicitly shared, you can also use the
name of the Enum rather than a variable of that type:

Public Function CalculateBonus(ByVal theSales As Decimal) As Decimal

 Return theSales * BonusStructure.SecondLevel

End Function

Traditionally, one problem with enums has been the lack of a way to get the
string representation of the enum from the value, making debugging difficult. The
Enum class, which all the enums you create inherit from, has some very useful
members that let you get back this kind of information. For example, this code
returns the string “FirstLevel” as its value:

BonusStructure.GetName(bonusLevel.GetType, 1)

and this fragment prints out all the names used in the enum:

Dim enumNames As String(), s As String

enumNames = BonusStructure.GetNames(bonusLevel.GetType)

For Each s In enumNames

 System.Console.WriteLine(s)

Next

NOTE If you leave off the explicit values for an enum, .NET starts with zero and
increases them by one. Similarly, if you only set the first value, then the other
values will come from adding one to the previous value.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

165165

Structure Types

Some people think of VB .NET structures as the equivalent of user-defined types
in earlier versions of VB or most other programming languages. VB .NET struc-
tures certainly can be used like user-defined types, but you need not limit them to
such uses. Code in a structure can have everything a traditional class has,
including constructors and public, private, or friend members. The only differ-
ences from ordinary class-based objects is that structure-based objects have
value semantics. Recall that this means:

• Pass by value cannot change the state of a variable.

• They need not be created using the New operator, and therefore always have
a default value obtained by taking the default values of their instance fields.

• They have an Equals method that returns true if two structs have the same
internal data. (You use the Equals method in the form A.Equals(B).)

Some people overuse structures because they are described as lightweight
objects, figuring they will always be more efficient to use than objects coming
from ordinary classes. The problem with this approach is that you do not always
want two objects to be the same if they have the same state, which is inevitable
with structures. In particular, people who use your code expect structures (value
types) to be analogous to the built-in value types such as integers and doubles.

CAUTION With the current version of VB .NET, you cannot use the "=" sign to
test for equality between two instances of a structure type. Use the Equals
method instead.

Note that by default the Equals method does a so-called shallow compare—
more on what this means in the “Cloning” section of Chapter 5. You can redefine
the Equals method in the definition of your Structures if you want your version
to have some special behavior.

NOTE All of the built-in types such as Integer, Long, and so on are implemented
in the .NET Framework as structures.

Chapter 4

166

Building a Structure Type

You declare a structure type by starting with an access modifier and the Structure
keyword:

Public Structure NameOfStructure

'code for the structure

End Structure

Every member of a structure must have an access modifier such as Public or
Private. Using the Dim statement alone outside of functions and procedures gives
that instance variable public access. Here is how a structure to implement complex
numbers might start out:

Public Structure ComplexNumber

 Private m_real As Double

 Private m_complex As Double

 Public Property real() As Double

 Get

 Return m_real

 End Get

 Set(ByVal Value As Double)

 m_real = Value

 End Set

 End Property

 Public Property complex() As Double

 Get

 Return m_complex

 End Get

 Set(ByVal Value As Double)

 m_complex = Value

 End Set

 End Property

 Public Sub New(ByVal x As Double, ByVal y As Double)

 real = x

 complex = y

 End Sub

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

167167

 Public Function Add(ByVal z1 As ComplexNumber) As ComplexNumber

 Dim z As ComplexNumber

 z.real = Me.real + z1.real

 z.complex = Me.complex + z1.complex

 Return z

 End Function

 'much more code

End Structure

Notice how we are returning a structure as the value of the Add function.
By the way, you cannot initialize an instance field in a structure:

Private m_real As Double = 0 ‘error

We confess that one other difference between structures and reference objects is
that having public instance fields instead of Get-Set properties is not all that
uncommon and is not necessarily as poor a programming practice as it is for
objects. The reason is that the instance fields are often just values. For example,
rewriting the complex numbers structure just shown to have public instance
fields called Real and Imaginary is probably not going to cause problems.

You can build up a structure via a call to New or by directly assigning the properties
that set the instance fields. You access the values of an item within a structure in
the same way you access a property on an object. For example, you could use the
complex number structure in code such as this:

Sub Main()

 Dim Z1 As New ComplexNumber(2.3, 2.4)

 Dim Z2, Z3 As ComplexNumber

 Z2.real = 1.3

 Z2.complex = 1.4

 Z3 = Z1.Add(Z2)

 Console.WriteLine(Z3.real)

 Console.ReadLine()

End Sub

NOTE The current version of VB .NET does not allow giving operators like “+”
new meaning (operator overloading in the jargon). This is why we created an
Add method instead of giving a new definition to “+” when used with complex
numbers. VB .NET will eventually allow operator overloading, but as of now,
you will need to use C# if you want to use a “+” sign in your complex number
package for the addition of two complex numbers.

Chapter 4

168

You can put any VB .NET object inside a structure type. Structures can con-
tain other structures, enums, or objects such as arrays. For example, this allows
you to build a matrix handling package in VB .NET. The code for this kind of struc-
ture might start out like this:

Public Structure Matrix

 Private TheData(,) As Double

 'more code

 End Structure

Namespaces for Classes You Create

You can place any class, enum, structure, or module in a namespace. Of course,
you cannot create an instance of a module—only instances of the classes defined
in the module. In the Project Properties dialog box, as shown in Figure 4-9, you
see a space for the assembly name and also for the root namespace.

Notice in Figure 4-9 that we made the root namespace Apress. We then can give a
namespace declaration in our code that uses as many “.” as we want, to make
clear the hierarchy of our code. For example, we might prefix the definition of a
class with:

Figure 4-9. Project properties for namespaces

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

169169

Namespace Cornell.Morrison.VB.NET.CH4

 Module Module1

 Sub Main()

 Console.WriteLine("test code goes here")

 End Sub

 Public Class EmployeeExample1

 'code

 End Class

 End Module

End Namespace

Then, our Employee class would have the full name:

Apress.Cornell.Morrison.VB.NET.CH4.EmployeeExample1

The Class View Window

Now that you know how to build your own classes, you will want to take better
advantage of the Class View window, which lets you examine the members of any
classes in your solution in a rather nifty hierarchical tree view. It is great for navigating
around the code in your solution: double-clicking on a member in the Class View
window takes you directly to the code for that member. To open the Class View
window, either press Ctrl+Shift+C or click Class View on the View menu. Figure 4-
10 shows the window for one of the versions of our Employee class.

NOTE Unlike Java packages, namespaces in .NET are not tied to any special
directory structure. You can have two classes in the same namespace, even
though they exist in different files in different directories.

Chapter 4

170

You can use the New Folder button to create a new folder, but the most
common use of the Class View window is to get a dropdown list with four ways
to sort the information presented in the window (click on the first icon, whose
tooltip is “Class View Sort By Type”):

• Sort Alphabetically: Classes and members are listed alphabetically (a–z).

• Sort By Type: Classes and members are listed by type. This lets you see all
properties together, for example, such as for base classes, interfaces, methods,
and so forth, by the orders listed in the next two bullets.

• Sort By Access: Classes and members are listed by their access level.

• Group By Type: Classes and members are grouped by type in different tree
nodes. For example, all properties are displayed in a node called Properties
and all fields are displayed together in a node called Fields.

Debugging Object-Based Programs

The first step in debugging an object-based program is to look at the state of the
object variables used in your program to see if their state is different than what

Figure 4-10. Class View window for an Employee class

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

171171

you expect. This is why the debugging tools in the VS IDE, such as the Watch and
Locals windows, let you drill down into the private instance fields inside your
objects. As an example of using these debugging tools, suppose we want to
modify our linked list class to be a doubly linked list. This simply means that we
have a way of going backward and forward from a given link instead of only going
forward. Here is some buggy code for a first attempt at doubly linked list class. We
use this code to show you the basic debugging techniques for object-based
programs:

1 Option Strict On

2 Module Module1

3 Sub Main()

4 Dim aLinkList As New LinkedList("first link")

5 Dim aLink As LinkedList.Link

6 aLink = aLinkList.MakeLink(aLinkList.GetFirstLink, "second link")

7 aLink = aLinkList.MakeLink(aLink, "third link")

8 Console.WriteLine(aLinkList.GetFirstLink.MyData)

9 aLink = aLinkList.GetNextLink(aLinkList.GetFirstLink)

10 Console.WriteLine(aLink.MyData)

11 Console.WriteLine(aLink.NextLink.MyData)

12 Console.ReadLine()

13 End Sub

14 Public Class LinkedList

15 Private m_CurrentLink As Link

16 Private m_FirstLink As Link

17 Sub New(ByVal theData As String)

18 m_CurrentLink = New Link(theData)

19 m_FirstLink = m_CurrentLink

20 End Sub

21 Public Function MakeLink(ByVal currentLink As Link, ByVal _

22 theData As String) As Link

23 m_CurrentLink = New Link(currentLink, theData)

24 Return m_CurrentLink

25 End Function

26 Public ReadOnly Property GetNextLink(ByVal aLink As Link) _

27 As Link

28 Get

29 Return aLink.NextLink()

30 End Get

31 End Property

32 Public ReadOnly Property GetCurrentLink() As Link

33 Get

34 Return m_CurrentLink

35 End Get

Chapter 4

172

36 End Property

37 Public ReadOnly Property GetFirstLink() As Link

38 Get

39 Return m_FirstLink

40 End Get

41 End Property

42

43 'nested class for link objects

44 Friend Class Link

45 Private m_MyData As String

46 Private m_NextLink As Link

47 Private m_ParentLink As Link

48 Friend Sub New(ByVal myParent As Link, ByVal theData As String)

49 m_MyData = theData

50 m_ParentLink = Me

51 m_NextLink = myParent

52 End Sub

53 Friend Sub New(ByVal theData As String)

54 m_MyData = theData

55 End Sub

56 Friend ReadOnly Property MyData() As String

57 Get

58 Return m_MyData

59 End Get

60 End Property

61 Friend ReadOnly Property NextLink() As Link

62 Get

63 Return m_NextLink

64 End Get

65 End Property

66 End Class

67 End Class

68 End Module

The result of this program, shown Figure 4-11, clearly is not what we want.

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

173173

When you are faced with this kind of situation, you usually start debugging.
Here is one way:

• Click on Break in the dialog box as shown in Figure 4-11.

• Kill the window (the console window in this case), which should bring you
back to the IDE.

Now add a breakpoint (F9) at a point where you can start looking at the state
of the various objects in the program—in this case, right above the line that
caused the exception seems like a good place (line 9 in the preceding listing).
Then choose Debug|Start (F5) to run the code up to the breakpoint. Now expand
the Locals window and bring it to the foreground. In Figure 4-12, you will see a
couple of + signs next to aLink and aLinkedList that just cry out for clicking.

Figure 4-11. The result of a buggy program

Chapter 4

174

If you expand the window sufficiently and click a couple of times to reveal the
state of the aLink variable that represents the third link in the list, you should see
what is shown in Figure 4-13.

Because the aLink object variable is the third link, it is clear that its parent link
should not be Nothing. This alerts us to look at the code in our class that assigns to
the parent link. If you look at it for a second:

Friend Sub New(ByVal myParent As Link, ByVal theData As String)

 m_MyData = theData

 m_ParentLink = Me

 m_NextLink = myParent

End Sub

Figure 4-12. First steps in debugging in the Locals window

Classes and Objects (with a Short Introduction to Object-Oriented Programming)

175175

it should be clear (as is not all that uncommon) that we reversed the assignment
statements for the links and forgot to assign the link from the parent to its child.
The correct code should be:

Friend Sub New(ByVal myParent As Link, ByVal theData As String)

 m_MyData = theData

 m_ParentLink = myParent

 m_ParentLink.m_NextLink = Me

End Sub

In addition to the Locals, you can add conditional breakpoints, for example,
for when aLink Is Nothing or add items via the Add Watch item on the context
menu in the code window when a program is in break mode. However, we think it
fair to say that, regardless of how you drill down into your objects, being able to
see the state of them is key to debugging them!

Summary

This has been a very long chapter! You saw how to use many of the built-in classes
in the .NET Framework. But mostly we tried to show you the ins and outs of object
creation in VB .NET. There is a lot to this, and it is quite different from the way
things were done in earlier versions of VB. For example, you saw how parameter-
ized constructors make object creation much more robust in VB .NET than it was
in earlier versions of VB. This chapter contains the core knowledge you need to go
further with VB .NET!

Figure 4-13. The aLink variable

177

CHAPTER 5

Inheritance and
Interfaces

IN THE LAST CHAPTER, we briefly introduced you to two of the pillars of object-
oriented programming in VB .NET: implementation inheritance, which allows for
automatic code reuse, and interface inheritance, which involves contracting for
certain kinds of behavior. In this chapter we cover both of these techniques in depth.

We start by showing you how to do implementation inheritance in VB .NET.
Unfortunately, learning only the mechanics for doing implementation inheritance is
a very bad idea. This is because, as we said in the last chapter, implementation-
style inheritance done carelessly is a disaster in the making. We therefore spend a
fair amount of time in this chapter showing you how to avoid these dangers
through good design of your inheritance chains.

After covering the mechanics and the design principles behind the use of
implementation inheritance, we go on to show you the ins and outs of the Object
class. This is the class that all .NET objects ultimately inherit from. We finish the
discussion of implementation inheritance by showing what .NET does to help
solve the fragile base class problem that is at the root of many of the implementation
inheritance problems in other OOP languages such as Java or C++. (The fragile
base class problem is a fancy way of saying that the wrong change to a parent
class can cause a disaster in the child classes that inherit from it.)

After discussing inheritance, we move on to implementing interfaces in VB
.NET. We end this chapter by showing you how to use some of the important inter-
faces in the .NET Framework, such as IComparable, ICloneable, and IDisposable.

NOTE From this point on we will say "inheritance" instead of "implementation
inheritance" and "implementing an interface" for writing code that uses inter-
face inheritance. Although the terminology can be confusing at first, most
programmers quickly become accustomed to this shorthand.

Chapter 5

178

Inheritance Basics

Although inheritance is hardly the be-all, end-all of OOP, and interfaces are often
a better choice, you absolutely should not get the idea that you should avoid using
inheritance. Inheritance is a powerful tool that saves you a lot of work if you use it
correctly. “Correctly” simply means that you should not use inheritance if it is not
absolutely clear that the “is a” relationship holds:

• Class A should inherit from a class B only when it is absolutely clear
that, now and forever, you can always use an A object in place of a B
object without getting yourself into trouble.

(As we said in the previous chapter, a good way to remember this rule is to keep in
mind the troubles the Internal Revenue Service will cause you if you treat contractors
as employees. A Contractor class must not inherit from an Employee class even
though your code has to model paying them and having a tax ID in both cases.

You may see this fundamental rule in a more abstract form. This kind of
abstraction is necessary when you try to express the rule in a code-oriented way:

• An instance of a child class A that inherits from a parent class B must be
usable in every piece of code that would take an instance of its parent
type as a parameter.

In other words if you have a function whose header is

UseIt(bThing As B)

and aThing is an instance of the child class A, then the following code must
make sense:

UseIt(aThing)

If this seems too abstract, here is a made up (and hopefully humorous) ver-
sion of where it fails. Suppose you have a class called Manager and you want to
decide whether a person who manages programmers should inherit from the Manager
class rather than inherit from the Programmer class. Because managers need big
hair, as any Dilbert reader knows, you decide you will have a property called
SetHairStyle in your Manager class. Now close your eyes and imagine a typical

NOTE If you are familiar with how to use interfaces in VB5 or VB6, you will be
pleasantly surprised at how much cleaner your code looks when you implement
an interface in VB .NET. The syntax is much more sensible than it used to be!

Inheritance and Interfaces

179179

programmer (say his name is Tom) who is suddenly made a manager of other pro-
grammers. What does he look like hairstyle-wise? Can you imagine a call to:

tom.SetHairStyle(“sharp razor cut’)

always making sense? Sure, some programmers care about hairstyles but we think
it is fair to say that not every programmer does. The moral is a ManagerOfProgrammers
class should inherit from Programmer not Manager.

Next, you have to be aware that there is no escaping inheritance in your VB
.NET programs. Even if you are completely comfortable with the interface style of
programming used in VB5 and VB6, and think containment and delegation along
with interfaces are the ways to go, you cannot use interfaces exclusively in VB
.NET. This is because it is impossible to use the .NET Framework without explicitly
using inheritance. For example, any .NET GUI application depends on inheritance to
work, as do many of the built-in collection classes—even using the FolderBrowser
object requires inheritance!

In fact, the way inheritance is used in the .NET Framework is a perfect example
of why inheritance should not be completely replaced by interfaces in object-
oriented programming. What happened in the .NET Framework may well occur
in your own projects:

• When you build frameworks that other programmers will depend on,
well-designed, thoroughly debugged base classes can be used over and
over again via inheritance as the base on which they build their classes.

NOTE Some languages would permit a ManagerOfProgrammers class to inherit
from both a Manager and a Programmer class. Though quite logical and appeal-
ing in principle, languages that support multiple inheritance (as this ability is
called), tend to be incredibly complicated to use in practice. VB .NET uses its
ability to implement multiple interfaces to deal with the situations when multiple
inheritance would otherwise be needed. As you will soon see, using multiple
interfaces it is a much cleaner approach to this kind of situation than classic
multiple inheritance.

NOTE When you build a GUI application using inheritance, it is often called
"visual inheritance" in the marketing literature for VB .NET. This is silly—it is
just plain old inheritance for an object that happens to be an instance of the
Windows.Forms.Form class.

Chapter 5

180

Getting Started with Inheritance

Let us start by recalling some terminology. The class you inherit from is called the
base or parent class. The class that inherits from it is called the child or derived
class. The child class automatically has all the public functionality of the parent
class, but you can modify the behavior of the parent class in the child class.
Inheritance is about specializing parent class behavior and possible adding new
behavior as well.

Here is an example of this process at work: suppose you have a company with
an enlightened raise policy. Whenever there is an across-the-board raise of, say,
5 percent, programmers automatically get 6 percent (a 20 percent bonus). You are
responsible for the design of the employee management system for this company.
You decide to make a class called Programmer that inherits from Employee, and you
want to change the behavior of the RaiseSalary method in the Programmer class to
reflect the automatic (and well-deserved!) 20 percent bonus.

To build the code for this Employee⇒Programmer inheritance chain, let us
first assume that you have already written the code for a Public Employee class that
is either part of your solution or is already referenced via Project|References.
Assuming this is so, then the code for the Programmer class starts out like this (the
key line indicating inheritance is in bold):

Public Class Programmer

 Inherits Employee

End Class

The Inherits keyword must be the first nonblank, noncomment line after the
name of the child class. (IntelliSense will automatically show you what classes you
can inherit from, by the way.) Note that a derived class cannot use the Public
access modifier if its parent class is marked Friend or Private. The reason is that
the access modifier you use for the derived class cannot be less restrictive than
the one used for its parent class. But it can be more restrictive, so a class marked
Friend class may inherit from one marked Public, for example.

The next step in building a child class is to make sure that you give it the correct
kind of constructor. Because the child class must have at least the same amount of
functionality as its parent class, constructors for child classes usually call the
constructor of the parent class to correctly initialize the instance fields of their
parent class. This is done using the special keyword MyBase, which accesses the parent
class (as shown in the following line in bold), passing in the right values for the
constructor:

Inheritance and Interfaces

181181

Public Sub New(ByVal theName As String, ByVal curSalary As Decimal)

 MyBase.New(Name, curSalary)

End Sub

The key line

MyBase.New(theName, curSalary)

calls the constructor of the base Employee class and correctly initializes its instance
fields. If you fail to have a call to MyBase.New when a parent class requires arguments in
its constructor, then VB .NET issues an error message like this:

C:\vb net book\chapter 5\Example1\Example1\Module1.vb(55):

'Example1.Programmer', the base class of 'Example1.Employee',

does not have an accessible constructor that can be called with

no arguments. Therefore, the first statement of this constructor

must be a call to a constructor of the base class via 'MyBase.New'

or another constructor of this class via 'MyClass.New' or 'Me.New'.

which is about as informative an error message as one could hope to get and
clearly reminds you that you must call MyBase.New at least once if your parent class
does not have a no-argument constructor! After you add the call to MyBase.New,
things get very interesting: how do you access the instance fields of the parent
class? Here is the (we think surprising at first) rule:

• A derived class has no privileged access to the instance fields of its par-
ent class.

This rule means that the derived Programmer class has no privileged access to
the private instance fields of its parent Employee class. For example, suppose you
store the salary in the parent class in a private instance field called m_Salary and
you try to sneak this code into the Programmer class’s RaiseSalary method:

Public Sub New(ByVal theName As String, ByVal curSalary As Decimal)

 MyBase.New(theName, curSalary)

 MyBase.m_salary = 1.2 * curSalary

End Sub

You would get this error message:

'Example1.Employee.m_Salary' is Private, and is not accessible in this context.

Chapter 5

182

So what do you do? If you want a child class to have access to specific func-
tionality in the parent class, it is up to the code in the parent class to allow such
access. We will show you how to do this in the next section.

Accessing the Parent Class's Functionality

VB .NET comes with a Protected access modifier that automatically gives child
classes access to the item specified with this modifier. This is true whether the
item is a member function or an instance field. You may be tempted to use this
modifier to make all instance fields of the parent class Protected, to give derived
classes a quick and dirty way to gain access to the parent class’s instance fields. Do
not give in to this temptation. Good design principles dictate that the Protected
access modifier should be used only for member functions, not for instance fields.
Doing anything else violates encapsulation and prevents you from doing validation in
the place it belongs—the parent class. You need to rely on the parent class to validate
the data. As in real life, “trust but verify” is the default behavior for good parenting!

For example, our original definition of the Employee class had members with
these signatures:

Public ReadOnly Property TheName() As String

Public ReadOnly Property Salary() As Decimal

so all classes could access these members. To make them accessible only by
derived classes of the parent, change the Public access modifier to Protected.

You can use these access modifiers (see Table 5-1) for the members of a class
in an inheritance chain.

Table 5-1. Access Modifiers for Inheritance

ACCESS MODIFIER MEANING

Friend Access is limited to code in the current assembly.

Private Only objects of the parent’s type have access to these

members.

Protected Access is limited to objects of the parent class type and objects

of the type of any of its descendents.

TIP A good analogy is that real-life parents should decide what their children
can do, not vice versa.

Inheritance and Interfaces

183183

As we have said, having Protected and Protected Friend member functions
(but not instance fields) is quite common, because they let you prevent outside
code from accessing protected members.

However, there is a rather interesting gotcha to using Protected. Fortunately,
the compiler is quite good about giving you a clear warning you when you fall into
this hole. Here is a specific example: suppose you have a class called GeekFest
which contains a bunch of programmers with a method called Boast that wants to
access the Salary property in the Programmer class. (Which means it is accessing
the Salary property in the parent Employee class ultimately). Here is how the code
may look:

Public Class GeekFest

 Private m_Programmers() As Programmer

 Sub New(ByVal Programmers() As Programmer)

 m_Programmers = Programmers

 End Sub

 Public Function Boast(ByVal aGeek As Programmer) As String

 Return "Hey my salary is " & aGeek.Salary

 End Function

End Class

Protected Friend Access is limited to the current assembly or types derived from

the parent class. (Think of it as the combination of the circle

and the square as shown here):

Public All code that can access an object based on this class can

access this member.

Table 5-1. Access Modifiers for Inheritance (Continued)

ACCESS MODIFIER MEANING

Chapter 5

184

Now suppose the code in your Employee class had the read-only Salary property
marked Protected instead of Public:

Protected ReadOnly Property Salary() As Decimal

 Get

 Return MyClass.m_Salary

 End Get

End Property

This results in an error message:

C:\vb net book\chapter 5\Example1\Example1\Module1d.vb(19):

'Example1.Module1.Employee.Protected ReadOnly Property Salary() As Decimal'

is Protected, and is not accessible in this context.

The point is that even though the Programmer class has access to the pro-
tected Salary property in its code, Programmer objects do not have access to this
method when outside the code for the Programmer class. To sum up:

• Code can access Protected methods of the parent class only when
inside objects of the derived class and not from objects of the child type
referred to in code outside the derived class.

Overriding Properties and Methods

In our example of inheritance in which programmers automatically get a 6 per-
cent raise when everyone else gets 5 percent, you need to change the behavior of
the RaiseSalary method to reflect the automatic 20 percent bonus. This is called
overriding a member function.

Unlike many OOP languages, the syntax used in VB .NET makes it clear that
you want to override a method in the parent class by a method from the child
class. The clarity comes from the two required keywords:

• Overridable, which is used in the parent class to indicate that a method can
be overridden.

• Overrides, which is used in the child class to indicate that you are overriding
a method.

CAUTION You cannot override shared members.

Inheritance and Interfaces

185185

To have our basic Employee class override the special method of raising sala-
ries for an eventual Programmer or Manager class, you use code like this (the key lines
are in bold):

Option Strict On

Public Class Employee

 Private m_Name As String

 Private m_Salary As Decimal

 Private Const LIMIT As Decimal = 0.1D

 Public Sub New(ByVal theName As String, ByVal curSalary As Decimal)

 m_Name = theName

 m_Salary = curSalary

 End Sub

 Public ReadOnly Property TheName() As String

 Get

 Return m_Name

 End Get

 End Property

 Public ReadOnly Property Salary() As Decimal

 Get

 Return MyClass.m_Salary

 End Get

 End Property

 Public Overridable Overloads Sub RaiseSalary(ByVal Percent As Decimal)

 If Percent > LIMIT Then

 'not allowed

 Console.WriteLine("NEED PASSWORD TO RAISE SALARY MORE " & _

 "THAN LIMIT!!!!")

 Else

 m_Salary = (1 + Percent) * m_Salary

 End If

 End Sub

NOTE Of course, the parameters and return types must match. If they do not,
you are overloading, not overriding, and no keyword is required.

Chapter 5

186

 Public Overridable Overloads Sub RaiseSalary(ByVal Percent As _

 Decimal, ByVal Password As String)

 If Password = "special" Then

 m_Salary = (1 + Percent) * m_Salary

 End If

 End Sub

End Class

As in the previous chapter, we use the optional Overloads keyword to make it
clear that we have two versions of RaiseSalary in this class.

Now assume that every programmer’s salary raise should be treated via a call
to the special RaiseSalary method. The child Programmer class looks like this (again,
the key line is bold):

Public Class Programmer

 Inherits Employee

 Public Sub New(ByVal theName As String, ByVal curSalary As Decimal)

 MyBase.New(theName, curSalary)

 End Sub

 Public Overloads Overrides Sub RaiseSalary(ByVal Percent As Decimal)

 MyBase.RaiseSalary(1.2D * Percent, "special")

 End Sub

End Class

Notice how little code is needed in this child class—most of the functionality
remains unchanged, so we simply inherit it!

If you add this code to the Sub Main, the correct call to the RaiseSalary method
(the one with the 20 percent bonus) is made by the compiler for any object that is
an instance of the Programmer class:

Sub Main()

 Dim sally As New Programmer("Sally", 150000D)

 sally.RaiseSalary(0.1D) 'will actually give a 12% raise

 Console.WriteLine(sally.TheName & " salary is now " & sally.Salary())

 Console.ReadLine()

End Sub

NOTE We use this Employee class often in this chapter, so you may want to either
type it into Visual Studio or simply download the source code from www.apress.com
if you have not yet done so.

Inheritance and Interfaces

187187

Sally will get her 20 percent bonus.

To summarize:

• You can override only parent members marked with the Overridable
keyword.

• If, at any point in the chain you want to stop the possibility of further overrid-
ing of a method, mark it with the NotOverridable keyword.

VB .NET’s NotInheritable keyword prevents inheritance from a class (these kinds
of classes are sometimes called sealed or final classes). The main reason to mark an
entire class as NotInheritable is if the class has such vital behavior that you cannot risk
changes to it. Many framework classes such as String are marked as NotInheritable
for this reason. However, you do not have to mark a whole class as NotInheritable if
all you want to do is place a single member of the class off limits to overriding it: you
can mark a member you do not want overridden as NotOverridable.

You may occasionally want to access the parent class version of a method that
you have overridden. For example, suppose you want to add an honorific like
“Code Guru” to the name of every programmer. MyBase lets you access the public
TheName property of the parent class inside the child class:

Public Overrides ReadOnly Property TheName() As String

 Get

 Return "Code Guru " & MyBase.TheName()

 End Get

End Property

Note that the MyBase keyword does have a few limitations:

• You cannot chain it to move to the “grandparent” if your inheritance chain
is that deep; MyBase.MyBase.MemberFunction is illegal.

• MyBase is a keyword, and unlike Me, MyBase cannot be used with Is, assigned
to an object variable, or passed to a procedure.

NOTE Members are not overridable by default (we explain why when we
describe the Shadows keyword later in this chapter). Still, we feel you should use
the NotOverridable keyword to make your intentions clear.

Chapter 5

188

Similarly, the MyClass keyword lets you be sure that even overridden methods
get called as defined in the current class whose code is running, rather than as
defined in some overridden method in a derived class. The limitations to MyClass
are similar to that of MyBase, as we mentioned in the previous chapter:

• MyClass is also a keyword, not a real object. Therefore, as with MyBase,
MyClass cannot be used with Is, assigned to an object variable, or
passed to a procedure. (Use Me to refer to the actual instance.)

• MyClass cannot be used to access Private members in the class (but
Me can).

...

How Can You Promote Someone to Manager?

Suppose you have built a wonderful object-oriented employee management
program (with polymorphism working its wonders) and then someone asks you
the following simple question: how does your employee management system
handle promoting someone to manager?

Interestingly enough answering this kind of question in OOP (that is having a
way to change the type of an existing instance in a program that uses OOP) is an
extremely complex design issue that rarely gets addressed before the issue
becomes a crisis. The problem is that object-oriented programming requires
that once an object is created, you cannot change its type.

The only practical solution in the case of our employee management program is
to build a method into the Employee class that copies the state of the Employee to

...

a new Manager object and then marks the old Employee object as unusable.1

1. Interestingly enough this is similar to what the military does. When an enlisted person is
promoted to an officer, they actually discharge the enlisted person and then issue a new ID to
the newly created officer.

NOTE We find MyClass most useful when we want to indicate that we are mod-
ifying the behavior of a class. The trouble we have with using Me for MyClass is
that Me really should only mean "the current instance of the object whose code is
being run" and using it in any other way confuses the issue for us

Inheritance and Interfaces

189189

Viewing an Inheritance Chain

The Class View and the Object Browser are useful when your inheritance chain
grows in complexity. For example, in Figure 5-1 you can see that the Class View
window shows you how the Programmer class inherits from the Employee class and
only overrides the constructor and the RaiseSalary method.

Figure 5-1. Class View in an inheritance chain

NOTE Unified Modeling Language (UML) tools like Visio or Rational Rose not
only show you the relationship between classes in an inheritance chain, they
actually create frameworks for the code. Many programmers swear by such CASE
(computer-assisted software engineering) tools. Of course some swear at them.

Chapter 5

190

Rules for Conversions and Accessing Members
in Inheritance Chains

You can store a variable of the child class in a variable of the parent class:

Dim tom As New Programmer("Tom", 65000)

Dim employeeOfTheMonth As Employee

employeeOfTheMonth = tom

If Option Strict is on (as it should be), then once tom is stored in the
employeeOfTheMonth variable, you need to use the CType function to store
employeeOfTheMonth in a Programmer variable:

Dim programmerOnCall As Programmer

programmerOnCall = CType(employeeOfTheMonth, Programmer)

since the compiler has no way of knowing this is acceptable beforehand. Of
course, storing tom in the programmerOnCall variable can be done with a simple
assignment:

Polymorphism at Work

One of the main goals of inheritance is to avoid the difficult-to-maintain Select Case
or If-Then-Else If statements by having the compiler and polymorphism do all the
work. For instance, this code works with both the Employee and Programmer class:

Sub Main()

 Dim tom As New Employee("Tom", 50000)

 Dim sally As New Programmer("Sally", 150000)

 Dim ourEmployees(1) As Employee

 ourEmployees(0) = tom

 ourEmployees(1) = Sally

 Dim anEmployee As Employee

CAUTION When you access the functionality of the tom object variable through
the employeeOfTheMonth Employee variable, you do not have access to any of the
unique members defined in the Programmer class. However, as you will see in the
next section, you would have access to all the members of the Programmer class
that override members of the Employee class.

Inheritance and Interfaces

191191

 For Each anEmployee In ourEmployees

 anEmployee.RaiseSalary(0.1D)

 Console.WriteLine(anEmployee.TheName & " salary now is " & _

 anEmployee.Salary())

 Next

 Console.ReadLine()

End Sub

When you run the code, you see Figure 5-2, which shows that the correct RaiseSalary
method is called even though we stored both employees and programmers in an
array of objects of the Employee type.

In the previous example, what “virtual” means is that even though the refer-
ences are to Employee objects (because everything is stored in an Employee array),
the compiler looks at the true type of Sally (she is a Programmer) in order to call the
correct RaiseSalary method (the one that gives the better raise).

As you can imagine, the use of virtual methods when storing both parent
class objects (employees) and derived class objects (programmers) in a container
marked for by the type of the parent—is quite common. However, there are some
pitfalls in the simple approach we take to using virtual methods here. To see these
pitfalls for yourself, modify the Programmer class to include a unique member, so
that polymorphism will not be involved. For example, add an instance field and
property member as shown here in the lines in bold:

Figure 5-2. Polymorphism at work

NOTE This is sometimes described by saying that in VB .NET the default is that
members of classes are virtual. (Virtual technically means that when the com-
piler calls a member of an object, it should look at the true type of the object, not
just at what sort of container or reference it is used in.)

Chapter 5

192

Public Class Programmer

 Inherits Employee

 Private m_gadget As String

 Public Sub New(ByVal theName As String, ByVal curSalary As Decimal)

 MyBase.New(theName, curSalary)

 End Sub

 Public Overloads Overrides Sub RaiseSalary(ByVal Percent As Decimal)

 MyBase.RaiseSalary(1.2D * Percent, "special")

 End Sub

 Public Property ComputerGadget() As String

 Get

 Return m_Gadget

 End Get

 Set(ByVal Value As String)

 m_Gadget = Value

 End Set

 End Property

 End Class

and then change Sub Main by adding the lines in bold:

Sub Main()

 Dim tom As New Employee("Tom", 50000)

 Dim sally As New Programmer("Sally", 150000)

 sally.ComputerGadget = "Ipaq"

 Dim ourEmployees(1) As Employee

 ourEmployees(0) = tom

 ourEmployees(1) = sally

 Dim anEmployee As Employee

 For Each anEmployee In ourEmployees

 anEmployee.RaiseSalary(0.1D)

 Console.WriteLine(anEmployee.TheName & " salary now is " _

 & anEmployee.Salary())

 Next

 Console.WriteLine(ourEmployees(1).TheName & " gadget is an " _

 & ourEmployees(1).Gadget)

 Console.ReadLine()

 End Sub

The modified code results in this error message:

C:\book to comp\chapter 5\VirtualProblems\VirtualProblems\Module1.vb(17):

The name 'Gadget' is not a member of 'VirtualProblems.Employee'.

Inheritance and Interfaces

193193

The problem is that although Sally is a Programmer object and is stored in the
ourEmployees(1) array element, the compiler has no way of knowing that and thus
cannot find the ComputerGadget property. What is more, unless you turn Option
Strict off (which is a dangerous practice, in our opinion), you must explicitly
convert this array entry to the Programmer type to use these unique members of the
Programmer class:

Console.WriteLine(ourEmployees(1).TheName & " gadget is an " & _

CType(ourEmployees(1), Programmer).ComputerGadget)

The process of converting a reference stored in a parent class object variable
to a child class object is usually called down casting. (Converting from a child class
to the parent class is thus called up casting) Although it is a common practice, down
casting should be avoided whenever possible, because it often requires you to
check the type of an object variable via code like this:

If TypeOf ourEmployees(1) Is Programmer Then

'

Else If TypeOf ourEmployees(1) Is Employee Then

'

End If

which, as you can see, requires bringing back the kind of selection statements that
you used polymorphism to banish in the first place! (Up casting, of course, never
causes problems because the fundamental rule of inheritance is that child objects
can be used any place parent objects are used.)

Shadowing

In earlier versions of VB, as in most programming languages, shadowing meant
that a local variable with the same name as a variable of larger scope hid the variable
with larger scope. (This is one reason the convention arose to use m_ as a prefix for
module-level variables and g_ for global variables. Using a good naming conven-
tion helps prevent shadowing bugs.) You can think of overriding an inherited

TIP It is usually a better programming practice to store Programmer objects in a
container that can hold only programmers, when you want to access programmer
functionality. This way you do not have to check to see if you can do the cast via a
selection statement like If-TypeOf.

Chapter 5

194

method as a special kind of shadowing. For better or for worse, VB .NET allows
another extraordinarily powerful kind of shadowing:

• If you mark a member of a derived class with the Shadows keyword
(which was introduced in beta 2), it hides any members of the parent
class with the same name.

The Shadows keyword can even be used to have a sub in the parent class and a
function with the same name in a child class. For all practical purposes, shadowing
makes a totally new member in the derived class with that name, and thus makes
any inherited members with the name being shadowed unavailable in the derived
class. This, in turn, means overriding inherited members that have been shadowed is
no longer possible and polymorphism cannot work.

Shadowing gets tricky and can cause subtle bugs when you want to use poly-
morphism on a container of, say, Employee objects and you have shadowed a
member. To see this kind of problem at work, modify the Programmer class with the
lines in bold:

Public Class Programmer

 Inherits Employee

 Private m_gadget As String

 Private m_HowToCallMe As String = "Code guru "

 Public Sub New(ByVal theName As String, ByVal curSalary As Decimal)

 MyBase.New(theName, curSalary)

 m_HowToCallMe = m_HowToCallMe & theName

 End Sub

 Public Overloads Overrides Sub RaiseSalary(ByVal Percent As Decimal)

 MyBase.RaiseSalary(1.2D * Percent, "special")

 End Sub

 Public Shadows ReadOnly Property TheName() As String

 Get

 Return m_HowToCallMe

 End Get

 End Property

End Class

CAUTION The default in VB .NET is to allow you to shadow members but it will
then issue a warning if you do not use the Shadows keyword. Also, if one member
uses the Shadows or Overloads keyword, all the members with the same name
must use it.

Inheritance and Interfaces

195195

Now try this Sub Main with the key lines in bold:

Sub Main()

 Dim tom As New Employee("Tom", 50000)

 Dim sally As New Programmer("Sally", 150000)

 Console.WriteLine(sally.TheName)

 Dim ourEmployees(1) As Employee

 ourEmployees(0) = tom

 ourEmployees(1) = sally

 Dim anEmployee As Employee

 For Each anEmployee In ourEmployees

 anEmployee.RaiseSalary(0.1D)

 Console.WriteLine(anEmployee.TheName & " salary now is " & _

 anEmployee.Salary())

 Next

 Console.ReadLine()

End Sub

Figure 5-3 shows what you will see.

As you can see, polymorphism has stopped working. The first bold line in the
code correctly gives Sally the honorific of “Code Guru” before her name. Unfortu-
nately, the second bold line no longer works polymorphically, so it no longer uses
the correct TheName method in the Programmer derived class. The result is that you
do not see the honorific. In other words, if you use the Shadows keyword, members
of objects get called by the kind of container the object is stored in, not by what
their ultimate types are. (You could also say that using the Shadows keyword in a
derived class makes a member nonvirtual.)

Abstract Base Classes

Once you start designing inheritance into your programs, you soon realize that
you often can take advantage of a great deal of common functionality. For example,

Figure 5-3. Shadowing causes polymorphism to fail.

Chapter 5

196

contractors are not employees, but they still have information in common with
employees, such as having a name, an address, a tax ID number, and so on. It
might make sense to push common code back as far as possible into a base class
called PayableEntity which has an address and a tax ID number as properties. The
process of searching for common functionality that you can put into a common
base class, usually called factoring, is a useful design practice that lets you take
abstraction to its logical conclusion.

However, the factoring process sometimes leads you to a class where some of the
methods are not really implementable, even though they clearly are common to all
the classes in the inheritance chain. For example, with a class called PayableEntity as
the common base class for both contractors and employees, you might decide
that this foundational class should have a property called TaxID. Now, as should be
the case, you want to check that the format for the tax ID number is correct, by
using code inside a property procedure. Well, here you are faced with a problem:
Social Security numbers take a different form from the tax ID used by certain
kinds of contractors. This means the verification code for this property cannot be
built into the PayableEntity base class, but must be in the child classes, because
only they can know what form the tax ID must take.

For these kinds of situations, you build an abstract base class. This is a class
that has at least one member function marked with the MustOverride keyword,
and the class itself is marked with the MustInherit keyword. Here is an example of
what an abstract PayableEntity, MustInherit class looks like:

Public MustInherit Class PayableEntity

 Private m_Name As String

 Public Sub New(ByVal itsName As String)

 m_Name = itsName

 End Sub

 ReadOnly Property TheName() As String

 Get

 Return m_Name

 End Get

 End Property

 Public MustOverride Property TaxID() As String

End Class

Notice that the member marked with the MustOverride keyword consists of
just the Property statement with no code inside of it. In general, a member marked
with the MustOverride keyword has only a header and cannot use an End Property,
End Sub, or End Function statement. Also notice that we were able to use a concrete
implementation of the read-only property TheName, which shows abstract classes
can combine nonabstract members with abstract members. An Employee class that

Inheritance and Interfaces

197197

inherits from the abstract PayableEntity class might look like this, with the key
new lines in bold:

Public Class Employee

 Inherits PayableEntity

 Private m_Salary As Decimal

 Private m_TaxID As String

 Private Const LIMIT As Decimal = 0.1D

 Public Sub New(ByVal theName As String, ByVal curSalary As Decimal, _

ByVal TaxID As String)

 MyBase.New(theName)

 m_Salary = curSalary

 m_TaxID = TaxID

 End Sub

 Public Overrides Property TaxID() As String

 Get

 Return m_TaxID

 End Get

 Set(ByVal Value As String)

 If Value.Length <> 11 then

 'need to do something here - see Chapter 7

 Else

 m_TaxID = Value

 End If

 End Set

 End Property

 ReadOnly Property Salary() As Decimal

 Get

 Return MyClass.m_Salary

 End Get

 End Property

 Public Overridable Overloads Sub RaiseSalary(ByVal Percent As Decimal)

 If Percent > LIMIT Then

 'not allowed

 Console.WriteLine("NEED PASSWORD TO RAISE SALARY MORE " & _

 "THAN LIMIT!!!!")

 Else

 m_Salary = (1D + Percent) * m_Salary

 End If

 End Sub

Chapter 5

198

 Public Overridable Overloads Sub RaiseSalary(ByVal Percent As _

 Decimal, ByVal Password As String)

 If Password = "special" Then

 m_Salary = (1D + Percent) * m_Salary

 End If

 End Sub

End Class

The first of the key lines is in the constructor, which now has to call the con-
structor of the abstract base class in order to set the name properly. The second
group of key lines adds the most trivial concrete implementation of the
MustOverRide TaxId property. (Note that this code does not do the needed
verification of tax ID numbers here, as you would in a more robust example.)

Here is a Sub Main you can use to test this program:

Sub Main()

 Dim tom As New Employee("Tom", 50000, "111-11-1234")

 Dim sally As New Programmer("Sally", 150000, "111-11-2234")

 Console.WriteLine(sally.TheName)

 Dim ourEmployees(1) As Employee

 ourEmployees(0) = tom

 ourEmployees(1) = sally

 Dim anEmployee As Employee

 For Each anEmployee In ourEmployees

 anEmployee.RaiseSalary(0.1D)

 Console.WriteLine(anEmployee.TheName & " has tax id " & _

anEmployee.TaxID & ", salary now is " & anEmployee.Salary())

 Next

 Console.ReadLine()

End Sub

Finally, you cannot create a MustInherit class directly. A line like this:

Dim NoGood As New PayableEntity("can't do")

gives this error message:

Class 'PayableEntity' is not creatable because it contains at least

one member marked as 'MustOverride' that hasn't been overridden.

You can, however, assign an object from a derived class to a variable of an
abstract base class type or a container for it (which allows polymorphism to work
its magic):

Inheritance and Interfaces

199199

Dim tom As New Employee("Tom", 50000, "123-45-6789")

Dim whoToPay(13) As PayableEntity

whoToPay(0) = tom

Example: The CollectionBase Class

The trouble with .NET Framework classes such as ArrayList or HashTable is that
they contain objects, so you always have to use the CType function to get back to
the correct type after you place something in such a collection. You also run the
risk that somebody will put the wrong type of object in the container and the call
to CType will fail. A strongly typed collection is a container that can only hold
objects of a single type or its derived types.

A good example of an abstract base class in the .NET Framework is
CollectionBase, whose derived classes allow you to build strongly typed collections
(Before you embark on creating your own collection class inheriting from
CollectionBase, make sure that the framework does not already contain the class
you need, in the System.Collections.Specialized Namespace.) Such type-safe col-
lections rely on an abstract base class called System.Collections.CollectionBase,
and all you have to do is implement concrete Add and Remove methods and an Item
property. This is because the System.Collections.CollectionBase already has an
internal list that holds the data—you need only delegate the other tasks to this
internal list.

Here is an example that builds this kind of specialized collection (which
assumes the Employee class is either referenced or part of this project):

1 Public Class Employees

2 Inherits System.Collections.CollectionBase

3 ' Restricts to adding only Employee items

4 ' delegating to the internal List object's Add method

5 Public Sub Add(ByVal aEmployee As Employee)

6 List.Add(aEmployee)

7 End Sub

NOTE Although unusual, it is possible to build a MustInherit class without any
MustOverride members.

Chapter 5

200

8 Public Sub Remove(ByVal index As Integer)

9 If index > Count - 1 Or index < 0 Then

10 ' outside the range, should throw an exception (Chapter 7)

11 MsgBox("Can't add this item") 'MsgBox as a marker for an exception

12 Else

13 List.RemoveAt(index)

14 End If

15 End Sub

16

17 Default Public ReadOnly Property Item(ByVal index As Integer) As Employee

18 Get

19 Return CType(List.Item(index), Employee)

20 End Get

21 End Property

22 End Class

Lines 5–7 implement the abstract Add method in the base class by delegating
it to the internal List object, so that it will accept only Employee objects. Lines 8–10
implement the Remove method. Here we are delegated to the internal List object’s
Count and Index properties to make sure we are not at the end or beginning of the
list. Finally, lines 17–21 implement the Item property. We make this the default
property because this is what users expect for a collection. We make it read-only
to prevent someone from adding an item except via the Add method. It would
certainly be acceptable to make it a read-write property, but that would require
some extra code to verify that the index you add the item to is acceptable. Assuming
you have the basic Employee class, here is some code to test this specialized collection
with an illegal addition (a string) commented out (but in bold):

Sub Main()

 Dim tom As New Employee("Tom", 50000)

 Dim sally As New Employee("Sally", 60000)

 Dim myEmployees As New Employees()

 myEmployees.Add(tom)

 myEmployees.Add(sally)

 ' myEmployees.Add("Tom")

 Dim aEmployee As Employee

 For Each aEmployee In myEmployees

 Console.WriteLine(aEmployee.TheName)

 Next

 Console.ReadLine()

End Sub

Inheritance and Interfaces

201201

As an experiment, try uncommenting the myEmployees.Add("Tom") line. You will
see that the code will not even compile and you end up with this error message:

C:\book to comp\chapter 5\EmployeesClass\EmployeesClass\Module1.vb(9):

A value of type 'String' cannot be converted to 'EmployeesClass.Employee'.

Object: The Ultimate Base Class

The .NET Framework (and hence VB .NET) depend on every type inheriting from
the common Object type, this is the ultimate ancestor of all classes. (OOP speak
often calls such a class the cosmic base class.) This includes both reference types
(instances of a class) and value types (instance of a struct, enum, dates or numeric
types). This means, for example, that any function that takes a parameter of
Object type can be passed a parameter of any type (since the fundamental rules of
inheritance that we mentioned earlier require that child class variables be usable
in any context that parent class variables can be used).

For example, there are a few useful built-in Boolean functions that determine
whether the kind of data you are working with take an object variable:

• IsArray: Tells you if an object variable is an array

• IsDate: Tells you if an object can be interpreted as a date and time value

• IsNumeric: Tells you if the object can be interpreted as a number

NOTE This is a great example of the extra power inheritance gives VB .NET over
using delegation in earlier versions of VB. We continue to delegate, of course, to
save ourselves work, but we get the For-Each for free, because we inherit from a
class that supports For-Each!

CAUTION Developers coming from earlier versions of VB may be tempted to
think of the Object type as a glorified Variant data type. Resist this temptation.
Variants were just another data type that could store other data types inside
themselves; the Object type is the ultimate base class at which all inheritance
chains end.

Chapter 5

202

The Object class itself splits up into two streams of descendants: those that
inherit from System.ValueType (the base class for all value types) and the reference
types that descend directly from Object. You can determine if a derived type is a
value type with code like this:

Sub Main()

 Dim a As Integer = 3

 Console.WriteLine("a is a value type is " & IsValueType(a))

 Console.ReadLine()

 End Sub

 Function IsValueType(ByVal thing As Object) As Boolean

 Return (TypeOf (thing) Is System.ValueType)

End Function

The Most Useful Members of Object

Because every type in VB .NET inherits from Object, it is likely that you will often use
(or more likely, override) these methods. We cover them in the next few sections.

NOTE We think this is a design flaw in VB .NET that you cannot use TypeOf on
value type variables without the kludge of creating a function that takes an
object. You should be able to pass a value type to TypeOf.

NOTE You will often be tempted to override the Object class’s protected Finalize
method. In theory, you override the Finalize method in your code to create
cleanup code that runs when the garbage collector reclaims the memory your
object uses. Do not do this in practice. Because you cannot be sure when the
Finalize method will run or in what order it will run, using it for cleanup is
chancy at best. Instead, you should implement a Dispose method as described
later on in this chapter in the section on the IDisposable interface. If you do
override the Finalize method, be aware you must call MyBase.Finalize inside
the Finalize method, and you should always duplicate any Dispose code there
as well.

Inheritance and Interfaces

203203

Equals and ReferenceEquals

The Object class supplies two versions of Equals, one shared and one not. The
shared version has this syntax:

Overloads Public Shared Function Equals(Object, Object) As Boolean

and is used in this form:

Equals(a, b)

The nonshared version has the syntax:

Overloads Overridable Public Function Equals(Object) As Boolean

and is used in this form:

a.Equals(b)

The two versions of the Equals method are designed to determine whether
two items have the same value, but you should be prepared to overload Equals if it
makes sense in your class. Keep in mind that because shared members of classes
cannot be overridden, you can only override the nonshared version of Equals.

For example if you have two ways of representing objects in a value type, you
should make sure that Equals can handle this (The designers did this for the String
class as well, although strictly speaking, this is not a value type.)

The Object class also provides a shared (and therefore not overridable) version of
a method called ReferenceEquals. The ReferenceEquals method determines whether
two items refer to the same object; that is, whether the specified Object instances
are the same instance. For example, two strings, a and b, can have a.Equals(b)
true and ReferenceEquals(a, b) false, as this code shows:

Sub Main()

 Dim a As String = "hello"

 Dim b As String = "Hello"

 Mid(b, 1, 1) = "h"

 Console.WriteLine("Is a.Equals(b)true? " & a.Equals(b))

 Console.WriteLine("Is ReferenceEquals(a, b) true? " & _

 ReferenceEquals(a, b))

 Console.ReadLine()

End Sub

The result is shown in Figure 5-4.

Chapter 5

204

The ToString Method

The ToString method returns a string that represents the current object. How suc-
cessful this representation is to debugging and to the user of the class depends on
the implementer of the class. The default implementation of ToString returns the
fully qualified type name of the object. For example:

System.Object

or

Example1.Programmer

You should get into the habit of overriding ToString for your own classes
where you can give a more meaningful string representation of the class. For
example, in our basic Employee class contained in the EmployeeTest1 program
from Chapter 4, it might be better to override the ToString method:

Public Overrides Function ToString() As String

 Dim temp As String

 temp = Me.GetType.ToString() & " my name is " & Me.TheName

 Return temp

End Function

The result is

EmployeeTest1.EmployeeTest1+Employee my name is Tom

GetType and Reflection2

Every type in the .NET Framework is represented by a Type object. The Type class is
full of mouth-twisting members such as the GetMembers method, which lets you get

2. Warning: this section is full of tongue-twisting sentences

Figure 5-4. The difference between Equals and ReferenceEquals

Inheritance and Interfaces

205205

at the members of that class by name. The idea is that the GetType method in
Object returns a Type object that you can use to query what functionality a type
offers you at run time. This extremely useful feature lets you perform reflection
(which sometimes called runtime type identification). In fact, the Reflection
namespace is so important to the smooth functioning of the .NET Framework
that it is automatically imported into every project in the VS IDE.)

To see reflection at work, add a reference to the System.Windows.Forms
assembly and then run the following program. When you start seeing a prompt (it
will take a moment) press Enter and you will eventually see something like Figure 5-5.
You can keep on pressing Enter and you will eventually you see all of the members
of the Windows.Forms.Form class (there are many), which is the basis for GUI appli-
cations in .NET.

1 Option Strict On

2 Imports System.Windows.Forms

3 Module Module1

4 Sub Main()

5 Dim aForm As New Windows.Forms.Form()

6 Dim aType As Type

7 aType = aForm.GetType()

8 Dim member As Object

9 Console.WriteLine("This displays the members of the Form class")

10 Console.WriteLine(" Press enter to see the next one.")

11 For Each member In aType.GetMembers

12 Console.ReadLine()

13 Console.Write(member.ToString)

14 Next

15 Console.WriteLine("Press enter to end")

16 Console.ReadLine()

17 End Sub

18 End Module

The key lines 6 and 7 let us retrieve a Type object that represents a
Windows.Forms.Form class. Then, because the GetMembers method of the Type
class returns a collection of MemberInfo objects that describe the member, we
simply iterate through all the members of this class in lines 11–14.

NOTE We simply call ToString in this program, but the online help shows you
that a lot more information is encapsulated in MemberInfo objects.

Chapter 5

206

MemberWiseClone

First off, in programming, as in modern science:

• A clone is an identical copy of an object.

• The clone’s state can change from the original object’s state.

but most important:

• Changes to the clone should not affect the object it was cloned from.

Figure 5-5. The members of the Windows.Forms.Form class via reflection

TIP You can replace this code with an instance of another class to see its
members, and you can also get a Type object by passing the fully qualified
name of the class as a string to a version of GetType that is a shared member of
Type class. Reflection allows for late binding in VB .NET via the InvokeMember
method, which takes a string that identifies the member you want to call
(which presumably you discovered by reflection). See the .NET documentation
for the Type class for more on this feature.

Inheritance and Interfaces

207207

Her is an example of what we mean by this caution. Arrays in VB .NET, unlike
in VB6 are objects. Consider this class which has an array as an instance field that
we want to try to clone:

1 Public Class EmbeddedObjects

2 Private m_Data() As String

3 Public Sub New(ByVal anArray() As String)

4 m_Data = anArray

5 End Sub

6 Public Sub DisplayData()

7 Dim temp As String

8 For Each temp In m_Data

9 Console.WriteLine(temp)

10 Next

11 End Sub

12 Public Sub ChangeData(ByVal newData As String)

13 m_Data(0) = newData

14 End Sub

15 Public Function Clone() As EmbeddedObjects

16 Return CType(Me.MemberwiseClone, EmbeddedObjects)

17 End Function

18 End Class

Now run this Sub Main:

Sub Main()

 Dim anArray() As String = {"HELLO"}

 Dim a As New EmbeddedObjects(anArray)

 Console.WriteLine("Am going to display the data in object a now!")

 a.DisplayData()

 Dim b As EmbeddedObjects

 b = a.Clone()

CAUTION This last point is what makes cloning tricky in any OOP language,
and it is why MemberWiseClone is such a potentially dangerous method. The
problem is that objects can have objects inside of them and, if you do not clone
the internal objects at the same time as you clone the object that contains them,
you end up with objects that are joined at the hip and depend on each other as a
result—not what you want in a clone. The problem is that whenever an object
has mutable objects as one of its instance fields, the MemberWiseClone method
always gives you just such an ill-formed, half-baked kind of clone, known as a
shallow copy. The MemberWiseClone method successfully clones only objects
whose instances fields are value types.

Chapter 5

208

 Dim newData As String = "GOODBYE"

 b.ChangeData(newData)

 Console.WriteLine("Am going to display the data in object b now!")

 b.DisplayData()

 Console.WriteLine("Am going to re-display the data in a" & _

 " after making a change to object b!!!")

 a.DisplayData()

 Console.ReadLine()

End Sub

The result is pretty dramatic, as you can see in Figure 5-6: the change to the
“clone” affected the original object!

What is going on in this example? Why does MemberWiseClone fail? Why
do changes to object b affect object a? The reason is that in lines 2 and 4 of the
EmbeddedObject class, we used an array as an instance field that is set in the con-
structor. Arrays are mutable objects and, as you saw in Chapter 3, this means
the contents of an array can be changed even when passed ByVal. We changed the
state of the internal array in lines 12–14 of the EmbeddedObjects class. Because the
object and its “clone” are joined by the reference to the m_Data array, these changes
persist when we changed the clone, as you just saw.

You will see how to fix this example in the section on ICloneable later in this
chapter. For now, we merely point out that a true clone (sometimes called a deep
copy) creates clones of all the instance fields of the object, and continues doing it
recursively if necessary. For example, if a class has an object instance field that in
turn has another object instance field, the cloning process must go two layers down.

Figure 5-6. Why MemberWiseClone generally will not work

TIP There are some clever ways to do cloning that depend on serialization. See
Chapter 9 for more on these tricks.

Inheritance and Interfaces

209209

Finally, as a way of dealing with its potential problems, the designers of the
.NET Framework made MemberWiseClone a protected member of Object. This means,
as you saw earlier, that only the derived class itself can call MemberWiseClone. Code
from outside the derived class cannot call this dangerous method in order to
clone an object. Also note that MemberWiseClone returns an Object, which is why we
had to use the CType function in line 16 of the EmbeddedObjects class.

The Fragile Base Class Problem: Versioning

The versioning problem occurred all too often in programming for earlier versions of
Windows, usually in the form of DLL hell—you used a version of a DLL and a new
version came along that broke your code. Why did it break your code? The reasons
were as obvious as someone inadvertently removing a function you depended on
in the second version, or as subtle as changing the return type of a function. In
any case all the sources of DLL hell amount to variations on a theme: someone
changes the public interface of code you depend on, your program is no longer
able to use the newer DLL in place of the older one, and the older one is overwritten.
Whenever you used inheritance in most other OOP languages, you greatly increased
the risk of your code breaking because of versioning issues. You had to depend on
all of the public and protected members of classes higher up in the food chain not
changing in a way that would break your code. This situation is called the fragile
base class problem: because inheritance often seems to make our programs resemble
a house of cards, and any disturbance to the bottom layer (the base class) causes
the whole house to fall down. The best way to see this problem in action is to work
with some code. Start by coding the following PayableEntity class into a separate
class library and then compile it into an assembly called PayableEntityExample
(you can also of course download the code from www.apress.com) by choosing
Build. (Recall you create a named assembly by right-clicking on the name of the
project in the Solution Explorer and adjusting the options in the dialog box that
pops up after you choose Properties.) If you are not using our source code tree
then please note the directory in which you built the project.

Public MustInherit Class PayableEntity

 Private m_Name As String

 Public Sub New(ByVal theName As String)

 m_Name = theName

 End Sub

Chapter 5

210

 Public ReadOnly Property TheName() As String

 Get

 Return m_Name

 End Get

 End Property

 Public MustOverride Property TaxID() As String

End Class

Close the solution after you have built this DLL.

Now suppose you decide to add a way of getting an address into an Employee
class that depends on the PayableEntity base class, remembering that we are only
going to use the class in its compiled form. To do this you will need to add a refer-
ence to the assembly that contains this project by going into the \bin subdirectory
where you built the PayableEntityExample DLL. The code for our Employee class
might look like the following; note the line in bold where we inherit from the
abstract class defined in the PayableEntityExample assembly:

Public Class Employee

 'since the namespace is PayableEntityExample, the full name of the class

 'is PayableEntityExample.PayableEntity!

 Inherits PayableEntityExample.Employee

 Private m_Name As String

 Private m_Salary As Decimal

 Private m_Address As String

 Private m_TaxID As String

 Private Const LIMIT As Decimal = 0.1D

 Public Sub New(ByVal theName As String, ByVal curSalary As Decimal,_

 ByVal TaxID As String)

 MyBase.New(theName)

 m_Name = theName

 m_Salary = curSalary

 m_TaxID = TaxID

 End Sub

 Public Property Address() As String

 Get

 Return m_Address

 End Get

 Set(ByVal Value As String)

 m_Address = Value

 End Set

 End Property

Inheritance and Interfaces

211211

 Public ReadOnly Property Salary() As Decimal

 Get

 Return m_Salary

 End Get

 End Property

 Public Overrides Property TaxID() As String

 Get

 Return m_TaxID

 End Get

 Set(ByVal Value As String)

 If Value.Length <> 11 Then

 'need to do something here - see Chapter 7

 Else

 m_TaxID = Value

 End If

 End Set

 End Property

End Class

The Sub Main might look like this:

Sub Main()

 Dim tom As New Employee("Tom", 50000)

 tom.Address = "901 Grayson"

 Console.Write(tom.TheName & " lives at " & tom.Address)

 Console.ReadLine()

 End Sub

and the result, as you expect, would be like Figure 5-7.

You compile this into Versioning1.exe and everyone is happy!

Now, let us imagine the PayableEntity class is actually supplied by a third
party. The brilliant designers of the PayableEntity class are not sitting on their laurels,
so they decide to do what they actually should have done in the first place: they

Figure 5-7. A simple program with no versioning yet

Chapter 5

212

add an address object to their class, then recompile and send you the new DLL.
Although they might not send you the source code, we give it to you here. Notice
the change to the constructor (in bold):

Imports Microsoft.VisualBasic.ControlChars

Public Class PayableEntity

 Private m_Name As String

 Private m_Address As Address

 Public Sub New(ByVal theName As String, ByVal theAddress As Address)

 m_Name = theName

 m_Address = theAddress

 End Sub

 Public ReadOnly Property TheName() As String

 Get

 Return m_Name

 End Get

 End Property

 Public ReadOnly Property TheAddress()

 Get

 Return m_Address.DisplayAddress

 End Get

 End Property

End Class

Public Class Address

 Private m_Address As String

 Private m_City As String

 Private m_State As String

 Private m_Zip As String

 Public Sub New(ByVal theAddress As String, ByVal theCity As String, _

 ByVal theState As String, ByVal theZip As String)

 m_Address = theAddress

 m_City = theCity

 m_State = theState

 m_Zip = theZip

 End Sub

 Public Function DisplayAddress() As String

 Return m_Address & CrLf & m_City & ", " & m_State _

 & crLF & m_Zip

 End Function

End Class

Inheritance and Interfaces

213213

This is, of course, an example of truly lousy programming at work. The devel-
opers who coded this managed to lose the original constructor in the process of
“improving” the original version, something that should never be done. Still, horrors
like this did happen and, in the olden days, you probably would have the old DLL
installed on a user’s hard disk, usually in Windows/System. Then the new DLL
would come along, overwrite the previous version, and your previously happily
running Versioning1 program would break. (And since the constructor for the
parent class changed, you were truly toast.)

Granted, designers of base classes should not do this, but we all know they
did. Try this under .NET, however, and something wonderful happens: your old
program continues to run just fine, because it uses the original PayableEntity DLL
which is automatically stored in the \bin directory of the Versioning1 solution.

.NET’s versioning scheme allows the vendor of a .NET component to add new
members to the next version of their base class (even though the practice should
not be encouraged). Vendors can do this even if the new member happens to have
the same name as a member that you inadvertently added to a child class that
depended on their base class. The old executable created from the derived class
continues to work, because it will not use the new DLL.

Actually, this is not quite true: it does run fine—until you reopen the source
code for the Versioning1 code in VS .NET, reference the new PayableEntityExample
DLL and try to rebuild the Versioning1 code. At that point, you will see an like
error message like this:

C:\book to comp\chapter 5\Versioning1\Versioning1\Module1.vb(21):

No argument specified or non-optional parameter 'theAddress' of

'Public Sub New(theName As String, theAddress

As PayableEntityExample.Address)'.

The point is once you load up the old source code for the derived class and
reference the new DLL, you will not be able to recompile the code until you fix the
incompatibility that the vendor of the parent class stuck you with.

Before we end this section, we want to make sure that you are not thinking
that eliminating a constructor in favor of a different constructor is a pretty drastic

CAUTION Ultimately, the .NET Framework solves the versioning problem by
making sure your class knows which version of a DLL it depends on and refuses
to run if the correct version is not present. This process is successful because of
the magic of assemblies (see Chapter 13). However, you can still circumvent the
help .NET’s versioning scheme gives you by copying the new DLL to the location
of the older DLL under the scenario we just sketched.

Chapter 5

214

mistake. Does .NET versioning protect you from more subtle problems? The
answer is yes.

Consider the most common, if subtle, source of versioning problems when you
use inheritance: a Derived class depends on a Parent base class. You introduce a
ParseIt method in the Derived class (as in the following code where we merely add
carriage return/line feed combinations in the parts of the string we want to display):

Imports Microsoft.VisualBasic.ControlChars

Module Module1

 Sub Main()

 Dim myDerived As New Derived()

 myDerived.DisplayIt()

 Console.ReadLine()

 End Sub

End Module

Public Class Parent

 Public Const MY_STRING As String = "this is a test"

 Public Overridable Sub DisplayIt()

 Console.WriteLine(MY_STRING)

 End Sub

End Class

Public Class Derived

 Inherits Parent

 Public Overrides Sub DisplayIt()

 Console.WriteLine(ParseIt(MyBase.MY_STRING))

 End Sub

 Public Function ParseIt(ByVal aString As String)

 Dim tokens() As String

'actually split defaults to splitting on spaces

 tokens = aString.Split(Chr(32))

 Dim temp As String

 'rejoin them into one string adding a CR/LF betweeen the words

 temp = Join(tokens, CrLf)

 Return temp

 End Function

End Class

End Module

You will see Figure 5-8.

Now imagine you are supplied the Parent class in compiled form instead of in
source form. And, when you are shipped Version 2 of the Parent class, it comes
with its own version of ParseIt that it uses extensively in its code. Because functions in
VB .NET are virtual, polymorphism dictates that calls to DisplayIt when an object

Inheritance and Interfaces

215215

of type Derived is stored in an object variable of type Parent, will always use the
ParseIt method of the Derived class and not the ParseIt method in the parent
class. However, we now have a potential, if very subtle, versioning problem. In this
scenario, the code in the Parent class that uses its version of ParseIt function does
not know how the Derived class implemented ParseIt. Using the derived class version
of ParseIt, as polymorphism requires, could break what is needed for the parent
class’s functioning.

VB .NET versioning works wonders here, too: the code in the compiled base
class Parent continues to use its version of ParseIt under all circumstances, even
though polymorphism would require it to use the wrong version when Derived
objects are stored in Parent type variables. And, just as we mentioned for the previous
example, when you open up the code for Derived in Visual Studio, the compiler
will tell you that you must either add the Override or the Shadows keyword to the
ParseIt member of your child class to eliminate the confusion.

Overview of Interfaces

We hope we have convinced you that inheritance has its place in VB .NET, but you
need to also master interfaces to take full advantage of VB .NET’s OOP features.
We take this powerful feature up in the next few sections.

First off, think of implementing an interface as making a binding contract
with any class that uses your class. Interface-style programming is the foundation
of what is called object composition or black box reuse in OOP theory. Interfaces, of
course, were also at the heart of COM programming, and how OOP was done in
earlier versions of VB.) With interfaces, you rely on the class you depend on to
expose certain functionality defined by the signature of the header of the member,
now and forever. Unlike inheritance, there are no dependencies involved with
interfaces—each implementation of an interface can stand on its own.

Figure 5-8. A simple parsing program at work

NOTE In the world of OOP theory, maxims such as "favor object composition
over inheritance" (that is, use interfaces not inheritance) are common. With
.NET's solution to the versioning problem, this is much less of a problem. You
should feel free to use inheritance where it makes sense: where the “is-a”
relationship holds.

Chapter 5

216

When you implement an interface, you:

• Assert that your code will have methods with certain signatures

• Have code (possibly even empty code) with those signatures inside the class

The actual implementation of these members can vary and, as we just said,
they can even do nothing. All you do is make a promise to have certain code with
certain signatures. This simple promise has a lot of nice consequences. Some of
the best ones are:

• It lets a smart compiler replace calls into your code with a fast table lookup
and a jump.

• From the programmer’s point of view, it lets developers call code in your
classes by signature, without fear that the member does not exist.

• The binding contract also lets a compiler use polymorphism just as well as
inheritance chains do.

Compare this to what happens if:

• You do not make a contract that you will support a method with a specified
signature by implementing an interface.

• You are not in an inheritance chain in which VB .NET can find a
method with the right signature.

Here is what happens: if Option Strict is on, your code will not even compile.
Even if Option Strict is off because your code has not promised that it will support
the method, the .NET compiler is smart enough not to go looking for what may or
may not be there at compile time. It therefore cannot put the equivalent of a function
call into compiled code where you call into a class. This means at compile time,
the compiler generates a lot more code, which has the effect of politely asking the
object at run time if it supports the method with the signature you specified and

NOTE Polymorphism works because, when you call a method that is imple-
mented as part of an interface, the .NET compiler finds out at compile time
(early binding is the technical term) what code to call based on the signature
specified and the type of the class.

Inheritance and Interfaces

217217

would it mind running the method if it does. This kind of code has two features
that make it much slower and much more error prone:

1. It needs error-trapping code, in case you were wrong.

2. Because the compiler cannot know at compile time where to jump to find
the method inside the memory that the object occupies, it has to rely on
more indirect methods to send it the location of the member at run time.

This whole process is called late binding, and not only is it significantly slower
than early binding, it is not even allowed (except via reflection) when you have
Option Strict on (as you always should).

Mechanics of Implementing an Interface

Many programming shops (Microsoft, for example) subscribe to the notion of a
lead programmer or lead tester on a team. Suppose you want to extend your
employee management program to allow for the idea of a Lead Programmer or
Lead Tester with certain special properties such as having a morale fund to cheer
up people when they have been working too hard.

In building this possibility into an Employee Management system program,
you cannot use inheritance in VB .NET, because the Programmer class and the
Tester class already inherit from the Employee class and only single inheritance is
allowed in .NET. This is a perfect example of where an interface comes to your rescue.

The first step is to define the interface. Unlike VB6, in which an interface was
merely a class, VB .NET has an Interface keyword. For example, let us suppose
leads have to rate team members and they get to spend the morale fund. The
interface definition would look like this:

Public Interface ILead

 Sub SpendMoraleFund(ByVal amount As Decimal)

 Function Rate(ByVal aPerson As Employee) As String

 Property MyTeam() As Employee()

 Property MoraleFund() As Decimal

End Interface

NOTE The convention in .NET is to use a capital "I" in front of the interface
name, so we call our example interface ILead.

Chapter 5

218

Notice that there are no access modifiers such as Public or Private in an inter-
face definition; the only valid modifiers for Sub, Function, or Property statements
are Overloads and Default. Defining an interface is thus pretty easy. Any class
implementing our ILead interface makes a contract to have:

• A sub that takes a decimal as a parameter

• A function that takes an Employee object and returns a string

• A read-write property that returns an array of Employee objects

• A read-write property that returns a decimal

And, as you will soon see, the names of members in the implementing methods
do not matter—the key point is that they have the promised signature.

To implement an interface in a class, the first step is to make sure the interface is
referenced or already part of the solution. Next, you include the Implements keyword
in the line following the class name and any Inherits statement. For example:

Public Class LeadProgrammer

 Inherits Programmer

 Implements ILead

End Class

At this point, you will see that the keyword ILead is underscored by a blue
squiggly line indicating a problem. This is because the compiler is insisting that
you fulfill your contract, even if only by using empty methods.

How do you do this? Unlike earlier versions of VB, which used a specific form
of the signature to indicate a member implemented an interface, VB .NET indicates
this directly, as you can see in the bold second line in this code:

Public Function Rate(ByVal aPerson As Employee) As String _

Implements ILead.Rate

End Functio

Although it is certainly common to match up the names of the interface member
and the member that implements it, it is not necessary. For example, this is perfectly
acceptable:

Public Property OurMoraleFund() As Decimal Implements ILead.MoraleFund

 Get

 Return m_MoraleFund

 End Get

Inheritance and Interfaces

219219

 Set(ByVal Value As Decimal)

 m_MoraleFund = Value

 End Set

End Property

The key point is that the parameter and return types match the signature
used for that part of the interface. You can use any legal attributes on that kind of
method—Overloads, Overrides, Overridable, Public, Private, Protected, Friend,
Protected Friend, MustOverride, Default, and Static modifiers—and still fulfill the
contract. The Shared attribute is the only one you cannot use, because interface
methods must be instance members, not class members.

If you use a Private member of a class to implement an interface member,
then the only way to get at that member is through a variable of that interface’s
type. Otherwise, unlike earlier versions of VB, you can always access interface
members through an object of the class type. You no longer have to assign it to a
variable of the interfaces type. For example:

Dim tom As New LeadProgrammer("Tom", 65000)

tom.SpendMoraleFund(500)

To go the other way, however, you must use CType:

Dim tom As New LeadProgrammer("Tom", 65000)

Dim aLead As ILead, aName As String

aLead = tom

aName = Ctype(aLead, Programmer).TheName ' OK

but a line like this is not possible:

aName = tom.TheName 'NOT ALLOWED

In general, here are the rules for converting between an object type and an
interface it implements:

• You can always assign a variable declared to be of the class type to the
variable declared to be of any interface type that the class implements.

In particular, if a method takes as a parameter a variable of an interface type,
you can pass into it a variable of any type that implements the interface. (This rule
is analogous to the fundamental inheritance rule that derived types can always be
used in place of their parent types.) However:

• You must use CType to go from a variable of the interface type to a vari-
able of a type that implements the interface.

Chapter 5

220

To determine if an object implements an interface, use TypeOf with Is.
For example:

Dim tom As New LeadProgrammer("tom", 50000)

Console.WriteLine((TypeOf (tom) Is ILead))

returns True.

Here is the full version of our LeadProgrammer class. Of course, we have not
done much in the implementation of the interface members, but this code gives
you an idea of what you can do:

Public Class LeadProgrammer

 Inherits Programmer

 Implements ILead

 Private m_MoraleFund As Decimal

 Private m_MyTeam As Employee()

 Public Function Rate(ByVal aPerson As Employee) As String _

 Implements ILead.Rate

 Return aPerson.TheName & " rating to be done"

 End Function

 Public Property MyTeam() As Employee() _

 Implements ILead.MyTeam

 Get

 Return m_MyTeam

 End Get

 Set(ByVal Value As Employee())

 m_MyTeam = Value

 End Set

 End Property

 Public Sub SpendMoraleFund(ByVal amount As Decimal) _

 Implements ILead.SpendMoraleFund

 'spend some money

 Console.WriteLine("Spent " & amount.ToString())

 End Sub

NOTE You can even write a single method that implements multiple methods
defined in a single interface, as follows:

Public Sub itsOK Implements Interface1.M1, Interface1.M2, Interface1.M3

Inheritance and Interfaces

221221

 Public Property OurMoraleFund() As Decimal Implements ILead.MoraleFund

 Get

 Return m_MoraleFund

 End Get

 Set(ByVal Value As Decimal)

 m_MoraleFund = Value

 End Set

 End Property

 Public Sub New(ByVal theName As String, ByVal curSalary As Decimal)

 MyBase.New(theName, curSalary)

 End Sub

End Class

Advanced Use of Interfaces

You can also have one interface inherit from another. An interface definition such
as this is allowed, where you merely add one more member to the interface. For
example, suppose in our employee management system lead programmers have
the authority to upgrade the hardware for members of their team. This would be
modeled in code via a method like:

Public Interface ILeadProgrammer

Inherits ILead

 Public Function UpGradeHardware(aPerson As Programmer)

End Interface

After you do this, implementing ILeadProgrammer requires fulfilling the contract for
both ILead and ILeadProgrammer.

Unlike classes, which can only derive from one parent class, an interface may
derive from multiple interfaces:

Public Interface ILeadProgrammer

Inherits ILead, Inherits ICodeGuru

 Public Function UpGradeHardware(aPerson As Programmer)

End Interface

Chapter 5

222

When to Use Interfaces, When to Use Inheritance?

Although an interface seems a lot like an abstract class, this analogy can be more
trouble than it is worth to follow. An abstract class can have many concrete members,
but an interface can have none. You should create abstract base classes only after
a thoughtful process of factoring common behavior out to the most primitive
ancestor possible, and for no other reason.

An interface exists outside an inheritance chain—that is its virtue. You lose
the ability to automatically reuse code, but you gain the flexibility of choosing
your own implementation of the contract. Use an interface when you want to
indicate that certain behavior is required, but you are willing to leave the actual
implementation of the behavior to the implementing class. In .NET, structures
cannot inherit from anything except Object, but they can implement interfaces.
Interfaces are the only choice available to you in .NET when two classes have
some common behavior but there is no ancestor they are both examples of.

Important Interfaces in the .NET Framework

We obviously cannot cover all the interfaces in the .NET Framework in these few
pages, but we want to mention a few of the most important ones. Two are in some
sense marker interfaces, because you implement them to advertise that your

CAUTION Because you can inherit an interface from multiple interfaces, an
interface can be required to implement two identically named methods which
only differ in the interface they are part of; for example, if both the ILead and
ICodeGuru interfaces have methods called SpendMoraleFund. When this happens,
you lose the ability to see either one of the identically named methods via a variable
of a type that implements this kind of interface.

Dim tom As New LeadProgrammer("Tom", 65000)

tom.SpendMoraleFund(500)

you need to explicitly identify the interface using this kind of code:

Dim tom As New LeadProgrammer("Tom", 65000)

Dim aCodeGuru As CodeGuru

aCodeGuru = tom

aCodeGuru.SpendMoraleFund(500)

Inheritance and Interfaces

223223

classes have a certain type of functionality that many classes may want to exhibit.
These marker interfaces are:

• ICloneable: Indicates a Clone method that provides a deep copy

• IDisposable: Tells the user that your class consumes resources that the garbage
collectors will not be able to reclaim

We cover the basic interfaces for building special purpose collections later in
this chapter. For those who remember how hard it was to implement a For-Each in
VB6, you are in for a real treat!

ICloneable

As you saw in the MemberWiseClone section, cloning an object that contains internal
objects is tricky. .NET’s designers decided to let you indicate that you are providing
this feature through a marker interface called ICloneable, which contains one
member Clone:

Public Interface ICloneable

 Function Clone() As Object

End Interface

Implement this interface (and hence the Clone method) if you want to offer
users of your class the opportunity to clone instances of that class. It is then up to
you to decide if using MemberWiseClone is enough when you actually implement the
Clone method in your class. As we said previously, MemberWiseClone is enough if the
instance fields are value types or immutable types like String. For example, in our
Employee class, using MemberWiseClone would work to clone the Employee class
because all instance fields are either strings or value types. Hence we can imple-
ment ICloneable as in the following code:

Public Class Employee Implements ICloneable

 Public Function Clone() As Object _

 Implements ICloneable.Clone

 Return CType(Me.MemberwiseClone, Employee)

 End Function

'more code

'

End Class

Chapter 5

224

With classes like the EmbeddedObjects class you saw earlier, you have more
work in front of you in order to implement a Clone method. (Though Chapter 9
gives you a technique that makes the task fairly easy in most cases.) In the case of
the EmbeddedObjects class, you only need to add a method to clone the internal
array instead of simply copying it.

How can you do this? Well, because the Array class implements ICloneable, it
must come with a method to clone an array. This actually makes our task pretty
easy. Here is how a version of EmbeddedObjects that implements ICloneable could
work (the key lines for the Clone method are in bold):

Public Class EmbeddedObjects

 Implements ICloneable

 Private m_Data() As String

 Public Sub New(ByVal anArray() As String)

 m_Data = anArray

 End Sub

 Public Function Clone() As Object _

 Implements ICloneable.Clone

 Dim temp() As String

 temp = m_Data.Clone 'clone the array

 Return New EmbeddedObjects(temp)

 End Function

 Public Sub DisplayData()

 Dim temp As String

 For Each temp In m_Data

 Console.WriteLine(temp)

 Next

 End Sub

 Public Sub ChangeData(ByVal newData As String)

 m_Data(0) = newData

 End Sub

End Class

TIP You can see a list of the framework classes that implement ICloneable (and
hence have a Clone method) by looking at the online help for the ICloneable
interface.

Inheritance and Interfaces

225225

IDisposable

We have mentioned that you should not rely on the Finalize method to clean up after
resources that the automatic garbage collector cannot know about. The convention
in .NET programming is to implement the IDisposable interface instead, because it
has a single member Dispose, which should contain the code to reclaim resources.

Public Interface IDisposable

 Sub Dispose()

End Interface

The rule is:

• If your class uses a class that implements IDisposable you must call the
Dispose method:

For example, as you will see in the Chapter 8, every GUI application depends
on a base class called Component, because you need to reclaim the graphics context
that all components use:

Public Class Component

 Inherits MarshalByRefObject

 Implements IComponent, IDisposable

Collections

Collections are a fancy term for containers that hold methods and give you dif-
ferent ways to add, remove, or access them. These methods can be as simple as
retrieving an item by its index, as in arrays, or as sophisticated as the keyed retrieval in
the Hashtable class you saw in the previous chapter. The .NET Framework contains
quite a few of these useful collection classes and, as you have seen, you can easily
extend them via inheritance to build your own type-safe collection. However, the
most sophisticated use of the built-in collection classes requires knowledge of the
interfaces they implement. We show you some of the common collection inter-
faces in the next few sections.

TIP The online help for the IDisposable interface includes a list of the frame-
work classes that implement IDisposable (and hence have a Dispose method
that you must call).

Chapter 5

226

For Each and IEnumerable

In VB6, getting a class to allow a For Each was completely unintuitive and, we
think, required a terrible kludge (as we pointed out way back in Chapter 1). In VB
.NET, you have two ways of allowing For Each to work with a collection class. You
have already seen the first method: if you inherit from a class that allows For Each,
then you get it for free. We did this with the Employees class that inherited from the
System.Collections.CollectionBase class.

The second method requires you to implement the IEnumerable interface but
gives you the most flexibility. Here is the definition of this interface:

Public Interface IEnumerable

 Function GetEnumerator() As IEnumerator

End Interface

Any time you have a class that implements IEnumerable, it uses the GetEnumerator
method to return an IEnumerator object that will let you iterate over the class. The
IEnumerator interface is the one that has methods to move to the next item, so its
definition is:

Public Interface IEnumerator

 ReadOnly Property Current As Object

 Function MoveNext() As Boolean

 Sub Reset()

End Interface

The idea is a For Each allows only read-only, forward movement, so the
IEnumerator interface abstracts this idea by having methods for moving forward
but no methods for changing the data. As a convenience, it also includes a required
method to go back to the start of the collection. IEnumerator is commonly imple-
mented via containment: you place a container class inside the collection and
delegate to that class the fulfillment of the three interface methods (the one from
IEnumerable and the two from IEnumerator).

Here is an example of an enumerable Employees collection built from
scratch. It is obviously more complicated than merely inheriting from
System.Collections.CollectionBase, but you get much more flexibility. For example,
you can replace the simple array of employees with a custom sorted array.

1 Public Class Employees

2 Implements IEnumerable, IEnumerator

3 Private m_Employees() As Employee

4 Private m_Index As Integer = -1

5 Private m_Count As Integer = 0

Inheritance and Interfaces

227227

6 Public Function GetEnumerator() As IEnumerator _

7 Implements IEnumerable.GetEnumerator

8 Return Me

9 End Function

10 Public ReadOnly Property Current() As Object _

11 Implements IEnumerator.Current

12 Get

13 Return m_Employees(m_Index)

14 End Get

15 End Property

16 Public Function MoveNext() As Boolean _

17 Implements IEnumerator.MoveNext

18 If m_Index < m_Count Then

19 m_Index += 1

20 Return True

21 Else

22 Return False

23 End If

24 End Function

25 Public Sub Reset() Implements IEnumerator.Reset

26 m_Index = 0

27 End Sub

28 Public Sub New(ByVal theEmployees() As Employee)

29 If theEmployees Is Nothing Then

30 MsgBox("No items in the collection")

31 'should throw an exception see Chapter 7

32 'Throw New ApplicationException()

33 Else

34 m_Count = theEmployees.Length - 1

35 m_Employees = theEmployees

36 End If

37 End Sub

38 End Class

Line 2 shows that the class is going to implement the two key interfaces itself.
To do this, we must implement a function that returns an IEnumerator object. As
lines 6–9 indicate, we simply return Me—the current object. But to do this, our
class must implement the members of IEnumerable, which we do in lines 10–27.

NOTE There is one subtle programming issue in the preceding code that has
nothing to do with interfaces but rather with the code we used in this class. In
line 4, we initialize the m_Index variable to –1, which gives us access to the 0'th
member of the array. (As an experiment, change this to 0 and you will see that
you always lose the first entry in the array).

Chapter 5

228

Here is some example code to try, assuming you also have the Public Employee
class as part of this solution:

Sub Main()

 Dim tom As New Employee("Tom", 50000)

 Dim sally As New Employee("Sally", 60000)

 Dim joe As New Employee("Joe", 10000)

 Dim theEmployees(1) As Employee

 theEmployees(0) = tom

 theEmployees(1) = sally

 Dim myEmployees As New Employees(theEmployees)

 Dim aEmployee As Employee

 For Each aEmployee In myEmployees

 Console.WriteLine(aEmployee.TheName)

 Next

 Console.ReadLine()

End Sub

ICollection

The ICollection interface inherits from IEnumerable and adds three read-only
properties and one new method. ICollection, which is rarely implemented alone,
forms a base for the IList and IDictionary interfaces, which we cover next. Table
5-2 lists the members of this interface.

Table 5-2. Members of the ICollection Interface

MEMBER DESCRIPTION

Count property Returns the number of objects in the collection.

IsSynchronized property Used with threading (see Chapter 12). This property

returns True if access to the collection is synchronized

for multithreaded access.

SyncRoot property Also used with threading (see Chapter 12). This prop-

erty returns an object that lets you synchronize access

to the collection.

CopyTo method Provides a way to copy elements from the collection

into an array, starting at the array position specified.

Inheritance and Interfaces

229229

IList

The IList interface gives you access to members of a collection by index. Of
course, since this interface inherits from IEnumerable, you do not lose the ability
to use For Each. The inheritance chain for IList looks like this:

• IEnumerableð⇒Collection⇒IList

The IList interface is pretty sophisticated—it has three properties and seven
methods (see Table 5-3). Of course, as always, you can give empty implementations
of some of these methods if they do not make sense for your class.

Table 5-3. Members of the IList Interface

MEMBER DESCRIPTION

IsFixedSize property Implement this Boolean property to tell users of your class

that the list has a fixed size.

IsReadOnly property Implement this Boolean property to tell users of your class

that the list is read-only.

Item property This read-write property lets you get or set the item at the

specified index.

Add(ByVal value As

Object) As Integer

method

Adds an item to the list at the current index. Should return

the index where the item was added.

Clear method Removes all items from the list.

Contains(ByVal value As

Object) As Boolean

method

Can be tricky to implement efficiently, because it is

designed to determine if the list contains a specific value.

Returns True if the item was found and False otherwise.

IndexOf(ByVal value As

Object) As Integer

method

Also needs to be implemented efficiently, since it returns

the index of the specified item.

Insert(ByVal index As

Integer, ByVal value As

Object) method

Inserts an item into the list at the specified position.

NOTE The System.Collections.CollectionBase class implements ICollection.

Chapter 5

230

IDictionary

The IDictionary interface represents a collection that you access via keys as you do
the hashtables we covered in the previous chapter. In fact, hashtables implement
IDictionary, ICollection, IEnumerable, and ICloneable, among other interfaces!

Although IDictionary inherits from IEnumerable, you can use MoveNext to move
to the next item—objects that implement IDictionary are usually not iterated
through item by item. Because you use them only where keyed access is needed,
the IDictionary interface depends on an IDictionaryEnumerator interface that
extends IEnumerator and adds three new properties:

• Entry, which returns a When implemented by a class, gets both the key and
the value of the current dictionary entry

• Key, which returns the current key

• Value, which returns a reference to the current value

Remove(ByVal value As

Object) method

Removes the first occurrence of the specific object from

the list.

RemoveAt(ByVal index As

Integer) method

Removes the item at the specified index.

Table 5-3. Members of the IList Interface (Continued)

MEMBER DESCRIPTION

NOTE The System.Collections.CollectionBase class implements IList.

TIP The .NET Framework comes with a DictionaryBase class that you can
inherit from to get at the functionality of the IDictionary interface.

Inheritance and Interfaces

231231

The members of the IDictionary interface are shown in Table 5-4.

IComparable

Suppose you needed to sort a collection of employee objects by salary. It would
certainly be convenient if you could add this ability directly to the Employee class,
so you could sort arrays or an array list of employees as easily as you sort arrays or

Table 5-4. Members of IDictionary

INTERFACE MEMBER DESCRIPTION

IsFixedSize property Boolean property, indicates that a list has a fixed size

IsReadOnly property Boolean property, indicates that a list is read-only

Item property A read-write property that lets you get or set the item at the

specified index

Keys property Returns an object that implements ICollection, which

contains the keys of the IDictionary

Values property Returns an object that implements ICollection, which

contains the values in the IDictionary

Add(ByVal key As Object,

ByVal value As Object)

method

Lets you add an item to the list using the specified key

(which must be unique)

Clear method Removes all items in the dictionary

Contains(ByVal key As

Object) As Boolean

method

Looks for an item with the specified key

GetEnumerator method Returns an IDictionaryEnumerator object that allows you to

work with keys and values

Remove(ByVal key As

Object) method

Removes the object that has the specified key

CAUTION Because dictionaries require unique keys, you must determine whether a
key has already been used. The Keys property returns an object that implements
ICollection, which lets you use the Contain method in the ICollection interface to
determine whether a key is unique.

Chapter 5

232

array lists of strings. It turns out that the Sort method of Array and ArrayList sort
by the order specified in an interface called IComparable. (For string arrays, the
IComparable interface sorts by ASCII order). This interface has one member, CompareTo:

Function CompareTo(ByVal obj As Object) As Integer

whose return value is:

• Less than zero, if this instance is less than the given object

• Zero, if this instance is equal to the given object

• Greater than zero, if this instance is greater than the given object

Here is a version of the Employee class that implements IEnumerable and
IComparable and orders the array by salary with the largest salary first:

Public Class Employee

 Implements IComparable

 Private m_Name As String

 Private m_Salary As Decimal

 Private Const LIMIT As Decimal = 0.1D

 Public Sub New(ByVal theName As String, ByVal curSalary As Decimal)

 m_Name = theName

 m_Salary = curSalary

 End Sub

 Public Function CompareTo(ByVal anEmployee As Object) As Integer _

 Implements IComparable.CompareTo

 If CType(anEmployee, Employee).Salary < Me.Salary Then

 Return -1

 ElseIf CType(anEmployee, Employee).Salary = Me.Salary Then

 Return 0

 ElseIf CType(anEmployee, Employee).Salary > Me.Salary Then

 Return 1

 End If

 End Function

 Public ReadOnly Property TheName() As String

 Get

 Return m_Name

 End Get

 End Property

Inheritance and Interfaces

233233

 Public ReadOnly Property Salary() As Decimal

 Get

 Return MyClass.m_Salary

 End Get

 End Property

 Public Overridable Overloads Sub RaiseSalary(ByVal Percent As Decimal)

 If Percent > LIMIT Then

 'not allowed

 Console.WriteLine("NEED PASSWORD TO RAISE SALARY MORE " & _

 "THAN LIMIT!!!!")

 Else

 m_Salary = (1 + Percent) * m_Salary

 End If

 End Sub

 Public Overridable Overloads Sub RaiseSalary(ByVal Percent As Decimal, _

 ByVal Password As String)

 If Password = "special" Then

 m_Salary = (1 + Percent) * m_Salary

 End If

 End Sub

End Class

To exercise this class, use this code (the key line is in bold):

Sub Main()

 Dim tom As New Employee("Tom", 50000)

 Dim sally As New Employee("Sally", 60000)

 Dim joe As New Employee("Joe", 20000)

 Dim gary As New Employee("Gary", 1)

 Dim theEmployees() As Employee = _

 {tom, sally, joe, gary}

 Array.Sort(theEmployees) 'will use the CompareTo order!

 Dim aEmployee As Employee

 For Each aEmployee In theEmployees

 Console.WriteLine(aEmployee.TheName & " has yearly salary $" _

 & FormatNumber(aEmployee.Salary))

 Next

 Console.ReadLine()

End Sub

The result is shown in Figure 5-9.

Chapter 5

234

The IComparer Interface

The .NET Framework makes it possible to sort by multiple orders. For example, to
order our array of employees by salary and then by name, you implement the
IComparer interface, which also has a single CompareTo method. The trick here is
that you use one of the overloaded versions of Array.Sort (or ArrayList.Sort),
whose signature looks like this:

Public Shared Sub Sort(ByVal array As Array, ByVal comparer As IComparer)

Normally you create a separate class that implements IComparer and pass an
instance of it to the Sort method. Following is an example of the kind of class we
mean. Notice in the bold lines how we pass the employee names as strings to the
String class’s Compare method:

Public Class SortByName

 Implements IComparer

 Public Function CompareTo(ByVal firstEmp As Object, ByVal _

 secondEmp As Object) As Integer Implements IComparer.Compare

 Dim temp1 As Employee = CType(firstEmp, Employee)

 Dim temp2 As Employee = CType(secondEmp, Employee)

 Return String.Compare(temp1.TheName, temp2.TheName)

 End Function

End Class

With this class, the Sub Main might look like this (the key new lines are in bold):

Sub Main()

 Dim tom As New Employee("Tom", 50000)

 Dim sally As New Employee("Sally", 60000)

 Dim sam As New Employee("Sam", 60000)

 Dim ted As New Employee("Ted", 50000)

Figure 5-9. Doing a special purpose sort using IComparable

Inheritance and Interfaces

235235

 Dim theEmployees() As Employee = _

 {tom, sally, sam, ted}

 Array.Sort(theEmployees)

 Dim SortingByName As SortByName = New SortByName()

 Array.Sort(theEmployees, SortingByName)

 Dim aEmployee As Employee

 For Each aEmployee In theEmployees

 Console.WriteLine(aEmployee.TheName & " has yearly salary $" _

 & FormatNumber(aEmployee.Salary))

 Next

 Console.ReadLine()

End Sub

The result is shown in Figure 5-10.

Figure 5-10. The result of using IComparer to sort by mutiple conditions

TIP You can implement as many classes that implement IComparer as you need
and then use them sequentially to sort items by as many orderings within orderings
as you want!

237

CHAPTER 6

Event Handling
and Delegates

PREVIOUS VERSIONS OF VISUAL BASIC clearly demonstrated the advantages to an
event-driven, object-based programming model for improving programmer pro-
ductivity. You dragged controls onto a form and they responded to certain events.
You wrote code in event procedures such as Button1_Click to give a reasonable
response to somebody clicking on a button named Button1.

As efficient as the model used in earlier versions of VB was, it was somewhat
inflexible. For example, it was difficult to add new events and practically impossible
to make a single event handler that handled multiple events. VB .NET combines
the best of both worlds. In most situations, you can use a syntax that is very close
to the syntax of earlier versions of VB, and VB .NET connects much of the needed
plumbing for you. When you need more power, VB .NET gives you that, too.

In this chapter we start with the version of event handling that is similar
(although significantly more powerful) to earlier versions of VB. Later in the chapter
we show you how to use the new concept of a delegate to fully harness the event-
handling power of the .NET platform, as well as how to use delegates for more
general purposes, such as callbacks.

Event Handling from an OOP Point of View

Since object-oriented programming is all about sending messages to happily
cooperating objects, events have to fit into this framework. In one way, events fall
into this model nicely: an object that is the source of the event can, naturally
enough, send out a message that says, “Hey, this event happened.”

Still, one obvious problem is deciding which objects to send the message to. It
would be impractical to send out notifications for every event that happened to
every object currently instantiated in the program: most objects could not care
less and performance would slow to a crawl.

Instead, VB .NET tries to limit the number of interested listeners by using a
“subscribe/publish” model. In this model, the event listener objects register (that
is, subscribe to) event source objects if they are interested in an event that the
event source can generate (publish). More than one event listener can sign up for

Chapter 6

238

notifications from a single source. Only registered event listener objects will receive
messages that an event has occurred from the source.

However, this can get tricky. What sort of message should an event listener get
from the event source? How should this message be sent? What should it do?
Objects send messages to other objects by calling one or more of its members.
Ultimately, the same thing happens with an event notification, but there are more
hoops to jump through.

The basic idea is that when an event happens, the event source calls predeter-
mined member functions in the various listener objects. The special member
function of the listener that will get called is registered by the event source at the
same time it registers the listener object. This is called a callback notification
scheme, because the event source calls back a method in the event listener whose
address it knows. Figure 6-1 gives a picture of what happens with a callback from
an event source (the boss) whose job performance action will trigger the notifications
to the event listener objects. (We explain how all this can happen in VB .NET in
the last half of this chapter.)

Figure 6-1. A callback notification scheme

Event Handling and Delegates

239239

What Goes into the Functions Called by Events?

Although you can certainly define your own form for the members of the listener
objects to be called back by an event source, there is a pretty strong convention in
.NET that the member function in the listener class that gets called back has a
special signature with two parameters:

• An object variable that refers to the event source

• An “event” object variable that inherits from the class System.EventArgs
which encapsulates information about the event. (The idea is that different
child classes of System.EventArgs will provide different properties, useful for
the particular event handler.)

You saw this at work in Chapter 1. When we added a button to a form, the
click event procedure in the form looked like this:

Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

End Sub

Two things happen here:

• The sender object variable gives a reference to the object (button) that was
clicked. This means the click event procedure has a reference to the source
of the event in its code.

• The object variable e encapsulates an event object that (potentially) con-
tains the details of the event.

Traditionally, VB did not identify the sender (source) of an event in an event
procedure because it was always going to be the object itself. (Control arrays were
the sole exception to this, where the index parameter was used to isolate the exact
element in the control array that was the event source.) The point of having the
sender object variable in our generalized VB .NET event procedures becomes

NOTE The methods in the listener object must have a predetermined form (for
example, a specific signature) for this registration process to be successful. This is
why some languages, such as Java, use interfaces for callback mechanisms—it is
the promise of having a method of the correct signature that is all-important.

Chapter 6

240

pretty obvious when you want to have a single procedure handle multiple events,
all coming from different objects. For example, if you use the built-in ToString
method for all objects in a line of code like this inside the event procedure just shown:

MsgBox(sender.ToString)

you will see this:

which clearly shows which object was the event source.
The event object variable e is not interesting in this situation because it does

not provide much useful information for this event. Still, with the right event
object variable, this can be very useful. For example, MouseEventArgs object variables
let you find out where the mouse button was clicked. In general, you should build
your own event classes by inheriting from the System.EventArgs class, which
encapsulates all sorts of useful information about the event. (You see how to do
this in a moment.)

Next, notice a new keyword Handles was used in the definition of this event pro-
cedure. This keyword is used, naturally enough, to specify which event the
procedure is handling. It is true that in this case the Handles keyword seems unnec-
essary, but its existence gives you a lot of flexibility down the road. The idea is that
event handlers no longer need to have specific names, just required signatures.
This makes it possible, for example, for a single event handler to handle multiple
events, by supplying multiple Handles clauses at the end of the procedure declaration.
This new approach gives you a far more flexible mechanism than was possible
with the control arrays used in earlier versions of VB. (Control arrays are gone in
VB .NET.)

For example, while the IDE may generate an event procedure with a standard
name, this is not necessary in VB .NET. As long as your Sub has the right parameters
and you use the Handles keyword, you can use the code to handle an event. In this
code, for example:

Private Sub MyClickProcedure(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

MyClickProcedure can handle the Button1.Click event, since MyClickProcedure has
the right parameters. It does handle the event because of the Handles keyword!

Event Handling and Delegates

241241

The key point to notice is how VB .NET explicitly uses the Handles keyword to say
which events an event handler is handling.

As another example, if you modify the preceding code line to be:

Private Sub MyClickProcedure(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button1.Click, Button2.Click, _

 mnuTHing.Click

then the same code would act as an event procedure for two different buttons. In
other words, it handles clicks of two different buttons and a menu item! This flexibility
was impossible in VB6 because earlier versions of VB called event handlers based on
the name of a control. In sum, we hope you are convinced that the Handles keyword
gives you far more flexibility than control arrays ever could.

Basic Event Raising

Let us return to our simple Employee class and walk through the steps needed to
define and raise an event. Suppose we want to raise an event if someone without
the password tries to raise the salary of an employee by more than 10 percent. The
code from Chapter 4 for this method is:

Public Overloads Sub RaiseSalary(ByVal percent As Decimal)

 If percent > LIMIT Then

 'not allowed

 Console.WriteLine("MUST HAVE PASSWORD TO RAISE SALARY MORE THAN LIMIT!!!!")

 Else

 m_Salary = (1 + percent) * m_salary

 End If

 End Sub

We need to replace the line in bold, which writes information to the console,
with code that raises the event. This is done in stages. In the simplest case, we first
declare a public variable in the class with the Event keyword along with name of
the event and its parameters. For example, we can follow the VB6 model quite
closely by writing:

Public Event SalarySecurityEvent(message as String)

which declares a public event that takes a string as a parameter.

Chapter 6

242

Once you have declared the event variable, use a line like this to raise the event
(there is still some plumbing left to tie in order to have anything actually happen):

RaiseEvent SalarySecurityEvent("MUST HAVE PASSWORD TO RAISE " & _

" Salary MORE THAN LIMIT!!!!")

However, you should not use a string as the only parameter for any event. We much
prefer to follow the .NET paradigm of sending the object source and encapsulating
the event information in an event object as the parameters in any event. As a first
attempt, we would write the declaration

Public Event SalarySecurityEvent(ByVal who As Employee, _

 ByVal e As system.EventArgs)

and then use the RaiseEvent keyword:

RaiseEvent SalarySecurityEvent(Me, New System.EventArgs())

Note how the signature for this event tells the eventual listener who the
source is (in this case, which employee’s salary was being improperly raised) by
using the Me keyword. What it does not do yet is take advantage of the possibility
of encapsulating information in the event variable e. We will soon derive a class
from System.EventArgs that encapsulates the string in an event object with the
warning message and the salary raise that was attempted.

NOTE Events are usually declared as Public, never have return values, and can
take any type of parameters except param arrays.

TIP Although events are usually public, they do not have to be. An event can be
declared with any access modifier. You can have private events in a class for events
that interest only objects in the class, or protected events for objects in the inherit-
ance chain. You can even have shared events that belong, like all shared members,
to the class as a whole and not to an individual instance of the class. (Shared
methods can raise only shared events, for example.)

Event Handling and Delegates

243243

Hooking Up the Listener Objects to Event
Source Objects

We now have all the code in the event source class to start spewing out event noti-
fications, but we do not yet have any interested listeners. A class can tell VB .NET
that it is interested in events that another class can generate in various ways. The
easiest way to code this in VB .NET is actually done in much the same way as it
was done in VB6: just declare a module-level variable (or a class-level variable if
you are inside a class) of that class’s type using the WithEvents keyword. For example,
if you put this line in a class outside of any member:

Private WithEvents anEmployee As Employee

objects of that class become a potential listener to the events that the Employee
class can trigger. Note that:

• You must explicitly declare the class of the event, As Object declarations are
not allowed.

• This declaration must be made at the module or class level, without the use
of New.

After you add this code, you can use the anEmployee object variable whenever
you are interested in the SalarySecurityEvent. In fact, as shown in Figure 6-2, the
IDE will automatically add an event handler using the A_B naming convention
whenever you declare an object variable using the WithEvents keyword. To get the
automatically generated framework for the event, you merely choose it from the
procedure dropdown listbox, as we did in Figure 6-2.

Putting It All Together

Let us put all the steps together. First, start with a new console solution and add
the following code to the first (startup) module:

Module Module1

 Private WithEvents anEmployee As EmployeeWithEvents

 Sub Main()

 Dim tom As New EmployeeWithEvents("Tom", 100000)

 anEmployee = tom

 Console.WriteLine(tom.TheName & " has salary " & tom.Salary)

 anEmployee.RaiseSalary(0.2D) 'D necessary for decimal

 Console.WriteLine(tom.TheName & " still has salary " & tom.Salary)

 Console.WriteLine("Please press the Enter key")

 Console.ReadLine()

 End Sub

End Module

Chapter 6

244

Now choose the anEmployee_SalarySecurityEvent from the dropdown listbox.
The automatically generated code looks like this (we put it on multiple lines for
typographical reasons and bolded the key Handles clause):

Public Sub anEmployee_SalarySecurityEvent(ByVal Sender As _

 Event_Handling_I.EmployeeWithEvents, ByVal e As System.EventArgs) _

 Handles anEmployee.SalarySecurityEvent

End Sub

End Module

Notice how VB .NET automatically adds the underscores between the name of
the WithEvents variable (anEmployee) and the name of the event (SalarySecurityEvent),
so it looks much like an event procedure did in VB6.

Figure 6-2. The automatically generated code for an event handler

Event Handling and Delegates

245245

Next, notice how the sender object is identified with its full name
(namespace.classname). The extra underscores in the namespace are there
because spaces are not allowed in the names of namespaces, so VB .NET auto-
matically changes the solution name “Event Handling 1” into a root namespace of
EventHandling_1, as shown in Figure 6-3. Finally, the Handles keyword tells the
runtime what event this particular code is handling.

To make this example more interesting and to test the code, let us add a state-
ment to this event procedure that pops up a message box rather than writes to the
console window:

Public Sub anEmployee_SalarySecurityEvent(ByVal Sender As _

 Event_Handling_I.EmployeeWithEvents, ByVal e As System.EventArgs) _

 Handles anEmployee.SalarySecurityEvent

 MsgBox(Sender.TheName & " had an improper salary raise attempted!")

End Sub

Figure 6-3. Properties for an event handling solution

Chapter 6

246

Now we have written the code for the event listener, we need to add the code
in the event source. The two changes needed from the employee class from
Chapter 4 are in bold in the following code:

Public Class EmployeeWithEvents

 Private m_Name As String

 Private m_Salary As Decimal

 Private Const LIMIT As Decimal = 0.1D

 Public Event SalarySecurityEvent(ByVal Sender As EmployeeWithEvents, _

 ByVal e As EventArgs)

 Public Sub New(ByVal aName As String, ByVal curSalary As Decimal)

 m_Name = aName

 m_Salary = curSalary

 End Sub

 ReadOnly Property TheName() As String

 Get

 Return m_Name

 End Get

 End Property

 ReadOnly Property Salary() As Decimal

 Get

 Return m_Salary

 End Get

 End Property

 Public Overloads Sub RaiseSalary(ByVal Percent As Decimal)

 If Percent > LIMIT Then

 'not allowed

 RaiseEvent SalarySecurityEvent(Me, New System.EventArgs())

 Else

 m_Salary = (1 + Percent) * m_Salary

 End If

 End Sub

 Public Overloads Sub RaiseSalary(ByVal Percent As Decimal, _

 ByVal Password As String)

 If Password = "special" Then

 m_Salary = (1 + Percent) * m_Salary

 End If

 End Sub

End Class

The first line in bold declares the event, the second actually raises the event
when there is an attempt to improperly raise an employee’s salary.

Event Handling and Delegates

247247

If you run this example, you see something like Figure 6-4. The moment you
click on OK to make the message box go away, you will see the line that says Tom
still has his original salary.

Building Your Own Event Classes

In the preceding example, we simply used a new System.EventArgs class. This is a
relatively limited class because its constructor takes no arguments. A more pro-
fessional way to proceed is to code a new event class that extends this generic
class. For example, we might add a read-only property that tells us what raise was
attempted and a property for a message. Here is an example of the kind of class
you can build (the solution in the download is called CustomEventArgExample).
Notice how the constructor encapsulates the percent raise attempted and a message.
We add two read-only properties to get back this information:

Figure 6-4. Custom event triggered message box

TIP WithEvent variables consume resources. Be sure to set any WithEvent
variable to Nothing when it is no longer needed.

Chapter 6

248

Public Class ImproperSalaryRaiseEvent

 Inherits System.EventArgs

 Private m_Message As String

 Private m_theRaise As Decimal

 Sub New(ByVal theRaise As Decimal, ByVal theReason As String)

 MyBase.New()

 m_Message = theReason

 m_theRaise = theRaise

 End Sub

 ReadOnly Property Message() As String

 Get

 Return m_Message

 End Get

 End Property

 ReadOnly Property theRaise() As Decimal

 Get

 Return m_theRaise

 End Get

 End Property

End Class

After we add this class to our solution, the only changes from the previous
employee class are in the declaration of the event:

Public Event SalarySecurityEvent(ByVal Sender As _

 CustomEventArgExample.EmployeeWithEvents, _

 ByVal e As ImproperSalaryRaiseEvent)

which now takes an ImproperSalaryRaiseEvent variable as the second argument. Next
we need to change the code that raises the actual event (in bold):

Public Overloads Sub RaiseSalary(ByVal Percent As Decimal)

 If Percent > LIMIT Then

 'not allowed

 RaiseEvent SalarySecurityEvent(Me, _

 New ImproperSalaryRaiseEvent(Percent, "INCORRECT PASSWORD!"))

 Else

 m_Salary = (1 + Percent) * m_Salary

 End If

End Sub

Once we build the class, we need to modify the calling code as follows
(changes in bold):

Event Handling and Delegates

249249

Module Module1

 Private WithEvents anEmployee As EmployeeWithEventsII

 Sub Main()

 Dim tom As New EmployeeWithEventsII("Tom", 100000)

 anEmployee = tom

 Console.WriteLine(tom.TheName & " has salary " & tom.Salary)

 anEmployee.RaiseSalary(0.2D) 'D necessary for decimal

 Console.WriteLine(tom.TheName & " still has salary " & tom.Salary)

 Console.WriteLine("Please press the Enter key")

 Console.ReadLine()

 End Sub

Public Sub anEmployee_SalarySecurityEvent(ByVal Sender _

 As CustomEventArgExample.EmployeeWithEvents, _

 ByVal e As CustomEventArgExample.ImproperSalaryRaiseEvent) _

 Handles anEmployee.SalarySecurityEvent

 MsgBox(Sender.TheName & " had an improper salary raise of " & _

 FormatPercent(e.theRaise) & " with INCORRECT PASSWORD!")

 End Sub

End Module

Here is the result where, as you can see, we can retrieve the percentage raise that was
attempted:

Dynamic Event Handling

The trouble with the WithEvents syntax is that it is inflexible. You cannot dynami-
cally add and remove event handling with code—it is essentially all hardwired
into your program. However, there is another way to dynamically handle events in
VB .NET that is much more flexible. The idea is that you can specify which proce-
dure in the listening class should be called when the event is triggered. (You can
also remove them dynamically once they have been added.)

Of course, to add an event handler you not only have to register the class that
is listening, but also the method that should be called back in the listener when

Chapter 6

250

the event happens. To do this, you use the AddHandler keyword, which takes two
parameters:

• The name of the event in the source class

• The address of the method (event procedure) in the listener class that is
triggered by the event (so that it can be called back)

The AddHandler code is added to the code in the listener class, not the source
class, so the name of the event is usually EventSourceClassName.EventName. The
address of the method to be called back is defined through the AddressOf operator.
You pass AddressOf the name of the method in an object of the listener class that
should be triggered by the event. For example, if we want to have the tom object
get a dynamic event handler, we would write:

AddHandler tom.SalarySecurityEvent, AddressOf anEmployee_SalarySecurityEvent

which would make our test code listen to the SalarySecurityEvent in the tom object
and, if it is triggered, call the anEmployee_SalarySecurityEvent code in the current
module. (Of course, the anEmployee_SalarySecurityEvent code must have the right
signature!)

Here is how it all looks, with the key lines in bold for a solution named
AddHandlerExample1:

Module Module1

 Private WithEvents anEmployee As EmployeeWithEvents

 Sub Main()

 Dim tom As New EmployeeWithEvents("Tom", 100000)

 Console.WriteLine(tom.TheName & " has salary " & tom.Salary)

 AddHandler tom.SalarySecurityEvent, _

 AddressOf anEmployee_SalarySecurityEvent

 tom.RaiseSalary(0.2D) 'D necessary for decimal

 Console.WriteLine(tom.TheName & " still has salary " & tom.Salary)

 Console.WriteLine("Please press the Enter key")

 Console.ReadLine()

 End Sub

 Public Sub anEmployee_SalarySecurityEvent(ByVal Sender _

 As AddHandlerExample1.EmployeeWithEvents, _

 ByVal e As AddHandlerExample1.ImproperSalaryRaiseEvent) _

 Handles anEmployee.SalarySecurityEvent

 MsgBox(Sender.TheName & " had an improper salary raise of " & _

 FormatPercent(e.theRaise) & " with INCORRECT PASSWORD!")

 End Sub

End Module

Event Handling and Delegates

251251

The flexibility of AddHandler is amazing. For example, we can add event han-
dling in response to the type name:

If TypeName(tom) = "Manager" Then

 AddHandler tom.SalarySecurityEvent, AddressOf _

anEmployee_SalarySecurityEvent e

End If

Or we can assign the same event-handling code to several different events that could
occur in multiple classes. This lets VB .NET perform centralized event handling with
custom dispatch event handlers, a first for VB. For example, the following code listing
triggers different events, depending on the command line parameters passed to it.
The key lines are

Case "first"

 AddHandler m_EventGenerator.TestEvent, _

AddressOf m_EventGenerator_TestEvent1

The lines add a specific event handler in response to the command-line argument,
the string first.

We make this program work using the useful GetCommandLineArgs method in
the System.Environment class, which, as you saw in Chapter 3 , returns an array of
the command-line arguments. The first entry in this array is the name of the exe-
cutable; because arrays are zero-based, we want to use
System.Environment.GetCommandLineArgs(1) to get at the first argument but we
need to make sure there is a command line first, which we do by looking at the
length of the System.Environment.GetCommandLineArgs array. To test this program,
you will want to go to the Configuration Properties page on the Project Properties
dialog box and set some sample command arguments.
Here is the listing:

Option Strict On

Module Module1

 Private m_EventGenerator As EventGenerator

 Sub Main()

 m_EventGenerator = New EventGenerator()

 Dim commandLines() As String = System.Environment.GetCommandLineArgs

 If commandLines.Length = 1 Then

 MsgBox("No command argument, program ending!")

 Environment.Exit(-1)

Chapter 6

252

 Else

 Dim theCommand As String = commandLines(1)

 Console.WriteLine("The command line option is " & theCommand)

 'check the command line parameter and set the

 'handler accordingly

 Select Case theCommand

 Case "first"

 AddHandler m_EventGenerator.TestEvent, _

 AddressOf m_EventGenerator_TestEvent1

 Case "second"

 AddHandler m_EventGenerator.TestEvent, _

 AddressOf m_EventGenerator_TestEvent2

 Case Else

 AddHandler m_EventGenerator.TestEvent, _

 AddressOf m_EventGenerator_TestEventDefault

 End Select

 'fire the events

 m_EventGenerator.TriggerEvents()

 End If

 Console.WriteLine("Press enter to end.")

 Console.ReadLine()

 End Sub

 'default event handler for non-empty command line

 Public Sub m_EventGenerator_TestEventDefault(_

ByVal sender As Object, ByVal evt As EventArgs)

 System.Console.WriteLine("Default choice " & _

m_EventGenerator.GetDescription())

 End Sub

 'event handler #2 for string "first"

 Public Sub m_EventGenerator_TestEvent1(_

ByVal sender As Object, ByVal evt As EventArgs)

 System.Console.WriteLine("1st choice " & _

m_EventGenerator.GetDescription())

 End Sub

 'event handler #3 for string "second"

 Public Sub m_EventGenerator_TestEvent2(_

ByVal sender As Object, ByVal evt As EventArgs)

 System.Console.WriteLine("2nd choice " & _

m_EventGenerator.GetDescription())

 End Sub

End Module

Event Handling and Delegates

253253

Public Class EventGenerator

 'the one and only event in our class

 Public Event TestEvent(ByVal sender As Object, _

ByVal evt As EventArgs)

 'could allow a default constructor instead

 Public Sub New()

 'no constructor code

 End Sub

 Public Function GetDescription() As String

 Return "EventGenerator class"

 End Function

 'will be called to trigger demo events

 Public Sub TriggerEvents()

 Dim e As System.EventArgs = New System.EventArgs()

 RaiseEvent TestEvent(Me, e)

 End Sub

End Class

Cleaning Up Event Handling Code

To remove a dynamically added event handler that was added with AddHandler,
use RemoveHandler, which must take exactly the same arguments as the corre-
sponding AddHandler did. Generally speaking, a good place to remove dynamically
added handlers is in a Dispose method. For this reason we recommend that any
class that dynamically adds events implement IDisposable to remind users of your
class that they will need to call Dispose.

Handling Events in an Inheritance Chain

At any time child classes can raise public or protected events in their parent class
using the MyBase keyword to identify the event. They also automatically inherit
any public or protected event-handling code in their parents. Occasionally, how-
ever, you may want a child class to override the method used to handle public or
protected events in the parent class. You can do this by using the Handles MyBase
statement. For example:

Chapter 6

254

Public Class ParentClass

 Public Event ParentEvent(ByVal aThing As Object, ByVal E As System.EventArgs)

 ' code goes here

End Class

'here's how the child class would work

Public Class ChildClass

 Inherits ParentClass

 Sub EventHandler(ByVal x As Integer) Handles MyBase.ParentEvent

 ' code to handle events from parent class goes here

 End Sub

End Class

Delegates

Whenever you set up a callback mechanism, you will need to do a lot of work
under the hood to register the functions that are going to be called back. The
remainder of this chapter shows you what is going on and how to control the
under-the-hood behavior to achieve maximum power.

First, callbacks (and so, events) in VB .NET ultimately depend on a special
kind of .NET object called a delegate. A delegate is an instance of the System.Delegate
class. The simplest kind of delegate encapsulates an object and the address of a
specified function or procedure in that object. Because this kind of delegate
encapsulates an object and a method in that object, it is perfect for callback
schemes like the ones needed in event handling. Why? Well, if you want to register
a listener with an event source, and then to feed the event source a delegate that
contains a reference to the listener object and the method inside of it, you want to
call back when the event happens. Since the source has this nifty delegate inside
of it that encapsulates this information, it can use the delegate to call back the
right member in the listener object.

Still, before we move on to discussing how delegates work, we want to point
out that, while the .NET platform uses delegates for handling events, in most
cases you will never need to use them for event handling in VB .NET. Most of the

NOTE More generally, delegates encapsulate shared methods of a class without
needing a specific object instance, or they encapsulate multiple objects and
multiple procedures on those objects in a multicast delegate.

Event Handling and Delegates

255255

time, AddHandler gives you everything you need for flexible event handling in VB
.NET. (Of course, delegates have other uses that you will soon see.)

...

Function Pointers in VB6 and Their Associated Problems

API calls often require the address of a function to call back. This is why VB6 had
an AddressOf operator. In VB6, you could pass the address of a function to any
API call that expected the address of a parameterless function that returned a
Long. But what happened if you passed the address of a function whose param-
eter list was different than the one expected? The problem was that the receiving
function trusted you to send the address of the right kind of function, and if you
did not, you likely had a general protection fault (GPF) or perhaps even a blue
screen of death.

This shows the weakness of arbitrary function pointers: there is no way to deter-
mine whether they point to the right type of function. Delegates are really a form
of type-safe function pointers. They follow a trust-but-verify model, with auto-

...

matic verification of the signature by the compiler—a much safer proposition.

Building Up a Delegate

Let us start by creating the simplest kind of delegate, one that encapsulates an
object and a “pointer” to a simple string sub of that object. As you will soon see,
the syntax for creating delegates is a bit more convoluted than the one used for
creating a simple object. First, we need a class that holds a function with a specific
signature. Here is the simplest class we can think of that satisfies this requirement:

 Class ClassForStringSubDelegate

 'live with the default constructor

 Public Sub TestSub(ByVal aString As String)

 Console.WriteLine(aString & aString)

 End Sub

 End Class

NOTE Traditionally, calling a function by its address depended on the language
supporting function pointers. Function pointers are inherently dangerous, as
the sidebar that follows explains. Delegates add a safety net to the idea of tradi-
tional function pointers whose value can not be overestimated.

Chapter 6

256

To build up a delegate that will let us “invoke” this sub indirectly via a call-
back, we need to tell the compiler that we will be using a single string delegate.
The first step in this scenario is done outside Sub Main with the following line:

Public Delegate Sub StringSubDelegate(ByVal aString As String)

Note that this does not declare the delegate, it defines it. With this line we tell the
compiler to create a new class called StringSubDelegate that inherits from
System.Delegate. The VB .NET compiler does this automatically for you.1

Now, inside the Sub Main we create an instance of this delegate. You do this by
passing in the address of a member function with the right signature. VB .NET
then infers the object for you from the name of the member. This is done using
the AddressOf operator in a line that looks like this:

aDelegate = AddressOf test.TestSub

VB .NET then automatically figures out the object involved is test. You can use the
New keyword as well, although this is rare since the first form implicitly calls New:

aDelegate = New StringSubDelegate(AddressOf test.TestSub)

Once you have created a delegate, you can use the Invoke method in the Delegate
class to call the member you encapsulated as in the following code:

Sub Main()

 Dim test As New ClassForStringSubDelegate()

 Dim aDelegate As StringSubDelegate

 aDelegate = AddressOf test.TestSub

 aDelegate.Invoke("Hello")

 Console.ReadLine()

 End Sub

which is certainly a convoluted way to display the string “HelloHello” in a
console window!

1. If you look at the resulting IL code with ILDASM, you will see clearly that this is what
is happening.

TIP Actually, you do not need to use Invoke, you can just use the delegate as a
proxy for the member. VB .NET accepts aDelegate(“Hello”) which is a much
niftier syntax.

Event Handling and Delegates

257257

Anyway, there is method to this madness. Suppose you wanted to make this
class better and display a message box instead of the line in the console window.
You can do that by making the following changes (in bold):

Module Module1

 Public Delegate Sub StringSubDelegate(ByVal aString As String)

 Sub Main()

 Dim test As New ClassForStringSubDelegate()

 Dim aDelegate As StringSubDelegate

 aDelegate = AddressOf test.TestMsgBox

 aDelegate("Hello")

 Console.ReadLine()

 End Sub

 Class ClassForStringSubDelegate

 'live with the default constructor

 Public Sub TestSub(ByVal aString As String)

 Console.WriteLine(aString & aString)

 End Sub

 Public Sub TestMsgBox(ByVal aString As String)

 MsgBox(aString & aString)

 End Sub

 End Class

End Module

Because a delegate cares only about the signature of the method you are
encapsulating inside of it, it is easy to make it refer to another method. Need to
have a version that prints to the Debug window rather than the console or a message
box? Just make a few changes in the delegate and add the function to the class that
the delegate encapsulates.

The key point is that delegates let you invoke the method you want at run time.
Thus, delegates combined with either an explicit or implicit use of the Invoke method
potentially go far beyond what you can do with the VB6 CallByName method.

A More Realistic Example: Special Sorting

The preceding examples were a little unrealistic and fell more into the toy code
scenario. In this section, we show you how you can use callbacks via delegates to
do custom sorting routines, one of the most common uses of callback functions.
The idea is that, for any given sort method, you may want to use different kinds of

Chapter 6

258

comparisons at different times. For example, if an array contains a bunch of
names like these:

• “Mike Iem”, “Dave Mendlen”, “Alan Carter”, “Tony Goodhew”,
“Ari Bixhorn”, “Susan Warren”

calling the built in Sort method of the array class will only sort on first names. But
what if you want to sort on last names?

To build an array class that can sort on list names, you build a class with mul-
tiple Compare methods and then use a delegate to give the sorting routine access to
the right Compare method in the class via a callback. This allows you to change the
sorting dynamically at run time, for example.

The first step is to define a class that will do the sorting. To avoid getting
bogged down into details of how various sorting algorithms work, we will use a
simple “ripple” sort that works like this:

1. Start with the first entry.

2. Look at the remaining entries one by one. Whenever you find a smaller
entry, swap it with the first entry.

3. Now start with the second entry and look at the remaining entries.

4. Continue until all items are worked through.

This is the basic code for a ripple sort:

For i = bottom To (top - bottom)

 For j = i + 1 To top

 If Stuff(j)< Stuff(i)) Then

 temp = Stuff(i)

 Stuff(i) = Stuff(j)

 Stuff(j) = temp

 End If

 Next j

Next I

NOTE You saw one approach to solving this problem in the Chapter 5: write a
custom implementation of the IComparer interface and pass that to Sort. Using
a delegate to do a callback is a little more elegant and potentially a lot more flexible
since, for example, it allows you to define your own sorting routines that may
work better for a specific situation than the built-in one.

Event Handling and Delegates

259259

To implement this via callback routines, we need to set up a SpecialSort class that
will contain a delegate to use for the callback. Our SpecialSort class looks like this:

1 Public Class SpecialSort

2 'define the delegate

3 Public Delegate Function SpecialCompareCallback(ByVal firstString _

 As String, ByVal secondString As String) As Boolean

4 'define the sub to be called by the delegate

5 Public Shared Sub MySort(ByVal Stuff As String(), _

 ByVal MyCompare As SpecialCompareCallback)

6 Dim i, j As Integer

7 Dim temp As String

8 Dim bottom As Integer = Stuff.GetLowerBound(0)

9 Dim top As Integer = Stuff.GetUpperBound(0)

10 For i = bottom To (top - bottom)

11 For j = i + 1 To top

12 If MyCompare(Stuff(j), Stuff(i)) Then

13 temp = Stuff(i)

14 Stuff(i) = Stuff(j)

15 Stuff(j) = temp

16 End If

17 Next j

18 Next i

19 End Sub

20 End Class

Line 3 sets up the class for the function delegate that will be used by this class
to learn what special sort order it should use. You can use this delegate to encap-
sulate any function that takes two strings and returns a Boolean, as any self-
respecting compare function should do.

Line 5, on the other hand, creates a shared (class) member that uses a variable of
this delegate type as one of its parameters. This means that in the key line 12:

If MyCompare(Stuff(j), Stuff(i)) Then

we can call back to another class in order find out which comparison function encap-
sulated by the delegate named MyCompare to use. For example, if we build the following
class we could use this scheme to use either of its Compare methods. (Notice how the
various Compare methods are shared members, so we do not even need to make an
instance of these classes to access them.)

Chapter 6

260

Public Class MyCustomCompare

 Public Shared Function TheBasicCompare(ByVal firstString As String, _

 ByVal secondString As String) As Boolean

 Return (firstString <= secondString)

 End Function

 Public Shared Function TheSpecialCompare(ByVal firstString As String, _

 ByVal secondString As String) As Boolean

 Dim tokens1, tokens2 As String()

 tokens1 = firstString.Split(Chr(32))

 tokens2 = secondString.Split(Chr(32))

 Return (tokens1(1) <= tokens2(1)) ' compare on last name!

 End Function

End Class

This class has two shared functions that we will soon use to create the actual
delegates. The first function, TheBasicCompare, simply asks if one string comes
before another. The more interesting function is TheSpecialCompare, which for a
first name, last name combination stored in a single string, uses the neat Split
function to compare the last names.

The only remaining step is to create instances of the SpecialSort class and
instances of the appropriate delegates. That is done in Sub Main as follows (the key
lines are bold—we will explain them after you have had a chance to look at the code):

1 Module Module1

2 Sub Main()

3 Dim test() As String = {"Mike Iem", "Dave Mendlen", "Alan Carter", _

4 "Tony Goodhew", "Ari Bixhorn", "Susan Warren"}

5 ‘declare the callback variable: ClasaName.DelegateName

6 Dim MyCallBack As SpecialSort.SpecialCompareCallback

7 MyCallBack = AddressOf MyCustomCompare.TheBasicCompare

8 SpecialSort.MySort(test, MyCallBack)

9 Console.WriteLine("Here is a basic sort by FIRST name")

10 Dim temp As String

11 For Each temp In test

12 Console.WriteLine(temp)

13 Next

14 ‘send a different compare routine

15 MyCallBack = AddressOf MyCustomCompare.TheSpecialCompare

16 SpecialSort.MySort(test, MyCallBack)

17 Console.WriteLine()

18 Console.WriteLine("Here is a sort by LAST name")

19 For Each temp In test

20 Console.WriteLine(temp)

21 Next

Event Handling and Delegates

261261

22 Console.ReadLine()

23 End Sub

24 End Module

In line 6 we declare the callback that we intend to eventually create. To actually
make one, we pass it the address of a function with the right signature. This is
done in lines 7 and 15. Because the functions with the right signature are shared,
we do not need an instance of the MyCustomCompare class to do this. Once we have
the delegate, lines 8 and 16 call the correct sorting routine in the SpecialSort class.
Since MySort is being passed a delegate, it can call back into the MyCustomCompare
class to find out how to compare the items.

Multicast Delegates

In the preceding sections, we encapsulated the address of a single function or
procedure inside a delegate. You often want to encapsulate multiple sub procedures
inside a delegate. (It does not make a whole lot of sense to encapsulate multiple
functions inside a delegate—what would the return value be?) This type of dele-
gate is called a multicast delegate and is implemented by having a delegate that
can hold multiple delegates of the same type. When you have a multicast delegate
you can call all the encapsulated procedures with a single Invoke method, and
they are called in the order in which their delegates were combined in the multi-
cast delegate.

To create a multicast delegate, you combine at least two delegates of the same
type and assign the result to a variable of that same delegate type. You do this with the
static Combine method in the System.Delegate class, which returns another delegate.

Assuming that firstDel and secDel are both instances of MyMultiCastDelegate,
then the following code combines firstDel and secDel into a multicast delegate
stored in firstDel:

firstDel = System.Delegate.Combine(firstDel, secDel)

The following simple application passes the address of multiple functions to a
multicast delegate:

Chapter 6

262

1 Option Strict On

2 Module Module1

3 Sub Main()

4 Console.WriteLine("Calling delegate function...")

5 RegisterDelegate(AddressOf CallBackHandler1)

6 RegisterDelegate(AddressOf CallBackHandler2)

7 CallDelegates()

8 Console.WriteLine(_

9 "Finished calling delegate function...")

10 Console.ReadLine()

11 End Sub

12 Public Sub CallBackHandler1(ByVal lngVal As RETURN_VALUES)

13 Console.WriteLine("Callback 1 returned " & lngVal)

14 End Sub

15 Public Sub CallBackHandler2(ByVal lngVal As RETURN_VALUES)

16 Console.WriteLine("Callback 2 returned " & lngVal)

17 End Sub

18 End Module

19 Module Module2

20 Public Delegate Sub CallBackFunc(ByVal lngVal As RETURN_VALUES)

21 Private m_cbFunc As CallBackFunc

22 Public Enum RETURN_VALUES

23 VALUE_SUCCESS

24 VALUE_FAILURE

25 End Enum

26 Public Sub RegisterDelegate(ByRef cbFunc As CallBackFunc)

27 m_cbFunc = CType(System.Delegate.Combine(_

28 m_cbFunc, cbFunc), CallBackFunc)

29 End Sub

30 Public Sub CallDelegates()

31 Dim lngCounter As Long = 0

32 'call back the callers through their delegate

33 'and return success

34 m_cbFunc(RETURN_VALUES.VALUE_SUCCESS)

35 End Sub

36 End Module

In Lines 5 and 6 we call the procedure in Module2 (lines 26–28) that actually
builds up the multicast delegate. This sub can do this because we pass the dele-
gate into it by reference and not by value. Notice how we convert the type of the
Combine method to the type of our delegate in line 27. Lines 30–35 do the actual
calling of the functions in the multicast delegate. We pass all of the registered

Event Handling and Delegates

263263

function the enum value RETURN_VALUES.VALUE_SUCCESS. If you run the program and
you will see this:

Multicast Delegates as Class Members

The trouble with the preceding example is that all of the modules had access to all
of the functions in all of the other modules. This is not a very good design—it is
better to expose a delegate as a public member of a class rather than as a public
object. This lets you do the same kind of validation before creating it as you do for
any member. Here is a modification of the previous design, where the lines in bold
let us do some (trivial) validation before adding the new delegate to the multicast
delegate:

Option Strict On

Public Class DelegateServer

 Public Delegate Sub ClientCallback(ByVal lngVal As Long)

 Private m_Clients As ClientCallback

 'allow default constructor so no Public Sub New()

 Public Sub RegisterDelegate(ByVal aDelegate As _

 ClientCallback, ByVal doIt As Boolean)

 'would normally have serious validation code here

 'register the callback only if True is passe as second parameter

 If doIt Then

 m_Clients = CType(System.Delegate.Combine(m_Clients, aDelegate), _

 ClientCallback)

 End If

 End Sub

 Public Sub CallClients(ByVal lngVal As Long)

 m_Clients(lngVal)

 End Sub

End Class

Chapter 6

264

Module Module1

 Sub Main()

 Dim delsrv As New DelegateServer()

 delsrv.RegisterDelegate(AddressOf DelegateCallbackHandler1, True)

 'won't be called because of False as second parameter!

 delsrv.RegisterDelegate(AddressOf DelegateCallbackHandler2, False)

 'trigger the server to call acceptable clients

 delsrv.CallClients(125)

 Console.WriteLine("Press enter to end.")

 Console.ReadLine()

 End Sub

 Public Sub DelegateCallbackHandler1(ByVal lngVal As Long)

 System.Console.WriteLine("DelegateCallbackHandler1 called")

 End Sub

 Public Sub DelegateCallbackHandler2(ByVal lngVal As Long)

 System.Console.WriteLine("DelegateCallbackHandler2 called")

 End Sub

End Module

Delegates and Events

So far we have shown you how to use delegates for everything but event handling.
But how delegates hook up with events in VB .NET is actually pretty simple. The
idea is that whenever you use the shorthand for event handling described in the
first half of this chapter, VB .NET implicitly defines a delegate class to handle the
event. The AddressOf statement implicitly creates an instance of a delegate for that
event handler. For example, the following two lines of code are equivalent:

AddHandler Button1.Click, AddressOf Me.Button1_Click

AddHandler Button1.Click, New EventHandler(AddressOf Button1_Click)

where EventHandler is the name of the implicitly defined delegate. In fact, every
event corresponds to a delegate of the following form:

Public Delegate Event (sender As Object, evt As EventArgs)

When you call RaiseEvent, you are merely calling Invoke on a delegate that was
automatically generated for you.

265

CHAPTER 7

Error Handling the
VB .NET Way:

Living with Exceptions

UP TO NOW, WE HAVE PRETENDED that bad things do not happen to our programs.
But bad things happen to good programs all the time: a network connection may
be down or the printer may run out of paper, for instance. It is not your fault as the
programmer when this happens, but you also cannot blame the user if your program
crashes because the network goes down! At the very least, your program must not
end abruptly when these kinds of things happen. Your program must:

• Log or somehow notify the user of the problem.

• Let the user save his or her work if appropriate.

• Let the user gracefully exit the program if necessary.

This is not always easy. The code to open a network connection is usually not
attached to the objects whose state you need to maintain. You often need some
way to transfer control as well as to inform other objects what happened so they
can deal with the situation.

In any case, good programmers know they live in a world where exceptional
behavior often does not seem all that exceptional. This chapter will bring you into
the real world.

NOTE Bad things also happen to bad programs. If you do not validate data
before you use it, you may find yourself dividing by zero or stuffing too much
data into a container that cannot hold that much stuff. Your job as a programmer
is to make sure your program does not do this. Whatever form of error handling
you choose, it is not supposed to be a substitute for validating data before using it!

Chapter 7

266

The idea is that VB .NET finally supports structured exception handling (or
simply, exception handling) for dealing with common errors. In this chapter, we
not only show you the syntax used to add exception handling to a VB .NET appli-
cation, but we show you the benefits of using it for error handling. For example,
with exception handling, even the more or less socially acceptable use of the GoTo
we showed you back in Chapter 3 is no longer necessary. But because power
always comes at a cost, we also alert you to the gotchas that you will encounter when
using exception handling.

Error Checking vs. Exception Handling

Traditional error checking (such as that used in earlier versions of VB or in tradi-
tional COM or Windows programming) is done by checking the return value of a
given function and reacting based on that value. This usually involves the equiva-
lent of a giant switch statement that checks the value returned by the function.
And, of course, this return value tends to be random: a 1 is good sometimes and
bad other times; a 0 can mean success or just as often failure. Or, as is the case in
the VB6 example code given here, the value returned seems truly random:

Select Case ErrorNumber

 Case 57

 MsgBox "Your printer may be off-line."

 Case 68

 MsgBox "Is there a printer available?"

 'more cases…

 Case Else

 'eeks

End Select

Now, this kind of code gets the job done, but it is hard to read and even harder
to maintain. We think it is also fair to say that there is a lot of room for programmer
error in this scheme. For instance, suppose that you had made a mistake with one
of the error values or, as is all too common, you forgot to check all the possible

NOTE For readers coming from earlier versions of VB, using the older On Error
syntax is still possible. We think, however, that it would be almost foolish to con-
tinue using it for new programs. We feel strongly that is has taken far too long
for VB to lose an archaic way of treating errors that goes back to the early days of
computing! (You also cannot mix the two methods in the same procedure.)

Error Handling the VB .NET Way: Living with Exceptions

267267

return values of the error function. Beyond this, it is a pain to write the same
error-checking code every time you use a Windows API function in your code.
Although there are times you will have to check the return value of a function
regardless of what type of error handling scheme you are using, you do not want
to do it everywhere. For example, one key benefit is efficiency: exception handling
code costs you less time in writing, less time in maintenance, and often less time
in executing!

First Steps in Exception Handling

Before we start writing the code that shows you some exception handlers at work,
here are some things to keep in mind. First, when you use structured exception
handling, you are providing an alternative path for your code that will be executed
automatically when something bad happens. More precisely, you can create in
any VB .NET code an alternate path for code execution when the code cannot
complete its work in the normal path. Also, when you enable exception handling,
VB .NET automatically creates an object that encapsulates the error information.

Once an exception is triggered, the built-in exception handling mechanism
begins its search for a handler that can deal with that particular object (error
condition). It is important to keep in mind that what we are describing is not a
bunch of GoTos that make for spaghetti code—it is more like the service road that
runs parallel to the main highway with various exits. Next, keep in mind that, in a
way, this service road is the dream of all drivers that are stuck in traffic. It is a
smart service road—if something goes wrong, you will automatically be shunted
to the exception handling code sequence. (Well, you will be if you wrote the code
for the exception handler.) Once you are on the service road, the code in the
exception handler can deal with the problem using exception handlers or, optionally,
let it bubble up through the call chain.

The actual mechanism for doing this in VB .NET is called a Try-Catch block.
Here is an example: Suppose you build a console application called ProcessFile.
The user is supposed to use this application from the command line by typing
something like:

ProcessFile nameoFile

where the argument on the command line is the name of the file. As users are prone
to do, the user can do one of many annoying things to your nice program, such as:

• Forget to give you a filename

• Give you the name of a nonexistent file

• Ask you to work with a file that is locked for this operation

Chapter 7

268

We have to write our code in a way that takes into account all the possible ways
the user of our program can go wrong. Here is an example of the simple Try-Catch
block in a VB .NET application that could be part of the ProcessFile application:

Module Exception1

 Sub Main()

 Dim args() As String

 Try

 args = Environment.GetCommandLineArgs()

 ProcessFile(args(1))

 Catch

 Console.WriteLine("ERROR")

 End Try

 Console.WriteLine("Press enter to end")

 Console.ReadLine()

 End Sub

 Sub ProcessFile(ByVal fileName As String)

 'process file code goes here

 Console.WriteLine("Am processing " & fName)

 End Sub

End Module

The code in the Try section of the Try-Catch block is assumed to be
“good” code—in this case, a call to ProcessFile. (The reason the call to
Environment.GetCommandLineArgs()in the exception handler is it can also
throw an exception if your code is running on a box that does not support
command line arguments.)

The code in the Catch section of the Try-Catch block is there because, well,
users are users and do not always follow directions. In this code snippet, if the
user forgets to enter a filename, then the code would try to reference the name
 of the file, which would trigger an IndexOutOfRangeException, because the array
would not have an entry in the cited position. Triggering this exception causes the
code flow to move down the alternate pathway (the Catch block), which in this
case simply prints out ERROR in the console window.

NOTE As with most VB .NET control flow constructs such as For and Do, there is
a way to exit from a Try block on demand. With a Try block, put an Exit Try
inside of any Try block to exit from it immediately. We think using Exit Try is
generally a poor programming practice.

Error Handling the VB .NET Way: Living with Exceptions

269269

Analyzing the Exception

The next step is to catch the exception and to analyze it. This is done by modifying
the Catch line to read something like:

Catch excep As Exception

(You can use any variable here, of course, because it is being declared in the Catch
clause.) Now, the exception object referenced by excep contains a lot of information.
For example, change the code in the Catch clause to read:

Catch excep As Exception

 Console.WriteLine(excep)

to take advantage of the built-in ToString method of the exception object excep and
you will see something like:

System.IndexOutOfRangeException: An exception of type_

System.IndexOutOfRangeException was thrown.

at Exception_1.Exception1.Main() in C:\Documents and_

Settings\x20\My Documents\Visual Studio

Projects\ConsoleApplication14\Exception1.vb:line 6

This message shows there was an error in accessing the array element at line 6. (Not
that we recommend printing this information out—unless you want to scare the
user—but it is very useful for debugging.)

Finally, while reading this code we hope you are thinking ahead. Suppose the
user supplies a filename but the ProcessFile method cannot process it. What then?
Is there a way to differentiate between exceptions? As you will see shortly, you can
make the Catch clause more sophisticated to check for different kinds of exceptions.
You can even have a Catch clause Throw an exception object back to the code that
called it that encapsulates what went wrong in its cleanup work.

Multiple Catch Clauses

The .NET runtime allows multiple Catch clauses. Each clause can trap for a specific
exceptions, using objects that inherit from the base Exception class to identify the
particular errors. For example, consider the following code:

Chapter 7

270

Sub Main()

 Dim args(), argument As String

 Try

 args = Environment.GetCommandLineArgs()

 ProcessFile(args(1))

 Catch indexProblem As IndexOutOfRangeException

 Console.WriteLine("ERROR - No file name supplied")

 Catch ioProblem As System.IO.IOException

 Console.WriteLine("ERROR - can't process file named " & args(1))

 Catch except AS Exception

 'other exception

 End Try

 Console.WriteLine("Press enter to end")

 Console.ReadLine()

End Sub

In this case, the exception handler looks inside the Try-Catch block, attempting to
match all of the Catch blocks sequentially to find a match. If the user leaves out the
filename, it will match the first clause. Presumably it will match the second clause
if the ProcessFile call cannot process the file. (More on why this happens in a
moment.) If not, the last Catch clause will catch any other kind of exception.

Note that a match that is a Catch clause is an exception that is either is of the same
type or of a type that inherits from that type. For example, the FileNotFoundException
class inherits from IOException, so you should not write code that looks like this:

 Try

 ProcessFile(args(1))

 Catch indexProblem As IndexOutOfRangeException

 Console.WriteLine("ERROR - No file name supplied")

 Catch ioProblem As System.IO.IOException

 Console.WriteLine("ERROR - can't process file named " & args(1))

 Catch fileNotfound As System.IO.FileNotFoundException

 End Try

because the more general FileNotFoundException clause will be headed off by the
clause that caught its parent I/O exception.

CAUTION Once a Catch clause that matches the exception is found, VB processes
the code in that Catch block but will not process any other Catch block.

Error Handling the VB .NET Way: Living with Exceptions

271271

In spite of the dangers of a Catch e As Exception line of code, a good rule of
thumb is to actually have a general Catch e As Exception clause as the final Catch
clause in any Try block—especially during the development process. This allows
you to better isolate errors. We suggest printing out a stack trace to the console or
a log file if all else fails. You can do this using the StackTrace method in the generic
Exception class. For example:

 Try

 ProcessFile(args(0))

 Catch indexProblem As IndexOutOfRangeException

 Console.WriteLine("ERROR - No file name supplied")

 Catch fnf As System.IO.FileNotFoundException

 Console.WriteLine("ERROR - FILE NOT FOUND")

 Catch ioProblem As System.IO.IOException

 Console.WriteLine("ERROR - can't process file named " & args(1))

 Catch e As Exception

 Console.WriteLine("Please inform the writer of this program of this message")

 Console.Write(e.StackTrace)

 End Try

What happens if there is no Catch block that corresponds to the specific type of
exception that is thrown, and if there is also no Catch e As Exception clause in the
code you are trying? Well, when this happens, the exception bubbles up to any Try
clauses that surrounds the code of an inner Try clause. And if there is no outer Try
block with a matching Catch clause, then the exception bubbles up to the calling
method and looks for an exception handler there. This is presumably what would
happen in the ProcessFile method in the code you saw earlier—the ProcessFile
method would pass on any unhandled exceptions (in the form of an Exception object)
to Sub Main.

CAUTION This means a clause that says

Catch e As Exception

kills all the remaining Catch clauses. Using this clause as the first Catch block
will cause you no end of grief. (Using Catch without specifying an exception is
the equivalent of a Catch e As Exception clause, by the way.) Also note that if
you use Catch e As Exception and do not put any code in the block, it will act
much like the very dangerous On Error Resume Next from earlier versions of VB.

Chapter 7

272

In general, if your code does not handle an exception even when you go all
the way up to the code in the entry point for the application, then .NET displays a
generic message with a description of the exception and a stack trace of all the
methods in the call stack when the exception occurred.

Throwing Exceptions

We said that the ProcessFile method would simply propagate the exception back
to the code in Sub Main that called it. This code, in the Main procedure, in turn is
inside a Try block, so the exception handling we wrote should handle it. But this is
actually a little bit naïve and perhaps even becomes dangerous when you write
classes that will be reused by other people. (And even if it is not dangerous, people
who use your code will not be happy with you if you propagate exceptions willy-
nilly without attempting to handle them.)

A better tactic is to do what you can locally to try to clean up the mess and
then use the keyword Throw to send an exception object back to the calling code.
For example, you saw in Chapter 4 how VB .NET no longer has deterministic final-
ization. Thus, if you create an object that has a Dispose method, you should dispose of
it before throwing an exception. Ditto if you open a file or grab a graphic context.
This snippet is the paradigm for this kind of code:

Try

 'code that created a local object that has a Dispose method

 ' more code that might throw exceptions

Catch(e As Exception)

 localObject.dispose()

 Throw e;

End Try

CAUTION If no Try clause in the method catches the exception, execution processes
to any Finally clauses, and then jumps immediately out of the method. This
explains why you should think of exception handling as an awfully powerful (but
smart) GoTo. It is smart because it will be able to perform cleanup code automat-
ically through use of Finally clauses.

TIP VB .NET allows you to add a When clause to a Catch clause to further specify
its applicability. The syntax looks like this:

Catch badNameException When theName = String.Empty

Error Handling the VB .NET Way: Living with Exceptions

273273

The point is that, if you do not call the Dispose method of your local object,
whatever it grabbed will never be disposed of. This is because if you only have a
reference to an object locally, other code will not have access to its Dispose method!
On the other hand, whatever caused the exception did not go away and it is quite
likely that the calling code needs to know that there was a problem, such as in
processing the file. The way you do this is to send it an exception object using the
Throw statement as you can see in the last bold line.

Actually, if you really want to be a good citizen, do not just (re)throw a generic
exception as in the preceding code. Instead, make your code as useful as it can be
to the calling code by adding information to the exception object you are throwing
back. You can do this in three ways:

1. Add a descriptive string to the current exception and rethrow it with the
new string added, and hope this helps.

2. Throw a built-in exception that inherits from the given exception that
describes the situation better.

3. Create a new exception class that inherits from the given exception class
that describes what happened better than any built-in exception class.

Ideally, these are in ascending order of usefulness, with number 3 being what
you should always do. In practice, most people use all three methods based on
their judgment of what will happen if they do not send every possible piece of
information up the call stack.

As an example of how to perform these various tasks, imagine a situation
where you are reading a bunch of key/value pairs back from some data source and
the last key does not have a corresponding value. Because you assumed that every
key has a value and tried to read its associated value, you are presented with an
unexpected I/O exception. (See Chapter 9 for how to write code that reads infor-
mation back from a file.)

Now you want to tell the caller of the code what has happened. You can add a
string to an exception by using this version of the constructor in the Exception class:

Public Sub New(ByVal message As String)

For example, here is how you add a new string to the IOException that informs the
caller that a value is missing for the last key and then throw it:

Dim excep as New IOException("Missing value for last key")

Throw excep

Chapter 7

274

The code that calls your code is presented with the exception you throw; it can
look at the value returned by the Message method in the Exception class to see
what happened.

The second situation is trivial to implement because of the cardinal rule of
inheritance: any subclass must be usable wherever its parent class is. All you have
to do is throw an instance of the child class exception that works better.

The final situation requires a bit more work because you have to build a class
that extends an existing exception class. For example, suppose we want to build
an exception class that inherits from System.IO.IOException. The only change is
that we add a read-only property that returns the last key for the lost value:

Public Class LastValueLostException

 Inherits System.IO.IOException

 Private mKey As String

 Public Sub New(ByVal theKey As String)

 MyBase.New("No value found for last key")

 mKey = theKey

 End Sub

 Public ReadOnly Property LastKey() As String

 Get

 Return mKey

 End Get

 End Property

End Class

Note that the name of the newly created Exception class ends with the word
Exception. This is a standard naming convention that we strongly suggest you
follow. Someone who is presented with a LastValueLostException can use the
read-only LastKey property that is set in the constructor of this new exception
type to find the key that was not paired with a value. We made sure the Message
method in the parent Exception gave the correct information by adding this line:

MyBase.New("No value found for last key")

which calls the correct constructor in the parent class (ultimately this constructor is in
the parent Exception class).

NOTE Actually, in the real world it is more likely that you would get an
EndOfStreamException, which inherits from IOException. But more on
streams in Chapter 9.

Error Handling the VB .NET Way: Living with Exceptions

275275

You may notice that we do not override any other methods, such as the generic
ToString method, which comes from Exception. Exception objects should always
print out the standard message, if and when required.

How would somebody use our class? If the last key was "oops," then this line:

Throw New LastValueLostException("oops")

would do exactly that.

Exceptions in the Food Chain

We created a new exception class that inherited from IOException, because this
was clearly the kind of problem we were having. Suppose, however, that you have
a more generic situation where there is no obvious class to inherit from except
Exception itself. Well, not quite—you always have a better choice. We strongly
suggest not inheriting from Exception itself, but rather using a subclass of Exception
called ApplicationException.

The reason is that the .NET Framework distinguishes between exceptions
that arise because of problems caused by the runtime (such as running out of
memory or stack space) and those caused by your application. It is the latter
exceptions that are supposed to inherit from ApplicationException, and therefore
this is the class you should inherit from when you create a generic exception in
your program.

The runtime tries to help you by going a little further. It actually splits the
exception hierarchy into two as shown in Figure 7-1.

CAUTION Be aware that IOException, like most built-in non-generic exceptions,
also splits off from Exception and not ApplicationException.

Figure 7-1. The exception hierarchy split into two

ApplicationException SystemException

Exception

Chapter 7

276

The Exception, ApplicationException, and SystemException classes have identical
functionality—the existence of the three classes is a convenience that makes the
exceptions your programs may cause easier to understand. Here is a summary of
the most important members of these classes (which are also important for built-
in classes such as IOException that inherit from Exception).

...

Eliminating the GoTo Using Exceptions

By combining exception handling with building your own exception classes, you
can finally eliminate all uses of the GoTo. For example, in the code in Chapter 3
we showed that one possible socially acceptable use of the GoTo was to get out of
a deeply nested loop when something bad happened in an inner loop. We would
more likely just wrap the whole loop in a Try-Catch block as follows:

Sub Main()

 Dim getData As String

 Dim i, j As Integer

 Dim e As System.IO.IOException

 Try

 For i = 1 To 10

 For j = 1 To 100

 Console.Write("Type the data, hit the Enter key between " & _

 "ZZZ to end: ")

 getData = Console.ReadLine()

 If getData = "ZZZ" Then

 e = New System.IO.IOException("Data entry ended at user request")

 Throw e

 Else

 'Process data

 End If

 Next j

 Next i

 Catch

 Console.WriteLine(e.Message)

 Console.ReadLine()

 End Try

...

End Sub

Error Handling the VB .NET Way: Living with Exceptions

277277

And Finally…Finally Blocks

When you use a Try-Catch block, there is often some cleanup code that must be
processed in the normal and in the exceptional condition. Files should be closed
in both cases; for example, Dispose methods need to be called, and so on. Even in
the simple example that started this chapter, we should have the ReadLine code
(which keeps the console window up while it waits for the user to press Enter).

You can assure that certain code executes no matter what happens by
adding a Finally clause as in the bolded code in the following modification of
our first example.

Sub Main()

 Dim args(), argument As String

 args = Environment.GetCommandLineArgs()

 Try

 ProcessFile(args(1))

 Catch

 Console.WriteLine("ERROR")

 Finally

 Console.WriteLine("Press enter to end")

 Console.ReadLine()

 End Try

End Sub

Now the code in bold will always be executed. (And so the DOS window will
stay around long enough for the user to see what happened.)

CAUTION Do not change the preceding code by eliminating the first line in bold
in favor of the following line, which replaces the second line in bold:

Dim e As New System.IO.IOException("Data entry ended at user request")

Because of the block visibility rules in VB .NET, the Catch clause would not be
able to see the exception object.

CAUTION Keep in mind that the code in a Finally clause will execute before any
exceptions get propagated to the calling code and also before a function returns.

Chapter 7

278

Some Tips for Using Exceptions

Exceptions are cool and people new to them have a natural tendency to overuse
them. After all, why go to the trouble to parse what the user enters when setting
up an exception for the user’s error is so easy? Resist this temptation. Exception
handling will make your programs run much slower if misused. Here are four tips
on using exceptions—they all come down to variations on the rule that exceptions
are supposed to be exceptional:

1. Exceptions indicate an exceptional condition; do not use them as you
would a return code for a function. (We have seen code that throws a
“SUCCESS_EXCEPTION” every time a function call does not fail!)

2. Exception handling is not supposed to replace testing for the obvious. You do
not, for example, use exceptions to test for end of file (EOF) conditions.

3. Do not micromanage exceptions by wrapping every possible statement
in a Try-Catch block. It is usually better to wrap the whole action in a single
Try statement than to have multiple Try statements.

4. Do not squelch exceptions by writing code like

Catch e as Exception

without a very good reason. This is the equivalent of blindly using
On Error Resume Next in older VB code and doing so is bad for the same
reasons. If an exception happens, handle it or propagate it.

5. Which leads to one final tip—what we like to call the good fellowship rule:

If you do not handle an exception condition completely and need to
rethrow an exception to the calling code, add enough information (or
create an new exception class) so that the code you are communicating
with knows exactly what happened and what you did to (try to) fix it.

279

CHAPTER 8

Windows Forms,
Drawing, and Printing

EVERYTHING YOU HEAR ABOUT .NET development in the magazines or online seems
to focus on features such as Web Services, using the browser as the delivery platform,
ASP .NET, and other Web-based topics. The many, many improvements made to
client-side Windows GUI development under .NET using the Visual Studio IDE
are barely mentioned. This may sound strange to say of a Microsoft product, but
GUI development in Visual Studio is under-hyped; there are, in fact, many
improvements that VB programmers have long awaited!

Although we agree that using the browser as a delivery platform is clearly
becoming more and more important, we also feel pretty strongly that the traditional
Windows-based client is not going away. In this chapter, we hope to counterbalance
this general trend by showing you the fundamentals of the programming needed
to build GUIs in VB .NET.

We will not spend a lot of time on how to use the RAD (Rapid Application
Development) features of the IDE,1 or the properties, methods, and events for the
various controls in the Toolbox—doing this justice would take a book at least as
long as this one. Instead, by concentrating on the programming issues involved,
we hope to show you how GUI development in .NET works. At that point, you can
look at the documentation as needed or wait for a complete book on GUI devel-
opment to learn more.

After discussing how to program with forms and controls, we take up the
basics of graphics programming in VB .NET, which is quite a bit different than it was

1. But yes, you still can paint the user interface, and the many new properties such as Anchor
and Dock do make the design task using the IDE that much easier.

NOTE We say the "programming needed" because, unlike earlier versions of VB,
the Visual Studio IDE works by writing code for you—and you must understand
the code it generates in order to take full advantage of the Windows client-side
features in .NET.

Chapter 8

280

in earlier versions of VB. (For example, the familiar primitives such as Circle and
Line are gone.) We then look at printing in .NET. Interestingly enough, printing in
.NET is really just a special case of drawing. Although you have far more power
than was available in earlier versions of VB, the familiar Printer object is gone and
a bit more work is needed to get at the improved functionality.

First, Some History

Earlier versions of VB depended on the Ruby Forms engine. It was a version of
Alan Cooper’s Ruby prototype tool that, when married to a version of QuickBasic,
became VB1.2 This meant that GUI development in earlier versions of VB was
dependent on an engine whose actions were almost totally hidden from the pro-
grammer. Forms magically appeared because they were the startup forms, and
controls ended up on forms mostly because of your actions at design time.3

The process of creating a window and controls on a form by hand that could
respond to events in C or C++ was painful at best, so VB was a definite improve-
ment. The downside to everything happening “auto-magically” was that the Ruby
Forms engine was pretty inflexible. You could not extend it very easily, and you
had to live with some quirks in its design. How you could use VB forms and controls
was limited, unless you wanted to make heavy use of API calls to write really ugly
subclassing code that intercepted normal Windows messages.4 Even things as
simple as making a listbox that could be quickly searched required using an API
call; the common task of adding items to a listbox was made difficult because the
Items property of a listbox was read-only and you could not do anything about it.
(Fortunately, these tasks are trivial in VB .NET.5)

Furthermore, many programmers were confused about what a VB form really
was—was it a class or an instance of a class? The answer is that forms were both,
sort of. The result was very confusing code such as this:

Form1.Show 'I'm an instance

Dim newForm As New Form1 'nope, now I am a class

newForm.Show

Programmers prefer a consistent model of programming and, from an OOP
point of view, the forms engine in earlier versions of VB often seemed like a
hodgepodge of hacks. All this has changed in .NET. In .NET, forms are just

2. See www.cooper.com/alan/father_of_vb.html.

3. It is true that VB6 gave you a way to add controls at run time, but it was not used very much, in
part because the event hookup mechanism for these controls was so clumsy.

4. Third-party controls such as Desaware’s SpyWorks helped with the subclassing process, but it
still was not much fun.

5. For example, to quickly populate a listbox, assign a collection to the box’s DataSource property.

Windows Forms, Drawing, and Printing

281281

instances of the Windows.Forms.Form class, and you use inheritance to specialize
behavior for forms or controls in exactly the same way as you use inheritance for
any other class in the .NET Framework. For example, a specialized form would
start out like this:

Public Class MyForm

Inherits System.Windows.Forms.Form

and then you could add new functionality by either overriding members of the parent
Form class or by adding new members, just as you would for any class (see Chapter 5).

Controls in earlier versions of VB were not even true classes, so the following
kind of code was not allowed:

Dim myButton As New CommandButton

This perfect example of an “is-a” relationship that cries out for inheritance, could not
use it to build, say, a better command button based on the built-in command button.

Instead, when building custom controls was finally possible beginning with VB5,
control creation depended on containment, delegation, and one of the most convo-
luted wizards ever invented. (Not to mention that controls you built in VB5 and 6 were
not exactly like the controls you built with other languages such as C++ or Delphi.)

In .NET, controls and forms are classes. For example, as you will see a little
later on in this chapter, you can create a specialized textbox in VB .NET by building
a class that starts out like this:

Public Class PositiveIntegerTextBox

 Inherits System.Windows.Forms.TextBox

and then you override or add methods just you do in any inheritance chain. (And this
control works exactly like a control built with C# or managed C++.)

To be blunt, GUIs in earlier versions of VB depended on a rickety, half-baked,
not truly object-oriented structure. That structure needed to be overhauled in
order to unify the programming model in a truly OOP-based version of VB—which is
exactly what you have in .NET with the new Windows.Forms namespace—and VB
.NET can take full advantage of this.

Form Designer Basics

For VB6 programmers, adjusting to how the VS .NET IDE handles forms and controls
is pretty simple. You have a couple of new (and very cool) tools that we briefly
describe later, but the basic idea of how to work with the Toolbox has not changed

Chapter 8

282

very much. (See the sections in this chapter on the Menu Editor and on how to
change the tab order, for our two favorite additions.)

For those who have never used an older version of the VB IDE, here is what
you need to do to add a control to the Form window:

1. Double-click on a control or drag it from the Toolbox to the form in the
default size.

2. Position it by clicking inside it and then dragging it to the correct location.

3. Resize it by dragging one of the small square sizing boxes that the cursor
points to, as shown in Figure 8-1. (You can still use Shift+ and Arrow key
for more precise resizing, if need be.)

You can also add controls to a form by following these steps:

1. In the Toolbox, click on the control you want to add to your form.

2. Move the cursor to the form. (Unlike earlier versions of VB, the cursor
now gives you a clue about which control you are working with.)

3. Click where you want to position the top left corner of the control and
then drag to the lower right corner position. (You can then use Shift+ an
Arrow key to resize the control as needed.)

For controls without a user interface, such as timers, simply double-click on
them. They end up in a tray beneath the form, thus reducing clutter.

Figure 8-1. Sizing handles on a control

NOTE The key point to always keep in mind about designing a form in the IDE
is that the IDE will write (a lot) of code for you. Unlike earlier versions of VB,
everything you do in the Form designer or in the Properties window corresponds
to automatically generated code that you can see (and change) if needed.

Windows Forms, Drawing, and Printing

283283

You can use the Format menu to reposition and resize controls once they are
on the form. Of course, many of the items on the Format menu, such as the ones
on the Align submenu, make sense only for a group of controls. One way to select
a group of controls is to click the first control in the group and then hold down the
Control key while clicking the other members you want in the group. At this point
they will all show sizing handles but only one control will have dark sizing handles
as shown in Figure 8-2 on the button control.

The control with the dark sizing handles acts as the reference for relevant
Format menu commands, such as Format|Make Same Size|Width. All controls in a
group resize proportionally, regardless of which control is the reference control.

Once you are happy with the position of a group of controls, use Format|Lock
Controls to keep them from accidentally moving. Unlike with earlier versions of
VB, locking controls works on a group basis and any additional controls you add
to the form are not locked.

Figure 8-2. Controls as a group

TIP To change the reference control for a group, simply click on the control you
want to be the new reference while the group is selected.

Chapter 8

284

Keeping Things in Proportion: The Anchor
and Dock Properties

In earlier versions of VB, you had users who could sometimes resize a form, thus
ruining the careful positioning of the controls you made at design time. To solve
this problem, you either had to roll your own resize code or invest in a resizing
control. With Windows.Forms, most resizing code is no longer necessary because
two very useful properties have been added to every visible control: Anchor and Dock.

You set the Anchor property in the Properties window via a small designer that
looks like Figure 8-3.

The Anchor property lets you anchor a control to one or more of the edges of
the form. Once you anchor a control to an edge of its container, the distance
between the control and that edge remains the same, no matter how the container is
resized. If you anchor a control to the opposite edges of its container, it is auto-
matically resized when the container is resized. Here is an example of the code
generated by setting the Anchor property. This code anchors the button to the left
and right sides:

NOTE If you need to work with a group of controls as a unit (a set of radio buttons,
for example), put them inside a GroupBox control instead of a Frame control. The
improved Panel control now lets you use scrollbars that also allow you to group
controls. Interestingly enough, you can now drag existing controls into a GroupBox
control or a Panel control.

Figure 8-3. The Anchor designer

Windows Forms, Drawing, and Printing

285285

Me.Button1.Anchor = (System.Windows.Forms.AnchorStyles.Left _

Or System.Windows.Forms.AnchorStyles.Right)

The Dock property is a far more flexible version of the older Align property that
it replaces. When you dock a control to an edge of the form, it stays flush with that
edge no matter how the container is resized. You set the Dock property in the
Docking designer, as shown in Figure 8-4.

Clicking the middle position in this designer sets the property to the value
Fill, which fills the container with the control, if this is possible, and then keeps it
that way no matter how the control is resized. (Filling the container is not possible
for some controls, such as single-line textboxes, which always stay a specific
height dictated by the font they are using.) Setting the Dock property generates
code like this:

Me.Button1.Dock = System.Windows.Forms.DockStyle.Bottom

If you dock multiple controls to the same edge, the first docks to the edge of
the container and the others dock as close as possible to the edge without covering
the previous one, as you can see in Figure 8-5.

Because docking and anchoring work relative to the container, you can first
anchor or dock group boxes or panels to the form and then anchor or dock controls
inside these containers. This lets you avoid, in most cases, the need to roll your
own resize code. For example, the beginnings of the proverbial calculator shown
in Figure 8-6 were created by first docking three group boxes to the left side, and
then docking the three command buttons to the bottom of the first group box.

Figure 8-4. The Docking designer

Chapter 8

286

Figure 8-5. Docking at work

Figure 8-6. Start of a calculator

Windows Forms, Drawing, and Printing

287287

The Tab Order Menu

Changing the tab order in earlier versions of VB was frustrating, and using an add-in
was the only way to ease the pain. In VB .NET, the Tab Order option on the View
menu option makes it easy. All you have to do is type the number that you want
for the tab order of a control in the little box that attaches to the control when you
choose View|Tab Order, as you can see in Figure 8-7. Controls inside container
controls have a tab order using a “.”. For example, if a group box has tab order
number 3, then the controls inside of it have numbers such as 3.0, 3.1, and the
like. (To turn off the Tab Order mode, click on the menu item again.)

Returning to a Simple Program

In Chapter 1, we showed you the somewhat complicated code automatically
generated by the IDE for a simple Windows application that responds to a button
click. We also promised you that you would eventually be able to understand how
this code works. We now return to that code. (See Chapter 1 for the steps you need
to follow to build this application.)

First, we need to point out that when you build a Windows Form application,
the VS .NET IDE automatically adds references to two assemblies, as you can see
in the Object Browser for our example (see Figure 8-8). The two assemblies are
System.Drawing and System.Windows.Forms. The System.Drawing assembly is a single
namespace that contains the classes needed for sizing and positioning a form

Figure 8 -7. Using the Tab Order menu item

Chapter 8

288

and its controls. You also use it when drawing or placing images on a form. The
System.Windows.Forms assembly is also a single namespace and contains the classes
for all the controls as well as the Windows.Forms.Form class for form instances.

1 Public Class Form1

2 Inherits System.Windows.Forms.Form

3

4 #Region " Windows Form designer generated code "

5

6 Public Sub New()

7 MyBase.New()

8

9 'This call is required by the Windows Form designer.

10 InitializeComponent()

11

12 'Add any initialization after the InitializeComponent() call

13

14 End Sub

15

 Figure 8-8. The Object Browser for a simple Windows application

Windows Forms, Drawing, and Printing

289289

16 'Form overrides dispose to clean up the component list.

17 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

18 If disposing Then

19 If Not (components Is Nothing) Then

20 components.Dispose()

21 End If

22 End If

23 MyBase.Dispose(disposing)

24 End Sub

25 Friend WithEvents Button1 As System.Windows.Forms.Button

26

27 'Required by the Windows Form designer

28 Private components As System.ComponentModel.Container

29

30 'NOTE: The following procedure is required by the Windows Form designer

31 'It can be modified using the Windows Form designer.

32 'Do not modify it using the code editor.

33 <System.Diagnostics.DebuggerStepThrough()> Private Sub _

 InitializeComponent()

34 Me.Button1 = New System.Windows.Forms.Button()

35 Me.SuspendLayout()

36 '

37 'Button1

38 '

39 Me.Button1.Anchor = ((System.Windows.Forms.AnchorStyles.Bottom Or _

System.Windows.Forms.AnchorStyles.Left) Or _

System.Windows.Forms.AnchorStyles.Right)

40 Me.Button1.Location = New System.Drawing.Point(46, 216)

41 Me.Button1.Name = "Button1"

42 Me.Button1.Size = New System.Drawing.Size(200, 48)

43 Me.Button1.TabIndex = 0

44 Me.Button1.Text = "Click me!"

45 '

46 'Form1

47 '

48 Me.AutoScaleBaseSize = New System.Drawing.Size(6, 15)

49 Me.ClientSize = New System.Drawing.Size(292, 268)

50 Me.Controls.AddRange(New System.Windows.Forms.Control() {Me.Button1})

51 Me.Name = "Form1"

52 Me.Text = "First Windows Application"

53 Me.ResumeLayout(False)

54

55 End Sub

56

Chapter 8

290

57 #End Region

58

59 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As _

System.EventArgs) Handles Button1.Click

60 MsgBox("Thanks for clicking!")

61 End Sub

62 End Class

Lines 1 and 2 show that this is a Public class that inherits from the Form class
in the System.Windows.Forms namespace. The # in line 4 marks the beginning of the
region for automatically generated code. It is important to keep in mind that
every time you use the Properties window or drag controls around in the designer
you are generating code. And in VB .NET, you can actually look at the automati-
cally generated code and change it once you become more experienced.

Lines 6 and 7 mark the beginning of this class’s constructor. As is usually the
case, we need to call the base class’s constructor in the first line of an inherited
constructor. (See the section in this chapter on “The Inheritance Chain in the
System.Windows.Forms Namespace” for more about the inheritance chain used here.)

Line 10 shows a call to the InitializeComponent method, which can be found
in lines 33–55. The automatically generated InitializeComponent method takes all
the design decisions and Properties window settings that you made and translates
them into code. For example, the button you added is declared in line 25, later
instantiated in line 34, and then finally added to the Form object via code (line 50).
Also notice how, in lines 44 and 52, the code sets the Text property of both the
button and the form according to what you did with the Properties window.

Lines 40 and 42 use members of the System.Drawing namespace to position
and size the button, and lines 48–49 do the same for the form. Pixels (!) are the
new default graphic unit—twips are gone.

NOTE The Text property replaces the Caption property (used in earlier versions
of VB) for all controls.

NOTE Although older properties such as Left, Top, Width, and Height still work,
you can now use structs as the values of the Location and Size properties. The
Location property sets or returns a Point struct that encapsulates the position
of a point. Similarly, the Size property uses a System.Drawing.Size struct to
encapsulate a height and a width. Because both struct classes are merely encap-
sulations of two integer values, they have properties to set the individual parts,
such as the Width property for a Size object or the Y property for a Point struct.

Windows Forms, Drawing, and Printing

291291

Lines 17–24 implement the version of a Dispose method needed by a Windows
Form application. The exact format for this method is a little different than the
simple Dispose method you saw in Chapter 5; this Dispose method actually dis-
poses of all the resources used by all the controls on the form, as well as the ones
used by the form itself.

Line 25 uses the shorthand you have already seen to specify that this button is
to be a source of events (see Chapter 6). Lines 59–61 actually hook up the click
event procedure using the Handles keyword. All automatically generated control
or form events in .NET have a syntax such as the one you see in line 59:

Sub ObjectName_eventname(ByVal sender As Object, Byval e As EventArgs) _

Handles ObjectName.eventname

Sender, in this case, is a reference to the control that raised the event. The EventArgs
parameter is the object that encapsulates the data about the event. (Event procedures
that send additional information such as the KeyPress event or MouseDown event use
an object that inherits from EventArgs, such as KeyEventArgs or MouseEventArgs, to
encapsulate the extra information.)

NOTE You can also start a Windows Form application from the Sub Main that is
the entry point for your application. In this case, you need to make a call to the
Application.Run method with the form name as in the following code:

Public Sub Main()

 Dim myForm As New Form1()

 Application.Run(myForm)

End Sub

(There is an implicit call to Application.Run whenever you use a form as the
startup object. Interestingly enough, this call is required in C# but not in VB .NET.)

NOTE We have to confess we are betraying our heritage as longtime VB pro-
grammers with the call to MsgBox in line 60. The Windows.Forms namespace
comes with a MessageBox class that is actually more capable than using the MsgBox
statement, but in this one case, old habits die hard. We suggest you look at the
documentation for this class to see if you want to start using it instead of the
MsgBox statement.

Chapter 8

292

More Form Properties

Although we do not have space to discuss all of the Form class’s properties, we do
want to point out some of the main differences between the way things worked in
earlier versions of VB and the way they work in VB .NET. One dramatic change is
in the way fonts work. Instead of the older Font properties such as FontBold, you
use the Font class in System.Drawing, whose most common constructor looks like this:

Sub New(ByVal family As FontFamily, ByVal emSize As Single, _

ByVal style As FontStyle)

(Font families are familiar to Word users: They are groups of individual fonts, such as
Times New Roman, Courier New, or Arial, in different point sizes and often with bold
or other attributes.)

For example, because the Or statement combines bit values, this code assigns
the MyFont variable to an Arial font in 12 point bold italic:

myFont = New System.Drawing.Font("Arial", 12, _

FontStyle.Bold Or FontStyle.Italic)

and then modifies the Button1_Click event procedure so that clicking on the button
changes the font:

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

 Dim myFont As System.Drawing.Font

 myFont = New System.Drawing.Font("Arial", 12, _

 FontStyle.Bold Or FontStyle.Italic)

 Me.Font = myFont

End Sub

Figure 8-9 shows the button with the new font.

CAUTION When you make font assignments to a form's Font property, the new
font is automatically used by the Text property of all the controls it contains.
The exception is that if you have specified a font for an individual control, this
overrides the inherited font.

Windows Forms, Drawing, and Printing

293293

In addition to the Anchor and Dock properties, you use the new MinimumSize and
MaximumSize properties to specify how small or large a user can make your form.
The properties take Size objects. This code, for example, would prevent the form
from being made smaller than the size of the button:

Me.MinimumSize = New Size(Button1.Size)

Because the MinimumSize property actually controls changes to the form’s Size prop-
erty, this includes the title bar. The result is that, with a line of code such as we have
just shown you, you would not see much of the button with this value for the mini-
mum size. Your are better off using something like this:

Me.MinimumSize = New Size(Button1.Size.Width*2, Button1.Size.Height*2)

The new ClientSize property lets you get at the usable area of a form (the area
minus the border and title bar). The useful Bounds property takes or returns a
Rectangle structure that encapsulates a form’s width and height, and the location
of its upper left corner.

Figure 8-9. A button with text reset to bold and italic

TIP For setting the MaximumSize property, you may want to use the
System.Windows.Forms.Screen class, which lets you get at the screens used
by the user (multiple monitors are supported). This class is also useful when
setting the DesktopBounds and DesktopLocation properties.

TIP The Rectangle structure class in System.Drawing has some very useful
members: it is worth checking out the documentation for this helpful utility
structure. We often find ourselves using a lot the Inflate member, which lets you
quickly create a larger rectangle from a smaller one.

Chapter 8

294

Many form properties, methods, and events have changed from their VB6
counterparts. The most important changes are shown in Table 8-1.

Menu Controls and the New Visual Studio Menu Editor

Although we do not have much space in this book to cover form design issues, we
cannot resist taking the time to cover the new “in-place” menu editor. VB pro-
grammers have long been waiting for something like this. Yet as nifty and user
friendly as the new menu editor is, you must understand the code generated by
the IDE in order to take full advantage of it.

Building a menu with the Menu Editor is simple. You start by dragging a MainMenu
control from the Toolbox onto your form, after which you will see the beginnings
of a menu appear on the form, as shown in Figure 8-10.

Table 8-1. Changes to VB6 Form Properties, Methods, and Events

OLD FORM ELEMENT NEW FORM ELEMENT

Activate and Deactivate events Renamed Activated and Deactivated

Container property Renamed Parent

DblClick event Renamed DoubleClick

hWnd property Renamed Handle

MouseCursor property Renamed Cursor and now returns an instance of

the Cursor class

Parent property Replaced by the FindForm method

Picture property Replaced by the BackgroundImage property

SetFocus method Renamed Focus

Startup property Replaced by the StartPosition property

ToolTip property Replaced by the ToolTip control which can be

associated to any control via that control’s ToolTip

property

Unload command Gone, replaced with the Close method

Unload event Replaced by the Closing event (there is also a new

Closed event that fires after the form has closed)

ZOrder method Replaced by the BringToFront and SendToBack

methods

Windows Forms, Drawing, and Printing

295295

Now start typing the captions for the menu items. At any given stage you can
type in a location and the menu item appears, along with ways to move across or
down (see Figure 8-11). To modify a menu item you have already created, simply
click on it (you can modify existing menus by clicking on the MainMenu control in
the component tray below the form). You cut and paste menu items to change
their order (even on the main menu bar). As in earlier versions of VB, you insert an
ampersand (&) before the letter you want to be a shortcut key. Figure 8-11 shows
both a shortcut key and a separator bar.

Before jumping into the code behind Figure 8-11, you need to know that an
instance of the System.Windows.Forms.MainMenu class encapsulates the entire menu of
the form. A MainMenu object acts as a container for MenuItem instances. To allow sub-
menus, MenuItem instances have a MenuItems property that holds other MenuItems as a
collection called, naturally enough, an instance of the Menu.MenuItemCollection class.

As far as the code behind Figure 8-11, this starts with the declarations for the
menu items. As you can see, we changed the names of the menu items to things
such as mnuFile instead of the default of MenuItem1:

Friend WithEvents MainMenu1 As System.Windows.Forms.MainMenu

Friend WithEvents mnuFile As System.Windows.Forms.MenuItem

Friend WithEvents mnuEdit As System.Windows.Forms.MenuItem

Friend WithEvents mnuHelp As System.Windows.Forms.MenuItem

Friend WithEvents mnuOpen As System.Windows.Forms.MenuItem

Friend WithEvents mnuSave As System.Windows.Forms.MenuItem

Friend WithEvents mnuExit As System.Windows.Forms.MenuItem

Figure 8-10. Start of building a menu with the new Menu Editor

Chapter 8

296

The IDE adds code like this to InitializeComponent in order to create the main
menu instance:

Me.MainMenu1 = New System.Windows.Forms.MainMenu()

This kind of code gets added to InitializeComponent to create the individual
menu items:

Me.mnuFile = New System.Windows.Forms.MenuItem()

Me.mnuNew = New System.Windows.Forms.MenuItem()

Me.mnuOpen = New System.Windows.Forms.MenuItem()

Notice how the top-level File menu is also represented by a MenuItem instance.
Individual menu items are added to the MainMenu instance via a call to the AddRange
method of the MenuItems class with code like this, which uses the AddRange method
to add three menu items at once:

Me.MainMenu1.MenuItems.AddRange(New Sys8tem.Windows.Forms.MenuItem() _

{Me.mnuFile, Me.mnuEdit, Me.mnuHelp})

Figure 8-11. Creating a menu with Visual Studio’s new Menu Editor

TIP A quick way to set the Name property of menu items is to right click on a
menu item and choose Edit Names (use the context menu to turn this feature off
when you are finished with it).

Windows Forms, Drawing, and Printing

297297

Because individual menu item instances also have a MenuItems property, the
automatically generated code looks similar to add items to the various menus, for
example:

Me.mnuFile.MenuItems.AddRange(New System.Windows.Forms.MenuItem() _

 {Me.mnuNew, Me.mnuOpen, Me.mnuExit, Me.mnuSep})

The IDE performs the final step of hooking up the click events. The code it
generates looks like this:

Private Sub mnuExit_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles mnuExit.Click

Context Menus

In earlier versions of VB, context menus were a bit cumbersome to build. In .NET,
a context menu is simply an instance of the ContextMenu class that you can edit in
place. You assign a control or form a context menu simply by setting the ContextMenu
property of the control or form. The standard Windows convention is that context
menus pop up in response to a right (non-primary for lefties) mouse click, which
is handled automatically for you through the magic of inheritance in .NET. (There
is no need to code any behavior in the a MouseDown event.) Context menu function-
ality is part of the Control class that both forms and controls inherit from.

When you drag a ContextMenu control to a form, the IDE generates code much
like it did for main menu items:

Friend WithEvents ContextMenu1 As System.Windows.Forms.ContextMenu

and

Me.ContextMenu1 = New System.Windows.Forms.ContextMenu()

and the AddRange method is called here:

Me.ContextMenu1.MenuItems.AddRange(New System.Windows.Forms.MenuItem()

{Me.MenuItem1})

You can also use the useful Edit Names feature for context menus by right-clicking, in
order to quickly assign a value to the Name property to context menu items as well.

TIP Because both main menus and context menus are driven by executing code,
you have a way to generate a menus from scratch at run time!

Chapter 8

298

MDI Forms

In earlier versions of VB, Multiple Document Interface (MDI) applications required
you to decide which form was the MDI parent form at design time. In .NET, you
need only set the IsMdiContainer property of the form to True. You create the child
forms at design time or at run time via code, and then set their MdiParent properties to
reference a form whose IsMdiContainer property is True. This lets you do something
that was essentially impossible in earlier versions of VB: change a MDI parent/child
relationship at run time. It also allows an application to contain multiple MDI
parent forms, which you also could not do in VB6.

For example, if you modify a Form1_Load to this:

Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

 Me.Text = "I'm an MDI Parent"

 Me.IsMdiContainer = True

 Dim MyChild As New System.Windows.Forms.Form()

 MyChild.MdiParent = Me

 MyChild.Show()

 MyChild.Text = "MDI Child"

End Sub

you will see something like Figure 8-12.

Figure 8-12. The simplest MDI example

Windows Forms, Drawing, and Printing

299299

Of course, this is a pretty sad excuse for an MDI application. MDI applica-
tions usually have a Windows menu that allows the user to tile or cascade the
open child windows or to make any child window active. The Windows menu
belongs to the parent menu, and the code to create it can be as simple as this:

Public Sub InitializeMenu()

 Dim mnuWindow As New MenuItem("&Window")

 MainMenu1.MenuItems.Add(mnuWindow)

 mnuWindow.MenuItems.Add(New MenuItem _

 ("&Cascade", AddressOf WindowCascade_Clicked))

 mnuWindow.MenuItems.Add(New MenuItem _

 ("Tile &Horizontal", AddressOf WindowTileHoriz_Clicked))

 mnuWindow.MenuItems.Add(New MenuItem _

 ("Tile &Vertical", AddressOf WindowTileVert_Clicked))

 mnuWindow.MdiList = True

End Sub

Protected Sub WindowCascade_Clicked(ByVal Sender As Object, _

 ByVal e As System.EventArgs)

 Me.LayoutMdi(MdiLayout.Cascade)

End Sub

Protected Sub WindowTileHoriz_Clicked(ByVal Sender As Object, _

 ByVal e As System.EventArgs)

 Me.LayoutMdi(MdiLayout.TileHorizontal)

End Sub

Protected Sub WindowTileVert_Clicked(ByVal Sender As Object, _

 ByVal e As System.EventArgs)

 Me.LayoutMdi(MdiLayout.TileVertical)

End Sub

If you call InitializeMenu in the Form Load of the previous example, you get a
window similar to the one shown in Figure 8-13.

To send a notification to a parent form when the user activates a child window,
you register an event handling method for the MdiChildActivate event. You determine
which child window is active by using the ActiveMdiChild property of the Form class.
For example, this code adds a handler that will eventually update a StatusBar control
on the parent form with the caption of the child window:

AddHandler Me.MdiChildActivate, AddressOf Me.MdiChildActivated

Chapter 8

300

You then use code like this:

Protected Sub MdiChildActivated(sender As object, e As System.EventArgs)

 If (Me.ActiveMdiChild <> Nothing) Then

 statusBar1.Text = Me.ActiveMdiChild.Text

 End If

End Sub

Dialog Forms and Dialog Boxes

The .NET Framework comes with a rich supply of dialog boxes that are located
toward the bottom of the Toolbox (see Figure 8-14). These dialog boxes have various
properties that control what the user sees. For example, the two file dialog boxes
have a Filter property. We show you the basics of using these useful controls in
this section, and we strongly recommend that you look at the .NET online help to
see a list of these properties.

Figure 8-13. A typical Windows menu for an MDI application

NOTE We show you how to use the printing dialog boxes in the “Printing”
section later in this chapter.

Windows Forms, Drawing, and Printing

301301

Regardless of which dialog box you use, they all inherit from an abstract
CommonDialog class. The most important member of this class is ShowDialog, which
uses polymorphism to determine which box to show. ShowDialog is actually a function
whose return value lets you determine if the user clicked on the Cancel or OK
button. (There is no longer a need to trap errors to determine if this quite normal
user activity happens!) The ShowDialog method syntax is:

Public Function ShowDialog() As DialogResult

where you check the return value to see if it equals DialogResult.OK or
DialogResult.Cancel.

ColorDialog

The code to use a ColorDialog typically grabs the value of the Color property and
assigns it the ForeColor or BackColor property of the control or form. For example,
here is a little procedure that allows you to change the background color of the
form by clicking on the command button.

Private Sub btnColor_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnColor.Click

 Dim myDialog As New ColorDialog()

 Dim Temp As Color = btnColor.BackColor

 If myDialog.ShowDialog() = DialogResult.OK Then

 Me.BackColor = myDialog.Color

 btnColor.BackColor = Temp

 End If

 End Sub

When you run this code the usual color dialog box pops up, and you can choose
which color you want.

Figure 8-14. The dialog box controls on the Toolbox

Chapter 8

302

FontDialog

The FontDialog box should be pretty familiar to anyone who has used a Windows-
based word processor. The key point to remember is that its Font property returns
a Font object that you assign to a control or form’s Font property. Here is some
example code that assumes you have a textbox named TextBox1 on your form,
along with a button that uses the default name of Button1:

Private Sub Button1_Click_1(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

 Dim myDialog As New FontDialog()

 If myDialog.ShowDialog() = DialogResult.OK Then

 TextBox1.Font = myDialog.Font

 End If

End Sub

(Notice how the size of a single line textbox adjusts to fit the new font.)

FileDialog

The FileDialog class is an abstract class that has two concrete subclasses:

• OpenFileDialog

• SaveFileDialog

As an example of using these dialog boxes, the RichTextbox in .NET, like its
counterpart in earlier versions of VB, has LoadFile and SaveFile methods to quickly
open or save a file. To make this example more realistic, we want to set the Filter
property of the file dialog box to be either .txt or .rtf using the line in bold in the
following code. Also notice how the LoadFile method requires you to specify if the
file is a text file (you can load RTF files without specifying the second parameter):

Private Sub mnuOpen_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles mnuOpen.Click

 Dim myDialog As New OpenFileDialog()

 myDialog.Filter = "text (*.txt), RTF (*.rtf)|*.txt;*rtf"

Windows Forms, Drawing, and Printing

303303

 If myDialog.ShowDialog = DialogResult.OK Then

 'can't load text files without specifying them as second parameter

 Dim Temp As String = myDialog.FileName.ToUpper

 If Temp.EndsWith("TXT") Then

 RichTextBox1.LoadFile(myDialog.FileName, RichTextBoxStreamType.PlainText)

 Else

 RichTextBox1.LoadFile(myDialog.FileName, RichTextBoxStreamType.RichText)

 End If

 End If

End Sub

...

Rolling Your Own Dialog Box

To roll your own dialog box, use an invisible form where you have:

• Set the ControlBox, MinimizeBox, and MaximizeBox properties to False and
the ModalProperty to True.

• Used the form’s ShowDialog method to show it as a modal dialog box. (If
you also set the TopMost property of the form to be True, it will be on top of
every window. You no longer have to use the SetWindowPos API function)

However, default buttons work in a different way than they did in VB6: the
Default and Cancel properties are gone, so you assign a button control to the
form's AcceptButton and CancelButton properties, as in this code:

Me.AcceptButton = btnOK

Me.CancelButton = btnCancel

Finally, once you use the ShowDialog method, you can then use the DialogResult
property associated with the button you clicked to find out which button you
clicked. (Clicking any button that has its DialogResult property set automatically

...

closes its containing form.)

Adding Controls at Run Time

Prior to VB6, the only way to add controls at run time was via a control array. With
VB6 came a better way to dynamic add a control, but there were still some prob-
lems with hooking up event handling for the controls you added. In VB .NET, the

Chapter 8

304

whole process has been overhauled. For example, start up a new Windows appli-
cation and add this code to it (we explain it after you have a chance to run it):

1 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As _

2 System.EventArgs) Handles MyBase.Load

3 Dim newButton As New System.Windows.Forms.Button()

4 'set properties of newButton for example

5 With newButton

6 .Visible = True

7 .Size = New Size(100, 100)

8 .Text = "I'm a new button"

9 'more properties would usually be set

10 End With

11 Me.Controls.Add(newButton)

12 AddHandler newButton.Click, AddressOf Me.newButton_Click

13 End Sub

14 Public Sub newButton_Click(ByVal sender As _

15 System.Object, ByVal e As System.EventArgs)

16 MsgBox("You clicked on my new button")

17 End Sub

Line 3 creates the new button and lines 5–10 use the convenient With shorthand
to add a bunch of properties to the newButton object. Note that it is only with line
11 that the new button is actually added to the form. Line 12 is another example
of the wonderful flexibility of event handling in .NET: we are making the code
contained in lines 14–17 the event handler for the button. The result of this code
looks like Figure 8-15.

Figure 8-15. A new button added at run time

Windows Forms, Drawing, and Printing

305305

Form Inheritance: AKA Visual Inheritance

First, the much-hyped term visual inheritance used in the VB .NET marketing lit-
erature is definitely marketing speak—it simply refers to using a form you create
as the basis for an inheritance chain. This is indeed a nice feature, but once you
have inheritance, it is exactly what you expect to have. The idea is you inherit
from the Windows.Forms.Form class and any custom properties, methods, and
events you add, you get for free.6

For example, suppose you set up a splash screen for your company and want
individual departments to be able to add things to it. To create this base form:

1. Choose File|New|Project.

2. Choose the Windows Application type and in the Name field type
SplashScreenBase and click OK.

Now say you want to keep on using the Form designer while changing the
type to be a class library instead of a standard Windows application so you can
compile it into a DLL rather than an EXE. Here is a trick to do this efficiently:

1. Right-click on SplashScreenBase in the Solution Explorer and choose
Properties.

2. Change the Output Type dropdown listbox from Windows Application to
Class Library and then click OK.

3. Design the form the way you want, adding whatever controls, custom
properties, methods, and events you want.

4. Compile the code.

Once you have the DLL, you can use this class in your code like any other
class by adding a reference to it. If you choose Project|Add Inherited Form, you
can have the IDE add the code necessary for this by working through some dialog
boxes. However, we think the process of working through a bunch of dialog boxes
is a bit silly, because all you have to do after adding the reference to the form’s DLL
is change the first line in a Windows application to something like this:

Public Class Form1

Inherits SplashScreenBase.Form1

6. Personally, we think this is a perfect example of how silly some marketing is to people in the
know. Managers may be impressed with the term “visual inheritance,” but programmers are
likely to take it with a grain of salt.

Chapter 8

306

and let the magic of inheritance do its work! (And what makes this method so nice is
that the designer will sync up with your inherited form as well.)

Building Custom Controls through Control Inheritance

The use of inheritance in implementing "visual inheritance" for forms also works
for building controls. For example, to make a textbox that accepts only positive
integers, start out with:

Public Class PositiveIntegerTextBox

 Inherits System.Windows.Forms.TextBox

Now you need only add the code to make this box work the way you want. In
the rest of this section, we show you how you might start building such a
PositiveIntegerTextBox with its own custom properties, events, and methods.

To follow along with us, start up a new Class Library and add a reference to
the Windows.Forms.dll assembly.

Overriding an Event

The first feature we add to our custom control is the ability to override an existing
event in the base class. For example, you would override the OnChange event in

NOTE To reduce the amount of coding for this example, we will not deal with
all the issues involved in a full-featured version of a positive integer textbox. In
particular, we will not cover licensing or security issues at all—you will find
coverage of these issues in a more advanced book on custom control creation
in .NET.

NOTE The reason we start with a Class Library rather than a User Control
project is because a User Control works best for a control built from scratch or
for controls that depend on many different controls working together (such as
the controls you built in VB6). If you want to build a control that contains multiple
controls, choose Windows Controls Library in the New Project dialog box, which
gives you a container that you can use to build a complicated control via
containment.

Windows Forms, Drawing, and Printing

307307

order to prevent a user from entering anything that is not an integer in the box.
Here is the code to allow only positive integers to be entered or pasted:

1 Public Class PositiveIntegerTextBox

2 Inherits System.Windows.Forms.TextBox

3 Protected Overrides Sub OnTextChanged(ByVal e As EventArgs)

4 MyBase.OnTextChanged(e)

5 If Not (IsNumeric(Me.Text)) Then

6 Me.Text = String.Empty

7 Else

8 Dim temp As Decimal

9 temp = CType(Me.Text, Decimal)

10 If temp - Math.Round(temp, 0) <> 0 Then

11 Me.Text = String.Empty

12 End If

13 End If

14 End Sub

15 End Class

Lines 1 and 2 specialize an ordinary textbox. Because specialization via inher-
itance keeps everything you do not explicitly change intact, you do not have to
use a wizard (as in VB6) to handle the unchanged properties, such as for color.
Code such as line 4, which sends the change event up to the parent, is usually
necessary when overriding an event. Having a line such as this is necessary
because you usually do not override all the behavior that the event triggers, and
you need to make sure that the behaviors you do not override in the inheritance
chain can handle the event correctly. Lines 5–6 make sure a user does not enter
lines like “32Skiddoo. Lines 9–12 take care of the case where a user enters some-
thing like “32.3”; the code uses the built-in Round function to make sure the number is
equal to its rounded version. (We admit killing the previous text the user enters is
rather cruel—in a more sophisticated example you should cache the previous text
so that you can restore it; that way users will not lose everything they typed
because of a single mistake.)

At this point, you can compile the code into a DLL and have a perfectly good
control. To see this after you compile it, you can start up a new Windows applica-
tion and then add this control to the Toolbox:

1. Choose Tools|Customize Toolbox (Ctrl+T).

2. Choose the .NET Framework Components tab.

3. Click on Browse and then select the DLL for the control you want to use
(it will be in the \bin subdirectory where you stored the code for the cus-
tom control).

Chapter 8

308

The custom control is added to the .NET Framework Components tab (see
Figure 8-16).

The custom control then appears at the bottom of the Toolbox, as you can see
in Figure 8-17. Double-click on this control and the control appears on your form.
Notice that even this very simple control has the full set of textbox properties, as
well as the design time behavior you would expect of a textbox. All of this behavior
is automatically inherited from the ordinary textbox class (Windows.Forms.TextBox
class), with no work on your part.

Figure 8-16. A custom control on the Components tab

CAUTION Once you add a custom control to the Toolbox, it stays there even
for other new projects. To remove it from the Toolbox, right-click on it and
choose Delete.

Windows Forms, Drawing, and Printing

309309

Adding a Custom Event

As you might expect, adding a custom event to a control is no different than adding
an event to a class (see Chapter 6 for a refresher). Suppose, for example, we wanted to

Figure 8-17. Adding a custom control to the Toolbox

Chapter 8

310

raise a BadDataEntered event if the user entered something that was not a positive
integer. The new code for the class is in bold:

Public Class PositiveIntegerTextBox

 Inherits System.Windows.Forms.TextBox

 Public Event BadDataEntered(ByVal Sender As Object, _

 ByVal e As EventArgs)

 Protected Overrides Sub OnTextChanged(ByVal e As EventArgs)

 MyBase.OnTextChanged(e)

 If Not (IsNumeric(Me.Text)) Then

 Me.Text = String.Empty

 RaiseEvent BadDataEntered(Me, New System.EventArgs())

 Else

 Dim temp As Decimal

 temp = CType(Me.Text, Decimal)

 If temp - Math.Round(temp, 0) <> 0 Then

 Me.Text = String.Empty

 RaiseEvent BadDataEntered(Me, New System.EventArgs())

 End If

 End If

 End Sub

End Class

Next, one of the niftier features of VB controls that goes back to older versions of
VB is the idea of a default event. These are the events that you get automatically when
you double-click on an instance of the control in the Form designer. You use an
attribute to indicate what the default event is. Attributes are instances of the
System.Attribute class; the DefaultEvent attribute we need is part of
System.ComponentModel. Attributes are surrounded by angle brackets and the
DefaultEvent attribute takes the name of the event in quotes. To make the
BadDataEntered event the default event for this control, modify the beginning
of the class to read as follows:

Imports System.ComponentModel

<DefaultEvent("BadDataEntered")> Public Class _

PositiveIntegerTextBox

Inherits System.Windows.Forms.TextBox

Adding a Custom Property

Suppose you want to add MinValue and MaxValue properties to your class. The code
to do this is relatively straightforward. You start out with instance fields set to 1

Windows Forms, Drawing, and Printing

311311

and the maximum value for a Long, respectively. You then make sure that the
minimum value cannot be set to less than 1 and that the maximum value cannot
be less than the minimum value:

Private m_Min As Long = 1

Private m_Max As Long = Long.MaxValue

Public Property MinValue() As Long

 Get

 Return m_Min

 End Get

 Set(ByVal Value As Long)

 m_Min = Math.Max(1, Value)

 End Set

End Property

Public Property MaxValue() As Long

 Get

 Return m_Max

 End Get

 Set(ByVal Value As Long)

 m_Max = Math.Min(m_Min, Value)

 End Set

End Property

If you add this code to the control and compile it, you get the custom property
but you will not be able to see it in the Properties window. To see it, add the Browsable
attribute to the name of the property:

<Browsable(True)> Public Property MinValue

If you do this for both the MinValue and the MaxValue properties and look at the
Properties window, you will see something like Figure 8-18.

As you can see, our custom property is definitely browsable, and both the
MaxValue and MinValue properties are shown with the initial values we gave them.
Better yet, if you try to change them in a way that the code forbids, such as making
MinValue less than 1, you will see that this change is rejected in the Properties
window.

Use <Browsable(False)> to keep a property from appearing in the Properties
window. You can do this for new properties or ones that you are overriding. For
example, this code hides the ordinary Text property of our custom textbox from
the Properties window:

Chapter 8

312

<Browsable(False)> Public Overrides Property Text() As String

 Get

 Return MyBase.Text

 End Get

 Set(ByVal Value As String)

 MyBase.Text = Value

 End Set

End Property

As you can see in Figure 8-19, the Text property no longer shows up in the
Properties window.

Figure 8-18. Adding a browsable minimum and maximum value property

Figure 8-19. Text property does not show up if <Browsable(False)> is set

Windows Forms, Drawing, and Printing

313313

The Inheritance Chains in the System.Windows.Forms
Namespace

Now that you have seen the basics of how to use the Windows.Form namespace, we
want to return again to the inheritance chain described in Figure 8-20.

This is about as complicated a tree as one can imagine, but we want to concen-
trate on introducing you to its most important branch:

System.ComponentModel.Component

 �Control

Figure 8-20. The Windows Forms component hierarchy

Chapter 8

314

In Figure 8-20, notice that both forms and controls inherit from the Control
class, resulting in chains like these:

 �ScrollableControl

 �ContainerControl

 �Form

but also:

Control

 �TextBoxBase

 �RichTextBox

 �TextBox

and:

Control

 �ButtonBase

 �Button

 �CheckBox

 �RadioButton

The Control class is both the largest in terms of member functions (more than
300) and functionality. Both forms and controls inherit the Control class members.

The Component class is the base class for all components in the
System.Windows.Forms namespace. It contains the members needed to deal
with containment (such as a control inside a form or MDI children inside an
MDI parent). These members are usually implementations of members in the
IComponent interface. Because Component also contains the code for cleaning up
the resources involved in visual development, this class implements IDisposable.

As the base class for controls and forms, the Control class handles most user
interaction, including keyboard and mouse events. It also defines the color, position,
and size of the form or control.

NOTE We hope we have given you a pretty good start in this chapter, but to truly
master the Windows.Forms namespace you need to carefully study the online
help for these classes and consider buying a more specialized book.

Windows Forms, Drawing, and Printing

315315

We show you how to handle the basic control class functionality, such as the
key events, in the next section. First, however, we move further down the inherit-
ance tree to forms. Because forms inherit from ScrollableControl, they have a
cool feature that anyone who has tried to implement a scrolling form in VB6 will
appreciate:

• Forms scroll if the controls they contain exceed the current boundaries
of the form.

Look at Figure 8-21, which shows a form that would let you scroll through a
big picture (ours was 5MB zipped) of the basic Mandelbrot Set fractal that all
Apress cover art ultimately comes from. (For an introduction to the Mandelbrot
Set, see www.olympus.net/personal/dewey/mandelbrot.html.)

To see the scrollable form feature at work with any large picture:

1. Add a picture box to a form and set its SizeMode property to AutoSize.

2. Next, find a big bitmap image.

Figure 8-21. The basic Mandelbrot set in a scrollable form

Chapter 8

316

3. Modify this code accordingly:

1 Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

2 Me.AutoScroll = True

3 Me.VScroll = True

4 Me.HScroll = True

5 Dim aBigBox As Rectangle = Rectangle.Inflate _

6 (Me.ClientRectangle, 6, 6)

7 PictureBox1.Bounds = aBigBox

8 'assumes this bitmap is in \bin below the solution's directory

9 PictureBox1.Image = Image.FromFile("Mandelbrot Set.bmp")

10 End Sub

The key line is line 2, which sets the AutoScroll property that originates in
ScrollableControl to True, without which the process cannot even get started. You
use combinations of lines such as 3 and 4 to determine which scrollbars will
appear. Line 5 uses a utility shared method in System.Drawing.Rectangle to create a
rectangle object that is six times the size of the client area of the form, and line 7
then changes the picture box to that size by assigning the large rectangle to the
Bounds property that all controls share. Line 9 assumes, as the comment says, that
the bitmap is in the solution’s \bin directory—a more realistic program would
replace this by a call to the OpenFile dialog box.

Basic Control Class Functionality

With more than 300 members in the Control class, we cannot hope to cover all or
even most of the functionality of this important class. You really need to look a the
online documentation.7 Still, the important key and validation events work in a
manner subtly different than the same named ones did in VB6, and there are a
couple of hidden pitfalls you need to watch out for.

Key Events

The three key events are triggered for the same reasons as their counterparts in
earlier versions of VB:

7. By the way, the Windows Forms package automatically recognizes a mouse scroll wheel and
uses it to scroll forward through a form or control where this makes sense. Thus, you do not
have to use the new Control.MouseWheel event in most cases.

Windows Forms, Drawing, and Printing

317317

• KeyPress: Occurs when a key is pressed while the control has focus

• KeyDown: Triggered when a key is pressed down while the control has focus

• KeyUp: Triggered when the key is released while the control has focus

As in VB6, the KeyDown event is triggered before the KeyPress event, which in
turn precedes KeyUp. The KeyPress event uses a KeyPressEventArgs object that
encapsulates the pressed key as the value of the KeyChar property of the event
object. For example, this code pops up a message box if the user enters a nondigit:

Private Sub TextBox1_KeyPress(ByVal sender As Object, _

ByVal e As System.Windows.Forms.KeyPressEventArgs) _

Handles TextBox1.KeyPress

 If e.KeyChar < "0" Or e.KeyChar > "9" Then

 MsgBox("only digits allowed")

 End If

End Sub

The KeyDown and KeyUp events, as in VB6, let you check for use of modifying
keys, such as Ctrl or Alt. They use a KeyEventArgs object that is slightly richer in
functionality than the KeyPressEventArgs class used by the KeyPress event. The
KeyEventArgs object has a property called KeyData that uses the Key enumeration to
tell you everything you want to know about combinations of keys plus modifying
keys a user presses. You use the Modifiers and Shift properties to determine
whether a chord is pressed (two modifiers, as in Alt+Shift+another key). This code
detects pressing the Alt key for example:

If e.Modifiers = Keys.Alt Then

Unfortunately,8 you cannot reset the KeyChar or KeyData properties like you
could in VB6, because they are now read-only. However, you can still “eat” the
character the user typed—and thus prevent it from appearing in the control—by

8. We think this is a design flaw that hopefully will be fixed.

TIP If you do not need to worry about things such as the difference between the
left and right Shift key, you can use the simpler Control, Shift, and Alt properties
of the KeyEventArgs class.

Chapter 8

318

setting the Handled property of the various key event objects to True. For example,
change the MsgBox statement to:

If e.KeyChar < "0" Or e.KeyChar > "9" Then

 e.Handled = True ' handle the char = make it go away in the textbox

End If

and the user will not see the incorrect character inside the box.

Validating Events

.NET gives you two validate events instead of one: Validating and Validated.
Validating is triggered before the control loses the focus. For example, to make
sure that there is something in a textbox, use:

Public Sub TextBox1_Validating(ByVal sender As Object, _

ByVal e As System.ComponentModel.CancelEventArgs) _

Handles TextBox1.Validating

 ' cancel the focus shift if the textbox is empty

 If TextBox1.Text.Trim = String.Empty Then e.Cancel = True

End Sub

where the code that sets e.Cancel = True prevents the shift of focus away from the
textbox if there is nothing in the box.

The Validated event, on the other hand, fires after the focus has shifted away
from the control, but before other controls get the focus. Thus, you can use Validated
to update the state of the other controls on the form.

Graphics: Using GDI+

Graphics programming in the .NET Framework is totally different than in earlier
versions of VB. The familiar commands (some of which originated in QuickBasic)
are gone. The key global change is that there is no counterpart to the AutoRedraw

CAUTION If you set the CausesValidation property of a control to False, the
Validating and Validated events will not be triggered.

Windows Forms, Drawing, and Printing

319319

property, which you set to be True in earlier versions of VB to avoid having to write
code in the Paint event to add persistence to graphics.

Programming graphics in VB .NET is based on drawing onto a graphics context,
much as you did under the Windows GDI system. (Think of a graphics context as
being like a artist’s canvas that you can draw on.) Interestingly enough, the new
system is called GDI+, even though the way you work with it is not all that similar
to working with GDI.

The GDI+ classes are in the System.Drawing, System.Drawing.Drawing2D,
System.Drawing.Imaging, and System.Drawing.Text namespaces.9 The namespaces
are contained in the System.Drawing.DLL assembly and are automatically referenced
when you choose Windows Application in the New Project dialog box.

You do most drawing in GDI+ by overriding the Paint procedure10 of the form
or control. This serves the same purpose it did in earlier versions of VB: it makes
what you draw persist, even if the form is covered or minimized. Here is the signature
of this important procedure for a form:

Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

Next, you get a GDI+ drawing surface, which is represented by an instance of
the Graphics class. The Paint procedure of the Form class encapsulates one of these
drawing surfaces as the value of e.Graphics.

9. These are amazingly rich namespaces and we can only touch on them here. They deserve a
book on their own and, if you are willing to put the energy into learning enough about them
to write a book, please contact gary_cornell@apress about writing one! For now, we
recommend the comprehensive chapter in Andrew Troelsen’s book VB .NET and the .NET
Platform (Apress, 2002. ISBN: 1-893115-26-7) for more on GDI+.

10. This is not an event, although it eventually calls the OnPaint event in the Form base class.

CAUTION Programmers who know GDI well are in for a shock when working
with GDI+, because drawing in .NET is completely stateless. This is a fancy way
of saying that every drawing command must specify how it draws. The graphics
contexts you paint on have no memory of what you did to them. For example, if
you use a black brush in line 1 of your code and want to paint with a black
brush again in line 2, you must tell the graphics system you are still using a
black brush. It will not remember that in the previous line you were using the
same brush.

Chapter 8

320

Simple Drawing

We now look at a very simple drawing example. This code displays a bitmap
named sample.bmp (which is assumed to be in the \bin directory of this solution)
in the upper left corner of the form:

Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

 MyBase.OnPaint(e)

 Dim g As Graphics

 g = e.Graphics()

 g.DrawImage(New Bitmap("sample.bmp"), 0, 0)

 g.Dispose()

End Sub

Note the call to Dispose in the line in bold. Because the garbage collector does
not reclaim graphics contexts, you should make a habit of doing it yourself at the
end of the Paint procedure.

• This is worth repeating: if there is a Dispose method, you should call it
when your are done with the object.

The next step might be to draw lines, boxes, and other figures. The first
step for this kind of drawing is to get a Pen object, which is an instance of the
System.Drawing.Pen class. The syntax for the most common Pen constructor is

Public Sub New(Color, Single)

where the first parameter defines the Color (a member of the System.DrawingColor
enumeration) and the second parameter defines the width of the pen. (Other
constructors let you use different kinds of brushes to fill the interior of the object.)
To draw a rectangle, for example, you define the rectangle and then call
g.DrawRectangle. This code draws the rectangle shown in Figure 8-22.

CAUTION Although every form or control (such as picture box) that
you can draw on lets you get at its graphics context by a call to
ControlName.CreateGraphics(), be very careful about doing this when you
are not in the Paint procedure. There are subtle hazards in drawing on the
graphics context you get from using e.Graphics in the Paint procedure,
and in writing code that calls CreateGraphics. We encountered this in
an early version of the program to show all fonts that you will see shortly.

Windows Forms, Drawing, and Printing

321321

Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

 MyBase.OnPaint(e)

 Dim g As Graphics

 g = e.Graphics()

 Dim myPen As New Pen(Color.Purple, 6)

 Dim aRectangle As New Rectangle(Me.ClientRectangle.Width \ 4, _

 Me.ClientRectangle.Height \ 4, Me.ClientRectangle.Height \ 2, _

 Me.ClientRectangle.Width \ 2)

 g.DrawRectangle(myPen, aRectangle)

 g.Dispose()

End Sub

Drawing Text

A graphics object’s DrawString method lets you display text (in jargon you say you
render text), usually by passing a font object, color, brush, and location to the
DrawString method. For example, somewhat in keeping with the tradition of all
modern programming books, the following code displays the text “Hello World”
by using the form’s current font and a purple brush on a white background as
shown in Figure 8-23.

Figure 8-22. The result of using DrawRectangle: a (purple) rectangle with a
boundary 6 pixels wide

Chapter 8

322

Protected Overrides Sub OnPaint(ByVal e As System.Windows.Forms.PaintEventArgs)

 MyBase.OnPaint(e)

 Dim g As Graphics = e.Graphics

 Dim theColor As Color = Color.Purple

 Dim theFont As New Font("Arial", 22, FontStyle.Bold Or FontStyle.Italic)

 Me.BackColor = Color.White

 g.DrawString("Hello World!", theFont, New SolidBrush(theColor), 0, 0)

 g.Dispose()

End Sub

An Example: Show All Fonts

To show you how to display text, we created a program that renders all of a system’s
fonts in a picture box, with the fonts displayed by name in that font. (Along the
way, we came across a gotcha that we explain at the end of this section.) The program
includes both a custom control and a scrolling form, as shown in Figure 8-24.

You get at the system fonts by using a call to the InstalledFontCollection()
method in System.Drawing.Text. This returns a System.Drawing.Text.FontCollection
object. The individual objects in a FontCollection object contain not fonts but font
families such as Arial or Courier. You select individual fonts from the family. How-
ever, some fonts do not have regular versions, because all the fonts in that family

Figure 8-23. Rendering “Hello World” using GDI+

NOTE GDI+ provides full Unicode support, making it possible to render text in
any language.

Windows Forms, Drawing, and Printing

323323

are bold, italic, narrow, light, or some other variation. Thus, you need lines of code
like this:

For Each aFontFamily In TheFonts.Families

 If aFontFamily.IsStyleAvailable(FontStyle.Regular) Then

We decided to write the code in the form of a special-purpose picture box that
you add to a form with the appropriate code to turn on the scrollbars in the form
load, like this:

Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

 Me.VScroll = True

 Me.HScroll = True

 Me.AutoScroll = True

 FontPictureBox1.Left = 0

 FontPictureBox1.Top = 0

End Sub

Here is the code for the special purpose picture box:

Figure 8-24. All installed fonts rendered in a scrolling form

Chapter 8

324

1 Public Class FontPictureBox

2 Inherits System.Windows.Forms.PictureBox

3 Protected Overrides Sub OnPaint(ByVal pe As _

 System.Windows.Forms.PaintEventArgs)

4 'always call Mybase.OnPaint!

5 MyBase.OnPaint(pe)

6 DisplayFonts(pe.Graphics)

7 End Sub

8 Private Sub DisplayFonts(ByVal g As Graphics)

9 'THIS DOESN'T WORK: Dim g As Graphics = Me.CreateGraphics()

10 Dim aFontFamily As FontFamily

11 Dim curx, curY As Single

12 Dim TheFonts As System.Drawing.Text.FontCollection

13 Dim tempFont As Font

14 Dim spacing As Integer = 2 '2 pixels apart

15 TheFonts = New System.Drawing.Text.InstalledFontCollection()

16 For Each aFontFamily In TheFonts.Families

17 Me.Height += 2

18 If aFontFamily.IsStyleAvailable(FontStyle.Regular) Then

19 tempFont = New Font(aFontFamily, 14, FontStyle.Regular)

20 ElseIf aFontFamily.IsStyleAvailable(FontStyle.Bold) Then

21 tempFont = New Font(aFontFamily, 14, FontStyle.Bold)

22 ElseIf aFontFamily.IsStyleAvailable(FontStyle.Italic) Then

23 tempFont = New Font(aFontFamily, 14, FontStyle.Italic)

24 End If

25 g.DrawString("This is displayed in " & aFontFamily.Name, _

26 tempFont, Brushes.Black, curx, curY)

27 Dim theSize As SizeF = g.MeasureString("This text is displayed in " _

28 & aFontFamily.Name, tempFont)

29 curY = curY + theSize.Height + spacing

30 Me.Height = Me.Height + CInt(theSize.Height) + spacing

31 Me.Width = Math.Max(CInt(theSize.Width), Me.Width)

32 Next

33 End Sub

34 End Class

Note in Line 6 that we send the current graphics context to the helper
DisplayFonts routine contained in lines 9–33, rather than create a new graphics
context via a call to Me.CreateGraphics(). We originally had this helper procedure
grab its own graphics context using the commented out line instead of using the
one that came from the PaintEventArgs object, by passing in the value of pe.Graphics,
as you see in line 6. This did not work for reasons that are, as far as we know,

Windows Forms, Drawing, and Printing

325325

undocumented.11 (We left in the original call on line 9 as a comment so that you
can uncomment it out to see the problem we ran into!)

To space the text out two pixels apart, we need to know the height at which a
string displays. We do this in lines 27 and 28, using the very useful MeasureString
function:

Public Function MeasureString(String, Font) As SizeF

where the SizeF object returned is a version of the Size structure that uses singles
rather than integers. Because SizeF encapsulates two singles, we use the CInt function
in lines 30 and 31. Also notice in line 30 that we increase the height of the picture box,
and in line 31 we make sure that the width of the picture box is always large enough
for any of the strings by using the Max method in the Math class.

Printing

Printing in .NET can be tricky, but the power you get is worth the extra hassles. In
this section, we explain the steps needed to print a single page, using mostly auto-
matically generated code, and then show you how to print multiple pages. We also
show you how to roll your own printing code by using a delegate. We start by
printing an image in a picture box via a button click.

Printing ultimately works by displaying information on a graphics context,
but instead of attaching the context to the screen, the graphics object comes from
a printer or a print preview window.

Whether you print to a printer or use .NET’s Print Preview feature,
the first step is to get a PrintDocument object, which is an instance of the
System.Drawing.Printing.PrintDocument class. You can get such an instance by either:

• Using the PrintDocument control on the Toolbox and relying on automatically
generated code, or using the New operator in the form like this:

Dim aPrintDocument As New PrintDocument()

• Setting the value of the Document property of an instance of the PrintDialog
class to an object you declare as the PrintDocument type.

11. We offer a free glow-in-the-dark Apress T-shirt to the first person who can explain why calling
CreateGraphics in the DisplayFonts routine does not work and using the original graphics
context does!

NOTE To avoid certain limitations in GDI+, we assume that this image was set
via the Image property, not by drawing it directly onto the picture box.

Chapter 8

326

To use the Toolbox, you add the invisible PrintDocument control to a form and
get this declaration:

Friend WithEvents PrintDocument1 As _

System.Drawing.Printing.PrintDocument

You get this line in the InitializeComponent procedure, which creates
the instance:

Me.PrintDocument1 = New System.Drawing.Printing.PrintDocument()

That the PrintDocument object was declared WithEvents is the key to using
automatically generated code for printing. The point is that, when you call the
Print method on an instance of the PrintDocument class, .NET triggers at least three
events:

• BeginPrint

• PrintPage (can be triggered multiple times if there are multiple pages
to print)

• EndPrint

At the very least, you need to write code in the PrintPage event to do the
actual printing.

The PrintPage event has a PagePrintEventArgs object as its second parameter.
This is a very rich object that encapsulates (among other things):

• A graphics object as the value of its Graphics property. This is what you draw
on, and in turn is what the printer will print.

• A PageSettings object that encapsulates instructions for how the page
should be printed. This object’s properties include landscape mode (or
not), printer resolution, margins, and so on.

TIP You can write code in the other two events if needed, but the PrintPage
event is the one that does the actual printing. You usually use the other two events
for any preliminaries or after-the-fact reporting.

Windows Forms, Drawing, and Printing

327327

In this simple example, a button click calls the Print method of the
PrintDocument class:

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

 PrintDocument1.Print()

End Sub

The Print method then calls the PrintPage event, so you have to put the code
in the PrintDocument1_PrintPage event, which does the actual printing. If you use
the designer to generate this event, you also get the automatic hookup for the
event via the correct Handles clause:

1 Private Sub PrintDocument1_PrintPage(ByVal sender As System.Object, _

 ByVal e As System.Drawing.Printing.PrintPageEventArgs) _

 Handles PrintDocument1.PrintPage

2 Dim g As Graphics

3 g = e.Graphics

4 g.DrawImage(PictureBox1.Image, 0, 0)

5 g.Dispose()

6 e.HasMorePages = False

7 End Sub

When you run this code, you see the image printed on the default printer (see
the following section for how to change printers). Although our example code is
relatively simple, each line in is important enough to warrant an explanation. Line
1 hooks up the event to a procedure with the correct signature without you having
to explicitly use a delegate (see Chapter 6). Line 3 gets a graphics object that
encapsulates a drawing surface on the current printer. Line 4 draws the image,
starting in the upper left corner, but draws it on the printer, which is where the
graphics context lies. Using the call to Dispose in line 5 is a good practice because,
as you saw earlier, graphics contexts are not reclaimed by the garbage collector.
Line 6 tells the PrintPage event that there are no more pages to print.

Printing Multiple Pages

The trick to printing multiple pages is that when the HasMorePages property of the
PrintPageEventArgs object is set to be True in the procedure that handles the PrintPage
event, the PrintDocument object knows there are more pages to print and automat-
ically re-raises the PagePrint event.

The problems you may encounter in printing multiple pages have little to do
with printing. They are the same problems you encounter in any complicated

Chapter 8

328

form of drawing to a graphics object: you must keep track of everything. For example,
suppose you want to write a small program to print the contents of a textbox or
text file. The pseudo code is simple:

• Read a line from the box or file.

• Is it too wide for a line? If so, break it up into pieces.

• Can you fit all these lines on the current page?

• If so, print them using DrawString at the current location; if not, print as
many as you can, then start a new page and print the remaining lines there.

• Repeat the process until there are no more lines in the box or file.

But the code that determines if you can fit a new line on a page has nothing to do
with printing, and everything to do with beating on the various metrics you get from
the width and height of the text line. These in turn depend on both the font family
and the size of the font you use. Fortunately, you can safely rely on methods such as
MeasureString, which use the metrics associated with the current graphics context.

More on the PrintPageEventArgs Class

A PrintPageEventArgs object has two read-only properties that tell you about the
boundaries of the page. Both use hundredths of an inch as units:

• PageBounds: Gets the rectangular area of the entire page

• MarginBounds: Gets the rectangular area inside the margins

The PrintPageEventArgs object’s PageSettings property gives you a PageSettings
object that gives you more options. Table 8-2 lists the key PageSettings object
properties (most printers let you read these properties, but some will not let you
set them).

Windows Forms, Drawing, and Printing

329329

For example, because most printers can print to within ½ inch of the
boundary, you can use this code to set the margins:

e.PageSettings.Margins = New System.Drawing.Printing.Margins(50, 50, 50, 50)

and this to print starting at the new margin bounds:

Dim g As Graphics

g = e.Graphics

g.DrawImage(PictureBox1.Image, e.MarginBounds.Left, e.MarginBounds.Top)

Using a Print Dialog Control

You will also need to users select the printer and make other changes. The
PrintDialog control lets you do so. The code might look like this:

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

 Dim PrintDialog1 As New PrintDialog()

 'needed because PrintDialog needs a PrinterSettings object to display

 PrintDialog1.Document = PrintDocument1

 If PrintDialog1.ShowDialog() = DialogResult.OK Then

 PrintDocument1.Print()

 End If

End Sub

Table 8-2. PageSettings Object Properties

PROPERTY PURPOSE

Bounds Gets the bounds of the page. Takes into account whether the

user has chosen Landscape. Read-only.

Color A read-write Boolean property that indicates whether to print

the page in color.

Landscape A read-write Boolean property that indicates page orientation

Margins Gets or sets page margins. Default is 1 inch.

PaperSize Gets or sets the paper size.

PaperSource Gets or sets the paper source (for example, a printer’s single-

sheet feeder, if it has one.

PrinterResolution Gets or sets the printer resolution. Some printers allow custom

resolutions, others allow only a choice between Draft and High.

PrinterSettings Gets or sets printer settings associated with a page.

Chapter 8

330

The line in bold tells the PrintDialog instance that the document associated
to it should be the PrintDocument1 instance (assuming that this object has already
been created). This line is necessary, because a PrintDialog control needs certain
print settings (in the form of a PrintSettings object) before it can be displayed.
The easiest way to give it this information is by assigning a PrintDocument object to
its Document property.

Rolling Your Own Printing Code

Although using the Toolbox and automatically generated code is sufficient in
most cases, you may occasionally need to roll your own code when you need to
allow for specialized printing. The trick is to write a procedure that has the following
signature:

Private Sub ProcedureToDoThePrinting(ByVal Sender As Object, _

ByVal e As System.Drawing.Printing.PrintPageEventArgs)

You then connect this procedure to the PrintPage event of the PrintDocument
class via a delegate. For example, to call the PrintDocument object, aPrintDocument,
and the aPrintDocument_PrintPage procedure just shown, use a handler like this:

AddHandler aPrintDocument.PrintPage, _

 AddressOf Me.aPrintDocument_PrintPage

This code shows how you could code a Print item on a menu:

Private Sub mnuPrint_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles mnuPrint.Click

 Dim aPrintDocument As New PrintDocument()

 AddHandler aPrintDocument.PrintPage, _

 AddressOf Me.aPrintDocument_PrintPage

 aPrintDocument.Print()

End Sub

Print Preview

Although printing a basic document is somewhat more painful now than it was in
VB6, implementing a print preview function in VB .NET is easy. You merely set the
document property of a PrintPreviewDialog control instance to the PrintDocument

Windows Forms, Drawing, and Printing

331331

object. For example, this code is almost identical to the code you saw earlier, but
gives you print preview functionality, as you can see in Figure 8-25.

Private Sub btnPreview_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnPreview.Click

 Dim PrintPreviewDialog1 As New PrintPreviewDialog()

 PrintPreviewDialog1.Document = PrintDocument1

 If PrintPreviewDialog1.ShowDialog() = DialogResult.OK Then

 PrintDocument1.Print()

 End If

End Sub

Figure 8-25. Demonstration of print preview

333

CHAPTER 9

Input/Output

EARLIER VERSIONS OF VISUAL BASIC had different methods of dealing with data,
depending on the data source. For example, you had to program in a fundamen-
tally different way for information coming from a disk file than for information
coming over the Internet. No more: the .NET Framework is designed from the
ground up to handle data in a consistent way, no matter what the source.

The key to this is the notion of a stream. The word stream comes from the
phrase stream of bytes, which, when you get down to it, is what you have manipu-
lated in your computer programs all along. After all, everything a computer deals
with—numbers, text, or graphics—can be reduced to a stream of bytes. So it
should come as no surprise that the designers of the .NET Framework did what
we described as good “OOP think” in Chapter 5: they came up with an abstract
class that contains common operations for working with data. This makes the
process of input/output programming in VB .NET simpler and the resemblances
between what are ultimately similar programs more obvious. In sum, an abstract
Stream class that is marked as MustInherit is the perfect base on which to build an
object-oriented approach to input and output.

To work with streams from the keyboard, memory, files, or a network connection,
.NET programmers use classes that accommodate these different sources of
information. However, before you can deal with most kind of streams, you also
need to know how to deal with the user’s local storage. We therefore begin this
chapter by showing you how to handle files and directories and then move on to
cleaning up the whole .NET stream zoo: file streams, network streams, and object
streams that allow you to store objects to disks, and other avenues to data.

We wrap up this chapter with an example of using the nifty new server-side
RAD (Rapid Application Development) features of VB .NET to write a file system
monitor. This program waits for changes in a directory, such as files being added
or deleted, and then runs code for various file change events that get triggered in
response to the directory having changed. This kind of program was hard to write
in earlier versions of VB, because you needed to use the Windows API in a rather a
sophisticated matter. And while we obviously cannot cover many of the server-
side RAD features of VB .NET in this book, we hope this example will whet your
appetite to go further with this extremely useful new feature of VB .NET.

Chapter 9

334

Directories and Files

VB .NET provides two types of classes that deal with directories and two that deal
with files.

• Directory and DirectoryInfo classes

• File and FileInfo classes

The Directory and File classes use shared methods to access their functionality.
Because methods in the Directory or File classes are shared, you do not have to use
the New operator to get at the functionality of these classes. This certainly makes them
more efficient if you are not repeatedly accessing a specific file or directory. They are
less efficient, however, if you have to repeatedly access a single file or directory. The
DirectoryInfo and FileInfo classes use member functions, so they require object
instances to access their members.

Another difference between these pairs is that while Directory and File both
inherit directly from Object, DirectoryInfo and FileInfo inherit from a common
abstract (MustInherit) class called FileSystemInfo that contains common members
like LastAccessTime or FullName.

Perhaps the most important difference is that DirectoryInfo and FileInfo are
much better choices whenever you have to use the results recursively, as in the
example in Chapter 4. This is because the members of the Directory and File
classes tend to return strings that identify the directories or files, while the members
of the DirectoryInfo and FileInfo classes usually return instances of themselves,
which, as you saw in Chapter 4, is exactly what you need to make a recursive pro-
cess easy to program.

NOTE While we hope we give you a firm foundation in this chapter, we cannot
completely cover all of .NET input/output in this chapter. It is quite possible to write
a whole book on this important topic—and another one on server-side RAD!

NOTE There is a more subtle difference between the pairs: they have a different
security profile. Although we obviously cannot cover the security aspects of .NET
programming in any substantial way in this book, you do need to be aware that
the Directory and File classes check for permission for your code to access or
modify the file or directory each time you use them, whereas DirectoryInfo and
FileInfo check only once, when an object instance is created. This makes the
latter classes a lot more efficient for multiple uses of the same file or directory.

Input/Output

335335

Keep in mind that, because you are accessing data that may or may not exist,
you often have to wrap the code that accesses files or directory in a Try-Catch
block. However, the same rules hold: you should not catch an exception if you can
do a simple test instead. Thus, for example, you would not normally catch a
DirectoryNotFoundException, because you can simply use the Exists method to
check that the directory exists first. The following list shows the most common
exceptions you will encounter when working with I/O. They all extend the base
class IOException.

IOException

� DirectoryNotFoundException

� EndOfStreamException

� FileLoadException

� FileNotFoundException

The Path Class

Before we discuss handling directories and files, we will briefly survey the Path
class, whose shared members give you a convenient way to handle path names.1

These methods are useful because network path names are quite a bit more com-
plicated to parse than local path names. (And even parsing local path names is
not much fun). Table 9-1 lists the most useful members of this class.

1. Interestingly enough, the VB .NET documentation for this class also mentions handling things
in a cross-platform manner. For example, it notes the difference between a “\” and the “/”
used as the directory separator in Unix systems (such as the BSD systems that Microsoft has
announced CLR support for).

Table 9-1. Key Members of the Path Class

MEMBER DESCRIPTION

DirectorySeparatorChar Gives the platform-specific directory separator

character

InvalidPathChars Provides an array that lists invalid characters in

a path

PathSeparator Provides the platform-specific directory separator

character

VolumeSeparatorChar Provides the platform-specific volume separator

character

Chapter 9

336

The Directory Class

Most of the members of the Directory class return strings that identify directories.
Because all of its members are shared, you do not need to create instances of this
class in order to use the functionality. For example:

System.IO.Directory.GetCurrentDirectory()

returns a string that identifies the current directory. GetDirectories(pathString)
returns an array of strings that identify the subdirectories of a directory that you
identify by the pathString parameter. The path string is either interpreted as a
path relative to the current application’s directory or as a Universal Naming
Convention (UNC) description of a path. This example program lists the current
directory and all its subdirectories:

ChangeExtension(ByVal path

As String, ByVal extension

As String)

Changes a filename extension and returns the

new name

GetDirectoryName(ByVal path

As String)

Returns the directory path of a file

GetExtension(ByVal path As

String)

Returns the extension

GetFileName(ByVal path As

String)

Returns the name and extension for the specified

file path

GetFileNameWithoutExtension

(ByVal path As String)

Gets a filename without its extension

GetFullPath(ByVal path

As String)

Expands the specified path to a fully qualified path

and returns this as a string

GetPathRoot(ByVal path

As String)

Returns the root of the specified path

GetTempFileName(ByVal path

As String)

Returns a unique temporary filename and creates a

zero-byte file by that name on disk

GetTempPath(ByVal path

As String)

Returns the path of the current system's temporary

folder

Table 9-1. Key Members of the Path Class (Continued)

MEMBER DESCRIPTION

Input/Output

337337

Imports System.IO

Module Module1

 Sub Main()

 Dim curDir, nextDir As String

 Try

 curDir = Directory.GetCurrentDirectory()

 Console.WriteLine(curDir)

 For Each nextDir In Directory.GetDirectories(curDir)

 Console.WriteLine(nextDir)

 Next

 Catch ioe As IOException

 Console.WriteLine("eeeks - i/o problems!" & ioe.message)

 Catch e As Exception

 Console.Write(e.stacktrace)

 Finally

 Console.ReadLine()

 End Try

 End Sub

End Module

If you want to do anything more than list the directories, you are better off
using the DirectoryInfo class, as you saw in Chapter 4, and which we cover in
more depth shortly.

In addition to passing a string to GetDirectories that identifies the directory,
you can also pass a DOS-style wildcard pattern to GetDirectories.2 Table 9-2 lists
the most important members of the Directory class, all of which take their
parameters by value (using the ByVal keyword).

2. Use a ? to match a single character and a * to match multiple characters.

Table 9-2. Key Members of the Directory Class

MEMBER DESCRIPTION

CreateDirectory(ByVal

pathName As String)

Creates a specified directory and returns a DirectoryInfo

object for the new directory. Any new directories required

to create this directory will also be created.

Delete(ByVal pathName

As String)

Deletes an empty directory and its contents. To delete a

nonempty directory including all subdirectories and files,

use Delete(PathName As String, True).

Exists(ByVal pathName

As String)

Returns a Boolean value indicating whether the

directory exists.

Chapter 9

338

The File Class

As with the Directory class, the File class consists of shared members that usually
take a path name. You can use its methods to copy, delete, or move files. Table 9-3
lists the most common methods in the File class. Again note that all parameters
are passed by value. (We have left out the methods of the File class that are used
for working with streams, because we cover these methods later.)

GetCreationTime(ByVal

pathName As String)

Returns a date object that encapsulates the creation date

and time of the directory.

GetCurrentDirectory Returns a string that identifies the current directory.

GetDirectories(ByVal

pathName As String)

Returns an array of strings that identify subdirectories.

Can accept a second string parameter for a pattern to use.

GetDirectoryRoot(ByVal

pathName As String)

Returns a string that identifies the root portion of the

specified path.

GetFiles(ByVal pathName

As String)

Returns an array of strings that identify the files in the

directory. Can accept a second string parameter for a

pattern to use.

GetLastAccessTime(ByVal

pathName As String)

Returns a date object that encapsulates the last access

time of the directory.

GetLastWriteTime(ByVal

pathName As String)

Returns a date object that encapsulates the last time the

directory was written to.

GetLogicalDrives Returns an array of strings for the drives in the current

computer in the form “<drive letter>:\”, i.e., C:\.

GetParent(ByValpathName

As String)

Returns a string that identifies the parent directory of the

specified path.

Move(ByValsourceDirName

As String, ByVal

destDirName As String)

Moves a directory and its contents to the new path on the

same drive.

SetCurrentDirectory(ByV

al pathName As String)

Sets the current directory.

Table 9-2. Key Members of the Directory Class (Continued)

MEMBER DESCRIPTION

Input/Output

339339

The File Attribute Enums

Because you often need to work with the various attributes of files and directories,
such as System or Archive, the .NET Framework comes with a convenient
FileAttribute enum class to help you. (It probably should have been called the
FileDirectoryAttribute enum class since it applies to directories as well.)

The values in this enum need to be combined with masking techniques in
order to avoid subtle and not-so-subtle bugs. For example do not use this:

If File.GetAttributes("c:\foo.txt") = FileAttributes.ReadOnly Then...

Table 9-3. Common File Class Methods

MEMBER DESCRIPTION

Copy(ByVal sourceFileName

As String, ByVal

destFileName As String)

Copies the file from the source path to the destination

path. Overloaded to add a third Boolean overWrite

parameter that you set to be True if you want it to

overwrite an existing file

Delete(ByVal path

As String)

Deletes the specified file. Interestingly enough, does

not throw an exception if the file does not exist (see

the Exists method)

Exists(ByVal path As String) Returns a Boolean value that indicates whether the file

exists on the fully qualified path

GetAttributes(ByVal path

As String)

Returns a member of the FileAttributes enum that

describes whether the file is archive, system, etc. (See

the section later on the various I/O enums for more

on how to work with this return value)

GetCreationTime(ByVal path

As String)

Returns a date object that shows when the specified

file was created

GetLastAccessTime(ByVal

path As String)

Returns a date object that shows when the specified

file was last accessed

GetLastWriteTime(ByVal

path As String)

Returns a date object that shows when the specified

file was last written to

Move(ByVal sourceFileName

As String, ByVal

destFileName As String)

Lets you move a file from one path to another—even

across drives—and rename the file if the destFileName

parameter so indicates.

SetAttributes(ByVal path

As String, ByVal

fileAttributes As

FileAttributes)

Sets the attributes of the file as specified

Chapter 9

340

because it does not take into account other attributes that may be set. Use
this instead:

If File.GetAttributes("c:\foo.txt") And FileAttributes.ReadOnly _

 = FileAttributes.ReadOnly Then...

Use the Or operator if you need to combine attributes. For example, this line:

File.SetAttributes("c:\foo.txt", _

 Not (FileAttributes.Archive) Or FileAttributes.Hidden)

sets the attributes of C:\foo.txt so that the archive bit is not set but the file is hidden.
These are the most important members of this enum class.

Archive

Compressed

Directory

Encrypted

Hidden

Normal (has no attributes set)

ReadOnly

System

The DirectoryInfo and FileInfo Classes

Unlike the Directory or File classes, the DirectoryInfo and FileInfo classes encap-
sulate a (potential) directory or file: you need to construct them before using
them. We say “potential” because you can create a DirectoryInfo or FileInfo
object associated with a path even if the file or directory corresponding to the
path does not yet exist. You then can invoke the Create method to create the corre-
sponding file or directory.

You typically create an instance of these classes by passing a path name into
the appropriate constructor. For example:

Dim myDirectory As DirectoryInfo

myDirectory = New DirectoryInfo("C:\Test Directory")

Use a “.” to indicate the current directory:

Dim currentDir As New DirectoryInfo(".")

Input/Output

341341

Once you have a DirectoryInfo object, you can get information from it, such
as the creation time:

MsgBox(myDirectory.CreationTime)

As we mentioned earlier, one of the nicest things about these classes is that
the various members return objects of the requested type, not strings. For example,
the line in bold in the following program gets a bunch of FileInfo objects that we
can access again recursively if necessary:

Imports System.IO

Module Module1

 Sub Main()

 Dim myDirectory As DirectoryInfo

 Try

 myDirectory = New DirectoryInfo("C:\Test Directory")

 Dim aFile As FileInfo

 For Each aFile In myDirectory.GetFiles

 Console.WriteLine("The filenamed " & aFile.FullName & _

 " has length " & aFile.Length)

 Next

 Catch e As Exception

 MsgBox("eeks - an exception " & e.StackTrace)

 Finally

 Console.WriteLine("Press enter to end")

 Console.ReadLine()

 End Try

 End Sub

End Module

Working Recursively through a Directory Tree

What makes the previous setup nice is that you can easily build it into a general
framework to work recursively through a directory tree. The easiest way to do this,
as explained Chapter 4, is to use a helper procedure called WorkWithDirectory. This
procedure in turn calls another procedure to work with the files in a given directory.
One framework for this recursive process looks like this:

Chapter 9

342

Option Strict On

Imports System.IO

Module Module1

 Sub Main()

 Dim nameOfDirectory As String = "C:\"

 Dim myDirectory As DirectoryInfo

 myDirectory = New DirectoryInfo(nameOfDirectory)

 WorkWithDirectory(myDirectory)

 End Sub

 Public Sub WorkWithDirectory(ByVal aDir As DirectoryInfo)

 Dim nextDir As DirectoryInfo

 WorkWithFilesInDir(aDir)

 For Each nextDir In aDir.GetDirectories

 WorkWithDirectory(nextDir)

 Next

 End Sub

 Public Sub WorkWithFilesInDir(ByVal aDir As DirectoryInfo)

 Dim aFile As FileInfo

 For Each aFile In aDir.GetFiles()

 'do what you want with the file

 'here we simply list the full path name

 Console.WriteLine(aFile.FullName)

 Next

 End Sub

End Module

As a more realistic example, the following code would activate the form in
Figure 9-1, which shows all hidden files inside a given directory in a listbox and
then proceeds recursively through the rest of the directory tree. We change the
cursor (.NET speak for the mouse pointer) to an hourglass to remind the user that
program is working. (As always, you can download the full source code for this
example from www.apress.com.)

NOTE This program really needs to be rewritten using threads, to keep the form
responsive—see the next chapter for how to do this. (It is true that you can use a
call to DoEvents() inside the code that updates the listbox, but threads are a
more professional way to go.)

Input/Output

343343

Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 'change the cursor to an hourglass

 Me.Cursor = Cursors.WaitCursor

 ListBox1.Items.Clear()

 WorkWithDirectory(New DirectoryInfo(TextBox1.Text))

 Me.Cursor = Cursors.Default

End Sub

Public Sub WorkWithDirectory(ByVal aDir As DirectoryInfo)

 Dim nextDir As DirectoryInfo

 Try

 WorkWithFilesInDir(aDir)

 For Each nextDir In aDir.GetDirectories

 WorkWithDirectory(nextDir)

 Next

 Catch e As Exception

 MsgBox(e.message & vbCrLf & e.StackTrace)

 End Try

End Sub

Public Sub WorkWithFilesInDir(ByVal aDir As DirectoryInfo)

 Dim aFile As FileInfo

 For Each aFile In aDir.GetFiles()

 If aFile.Attributes And FileAttributes.Hidden = FileAttributes.Hidden Then

 ListBox1.Items.Add("FOUND hidden filenamed " & aFile.FullName)

 End If

 Next

End Sub

CAUTION For more sophisticated manipulations, you will not only want to use
multiple threads, you will want to wrap the code in the WorkWithFilesInDir
routine in a Try-Catch block.

Chapter 9

344

The Most Useful Members of the FileSystemInfo,
FileInfo, and DirectoryInfo Classes

The FileSystemInfo class is the base for both the DirectoryInfo and the FileInfo
classes, and so it contains much of the common functionality you would expect.
As an example of the virtues of having an abstract base class, the existence of
the FileSystemInfo class allows the DirectoryInfo class to have a method
GetFileSystemInfos, which returns an array of FileSystemInfo objects that
represent both the files and the subdirectories in the given directory.

Table 9-4 lists the most useful methods of the FileSystemInfo base class.

Figure 9-1. Form for a recursive directory search

Input/Output

345345

Tables 9-5 and 9-6 list the most useful methods of the DirectoryInfo class and
the methods of the FileInfo class that do not deal with streams since we are covering
streams a little later on in this chapter.

Table 9-4. FileSystemInfo Base Class Methods

MEMBER DESCRIPTION

Attributes property Gets or sets the attributes of the object.

CreationTime property Gets or sets the creation time of the object.

Exists property Boolean value that indicates whether the file or

directory exists.

Extension property The file extension.

FullName property The full path of the directory or file.

LastAccessTime property Gets or sets the date/time the object was last accessed.

LastWriteTime property Gets or sets the time when the object was last written to.

Name property For files, this is the name of the file. For directories, it

gets the name of the last directory in the directory tree

hierarchy if this is possible. Otherwise, it gives you the

fully qualified name.

Delete Deletes the object.

Refresh Refreshes the state of the object.

Table 9-5. Key DirectoryInfo Class Methods

MEMBER DESCRIPTION

Exists property Boolean value that indicates whether the directory

exists

Name property The name

NOTE While the idea of having an abstract base class with common functionality
is the right one, we think the execution was a little bit flawed. The Length property is
in the FileInfo class but not in the FileSystemInfo class, which means that there is
no convenient way to get at the size of a directory tree including subdirectories with-
out using a different object—more precisely, the Size method in the Folder object
contained in the FileSystemObject model, which was introduced in VBScript and
requires a reference to the COM-based Microsoft scripting library.

Chapter 9

346

Parent property Returns a DirectoryInfo object that represents the

parent directory (or Nothing at the root directory).

Root property Returns a DirectoryInfo object that represents the

root directory of the current directory.

Create Creates a directory corresponding to the path

specified in the DirectoryInfo constructor.

CreateSubdirectory(ByVal

path As String)

Creates a subdirectory on the specified path needed.

Returns a DirectoryInfo object that represents the

subdirectory created.

Delete Deletes an empty directory represented by the

DirectoryInfo object. Use an option Boolean

parameter = to True to recursively delete nonempty

directories and all subdirectories.

GetDirectories Returns an array of DirectoryInfo objects for the

subdirectories of the current directory.

GetFiles Returns an array of FileInfo objects for files in the

current directory.

GetFileSystemInfos A nice example of an abstract class at work: gets an

array of FileSystemInfo objects representing all the

files and subdirectories in the current directory

objects.

MoveTo(ByVal destDirName

As String)

Moves a DirectoryInfo and its recursive contents to a

new path.

Table 9-6. FileInfo Class Members That Do Not Return Streams

MEMBER DESCRIPTION

Directory property Returns a DirectoryInfo object that represents the

parent directory.

DirectoryName property Returns the file’s full path as a string.

Exists property Boolean indicating whether the file exists.

Length property Gets the size of the current file.

CopyTo(ByVal destFileName

As String)

Copies an existing file to a new file and returns a

FileInfo object representing the new file. Optionally

takes a Boolean parameter to indicate if you want to

overwrite an existing file.

Table 9-5. Key DirectoryInfo Class Methods (Continued)

MEMBER DESCRIPTION

Input/Output

347347

Streams

As we said in the introduction, the System.IO.Stream class is designed to abstract
the most primitive operations for working with streams of bytes. The idea then is
that each concrete implementation of the Stream class must provide the following
implementations:

1. A Read method for reading from the stream. This can be as primitive an
operation as reading one byte at a time, or the derived class can give you
more sophisticated methods that read data in much larger chunks.

2. A Write method for writing to streams. Again this can be as primitive an
operation as writing one byte at a time, or the derived class can give you
more sophisticated methods that read data in much larger chunks.

Some stream classes may do more: an implementation of the Stream class
may give you a way to move through the stream other than from the first to the
last byte, for example, such as moving backward or directly to a specified location
within the stream. This is possible for file streams but makes no sense (and hence
is impossible) for a stream derived from a network connection. You can even use
the CanSeek property to ask a stream whether it can be accessed nonsequentially! If
the property is True, then the derived class provides implementations of a Seek and
SetLength methods and Position and Length properties.

Create Creates a file corresponding to the path used to

construct the FileInfo object and returns a

FileSystem object corresponding to this new file.

Delete Deletes the file corresponding to the FileInfo object.

MoveTo(ByVal destFileName

As String)

Moves the file to a new location giving it the

specified name.

Table 9-6. FileInfo Class Members That Do Not Return Streams (Continued)

MEMBER DESCRIPTION

TIP There is a convenient SeekOrigin enum that contains three values: Begin,
Current, and End that you use with implementations of the Seek method.

Chapter 9

348

Table 9-7 lists the most useful methods in the abstract Stream class that should
retain the same functionality in any derived class.

Table 9-7. Key Methods in the Stream Class

MEMBER DESCRIPTION

CanRead property Boolean value that indicates whether the stream

supports reading.

CanSeek property Boolean value that indicates whether the stream

supports nonsequential access (“seeking”).

CanWrite property Boolean value that indicates whether the stream

supports writing.

Length property Gets the length of the stream in bytes.

Position property A Long that gets or sets (if allowed) the position

within the current stream.

Close Closes the stream and releases any resources such

as operating system file handles used by the

current stream.

Flush Clears and writes data in all buffers used by

this stream.

Read(ByVal buffer() As Byte,

ByVal offset As Integer, ByVal

count As Integer)

Reads the specified number of bytes from the

current position plus the offset specified. Returns

the number of bytes successfully read (usually

with count).

ReadByte Reads a single byte (oddly, in the form of an

Integer) from the current position in the stream, or

-1 if at the end of the stream.

Write(ByVal buffer() As Byte,

ByVal offset As Integer, ByVal

count As Integer)

Writes the specified number of bytes from the

current position plus the offset specified.

WriteByte(ByVal value

As Byte)

Writes a byte to the current position in the stream.

Input/Output

349349

The main classes derived from Stream are shown in Table 9-8..

Table 9-8. Key Classes Derived from Stream

CLASS DESCRIPTION

FileStream Supports random access to files.

MemoryStream Encapsulates an area of memory (useful for buffers).

NetworkStream Data received as a Stream over a network connection. In

the System.Net.Sockets namespace.

CryptoStream Lets you encrypt and decrypt data. In the

System.Security.Cryptography namespace.

BufferedStream Essentially a layer you can wrap around a stream that adds a

cache for buffering to a stream that originally lacked it. You

can also specify the buffer size. For example, file streams

automatically buffers input but network streams do not, and

you may occasionally want to wrap a buffered stream

around a network stream using the layering techniques we

demonstrate later in this chapter.

TIP All Stream classes support a Close method that releases any operating-
system resources such as file handles or network connections it grabbed. This
means that closing the stream in a Try-Catch-Finally block is a good programming
practice for pretty much any program that works with a stream. Note that you
cannot use Close in a Finally clause, since you can call Close only on a stream
where the construction call succeeded and the stream actually exists. The proto-
type code to do the check before the call to Close in the Finally clause looks like this:

 Finally

 If Not (myFileStream Is Nothing) Then myFileStream.Close()

 End Try

You also might also want to consider implementing IDisposable in your file
handling classes and having the Dispose method close any open streams.

Chapter 9

350

Writing to Files: File Streams

First, look at the following line of code, which is a prototype for code that works
with a file stream:

Dim myFileStream As New FileStream("MyFile.txt", _

FileMode.OpenOrCreate, FileAccess.Write)

As you can see, this version of the FileStream constructor takes a filename (assumed
to be relative to the current directory unless a full path name is given) and two param-
eters that come from enums called FileMode and FileAccess, respectively. Thus, the
version of the FileStream constructor in the example either creates a file named
“MyFile.txt” in the current directory or opens the file if it already exists. In either
case we will be able to write to it. The other common versions of the FileStream
constructor are:

• Sub New(String, FileMode): Makes a FileStream object with the specified
path and mode

• Sub New(String, FileMode, FileAccess, FileShare): Makes a FileStream
object with the specified path, creation mode, and read-write and sharing
permission

The permissible FileAccess modes are, Read, Write, and ReadWrite. Table 9-9
summarizes the important FileMode enums. Note that you need to have the right
kind of file access privileges in order to use certain file modes.

NOTE The .NET Framework comes with classes designed for working with XML
that work like Stream classes. The XML namespaces in .NET are quite large and
sophisticated, and might be the subject of a book of their own.

Input/Output

351351

Unfortunately, although file streams do support random access through the Seek
method, the basic FileStream class is totally byte oriented, so you cannot do much
more than write a byte or an array of bytes to it using the WriteByte or Write methods.
For example, this code results in the file shown in Figure 9-2:

Option Strict On

Imports System.IO

Module Module1

Sub Main()

 Dim i As Integer

 Dim theBytes(255) As Byte

 For i = 0 To 255

 theBytes(i) = CByte(i)

 Next

 Dim myFileStream As FileStream

Table 9-9. The FileMode Enum Members

MEMBER DESCRIPTION

Append Opens the file if it exists (creates one if is does not) and moves to

the end of the file for future writes. Must be used FileAccess.Write.

Create Creates a new file. Caution: overwrites an existing file.

CreateNew Creates a new file, but unlike Create, throws an IOException if

the file already exists.

Open Opens an existing file. Throws an IOException if the file does not

exist. Specifies that the operating system should open an

existing file. This requires FileIOPermissionAccess.Read.

OpenOrCreate Opens or creates a file.

Truncate Opens an existing file but deletes the contents.

NOTE The following methods of the File and FileInfo classes also return
FileStream objects: File.Create, File.Open, File.OpenRead, File.OpenWrite,
FileInfo.Create, FileInfo.Open, FileInfo.OpenRead.

Chapter 9

352

 Try

 myFileStream = New FileStream("C:\foo", _

 FileMode.OpenOrCreate, FileAccess.Write)

 myFileStream.Write(theBytes, 0, 256)

 Finally

 If Not (myFileStream Is Nothing) Then myFileStream.Close()

 End Try

 DisplayAFile("C:\foo")

 End Sub

End Module

At this point, you can read back the data using the Read method and use the
Seek method as needed to move at random within the file. However, as will always
be the case for raw file streams, you are responsible for converting the binary data
to a more useful format. The upshot is that you cannot do much more at this point
than to display the numbers stored using code like this:

Figure 9-2. Binary data written to a file

Input/Output

353353

Sub ReadDataBack()

 Dim myFileStream As Stream, i As Integer

 Try

 myFileStream = New FileStream("C:\foo", FileMode.Open, FileAccess.Read)

 For i = 0 To 255

 Console.Write(myFileStream.ReadByte)

 Next

 Catch e As Exception

 MsgBox(e.Message)

 Finally

 If Not (myFileStream Is Nothing) Then myFileStream.Close()

 End Try

End Sub

You can always use the Length method in the base Stream class to set up a loop
to read back the correct number of bytes, regardless of the file structure. For
example, the following code does this one byte at a time. (It also throws back the
exception to the calling code; in a more realistic program, you would probably
create a new exception class):

Sub DisplayAFile(ByVal theFileName As String)

 Dim theFile As FileStream

 Dim i As Long

 Try

 theFile = New FileStream(theFileName, FileMode.Open, FileAccess.Read)

 For i = 0 To (theFile.Length - 1) 'one less since count starts at 0

 Console.Write(theFile.ReadByte)

 Next

 Catch

 Throw

 Finally

 If Not (theFile Is Nothing) Then theFile.Close()

 End Try

 End Sub

TIP If the file is small enough to fit in memory, reading it in one gulp via a single
call to Read with the correct size byte array will be much faster.

Chapter 9

354

Another version of this kind of program that you will occasionally see depends on
the ReadByte method returning –1 at the end of a stream. The core code then looks
like this:

Dim i As Integer

i = theFile.ReadByte

Do Until i = -1

 Console.Write(i)

 i = theFile.ReadByte

Loop

Working with files on the byte level is not all that common; it is only necessary
for low-level file manipulation. To work with files in a more useful way, the trick is
to send the raw file stream to the constructor of a more capable stream. This is
often called layering streams. For example, you can feed a raw file stream to a text
reader stream that automatically understands text. We take up the various methods
of layering streams in the next few sections. Still, before you move onto those sections
we suggest looking over Table 9-10, which summarizes the most useful methods
of the basic FileStream class. You will be using these members regardless of how
you layer your basic file stream.

Table 9-10. Key Members of the FileStream Class

MEMBER DESCRIPTION

Handle property Gets the operating-system file handle for the file that the

current FileStream object encapsulates.

Length property Gets the size of the stream in bytes.

Name property The full name of the file that was passed to the FileStream

constructor.

Position property Gets or sets the current position in the reading from or

writing to this stream (zero-based).

Close Closes the file stream and releases any resources

associated with it.

Flush Sends any buffered data to be written to the underlying

device. Close calls Flush.

Lock(ByVal position

As Long, ByVal length

As Long)

Prevents access by other processes to all or part of a file

(zero-based).

Input/Output

355355

Getting Binary Data into and out of Streams:
BinaryReader and BinaryWriter

Reading and writing raw bytes is just too primitive to be very useful. The .NET
Framework therefore gives you a couple of much more practical ways to read and
write data to a file stream. In this section we show you how to use the BinaryReader
and BinaryWriter classes to read and write encoded strings and primitive data
types. These classes automatically convert primitive data types to and from an
encoded binary format that you can store on a disk or send over a network.

Creating a BinaryReader or BinaryWriter involves layering stream constructors:
you create one by passing an existing stream object into the binary reader-writer
constructor, as shown in the following code. You get an instance of them by
passing an existing stream object variable into their constructor, not a string. (This
is why the process is called layering streams.) For example, look at the line in bold:

Read(ByVal array()

As Byte, ByVal offset

As Integer, ByVal count

As Integer)

Reads the specified number of bytes in the array of bytes

to the file stream starting from the specified position.

ReadByte Reads a single byte from the file and advances the read

position by one.

Seek(ByVal offset

As Long, ByVal origin

As SeekOrigin)

Sets the current position of this stream to the given value.

Unlock(ByVal position

As Long, ByVal length

As Long)

Unlocks the file stream that was previously locked

(zero-based).

Write(ByVal array()

As Byte, ByVal offset

As Integer, ByVal count

As Integer)

Writes the specified number of bytes in the array of bytes

to the file stream starting from the specified position.

WriteByte Writes a byte to the current position in the file stream.

Table 9-10. Key Members of the FileStream Class (Continued)

MEMBER DESCRIPTION

Chapter 9

356

Dim aFileStream As FileStream

Try

 aFileStream = New FileStream("c:\data.txt", FileMode.OpenOrCreate, _

 FileAccess.Write)

 Dim myBinaryWriter As New BinaryWriter(aFileStream)

 myBinaryWriter.Write("Hello world")

 myBinaryWriter.Write(1)

Catch e as Exception

 Console.Writeline(e.stacktrace)

Finally

 If not(aFileStream is Nothing) Then aFileStream.Close()

End Try

Notice that the code in bold passes the file stream object aFileStream into the
BinaryWriter constructor. The result is a more capable stream, which lets you
write text and numbers to the file in an encoded binary format. The lines following
the creation of the BinaryWriter:

myBinaryWriter.Write("Hello world")

myBinaryWriter.Write(1)

depend on the key Write method in the more capable BinaryWriter class being over-
loaded to let you to easily write any basic data type to the stream. Here is a list of the
most common overloads:

Sub Write(Byte)

Sub Write(Byte())

Sub Write(Char)

Sub Write(Char())

Sub Write(Decimal)

Sub Write(Double)

Sub Write(Short)

Sub Write(Integer)

Sub Write(Long)

Sub Write(Byte)

Sub Write(Single)

Sub Write(String)

The code in the preceding example gives the following file when viewed in a
hex editor (see Figure 9-3). Notice that the string was encoded in the obvious
fashion but the number one was encoded using four bytes.

Input/Output

357357

Unfortunately, while the various Write methods are overloaded to let you
store information in the stream, when you use a BinaryReader to read back the
information stored with a BinaryWriter, the corresponding Read methods are not.
Instead, there are different versions of Read for each data type; for example:
ReadString, ReadInt32 (for integers), ReadChar, and so on. You need to know what
data is stored in the file and in the order in which it was stored, or you cannot
undo the process. The following code shows you what you do in our example:

aFileStream = New FileStream("c:\data.txt", FileMode.Open, FileAccess.Read)

Dim myBinaryReader As New BinaryReader(aFileStream)

Console.WriteLine(myBinaryReader.ReadString)

Console.WriteLine(myBinaryReader.ReadInt32)

Figure 9-3. A binary writer file viewed in hex

TIP If you do need to write a general binary reader to display binary data
without worrying about its underlying type, you can use the PeekChar method,
which looks ahead to the next byte and determines if its value is –1 (the EOF
marker in .NET), as in the following example code:

While myBInaryReader.PeekChar() <> -1

 'read the next bit of stuff

Loop

Chapter 9

358

TextReader, TextWriter, and Their Derived Classes

Knowing how the data is stored in a file in binary format, binary readers and writers
are fine for programmers, but the resulting files are not always human readable. They
are thus not the optimal classes to choose when you need to store ordinary text in a
file. For this common situation, use the StreamReader and StreamWriter classes rather
than the BinaryReader-BinaryWriter pair. Essentially, StreamWriter and StreamReader
correspond to the traditional sequential files from earlier versions of VB, except
that StreamReader and StreamWriter classes handle Unicode characters correctly.
What is more, the StreamReader class not only has a convenient ReadLine method,
it also has a ReadToEnd method that lets you get the whole file in one gulp.

Interestingly, these classes inherit from the abstract TextReader and TextWriter
classes, not from Stream. These abstract (MustInherit) classes contain the common
functionality for reading and writing text, as shown in Tables 9-11 and 9-12.

Table 9-11. Key Members of the TextReader Class

MEMBER DESCRIPTION

Close Closes an existing TextReader and releases any system resources

it grabbed.

Peek Returns the next character in the stream without actually moving

the file pointer.

Read Reads a single character from an input stream. An overloaded

version lets you read a specified number of characters into an array

of characters, starting from a specified position.

ReadLine Reads a line of characters (up to the carriage return-line feed pair) and

returns it as a string. Returns Nothing if you are at the end of the file.

ReadToEnd This method reads all characters from the current position to the

end of the TextReader and returns them as one string. (Very useful

for relatively small files.)

NOTE Because file streams automatically buffer input, there is no need in our
example to layer the binary reader or writer classes by passing the binary reader
to a BufferedStream constructor.

Input/Output

359359

Of course, since the TextReader and TextWriter class are abstract MustInherit
classes, you work with their concrete StreamReader and StreamWriter implemen-
tations. As with the BinaryReader and BinaryWriter classes, in order to create a
StreamReader or StreamWriter object, you generally pass an existing stream object
to its constructor, as in this example:

myFile = New FileStream(fileName, FileMode.Open, FileAccess.Read)

textFile = New StreamReader(myFile)

Another way to get a stream reader or writer is with methods of the File class. For
example, this code would create the stream reader by implicitly creating a file stream:

Dim aStreamReader As StreamReader

aStreamReader = File.OpenText ("sample.txt");

Table 9-12. Key Members of the TextWriter Class

MEMBER DESCRIPTION

Close Closes an existing TextWriter and releases any system resources

it grabbed

Write Overloaded to let you write any basic data type to a text stream in

text format

WriteLine Overloaded to let you write any basic data type to a text stream in

text format, but also follows the text written by a carriage return-

line feed combination

TIP The important Console.In and Console.Out classes used for keyboard
input and output are actually instances of the TextWriter and TextReader
classes. You can use the Console.SetIn and Console.SetOut methods to redirect
standard input or output to any text reader or text writer class, respectively, from
standard input and output.

Chapter 9

360

Similarly, this would create a stream writer:

Dim aStreamWriter As StreamWriter

aStreamWriter = File.CreateText ("test.txt");

You write data to a stream writer object using the Write or WriteLine methods.
To read data back you have two choices. The most common is to determine
whether the data in a line that you tried to read back using ReadLine is Nothing, via
code that looks like this:

Dim s As String

Do

 s = theStreamReader.ReadLine

 If Not s Is Nothing Then

 ' do stuff with s

 'for example Console.WriteLine(s)

 End If

Loop Until s Is Nothing

You can also use the Peek method to determine whether the next character to
be read is –1 (the EOF marker):

Do Until theStreamReader.Peek = -1

As an example of using a TextReader, here is a simple procedure that displays
text in a file on the screen. Notice in lines 5–17 how the relevant code is encased in
a Try-Catch-Finally block. Like all file handling code, this block attempts to close the
stream that was opened, no matter what happens. As you have seen before, this is
done in line 16 by first determining whether the stream actually was successfully
created before calling Close. Also notice in line 14 that we added a useful message
to the exception that was thrown. In a more realistic program, you might want to
create a new exception class as you saw in Chapter 7:

1 Sub DisplayTextFile(ByVal fName As String)

2 Dim myFile As FileStream

3 Dim textFile As StreamReader

4 Dim stuff As String

5 Try

6 myFile = New FileStream(fName, FileMode.Open, FileAccess.Read)

7 textFile = New StreamReader(myFile)

8 stuff = textFile.ReadLine()

9 Do Until stuff Is Nothing

10 Console.WriteLine(stuff)

11 stuff = textFile.ReadLine()

Input/Output

361361

12 Loop

13 Catch e As Exception

14 Throw New Exception("If the file existed, it was closed")

15 Finally

16 If Not (myFile Is Nothing) Then myFile.Close()

17 End Try

18 End Sub

19 End Module

More generally, you might want to capture the individual lines of the file into an
ArrayList, assuming there are not a large number of lines in the file. This requires only
minor changes in the previous program. You change the header of the procedure
to take the array list as a parameter:

Sub DisplayTextFile(ByVal fName As String, ByVal where As ArrayList)

and change line 10 to be:

where.Add(stuff)

Object Streams: Persisting Objects

Object-oriented programming would be pretty useless if there was not a way for
you to store the current state of objects permanently and then have a way to
restore them (persistence is the buzzword). The process of writing an object to a
stream is called serialization and undoing it is called deserialization. In the next
few sections we want to show you the basics of serialization and deserialization.

Before we start, it is worth noting that this turns out to be a somewhat more
subtle and difficult problem to solve than one might think. Why? One reason is
that, as in our Manager and Secretary classes from Chapter 5, objects may contain
other objects. Thus, any storage process must automatically take into account
potentially recursive procedures. Moreover, as in the Secretary and Manager classes,
there may be cross references between the instance fields inside the classes, so we
need some way to avoid duplication. After all, if 100 programmers share one
lonely and frantic group assistant, then we do not want to store 100 copies of the
poor group assistant’s frantic state when one copy with some cross-referencing
would suffice (much as databases avoid redundancy via the correct normal form).

Fortunately, the .NET Framework makes the process of efficiently storing
objects almost effortless and the use of property bags in VB6 for object storage
seem primitive. As you will soon see, you can even store objects using the human-
readable XML-based SOAP (Simple Object Access Protocol) format.

Chapter 9

362

Simple Serialization

First off, you will always want to import the System.Runtime.Serializationnamespace
to avoid a lot of typing. In the most common situation, all you have to do to
enable serialization is to add an attribute to the header for the name of the class:

<Serializable()> Public Class Employee

Every child class of your class and every nested class that is contained in the class will
also need the <Serializable()> attribute; otherwise, the necessary recursive process
will break down with a System.Runtime.Serialization.SerializationException
exception.

Once you have marked a class as serializable, you need to decide if you
want to store the object in an XML format based on SOAP or a more compact
binary format. The default binary format is automatically available. To use the
XML-based SOAP format, you need to add a reference to the
System.Runtime.Serialization.Formatters.Soap assembly.

Here is an example of the kind of code you can use to serialize an array. (Note
that an array list is an object, which in turn can contain other objects—in this
example, it will contain employee objects.) Because array lists are automatically

TIP Built-in classes that are serializable are those that implement the
ISerializable interface.

Input/Output

363363

serializable, all it takes is marking our various employee classes as serializable.
The two lines in bold do the trick:

Sub SerializeToBinary(ByVal myEmployees As ArrayList, ByVal fName As String)

 Dim fStream As FileStream

 Dim myBinaryFormatter As New Formatters.Binary.BinaryFormatter()

 Try

 fStream = New FileStream(fName, FileMode.Create, FileAccess.Write)

 myBinaryFormatter.Serialize(fStream, myEmployees)

 Catch e As Exception

 Throw e

 Finally

 If Not (fStream Is Nothing) Then fStream.Close()

 End Try

 End Sub

To use the SOAP format, all you need to do is add a reference to the
System.Runtime.Serialization.Formatters.Soap assembly (via the Project|References
dialog box) and change the preceding lines in bold to:

Dim mySoapFormatter As New Formatters.Soap.SoapFormatter()

and

mySoapFormatter.Serialize(fStream, myEmployees)

The resulting file in SOAP format looks like Figure 9-4.

TIP You can mark specific instance fields within a class with a
<NonSerialized()> attribute. If you do this, the current state of that
instance field will not be stored.

Chapter 9

364

Simple Deserialization

Deserialization is a little trickier: because you get back an Object, you must con-
vert it back to the correct type, as we did in the line in bold:

Function DeSerializeFromSoap(ByVal fName As String) As ArrayList

 Dim fStream As New FileStream(fName, FileMode.Open, FileAccess.Read)

 Dim mySoapFormatter As New Formatters.Soap.SoapFormatter()

 Try

 fStream = New FileStream("C:\test.xml", FileMode.Open, FileAccess.Read)

 Return CType(mySoapFormatter.Deserialize(fStream), ArrayList)

 Catch e As Exception

 Throw e

 Finally

 If Not (fStream Is Nothing) Then fStream.Close()

 End Try

End Function

Figure 9-4. A SOAP-based serialization in NotePad

Input/Output

365365

...

Using Serialization to Clone Objects

One of the more nifty uses of serialization is for cloning complicated objects.
The trick here is to serialize the object to a memory stream and then deserialize
it. (Memory streams are a very useful convenience that allow you to use fast
RAM for working with data by treating RAM like a disk file.). The prototype code
inside your objects looks like this:

Public Function Clone() As Object Implements ICloneable.Clone

 Dim myBinaryFormatter As New Formatters.Binary.BinaryFormatter()

 Try

 SerializeToBinary()

 mSTream.Position = 0

 Return myBinaryFormatter.Deserialize(mSTream)

 Finally

 mSTream.Close()

 End Try

End Function

Sub SerializeToBinary()

 Dim myBinaryFormatter As New Formatters.Binary.BinaryFormatter()

 Try

 mSTream = New MemoryStream()

 myBinaryFormatter.Serialize(mSTream, Me)

 Catch

 Throw

 End Try

...
End Sub

Putting It All Together: A Persistent Employees Array List

Before we show you the complete code for this example, we want to alert you to a
potential problem that will always occur when deserializing objects, but is a par-
ticular problem when you store objects in an array list. The problem is that, when
you finish the deserialization process, you have a bunch of objects stored an array
list. How do you know what type they really are, so that you can convert them back
to their correct type? In the example that follows, we hardwire this information into
the deserialization process, because we know the order that we added employees
to the array list. In a more general situation, you may need to store this informa-
tion in a separate file.

In the example, we create a manager named Sally and her secretary named
Tom. The Manager class contains an embedded Secretary object as an instance
field; the Secretary class contains a reference to the manager.

Chapter 9

366

Here is the code for the testing portion of the program. The three key lines
are in bold:

Option Strict On

'uses the System.Runtime.Serialization.Formatters.Soap assembly

Imports System.IO

Imports System.Runtime.Serialization

Imports System.Runtime.Serialization.Formatters

Module Module1

 Sub Main()

 Dim Sally As New Manager("Sally", 150000)

 Dim Tom As Secretary

 Tom = New Secretary("Tom", 100000, Sally)

 Sally.MySecretary = Tom

 Dim Employees As New ArrayList()

 Employees.Add(Tom)

 Employees.Add(Sally)

 Console.WriteLine(Tom.TheName & " is employee " & _

 Tom.TheID & " and has salary " & Tom.Salary)

 Console.WriteLine("Tom's boss is " & Tom.MyManager.TheName)

 Console.WriteLine("Sally's secretary is " & Sally.MySecretary.TheName)

 Console.WriteLine()

 Console.WriteLine(Sally.TheName & " is employee " & _

 Sally.TheID & " has salary " & Sally.Salary)

 Sally.RaiseSalary(0.1D)

 Console.WriteLine("After raise " & Sally.TheName & " has salary " _

& Sally.Salary)

 SerializeToSoap(Employees, "C:\test.xml")

 Console.WriteLine("Serializing and clearing employee array list!")

 Console.WriteLine()

 Employees.Clear()

 Console.WriteLine("DeSerializing and restoring employee array list!")

 Employees = DeSerializeFromSoap("C:\test.xml")

 Tom = CType(Employees(0), Secretary)

 Sally = CType(Employees(1), Manager)

CAUTION Remember, you must add a reference to the
System.Runtime.Serialization.Formatters.Soap assembly for this
program to work.

Input/Output

367367

 'Check that state was restored

 Console.WriteLine(Tom.TheName & " is employee " & _

 Tom.TheID & " and has salary " & Tom.Salary)

 Console.WriteLine("Tom's boss is " & Tom.MyManager.TheName)

 Console.WriteLine("Sally's secretary is " & Sally.MySecretary.TheName)

 Console.WriteLine()

 Console.WriteLine(Sally.TheName & " is employee " & _

 Sally.TheID & " has salary " & Sally.Salary)

 'check that functionality was restored

 Sally.RaiseSalary(0.1D)

 Console.WriteLine("After raise " & Sally.TheName & " has salary " _

 & Sally.Salary)

 Console.ReadLine()

 End Sub

Notice that in the first line in bold we clear the array list to be able to check
that our program is actually working. In the other lines in bold we use our knowledge
of how the data was stored to convert the objects stored in the array list back to
the correct type. Figure 9-5 shows the results of running this program:

Figure 9-5. Results of the employee list serialization example

Chapter 9

368

Here is the rest of the code for this example:

Sub SerializeToSoap(ByVal myEmployees As ArrayList, ByVal fName As String)

 Dim fStream As FileStream

 Dim mySoapFormatter As New Formatters.Soap.SoapFormatter()

 Try

 fStream = New FileStream(fName, FileMode.Create, FileAccess.Write)

 mySoapFormatter.Serialize(fStream, myEmployees)

 Catch

 Throw

 Finally

 If Not (fStream Is Nothing) Then fStream.Close()

 End Try

End Sub

Function DeSerializeFromSoap(ByVal fName As String) As ArrayList

 Dim fStream As New FileStream(fName, FileMode.Open, FileAccess.Read)

 Dim mySoapFormatter As New Formatters.Soap.SoapFormatter()

 Try

 fStream = New FileStream(fName, FileMode.Open, FileAccess.Read)

 Return CType(mySoapFormatter.Deserialize(fStream), ArrayList)

 Catch

 Throw

 Finally

 If Not (fStream Is Nothing) Then fStream.Close()

 End Try

End Function

End Module

<Serializable()> Public Class Employee

Private m_Name As String

Private m_Salary As Decimal

Private Const LIMIT As Decimal = 0.1D

Private Shared m_EmployeeId As Integer = 1000

Private m_myID As Integer

Public Sub New(ByVal sName As String, ByVal curSalary As Decimal)

 m_Name = sName

 m_Salary = curSalary

 m_myID = m_EmployeeId

 m_EmployeeId = m_EmployeeId + 1

End Sub

Input/Output

369369

ReadOnly Property TheID() As Integer

 Get

 Return m_myID

 End Get

End Property

ReadOnly Property TheName() As String

 Get

 Return m_Name

 End Get

End Property

ReadOnly Property Salary() As Decimal

 Get

 Return MyClass.m_Salary

 End Get

End Property

Public Overridable Overloads Sub RaiseSalary(ByVal Percent As Decimal)

 If Percent > LIMIT Then

 'not allowed

 Console.WriteLine("MUST HAVE PASSWORD TO RAISE SALARY MORE THAN LIMIT!!!!")

 Else

 m_Salary = (1 + Percent) * m_Salary

 End If

End Sub

Public Overridable Overloads Sub RaiseSalary(ByVal Percent As Decimal, _

 ByVal Password As String)

 If Password = "special" Then

 m_Salary = (1 + Percent) * m_Salary

 End If

End Sub

End Class

<Serializable()> Public Class Manager

Inherits Employee

Private m_Sec As Secretary

Private m_Salary As Decimal

Public Sub New(ByVal sName As String, ByVal curSalary As Decimal)

 MyBase.New(sName, curSalary)

End Sub

Public Sub New(ByVal sName As String, ByVal curSalary As Decimal, _

 ByVal mySec As Secretary)

 MyBase.New(sName, curSalary)

 m_Sec = mySec

End Sub

Chapter 9

370

Property MySecretary() As Secretary

 Get

 Return m_Sec

 End Get

 Set(ByVal Value As Secretary)

 m_Sec = Value

 End Set

End Property

Public Overloads Overrides Sub RaiseSalary(ByVal percent As Decimal)

 MyBase.RaiseSalary(2 * percent, "special")

End Sub

End Class

<Serializable()> Public Class Secretary

Inherits Employee

Private m_Boss As Manager

Public Sub New(ByVal sName As String, ByVal curSalary As Decimal, _

 ByVal myBoss As Manager)

 MyBase.New(sName, curSalary)

 m_Boss = myBoss

End Sub

Property MyManager() As Manager

 Get

 Return m_Boss

 End Get

 Set(ByVal Value As Manager)

 m_Boss = Value

 End Set

End Property

End Class

Network Streams

One place where abstracting out the idea of a stream shows its power is in working
with information transmitted over the Internet: it makes working with raw HTML
or raw XML almost effortless. While we can only introduce you to this important
topic and the needed namespaces in this section, we at least want to show you an
application of treating network data as a stream. The example we chose is usually
called “screen scraping,” or sending information to a Web site and getting the raw
HTML of a new page as a result of the query. You then parse the raw HTML to get
the data you want.

We cannot resist what is obviously an example of screen scraping at its best: a
little application that goes to Amazon.com and returns the current sales rank for
this book! The basic process carried out by our code is:

Input/Output

371371

1. Get a URI (Universal Resource Indicator) object by passing the correct
string to the URI constructor.

2. Pass this URI object to the Create member of a class called HttpWebRequest
to initiate the http (hypertext transfer protocol) request.

3. Call the GetResponse method of the HttpWebRequest class to return a stream.

4. Parse the resulting stream, which contains the raw HTML to get the infor-
mation we want. This requires understanding the structure of the page
and points out an obvious reason why Web services are so much better
than screen scraping as a way to get data: if Amazon changes the structure of
the page, this application ceases to function.

The first step is to figure out what URL you need, this will determine the form
of the URI. If you look at Figure 9-6 closely you can see that Amazon.com uses
what is called the ISBN number in order to pull up the page for a book.

Figure 9-6. The Amazon page for our book

Chapter 9

372

In our case, the page is generated through the following query string which will be our
URI (the last part of the URI is the ISBN number of our book):

http://www.amazon.com/exec/obidos/ASIN/1893115992

In the following code, we create a class that encapsulates the ISBN string in an
instance field in its constructor:

Public Sub New(ByVal ISBN As String)

 m_URL = "http://www.amazon.com/exec/obidos/ASIN/" & ISBN

End Sub

The read-only property GetRank in our class simply calls a private function
whose key code is shown in the following eight lines:

1 Dim theURL As New URI(m_URL)

2 Dim theRequest As WebRequest

3 theRequest = WebRequest.Create(theURL)

4 Dim theResponse As WebResponse

5 theResponse = theRequest.GetResponse

6 Dim aReader As New StreamReader(theResponse.GetResponseStream())

7 Dim theData As String

8 theData = aReader.ReadToEnd

Line 1 creates the URI object. Lines 2 and 3 make the Web request to be sent to
Amazon.com. Lines 4 and 5 get the response to the request and line 6 uses the
GetResponseStream method of the Response class to construct a StreamReader from
the response stream. At this point, the string variable theData contains the raw
HTML of the Web page for our book. You can see a portion of this page in Figure 9-7.

You can see in Figure 9-7 that the ranking of the book is embedded in text that
looks like this:

Amazon.com Sales Rank:

5,776

We have only to parse the string theData in order to get this sales rank back.
We do this in a helper function called Analyze:

Input/Output

373373

Private Function Analyze(ByVal theData As String) As Integer

Dim Location As Integer

Location = theData.IndexOf("Amazon.com Sales Rank: ") _

 + "Amazon.com Sales Rank: ".Length

Dim temp As String

Do Until theData.Substring(Location, 1) = "<"

 temp = temp & theData.Substring(Location, 1)

 Location += 1

Loop

Return CInt(temp)

End Function

Here is the full code for a module that tests this class. (You will need a live
Internet connection in order to use this program, of course.)

Figure 9-7. The raw HTML for our Amazon page

TIP The Regular Expression Class in System.Text would give another way to
parse this string.

Chapter 9

374

Option Strict On

Imports System.IO

Imports System.Net

Module Module1

 Sub Main()

 Dim myBook As New AmazonRanker("1893115992")

 MsgBox("This book's current rank is " & myBook.GetRank)

 End Sub

End Module

Public Class AmazonRanker

 Private m_URL As String

 Private m_Rank As Integer

 Public Sub New(ByVal ISBN As String)

 m_URL = "http://www.amazon.com/exec/obidos/ASIN/" & ISBN

 End Sub

 Public ReadOnly Property GetRank() As Integer

 Get

 Return ScrapeAmazon()

 End Get

 End Property

 Private Function ScrapeAmazon() As Integer

 Try

 Dim theURL As New URI(m_URL)

 Dim theRequest As WebRequest

 theRequest = WebRequest.Create(theURL)

 Dim theResponse As WebResponse

 theResponse = theRequest.GetResponse

 Dim aReader As New StreamReader(theResponse.GetResponseStream())

 Dim theData As String

 theData = aReader.ReadToEnd

 Return Analyze(theData)

 Catch E As Exception

 Console.WriteLine(E.StackTrace)

 Console.ReadLine()

 End Try

 End Function

Input/Output

375375

 Private Function Analyze(ByVal theData As String) As Integer

 Dim Location As Integer

 Location = theData.IndexOf("Amazon.com Sales Rank: ") _

 + "Amazon.com Sales Rank: ".Length

 Dim temp As String

 Do Until theData.Substring(Location, 1) = "<"

 temp = temp & theData.Substring(Location, 1)

 Location += 1

 Loop

 Return CInt(temp)

 End Function

End Class

Writing a File System Monitor

Among the many fundamentally new ideas in VB .NET, compared to earlier versions
of VB, is the idea of doing for the server what VB has long done for the client: encapsu-
late common functionality in controls, thus making a little code go a long way. We
want to conclude this chapter by showing you how to use the FileSystemMonitor class
to write a program that monitors a specific directory for changes and then, of course,
triggers an event. You put code in the procedure that handles the event.

You can watch the contents of an entire directory or a set of files inside the
directory that satisfy some filter. You can even have the FileSystemMonitor control
monitor recursively through the whole subdirectory structure of a given directory.
The events that get triggered are shown in Table 9-13.

NOTE Interestingly enough, this program shows you how subtle localization
issues can be. When a friend of ours ran this program in Europe, the code would
not work. The problem turned out to be that Amazon is of course using a U.S.
number format, but the version of Windows the person was using on their
machine was not. The result was that the "," was interpreted differently. By having
the function return a string, you can avoid such problems, of course.

Chapter 9

376

One thing you cannot do, however, is use the FileSystemWatcher component
to watch changes in the directory itself. If someone renames a file in the directory,
you will be notified, but if someone renames the directory itself you will not be.
(Of course, you can monitor its parent directory to detect these kinds of changes.)

Like all components on the various toolboxes in VS .NET, the FileSystemMonitor
component is the concrete realization of a class. In this case, it is the
FileSystemWatcher class that inherits from the Component class. For example
code like this:

FileSystemWatcher1.IncludeSubdirectories = True

tells the FileSystemWatcher to also monitor subdirectories.
Figure 9-8 shows what the Form window should look like. The FileSystemWatcher

component which wraps this class is found on the Components tab and, because
it is an invisible control, you see it in the tray (at the bottom of Figure 9-8) when
you place it on a form.

This is the key code to activate this simple example:

Private Sub btnStart_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnStart.Click

 If CheckPath() Then

 FileSystemWatcher1.Path = txtDirectory.Text

 FileSystemWatcher1.IncludeSubdirectories = chkRecursive.Checked

 FileSystemWatcher1.EnableRaisingEvents = True

 End If

End Sub

Table 9-13. File System Monitor Events

EVENT DESCRIPTION

Changed When there are changes to the size, system attributes, last write time,

last access time, or security permissions of a subdirectory or file.

Created When a subdirectory or file is created.

Deleted When a subdirectory or file is deleted.

Renamed When the name of a subdirectory or file is changed.

Input/Output

377377

Just to reinforce what you have seen, we use the Directory class to check if the
directory exists, so you need to import System.IO to use this code:

Function CheckPath() As Boolean

 If Directory.Exists(txtDirectory.Text) Then

 Return (True)

 Else

 txtDirectory.Text = ""

 txtDirectory.Focus()

 MsgBox("No directory by that name exists!")

 Return False

 End If

End Function

Figure 9-8. A FileSystemWatcher example

Chapter 9

378

Then VB .NET automatically hooks up the correct event procedure, as shown
here where we added the statement that displays a message box:

Private Sub FileSystemWatcher1_Changed(ByVal sender As Object, _

 ByVal e As System.IO.FileSystemEventArgs) Handles _

 FileSystemWatcher1.Changed

 MsgBox(txtDirectory.Text & " has changed!")

End Sub

Going Further with File Monitoring

Although we cannot cover this powerful component completely here, there are a
couple of points you should be aware of before going further with it:

• You can use the Filter property to filter the names of the files and directo-
ries you want to monitor.

• Because there may be many different kinds of changes, you will want to
specify which types of changes you are interested in watching more pre-
cisely. For example, if you only want to be notified when files are created,
you would only handle the Created event.

If you need even more precise control, look at the online help for the
NotifyFilter property, which uses an enum whose values can be combined via
the Or operator to specify what properties you are interested in. For example, you
can monitor for changes in an attribute, a filename, or a file size.

TIP Without use of the Filter and NotifyFilter properties, a program that
recursively monitors an active directory or a root directory is almost unusable,
because the Changed event may be triggered too frequently as Windows does its
normal bookkeeping.

379

CHAPTER 10

Multithreading

MULTITASKING IS A FEATURE of modern operating systems that we all take for granted.1

After all, we expect to be able to run a word processor and an e-mail program at
the same time and not have them be in conflict, or have the word processor stop
working if e-mail needs to be downloaded. Of course, what actually happens is
that the operating system rapidly switches between the programs that are running on
the CPU (unless you have multiple CPUs of course). This gives the impression that
multiple programs are running at the same time, because even the fastest typist
(or for that matter, the fastest Internet connection) cannot keep up with the speed
of even one modern CPU.

Multithreading, in a way, is the next level of multitasking: instead of having
the operating system switch between different programs, multithreading asks the
operating system to switch between different parts of the same program. Multi-
threading allows an e-mail program to download new messages while you are
reading or composing another message. Multithreading, too, is a feature we all
seem to take for granted.

VB has never really done multithreading. It is true that, starting with VB5, it
did get a form of multithreading, called apartment threading. As you will soon see,
apartment threading is multithreading on training wheels. And, like training wheels,
apartment threading gives you some of the benefits of multithreading, but prevents
you from accessing its full power in an attempt to keep you safe. We all need to
remove the training wheels sooner or later, and VB .NET is the first version of VB
that does so.

However, multithreading is not an easy feature to fully implement in a pro-
gramming language or for programmers to master. Why?

• Because multithreading can cause extraordinarily subtle bugs in your
code that seem to occur randomly (the most frustrating kind of bugs!).

We therefore need to give you fair warning: multithreading is the most
sophisticated form of programming. If you are not exceedingly careful, you can
create bugs that are almost impossible to find and cost a fortune to fix. For this
reason, some of the programs in this chapter are bad programs—we purposefully

1. Interestingly enough, prior to the release of Apple’s OS X, the Macintosh lacked a modern
multitasking operating system. A true multitasking operating system is extremely difficult to
design properly, and Apple was eventually forced to use Unix as the basis of its OS X!

Chapter 10

380

designed them in order to show you how things can go wrong. We think the safest
approach to learning multithreaded programming is to see what can go wrong
even when, on the surface, a program looks like it should work. You must become
more aware of potential problems and ways of avoiding them if you want to use
multithreaded programming techniques.

Still, as dangerous as it can be, multithreading is required if you are to solve
certain programming problems in a professional way. If your programs do not use
multithreading when it is called for, users will be seriously disappointed and will
choose someone else’s program. For example, it was not until Eudora’s fourth version
that the popular e-mail program had the multithreaded features that modern e-mail
programs must have if they are not to seriously frustrate users. By the time Eudora
implemented multithreading, many people had moved on to other products.
(One of us who was using Eudora as his primary e-mail program stopped using it
because a multithreaded version was not available then.)

Finally, there is no escaping multithreading in .NET: all .NET programs are
multithreaded, since the garbage collector runs as a low priority thread in the
background. And as you will soon learn, serious GUI programming in .NET
depends on using threads correctly in order to keep GUI programs responsive
when parts of your code are running time-consuming processes.

Getting Started with Multithreading

The term thread comes from “thread of execution,” which is used to mean that
every program is running in a certain context. The context describes how the
thread is using memory for storing its code and data. If you store the context, you
essentially store a thread of execution within your program.

Taking a snapshot of the thread’s context takes time. The operating system
has to freeze the thread’s context and store it somewhere when it passes control to
another thread. When the program wants to restart the stopped thread, it has to
restore the thread’s context, which takes more time. You should use multithreading
only when the benefit outweighs the cost. Here are some typical examples of
when this is true:

NOTE While we hope we give you a firm foundation, we cannot cover all the ins
and outs of multithreading here—just printing the documentation for the
classes in the Threading namespace takes more than 100 pages. If you want to go
further with multithreading, you will need to study specialized books.

Multithreading

381381

• When there is a natural division of the users handling the program, as in the
example of downloading e-mail while composing new e-mail

• When you need to do a complicated calculation in a GUI-intensive program
and do not want your GUI to become unresponsive

• When you need to take full advantage of a multiprocessor computer running
an operating system that can use multiple processors (in this case, as long
as you keep the number of active threads to be less than the number of
CPUs, you should incur little or no thread overhead)

Before we delve into the mechanics of writing multithreaded programs, we
want to clear up one common source of confusion amongst people new to multi-
threaded programming:

• A thread runs a procedure, not an object.

We are not sure what “running an object” means, but one of us often teaches
multithreading programming, and this question seems to be the uppermost in
many people’s minds. Perhaps they are thinking that a thread should start only by
calling the New method of a class, and then that thread then runs any messages
sent to that object. This is completely wrong. A single object can have multiple
threads running different (or even the same) methods, so different threads are
sending and responding to specific messages sent to the object. (This, as you will
see, is one of the reasons thread programming is so hard: to debug a program, you
have to know which thread is running which procedure at the moment!)

Because a thread is created from a method of an object, you usually must
have previously created the object. After you build the object, you create the
thread by passing it the address of the method inside the object, and then you tell
the thread to start running that method. Of course, a procedure that a thread was
created to run, like all procedures, can create new objects or manipulate existing
objects. It can also call other procedures or functions that are visible to it. A The

The other vital point to keep in mind is:

• A thread ends when the procedure that you used to create it ends and
will not end normally until this procedure ends.

NOTE Threads can also run shared methods of classes, in which case no object
instance is needed.

Chapter 10

382

.NET keeps most of the functionality you call upon to use threads with in the
Threading namespace. Most programs that use threads therefore begin with:

Imports System.Threading

to simplify typing and to make IntelliSense most useful.
Next, as you might expect, delegates (Chapter 6) figure prominently into the

picture, since threads run procedures. In particular, the .NET Framework comes
with a ThreadStart delegate in the Threading namespace that you usually use to
start a thread. Here is the syntax for using this delegate:

Public Delegate Sub ThreadStart()

The procedure a ThreadStart delegate calls must be a parameterless subproce-
dure. Thus, you cannot build a thread using a function (since this returns a value) or
a procedure that takes parameters. What is more, you must have alternative
methods to get information out of a thread, because the methods they run do not
have return values, nor can they use ByRef parameters. For example, if ThreadMethod
sits inside a class called WillUseThread, then you can have the ThreadMethod affect
the properties of instances of the WillUseThread class to pass information out of
the ThreadMethod procedure.

...

Application Domains

Threads in .NET run in an application domain (usually abbreviated as app
domain), which the documentation defines as "an isolated environment where
applications execute." Think of app domains as lightweight analogues of Win 32
processes; a single Win32 process can host multiple app domains. This is
because the main difference between an app domain and a process is that a
Win32 process needs to have a distinct memory address space. (The documen-
tation also describes an app domain as a logical process occurring inside a physical
process.) Because the .NET runtime manages memory, many application
domains can run in a single Win 32 process. (One advantage is that this allows
much better scaling.) The application domain is encapsulated in the AppDomain
class (the class’s documentation is worth examining). The AppDomain class lets
you drill down into the environment your program is running. For example, you
can use it to do reflection on the .NET system classes. This code lets you look at
the assemblies loaded at run time:

NOTE It is possible to end a thread abnormally without letting it end itself. This is
usually a very bad idea. See the section on “Ending/Interrupting a Thread” for more
on this.

Multithreading

383383

Imports System.Reflection

Module Module1

 Sub Main()

 Dim theDomain As AppDomain

 theDomain = AppDomain.CurrentDomain

 Dim Assemblies() As [Assembly]

 Assemblies = theDomain.GetAssemblies

 Dim anAssembly As [Assembly]

 For Each anAssembly In Assemblies

 Console.WriteLine(anAssembly.FullName)

 Next

 Console.ReadLine()

 End Sub

End Module

...

The Mechanics of Thread Creation

Let us start with a trivial example: suppose you want to run, in a separate thread, a
procedure that simply decrements a counter forever. Here is the class that contains
the procedure:

Public Class WillUseThreads

 Public Sub SubtractFromCounter()

 Dim count As Integer

 Do While True

 count -= 1

 Console.WriteLine("Am in another thread and counter =" _

 & count)

 Loop

 End Sub

End Class

Because the test Do Loop is always true, you would think that the SubtractFromCounter
sub would run without interruption. However, through the magic of threads, this will
not quite happen.

Chapter 10

384

Here is the Sub Main and the Imports statement we need to get the thread to run:

Option Strict On

Imports System.Threading

Module Module1

 Sub Main()

1 Dim myTest As New WillUseThreads()

2 Dim bThreadStart As New ThreadStart(AddressOf _

 myTest.SubtractFromCounter)

3 Dim bThread As New Thread(bThreadStart)

4 bThread.Start()

 Dim i As Integer

5 Do While True

 Console.WriteLine("In main thread and count is " & i)

 i += 1

 Loop

 End Sub

End Module

Let us go over the key points one by one. First, Sub Main always runs in what is
called the main thread. A .NET program always has at least two threads running:
the main thread and the garbage collection thread. In line 1 we make a new instance
of the test class. In line 2 we create a ThreadStart delegate by passing to it the
address of the parameterless sub named SubtractFromCounter in the instance of
the test class we created in line 1. Because we import the Threading namespace,
we do not need to use the long form ThreadMethod. We actually create the thread in
line 3. Notice that the constructor for the Thread class requires a ThreadStart delegate.
Some people like to combine the two lines into one (logical) line:

Dim bThread As New Thread(New ThreadStart(AddressOf _

myTest.SubtractFromCounter))

Finally, line 4 “starts” the thread by calling the Start method on the instance
of the Thread class you created with a ThreadStart delegate. This tells the system to
run the Subtract function on its own thread.

Multithreading

385385

Figure 10-1 is an example of what might happen after you run this program
for a while and then stop it with Ctrl+Break. In our case, the counter got up to 341
in the main thread before it decided to actually run the new thread!

If you run the program a little longer, you will see something like Figure 10-2,
which shows that the separate thread was put on hold while the main thread got
to run again. What happens is called preemptive multithreading through time
slicing and we take up what this mouthful means next.

CAUTION We put quotes around starts in the preceding paragraph, because this
line is where you first encounter one of the many strange features of thread pro-
gramming: the Start method does not actually start a thread! What it does do is
tell the operating system to schedule that thread to be started—and you have
only very crude control over when this happens. In particular, you have no way
to force a thread to start running at your convenience, because threads always
run at the convenience of the operating system. (See the following section on pri-
ority levels for details on how to nudge the operating system to think about
starting your thread more rapidly.)

Figure 10-1. A simple mutithreaded program stopped while running

Chapter 10

386

The operating system uses what is known as preemptive multithreading
through time slicing, to interrupt threads and give other threads time to run. Certain
ways of doing time slicing also solve one of the more common troubles with
multithreading programs—a phenomenon called starvation, which occurs when
you have one thread that takes up all the CPU cycles and never releases control to
the other threads. (Typically, this is the result of using tight loops like the ones in
our example program). To prevent starvation, make sure your threads give up
some time to the other threads. The next best solution is to have an operating
system that always preempts running threads, no matter how high their priority,
so that every thread gets at least a small slice of time to work in.

Figure 10-2. Switching between threads in a simple multithreaded program

CAUTION Because all versions of Windows that .NET runs on use time slicing
that gives every thread a minimum amount of time, starvation is usually not
that serious an issue in .NET programming. If .NET is ever ported to other oper-
ating systems, however, this may no longer be true.

Multithreading

387387

By adding this line to the example thread program, right before the call to
start the thread, even low priority threads get a chance at some CPU time:

bThread.Priority=ThreadPriority.Highest

This tells Windows to run the new thread with its highest priority and makes the main
thread a lower priority. Figure 10-3 shows that the new thread starts running sooner
than it did previously, but Figure 10-4 shows that the main thread still gets some time
(admittedly, only a very small amount of time, and only after the subtracting thread
ran for a long while). The results you get when you run the program will be similar to
those shown in Figures 10-3 and 10-4, but because of differences between your
system and ours, they will not be identical.

Figure 10-3. Highest priority thread (usually) starts up quicker

Chapter 10

388

The ThreadPriority enumeration has five levels:

ThreadPriority.Highest

ThreadPriority.AboveNormal

ThreadPriority.Normal

ThreadPriority.BelowNormal

ThreadPriority.Lowest

Join

You sometimes need to stop a thread until another thread has finished doing
some work. For example, you may want thread 1 to wait until computations in
thread 2 are finished. You set this up by calling the Join method on thread 2 while
running thread 1. In other words, code like this:

thread2.Join()

puts the current thread to sleep and it waits until thread 2 is over. Thread 1 is now a
blocked thread.

Figure 10-4. Lower priority thread is still not starved.

Multithreading

389389

If you join thread 1 to thread 2, the operating system will (eventually) start
thread 1 once thread 2 ends. (The jargon says it is now unblocked.) Keep in mind that
this process is nondeterministic: you cannot know exactly how soon after thread 2
finishes will thread 1 start up again.

There is another version of Join that returns a Boolean value:

thread2.Join(Integer)

This method either waits for the thread 2 to die or waits for a specified time in milli-
seconds to expire before thread 2 is unblocked, so that it will be scheduled to run
again by the operating system. This method returns true if thread 2 dies before the
timeout specified, and false if it does not.

Thread Names, CurrentThread, and ThreadState

Get into the habit of giving each of your threads a name before you start them.
This helps a great deal when debugging programs involving threads. You do this
via the Name property of thread objects with code like this:

bThread.Name = "Subtracting thread"

Also, you can always get a reference to the thread that is running a piece of code
by using Thread.CurrentThread, which returns a reference to the currently
running thread.

CAUTION Always keep in mind that, even if the timeout has elapsed or the sec-
ond thread has ended, you have no control over how soon after that thread 1
will wake up.

TIP Even with the fancy features of the Threads window, which you will soon
see, we cannot tell you how often we have been saved by a line of code like this:

MsgBox(Thread.CurrentThread.Name)

which made it clear that the thread we thought was running a piece of code,
was not.

Chapter 10

390

Again, saying that threads are scheduled in a nondeterministic manner is a fancy
way of saying you have very little control over what scheduling the operating system
is doing. For this reason, you will occasionally want to make a call to the ThreadState
property, which returns a value that indicates the current state of a thread.

The Threads Window

Visual Studio .NET’s Threads window is a great help in dealing with threaded pro-
grams. You make this window active when you are in break mode by going to the
Debug|Windows submenu. Suppose, for example, you name bThread via a call to:

bThread.Name = "Subtracting thread"

After you use Ctrl+Break (or some other method) to stop the program, your Threads
window will look something like Figure 10-5.

The arrow in the first column marks the active thread, the same thread you get by
calling Thread.CurrentThread. The ID column merely lists a number that identifies
each thread. The next column gives the name of the thread (if you assigned it one).
The next column identifies the code currently running. (For example, the WriteLine
procedure in the Console class, as shown in Figure 10-5). The remaining columns indi-
cate the priority level and whether the thread is suspended (see the next section).

The Threads window lets you—and not the operating system—control threads in
your program via the context menu for each item. For example, you can freeze the
current thread by right-clicking on its line and choosing Freeze (you can later
unfreeze it). Because the operating system cannot run a frozen thread, this can be a
useful in debugging when you need to isolate a misbehaving thread. You can also
make another (nonfrozen) thread active by right-clicking on its line and choosing
Switch to Thread (double-clicking the thread also works). This is extremely useful
when analyzing a program for possible deadlocks, as you see later in this chapter.

Figure 10-5. The Threads window

Multithreading

391391

Putting a Thread to Sleep

You may occasionally want to tell a thread to Sleep when it is not needed. A sleeping
thread is another example of a blocked thread. When you put a thread to sleep,
the other threads in the program obviously have more CPU cycles to play with.
A common syntax for Sleep is:

Thread.Sleep(Number of milliseconds)

which tells the currently active thread to sleep for at least the specified number
of milliseconds. (It may not wake up exactly at that moment, however.) Notice
the lack of a reference to a specific thread—you can only tell the currently
executing thread to sleep.

This version of Sleep makes the current thread relinquish the rest of its time slice:

Thread.Sleep(0)

This version tells the current thread to go to sleep indefinitely (only a call to
Interrupt can waken it):

Thread.Sleep(Timeout.Infinite)

Because you can interrupt a sleeping thread (even if it is sleeping indefinitely)
with a call to the Interrupt method, which throws a ThreadInterruptedException,
you should use Sleep only in a Try-Catch block, as in this framework:

Try

 Thread.Sleep(200)

Catch tIe As ThreadInterruptedException

 'thread interrupted

Catch e As Exception

 'other exception

End Try

TIP Because every .NET program runs in a thread, you can use the Sleep method
to pause a program. (If you do not import the Threading namespace, you need to use
the long form: Threading.Thread.Sleep.)

Chapter 10

392

Ending or Interrupting a Thread

A thread ends when you get to the end of the method used to create it in the
ThreadStart delegate, but you may need a way to end the method (and thus the
thread) when certain events occur. It is occasionally useful to direct a thread to
check a condition variable to decide if it should end abnormally. Creating a frame-
work for using a condition variable involves placing code that tests the condition
variable and then exits the Sub if the condition variable exists. The most common
way to do this is to have an enclosing Do-While loop in your Sub:

Sub ThreadedMethod()

'you need to have a way to poll the condition variable

'for example, it can be a property of a class that you have a reference to

Do While conditionVariable = False And MoreWorkToDo

 'all the code goes here

Loop

End Sub

If you need to check the condition variable at a special place, use an If-Then
with the Exit Sub keywords inside an infinite loop.

Unfortunately, code in a sleeping thread (or one that is otherwise blocked) is
not running, so polling the condition variable will not work. In this case, you need to:

• Call the Interrupt method on an object variable that references the thread.

You can call Interrupt only on a thread in a Wait, Sleep, or Join thread state. If you
do call interrupt on a thread in one of these states, then (eventually) the thread will
start up again, and the runtime will trigger a ThreadInterruptedException in the
thread. This happens even if the thread has been put to sleep indefinitely via a call to
Thread.Sleep(Timeout.Infinite). (We say eventually, because of the nondeterministic

TIP Polling takes time. use it only if you expect to have to end a thread
prematurely.

CAUTION A condition variable must be synchronized, so that is not affected by
other threads in a way that interferes with its operation. See the section on "The
Solution: Synchronization" for more on this important concept.

Multithreading

393393

nature of thread scheduling.) In this case, you Catch the ThreadInterruptedException
and write cleanup code in the Catch clause. However, the Catch clause is not required
to end the thread in response to an interruption—that is up to the thread itself!

Suspending or Killing a Thread

Two other methods in the threading namespace interrupt the normal functioning
of a thread:

• Suspend

• Abort

We are not sure why these methods were included in .NET, because using
either Suspend or Abort is likely to leave your programs in an unstable state. Neither
method gives a thread a reasonable chance to do any cleanup. If you call Suspend
or Abort, you have no way of knowing the state the thread leaves objects in when it
suspends itself or when it is aborted.

Calling Abort throws a ThreadAbortException, but, to stress how bad an idea
relying on this rather strange exception is, we quote the documentation for the
.NET SDK:

When a call is made to Abort to destroy a thread, the common language
runtime throws a ThreadAbortException. ThreadAbortException is a special
exception that is not catchable. When this exception is raised, the runtime
executes all the finally blocks before killing the thread. Since the thread can
do an unbounded computation in the finally blocks, you must call Join to
guarantee that the thread has died.

The moral is: do not use Abort or Suspend. (If you do use Suspend, you must use Resume
to wake up the suspended thread.) Hence:

• The only safe method to use to end a thread is to poll a (synchronized)
condition variable or use the Interrupt method we just showed you.

NOTE In .NET you can even interrupt a nonblocked thread. The thread will be
interrupted the next time it is blocked.

Chapter 10

394

Daemon (Background) Threads

Some threads that run in the background automatically stop when nothing else in
the program is running. The garbage collector, for instance, runs in one of these
background threads. You usually create a background thread if you want to have a
thread that listens for data, but you want this to happen only as long as there is
some code that can process the data running in other threads. The syntax is:

NameOfThread.IsBackground = True

A More Serious Example: Screen Scraping Redux

We recommend using threads when there are natural breaks in what your program
does. A good example of this comes from an improved version of the screen
scraping program we showed you in the I/O chapter. That class had two parts:
data gathering from Amazon’s site and then data processing. This is a perfect
example of where multithreading can bring benefits. We create the various classes
and then do the analysis in separate threads. By spawning new threads for each
book, you maximize the efficiency of the program, because one thread can gather
new data (which may involve waiting for Amazon's server) while the other thread
processes data it has already received.

Because you can start a thread only with a parameterless subprocedure, you
need to make minor modifications to the code. For example, here is the key Sub
rewritten to be parameterless:

Public Sub FindRank()

 m_Rank = ScrapeAmazon()

 Console.WriteLine("the rank of " & m_Name & " is " & GetRank)

End Sub

CAUTION When the only remaining threads in an application are daemon
(background) threads, the application automatically ends.

NOTE This program will be more efficient than the single-threaded version only
if you have multiple processors, or the time it takes to download additional data
can be used profitably by the analysis routine.

Multithreading

395395

Because we cannot yet use a combo box to store or get the information (see
the last section of this chapter for how to write multithreaded GUI programs), the
program hardwires the four books into an array whose code begins as follows:

Dim theBook(3, 1) As String

theBook(0, 0) = "1893115992"

theBook(0, 1) = "Programming VB .NET"

'etc.

We then create four threads inside the same loop that makes the objects
themselves:

For i = 0 To 3

 Try

 theRanker = New AmazonRanker(theBook(i, 0), theBook(i, 1))

 aThreadStart = New ThreadStart(AddressOf theRanker.FindRank)

 aThread = New Thread(aThreadStart)

 aThread.Name = theBook(i, 1)

 aThread.Start()

 Catch e As Exception

 Console.WriteLine(e.Message)

 End Try

Next

That is it. Here is the full code:

Option Strict On

Imports System.IO

Imports System.Net

Imports System.ThreadIng

Module Module1

 Sub Main()

 Dim theBook(3, 1) As String

 theBook(0, 0) = "1893115992"

 theBook(0, 1) = "Programming VB .NET"

 theBook(1, 0) = "1893115291"

 theBook(1, 1) = "Database Programming VB .NET"

 theBook(2, 0) = "1893115623"

 theBook(2, 1) = "Programmer’s Introduction to C#, "

 theBook(3, 0) = "1893115593"

 theBook(3, 1) = "C# and the .Net Platform "

 Dim i As Integer

 Dim theRanker As AmazonRanker

 Dim aThreadStart As Threading.ThreadStart

 Dim aThread As Threading.Thread

Chapter 10

396

 For i = 0 To 3

 Try

 theRanker = New AmazonRanker(theBook(i, 0), theBook(i, 1))

 aThreadStart = New ThreadStart(AddressOf theRanker.FindRank)

 aThread = New Thread(aThreadStart)

 aThread.Name = theBook(i, 1)

 aThread.Start()

 Catch e As Exception

 Console.WriteLine(e.Message)

 End Try

 Next

 Console.ReadLine()

 End Sub

End Module

Public Class AmazonRanker

 Private m_URL As String

 Private m_Rank As Integer

 Private m_Name As String

 Public Sub New(ByVal ISBN As String, ByVal theName As String)

 m_URL = "http://www.amazon.com/exec/obidos/ASIN/" & ISBN

 m_Name = theName

 End Sub

 Public Sub FindRank()

 m_Rank = ScrapeAmazon()

 Console.WriteLine("the rank of " & m_Name & " is " _

 & GetRank)

 End Sub

 Public ReadOnly Property GetRank() As String

 Get

 If m_Rank <> 0 Then

 Return CStr(m_Rank)

 Else

 'problems

 End If

 End Get

 End Property

 Public ReadOnly Property GetName() As String

 Get

 Return m_Name

 End Get

 End Property

Multithreading

397397

 Private Function ScrapeAmazon() As Integer

 Try

 Dim theURL As New Uri(m_URL)

 Dim theRequest As WebRequest

 theRequest = WebRequest.Create(theURL)

 Dim theResponse As WebResponse

 theResponse = theRequest.GetResponse

 Dim aReader As New StreamReader(theResponse.GetResponseStream())

 Dim theData As String

 theData = aReader.ReadToEnd

 Return Analyze(theData)

 Catch E As Exception

 Console.WriteLine(E.Message)

 Console.WriteLine(E.StackTrace)

 Console.ReadLine()

 End Try

 End Function

 Private Function Analyze(ByVal theData As String) As Integer

 Dim Location As Integer

 Location = theData.IndexOf("Amazon.com Sales Rank: ") _

 + "Amazon.com Sales Rank: ".Length

 Dim temp As String

 Do Until theData.Substring(Location, 1) = "<"

 temp = temp & theData.Substring(Location, 1)

 Location += 1

 Loop

 Return CInt(temp)

 End Function

End Class

The Big Danger: Shared Data

Up to this point, we have dealt with the only safe place to use threads: when the
threads do not change shared data. When you allow threads to change shared
data, the potential for bugs starts to multiply and ridding your programs of them

NOTE Because multithreading with the .NET and I/O namespaces is so common,
the Framework’s library gives you special methods (called asynchronous calls) to
deal with this common situation. For example, look at the documentation for
the BeginGetResponse and EndGetResponse in the HTTPWebRequest class to learn
more about using asynchronous calls to write multithreaded programs.

Chapter 10

398

becomes much more difficult. On the other hand, thread programming in .NET
would be no more powerful than thread programming in VB6 if it were not possible to
modify shared data from different threads.

To demonstrate the potential problems and yet not bog down our example
program in extraneous details, we created an example called the “House You Get
Cooked In.” Here is the idea: imagine modeling a house in code. Each room has a
thermostat. If the thermostat is 5 or more degrees Fahrenheit (about 2.77 degrees
Celsius) less than the target setting, we tell the house’s heating unit to increase its
temperature by 5 degrees; otherwise, we tell it to increase the temperature by
1 degree. Each room’s temperature-adjusting code runs in a separate thread, with
a 200-millisecond delay each time we change the temperature, to mirror lag time.
For example, we use code like this:

If mHouse.HouseTemp < mHouse.MAX_TEMP - 5 Then

 Try

 Thread.Sleep(200)

 Catch tie As ThreadInterruptedException

 'thread interrupted

 Catch e As Exception

 'other exception

 End Try

mHouse.HouseTemp += 5

'etc.

Here is the full code for this example. Figure 10-6 shows you the (unfortunate)
output of this program: a house temperature of 105°F (40.5°C)!

1 Option Strict On

2 Imports System.Threading

3 Module Module1

4 Sub Main()

5 Dim myHouse As New House(10)

6 Console.ReadLine()

7 End Sub

8 End Module

9 Public Class House

10 Public Const MAX_TEMP As Integer = 75

11 Private mCurTemp As Integer = 55

12 Private mRooms() As Room

13 Public Sub New(ByVal numOfRooms As Integer)

14 ReDim mRooms(numOfRooms - 1)

15 Dim i As Integer

16 Dim aThreadStart As Threading.ThreadStart

17 Dim aThread As Thread

Multithreading

399399

18 For i = 0 To numOfRooms - 1

19 Try

20 mRooms(i) = New Room(Me, mCurTemp, CStr(i) & "'th room")

21 aThreadStart = New ThreadStart(AddressOf mRooms(i).CheckTempInRoom)

22 aThread = New Thread(aThreadStart)

23 aThread.Start()

24 Catch E As Exception

25 Console.WriteLine(E.StackTrace)

26 End Try

27 Next

28 End Sub

29 Public Property HouseTemp() As Integer

30 Get

31 Return mCurTemp

32 End Get

33 Set(ByVal Value As Integer)

34 mCurTemp = Value

35 End Set

36 End Property

37 End Class

38 Public Class Room

39 Private mCurTemp As Integer

40 Private mName As String

41 Private mHouse As House

42 Public Sub New(ByVal theHouse As House, ByVal temp As Integer, _

 ByVal roomName As String)

43 mHouse = theHouse

44 mCurTemp = temp

45 mName = roomName

46 End Sub

47 Public Sub CheckTempInRoom()

48 ChangeTemperature()

49 End Sub

50 Private Sub ChangeTemperature()

51 Try

52 If mHouse.HouseTemp < mHouse.MAX_TEMP - 5 Then

53 Thread.Sleep(200)

54 mHouse.HouseTemp += 5

55 Console.WriteLine("Am in " & Me.mName & _

56 ". Current temperature is " & mHouse.HouseTemp)

Chapter 10

400

57 ElseIf mHouse.HouseTemp < mHouse.MAX_TEMP Then

58 Thread.Sleep(200)

59 mHouse.HouseTemp += 1

60 Console.WriteLine("Am in " & Me.mName & _

61 ". Current temperature is " & mHouse.HouseTemp)

62 Else

63 Console.WriteLine("Am in " & Me.mName & _

64 ". Current temperature is " & mHouse.HouseTemp)

65 'Do nothing temp OK

66 End If

67 Catch tae As ThreadInterruptedException

68 'thread interrupted

69 Catch e As Exception

70 'other exception

71 End Try

72 End Sub

73 End Class

The Sub Main (lines 4–7) creates a house with ten “rooms.” The House class sets
up a maximum temperature of 75°F (about 24°C). Lines 13–28 are the somewhat
complicated constructor of the house. Lines 18–27 are the key to this program.
Line 20 eventually sets up ten rooms, passing a reference to the house so that the
rooms can refer back to the house. Lines 21–23 set up the temperature adjustment for
each room in ten individual threads. The code for the Room class is in lines 38–73.
Notice how we cache a reference to the House by assigning to the mHouse instance
field in the constructor (line 43) of the Room class. The code to check and adjust the
temperature (lines 50–66) seems straightforward, but as you soon see, it is hardly

Figure 10-6. Threading problems, or “you’re cooked”

Multithreading

401401

that! Finally, notice how this code is surrounded by a Try-Catch block, because we use
a call to Sleep.

A house temperature of 105°F (40.5°C) is not a good thing! What went wrong?
The problem is the line:

If mHouse.HouseTemp < mHouse.MAX_TEMP - 5 Then

Here is what probably happened: Thread 1 is running and it checks the tem-
perature. It sees that the temperature is way too low, so it raises the temperature 5
degrees. Unfortunately, before it can do that, thread 1 is interrupted and thread 2
starts running. Thread 2 checks the same (shared) variable which was not yet
changed by thread 1. So thread 2 prepares to raise the temperature 5 degrees as
well. However, before it can do so it to is put to sleep. The process continues until
thread 1 eventually wakes up and proceeds to move onto its next instruction:
raising the temperature another 5 degrees. Do this for ten rooms and you are well
and truly cooked.

The Solution: Synchronization

The house program encountered a race condition in which the results depend on
the order in which thread code runs. The solution to race conditions is to make
sure statements like this:

If mHouse.HouseTemp < mHouse.MAX_TEMP - 5 Then …

are completely executed by a running thread before they can be interrupted. The
feature we need is called atomicity: you need to make sure a block of code is
treated by each thread as an atomic unit. This gives you a way to make multiple
statements uninterruptible by the thread scheduler until they are finished. All
multithreaded programming languages have ways to enforce atomicity. The easiest
way in VB .NET is to use the SyncLock statement, which takes an object or object
variable. If you modify the house program to look like this (the key lines are
bolded), it will run just fine:

Private Sub ChangeTemperature()

 SyncLock (mHouse)

 Try

 If mHouse.HouseTemp < mHouse.MAX_TEMP - 5 Then

 Thread.Sleep(200)

 mHouse.HouseTemp += 5

 Console.WriteLine("Am in " & Me.mName & _

 ". Current temperature is " & mHouse.HouseTemp)

Chapter 10

402

 ElseIf mHouse.HouseTemp < mHouse.MAX_TEMP Then

 Thread.Sleep(200)

 mHouse.HouseTemp += 1

 Console.WriteLine("Am in " & Me.mName & _

 ". Current temperature is " & mHouse.HouseTemp)

 Else

 Console.WriteLine("Am in " & Me.mName & _

 ". Current temperature is " & mHouse.HouseTemp)

 'Do nothing temp OK

 End If

 Catch tie As ThreadInterruptedException

 'thread interrupted

 Catch e As Exception

 'other exception

 End Try

 End SyncLock

End Sub

The code in a SyncLock block is treated atomically. No other thread will be let into
this code until the first thread relinquishes the lock by executing the End SyncLock
statement. Note that if the thread is sleeping in a synchronized block, it holds the
lock until it wakes up or is interrupted.

CAUTION The proper use of SyncLock makes your code thread safe. Unfortu-
nately, the overuse of SyncLock can lead to performance problems. When you
synchronize a block of code in a multithreaded program, that code runs many
times slower. Lock only the code that must be locked, and release the lock as soon
as possible.

TIP Working with the basic collection classes is not thread safe, but the .NET
Framework comes with thread-safe versions of most of the collection classes.
These classes wrap the code for the various dangerous methods with SyncLocks.
Use the thread-safe versions of the collection classes in your multithreaded pro-
grams whenever there is a danger of data corruption.

Multithreading

403403

Finally, you can easily use the SyncLock statement to create a condition variable.
Merely set up a shared read-write Boolean property in a synchronized property, as
in this code:

Public Class ConditionVariable

Private Shared locker As Object = New Object()

 Private Shared mOK As Boolean

 Shared Property TheConditionVariable() As Boolean

 Get

 Return mOK

 End Get

 Set(ByVal Value As Boolean)

 SyncLock (locker)

 mOK = Value

 End SyncLock

 End Set

 End Property

End Class

More on SyncLock and the Monitor Class

The SyncLock statement is quite a bit more subtle then its use in the simple example
above shows. The key is your choice of object reference to lock. Before we explain
why, rerun the code with the following SyncLock statement:

SyncLock (Me)

instead of:

SyncLock (mHouse)

The result: cooked again!
The point you have to keep in mind is that a lock is associated with the object

used as the parameter in the SyncLock statement, and not with a piece of code. It is
as if the object used as the parameter in the SyncLock statement is acting as a door
to the other threads. When you used SyncLock(Me) you were, in effect, providing
ten different doors to the code—which was exactly what you did not want to do.
In other words:

• To guard shared data, the threads accessing the shared data must
SyncLock on the same object.

Chapter 10

404

Because a lock is associated with an object, it is possible to inadvertently lock
down multiple blocks of code. For example, suppose you have two synchronized
methods called first and second, and both are locked down by a bigLock object.
When thread 1 enters the first method and grabs bigLock, no other thread can
enter the second method, because its lock is already owned by the first thread!

The SyncLock statement is a shorthand means of gaining access to the basic
power of the Monitor class, which lets you fine-tune synchronization and helps you
handle more sophisticated synchronization problems. Using SyncLock is roughly
equivalent to using the Enter and Exit methods in the Monitor class, like this:

Try

 Monitor.Enter(theObject)

Finally

 Monitor.Exit(theObject)

End Try

Deadlock: The Danger of Synchronization

Because locks belong to objects and not to code, you may encounter some very
subtle problems if you use different objects to lock down different pieces of code.
(Which, unfortunately, is sometimes necessary—threads will be blocked too often
if too many pieces of synchronized code are locked by the same object.)

Here is a deadlock situation stripped down to its barest essentials: Imagine
two programmers sitting down to eat a meal. Unfortunately, there is only one
knife and one fork. Assuming you must have both a fork and a knife to eat, then
there are two possible situations:

• One person manages to grab both the fork and the knife before the other
person does and gets to eat some food. When that person is finished, he
puts both utensils down and the other person can grab them and eat.

• Each person grabs one utensil. This means nobody can eat until one person
relinquishes a utensil.

TIP For the common situations where you are either incrementing or decre-
menting a variable or exchanging the contents of two variables, the .NET
Framework provides the Interlocked class, whose methods do these common
operations atomically. Using the Interlocked class is much faster than using
a SyncLock.

Multithreading

405405

In a multithreaded program, this situation is called a deadlock (or a deadly
embrace). You have two synchronized methods locked by different objects. Thread
A grabs a lock on object 1 by entering the code it guards. Unfortunately, it also
needs to run the code guarded by another SyncLock block that uses a different
object. Before it can enter the code guarded by the second object, thread B enters
the code and grabs that lock. Now thread A cannot enter the second piece of code,
thread B cannot enter the first piece of code, and both sit around waiting forever.
Neither thread can continue, because the lock each needs never gets released.

Here is an implementation of the deadlock situation we described. After dis-
cussing the key points, we will show you how the Threads window helps you
recognize the deadlock we cause here:

1 Option Strict On

2 Imports System.Threading

3 Module Module1

4 Sub Main()

5 Dim Tom As New Programmer("Tom")

6 Dim Bob As New Programmer("Bob")

7 Dim aThreadStart As New ThreadStart(AddressOf Tom.Eat)

8 Dim aThread As New Thread(aThreadStart)

9 aThread.Name = "Tom"

10 Dim bThreadStart As New ThreadStart(AddressOf Bob.Eat)

11 Dim bThread As New Thread(bThreadStart)

12 bThread.Name = "Bob"

13 aThread.Start()

14 bThread.Start()

15 End Sub

16 End Module

17 Public Class Fork

18 Private Shared mForkAvailable As Boolean = True

19 Private Shared mOwner As String = "Nobody"

CAUTION One of the problems with detecting deadlocks is that they may not
happen very often. Deadlocks always depend on the order in which threads are
scheduled. It may be that, most of the time, the locks are not grabbed in the order
that causes a deadlock.

Chapter 10

406

20 Private ReadOnly Property OwnsUtensil() As String

21 Get

22 Return mOwner

23 End Get

24 End Property

25 Public Sub GrabFork(ByVal a As Programmer)

26 Console.WriteLine(Thread.CurrentThread.Name & _

 " trying to grab the fork.")

27 Console.WriteLine(Me.OwnsUtensil & " has the fork.")

28 Monitor.Enter(Me) 'SyncLock (aFork) '

29 If mForkAvailable Then

30 a.HasFork = True

31 mOwner = a.MyName

32 mForkAvailable = False

33 Console.WriteLine(a.MyName & " just got the fork, waiting")

34 Try

 Thread.Sleep(100)

 Catch e As Exception

 Console.WriteLine (e.StackTrace)

 End Try

35 End If

36 Monitor.Exit(Me) 'End SyncLock

37 End Sub

38 End Class

39 Public Class Knife

40 Private Shared mKnifeAvailable As Boolean = True

41 Private Shared mOwner As String = "Nobody"

42 Private ReadOnly Property OwnsUtensil() As String

43 Get

44 Return mOwner

45 End Get

46 End Property

Multithreading

407407

47 Public Sub GrabKnife(ByVal a As Programmer)

48 Console.WriteLine(Thread.CurrentThread.Name & _

 " trying to grab the knife.")

49 Console.WriteLine(Me.OwnsUtensil & " has the knife.")

50 Monitor.Enter(Me) 'SyncLock (aKnife) '

51 If mKnifeAvailable Then

52 mKnifeAvailable = False

53 a.HasKnife = True

54 mOwner = a.MyName

55 Console.WriteLine(a.MyName & " just got the knife, waiting")

56 Try

 Thread.Sleep(100)

 Catch e As Exception

 Console.WriteLine (e.StackTrace)

 End Try

57 End If

58 Monitor.Exit(Me)

59 End Sub

60 End Class

61 Public Class Programmer

62 Private mName As String

63 Private Shared mFork As Fork

64 Private Shared mKnife As Knife

65 Private mHasKnife As Boolean

66 Private mHasFork As Boolean

67 Shared Sub New()

68 mFork = New Fork()

69 mKnife = New Knife()

70 End Sub

71 Public Sub New(ByVal theName As String)

72 mName = theName

73 End Sub

74 Public ReadOnly Property MyName() As String

75 Get

76 Return mName

77 End Get

78 End Property

Chapter 10

408

79 Public Property HasKnife() As Boolean

80 Get

81 Return mHasKnife

82 End Get

83 Set(ByVal Value As Boolean)

84 mHasKnife = Value

85 End Set

86 End Property

87 Public Property HasFork() As Boolean

88 Get

89 Return mHasFork

90 End Get

91 Set(ByVal Value As Boolean)

92 mHasFork = Value

93 End Set

94 End Property

95 Public Sub Eat()

96 Do Until Me.HasKnife And Me.HasFork

97 Console.WriteLine(Thread.CurrentThread.Name & " is in the thread.")

98 If Rnd() < 0.5 Then

99 mFork.GrabFork(Me)

100 Else

101 mKnife.GrabKnife(Me)

102 End If

103 Loop

104 MsgBox(Me.MyName & " can eat!")

105 mKnife = New Knife()

106 mFork = New Fork()

107 End Sub

108 End Class

Our Main method (lines 4–16) sets up two instances of the Programmer class and
then starts up two separate threads to run the crucial Eat method contained in the
Programmer class (lines 95–108), which we discuss shortly. This code names and
starts the threads and should be familiar to you by now.

The more interesting code is contained in the similar Fork (lines 17–38) and
Knife classes (lines 39–60). For example, in lines 18 and 19 we set up shared instance
fields to let us know if the utensil is available and who has it if it is not. The read-
only OwnsUtensil property (lines 20–24) is a straightforward reporting property.
The key method is the one that grabs the utensil (lines 25–27).

Lines 26 and 27 merely report on what is happening. In the vital synchronized
code (lines 28–36), we guard the fork using the Me object variable. Because we
wrote this program so that there is only one fork, this has the effect of making sure

Multithreading

409409

two threads cannot grab the fork at the same time. The Sleep command (the block
defined on line 34) imitates the lag that one might expect after grabbing the
utensil. Keep in mind that Sleep does not release any lock being held and thereby
increases the speed at which a program deadlocks!

The most interesting code is, of course, contained in the Programmer class
(lines 61–108). In lines 67–70 we use a shared constructor to ensure that there is
only one fork and one knife in this program. The code for the properties (lines 74–94)
is straightforward. The Eat method is where all the action is, because this method
is run by the two separate threads. The loop allows the process to continue until
somebody can eat with both a knife and a fork. The call to Rnd in lines 98–102
models someone randomly picking up a utensil—this is actually what causes the
deadlock. It goes like this:

1. The thread for Tom’s Eat method wakes up and starts the loop. It then
grabs the knife and the lock for the knife and goes to sleep.

2. Then the thread for Bob’s Eat method wakes up and starts the loop. It can-
not grab the knife but it can grab the fork and the lock for the fork.

3. The thread for Tom’s Eat method wakes up and continues the loop. It tries
to grab the fork but it is already grabbed by Bob so it goes to sleep.

4. The thread for Bob’s Eat method wakes up and continues the loop. It tries
to grab the knife but it is already grabbed by Tom so it goes to sleep.

This continues forever and we have a deadlock. (And if you actually run the code you
will see that nobody gets to eat.)

The Threads window helps confirm the deadlock: run the program and then
use Ctrl+Break to stop the program. Add a watch for the Me variable and open up
the Threads window. The result should look like Figure 10-7. As you can see, the
Bob thread is running and Bob has the knife but does not have the fork. Now right-
click in the Threads window on the Tom thread and choose Switch to Thread. You can
see that the Watch window shows that Tom has the fork but not the knife. While
this is not conclusive proof of a deadlock, this kind of behavior should make you
very suspicious that this is the problem!

TIP The best way to avoid deadlock in multithreaded code (if you cannot lock
on a single object such as our house object in the first synchronization example), is
to somehow number the locks and acquire the locks in the same order that you use
them. For example, continuing the meal analogy, if somebody must always have
the knife before they can grab the fork, then there is no problem. Whoever grabs
the knife first gets to eat. Translating this to the language of threads, you cannot
grab the lock on object 2 unless you already have the lock on object 1.

Chapter 10

410

Interestingly, the preceding tip means that if we did not have the call to Rnd in
line 98 and instead used this code:

mFork.GrabFork(Me)

mKnife.GrabKnife(Me)

there would have been no deadlock!

Sharing Data as It Is Produced

One common problem in thread programming arises when you have a program
where not only is the data shared, but you have to wait for it to be produced by
thread 1 before thread 2 can use it. Because the data is shared, you must synchro-
nize in order to avoid data corruption. You also need a way to provide notification
to the other threads when the data is produced.

Figure 10-7. Analyzing a deadlock

Multithreading

411411

This situation is often called the producer-consumer problem. A thread tries to
work with data but it is not there yet, so it must yield to another thread that produces
what it needs. To solve this, you need to write code to perform this process:

• The consumer thread, thread 1, wakes up, enters a synchronized method,
looks for data, does not find it, and so waits. But it must release its lock to
the producer thread for any progress to be made.

• The producer thread, thread 2, enters the (now unlocked) synchronized
method, produces the data needed by thread 1, and (somehow) notifies
thread 1 that it produced the data. It must then yield the lock to thread 1
so thread 1 can consume the data.

Because a producer-consumer relationship is so common, multithreaded
programming frameworks come with primitives for dealing with this situation. In
.NET, the primitives are called Wait and Pulse-PulseAll, and are part of the Monitor
class. Figure 10-8 describes the idiom we will soon be coding. Notice in Figure 10-8
that there are three queues for the threads involved in this kind of program: a
“wait” queue, a “blocked” queue and a “runnable” queue for threads that are just
waiting but not blocked. (They would get blocked if they try to enter the sync locked
code, of course.) Threads in the wait queue are not given any time by the thread
scheduler: they must move to the blocked but runnable queue before the scheduler
can give them time. This makes the whole process much more efficient than polling
a condition variable.

The pseudo code for the consumer idiom looks like this:

'Enters Synchronized Block which should be of this form

While no data;

 go to wait queue

Loop

 if the data is there, consume the data.

End of Synchronized Block

CAUTION Do not attempt to solve this problem by constantly waking up thread
1 in order to check the status of a condition variable set by thread 2, which in
turn is constantly being put to sleep. If you choose this approach, the perfor-
mance of your code will suffer, because most of the time thread 1 will have
woken up for no good reason and thread 2 will be asleep so often that it won't
have time to produce the data.

Chapter 10

412

Figure 10-8. The producer-consumer problem

Multithreading

413413

As soon as the Wait command is processed, the thread is suspended, the lock is
released, and the thread goes to the wait queue. Once the lock is released, a thread
in the runnable queue eventually gets a chance to run. Presumably, one or more of
the blocked but now runnable threads will produce the data needed by the thread
that is now in the wait queue. Also notice that, by testing for the data in a loop, we
get to the line to consume the data (the line after the loop) only when data is avail-
able to be consumed.

The pseudo code for the producer idiom looks like this:

'Enters Synchronized Block which should be of this form

While data is NOT needed

 wait (go to wait queue)

else produce data

When the data is produced call to Pulse-PulseAll to move one or all of the threads

in the "wait queue" from the blocked queue to the runnable queue

Leave synchronized block (and then go back to the runnable queue)

For our code example, imagine modeling a family with one parent who pro-
duces all the money and a child who spends all the money produced. Of course,
once the money is gone, the child has to wait until there is more money to spend.
Here is the code:

1 Option Strict On

2 Imports System.Threading

3 Module Module1

4 Sub Main()

5 Dim theFamily As New Family()

6 theFamily.StartItsLife()

7 End Sub

8 End Module

9

10 Public Class Family

11 Private mMoney As Integer

12 Private mWeek As Integer = 1

13 Public Sub StartItsLife()

14 Dim aThreadStart As New ThreadStart(AddressOf Me.Produce)

15 Dim bThreadStart As New ThreadStart(AddressOf Me.Consume)

16 Dim aThread As New Thread(aThreadStart)

17 Dim bThread As New Thread(bThreadStart)

18 aThread.Name = "Produce"

19 aThread.Start()

20 bThread.Name = "Consume"

21 bThread.Start()

22 End Sub

Chapter 10

414

23 Public Property TheWeek() As Integer

24 Get

25 Return mWeek

26 End Get

27 Set(ByVal Value As Integer)

28 mWeek = Value

29 End Set

30 End Property

31 Public Property OurMoney() As Integer

32 Get

33 Return mMoney

34 End Get

35 Set(ByVal Value As Integer)

36 mMoney = Value

37 End Set

38 End Property

39 Public Sub Produce()

40 Thread.Sleep(500)

41 Do

42 Monitor.Enter(Me)

43 Do While Me.OurMoney > 0

44 Monitor.Wait(Me)

45 Loop

46 Me.OurMoney = 1000

47 Monitor.PulseAll(Me)

48 Monitor.Exit(Me)

49 Loop

50 End Sub

51 Public Sub Consume()

52 MsgBox("Am in consume thread")

53 Do

54 Monitor.Enter(Me)

55 Do While Me.OurMoney = 0

56 Monitor.Wait(Me)

57 Loop

58 Console.WriteLine("Dear parent I just spent all your money in week " _

 & TheWeek)

59 TheWeek += 1

60 If TheWeek = 21 * 52 Then System.Environment.Exit(0)

61 Me.OurMoney = 0

62 Monitor.PulseAll(Me)

63 Monitor.Exit(Me)

64 Loop

65 End Sub

66 End Class

Multithreading

415415

The StartItsLife method (lines 13–22) does the bookkeeping needed to start
up the Produce and Consume threads. The key behavior occurs in the Produce (lines
39–50) and Consume (lines 51–65) threads themselves. The Produce Sub determines
whether money is available, and if there is, it goes to the wait queue. If not, the
parent generates some more money (line 46) and then notifies the objects in the
wait queue that it has changed the situation. Note that a Pulse-PulseAll has no
effect until the Monitor.Exit command (which releases the lock) is processed.
Conversely, the Consume Sub waits if there is no money to be spent and notifies the
waiting parent when he or she has spent all the money. Line 60 is merely a cute way to
end the program after the equivalent of 21 years: System.Environment.Exit(0) is the
.NET equivalent of End (which you can also use, although End does not return a
value to the OS as System.Environment.Exit does.) 2

Multithreading a GUI Program

To get started with multithreading a GUI application, we want to show you why
they are often needed. Create a form with two buttons, Start (btnStart) and
Cancel (btnCancel), as in Figure 10-9. When you click on the start button, you
create a class that encapsulates a random string with ten million characters, and
which also has the ability to count the number of E's in the ten million character
string. Notice the use of the StringBuilder utility class to increase the efficiency of
creating a ten million character string).

2. Some people say that Pulse uses a first-in, first-out notification scheme. This is unusual,
so we asked a person who handles threads on Microsoft’s .NET team and were told in no
uncertain terms that this is not guaranteed.

CAUTION Once you put threads in the wait queue, another part of your pro-
gram must release them. This is why we prefer using PulseAll instead of Pulse.
Because you cannot be sure what thread Pulse wakes up,2 you might as well use
PulseAll if you do not have too many threads waiting in the queue.

Chapter 10

416

Imports System.Text

Public Class RandomCharacters

 Private m_Data As StringBuilder

 Private m_CountDone As Boolean

 Private m_length, m_count As Integer

 Public Sub New(ByVal n As Integer)

 m_length = n - 1

 m_Data = New StringBuilder(m_length)

 MakeString()

 End Sub

 Private Sub MakeString()

 Dim i As Integer

 Dim myRnd As New Random()

 For i = 0 To m_length

'get a random number between 65 and 90, convert it to a capital letter

'add it to the string builder object

 m_Data.Append(Chr(myRnd.Next(65, 90)))

 Next

 End Sub

 Public Sub StartCount()

 GetEes()

 End Sub

Figure 10-9. Multithreading a simple GUI application

Multithreading

417417

 Private Sub GetEes()

 Dim i As Integer

 For i = 0 To m_length

 If m_Data.Chars(i) = CChar("E") Then

 m_count += 1

 End If

 Next

 m_CountDone = True

 End Sub

 Public ReadOnly Property GetCount() As Integer

 Get

 If Not (m_CountDone) Then

 Throw New Exception("Count not yet done")

 Else

 Return m_count

 End If

 End Get

 End Property

 Public ReadOnly Property IsDone() As Boolean

 Get

 Return m_CountDone

 End Get

 End Property

End Class

The GUI code for the two buttons is straightforward. In the btnStart_Click
procedure, we create an instance of the previous class encapsulating the ten million
character string:

Private Sub btnStart_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnSTart.Click

 Dim RC As New RandomCharacters(10000000)

 RC.StartCount()

 MsgBox("The number of e's is " & RC.GetCount)

End Sub

and the cancel button displays a message box:

Private Sub btnCancel_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnCancel.Click

 MsgBox("Count Interrupted!")

End Sub

Chapter 10

418

If you run the code, you will find that the cancel button is unresponsive. This
is because the tight counting loop is preventing the event from being passed onto
the button. This is unacceptable behavior in a modern program!

There are two solutions. The first, which avoids multithreading, is to do what
you did in earlier versions of VB: add a call to DoEvents in the counting code that
uses the big loop. It takes this form in .NET:

Application.DoEvents()

This is overkill—you do not want ten million calls to DoEvents slowing down
your code! Instead, if you make the class that counts the code work in a separate
thread, the operating system switches back and forth and your cancel button
stays responsive. Here is the code that spins everything off to a different thread. To
make it clear that the Cancel button really is working, we have it end the program:

Private Sub btnStart_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnStart.Click

 Dim RC As New RandomCharacters(10000000)

 Dim aThreadStart As New ThreadStart(AddressOf RC.StartCount)

 Dim aThread As New Thread(aThreadStart)

 aThread.Priority = ThreadPriority.BelowNormal

 aThread.Start()

 End Sub

 Private Sub btnCancel_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnCancel.Click

 System.Environment.Exit(0)

 End Sub

End Class

The Next Step: Adding a Show Count Button

Suppose you decide to get a little fancy by making your form look like Figure 10-9.
Notice how the Show Count button is disabled.

You need to have the thread do the counting and enable the button when it
finishes the count. This is certainly possible and in fact is quite a common desire.
Unfortunately, what you cannot do is proceed in the obvious fashion of having the
secondary thread communicate back to the GUI thread by keeping a reference to
the ShowCount button in its constructor or even use a standard delegate. In other
words, you should never use code like this (the key bad lines are in bold):

Multithreading

419419

Public Class RandomCharacters

 Private m_Data As StringBuilder

 Private m_CountDone As Boolean

 Private m_length, m_count As Integer

 Private m_Button As Windows.Forms.Button

 Public Sub New(ByVal n As Integer, ByVal b As Windows.Forms.Button)

 m_length = n - 1

 m_Data = New StringBuilder(m_length)

 m_Button = b

 MakeString()

 End Sub

 Private Sub MakeString()

 Dim I As Integer

 Dim myRnd As New Random()

 For I = 0 To m_length

 m_Data.Append(Chr(myRnd.Next(65, 90)))

 Next

 End Sub

 Public Sub StartCount()

 GetEes()

 End Sub

 Private Sub GetEes()

 Dim I As Integer

 For I = 0 To m_length

 If m_Data.Chars(I) = CChar("E") Then

 m_count += 1

 End If

 Next

 m_CountDone = True

 m_Button.Enabled = True

 End Sub

Figure 10-10. A form with a disabled button

Chapter 10

420

 Public ReadOnly Property GetCount() As Integer

 Get

 If Not (m_CountDone) Then

 Throw New Exception("Count not yet done")

 Else

 Return m_count

 End If

 End Get

 End Property

 Public ReadOnly Property IsDone() As Boolean

 Get

 Return m_CountDone

 End Get

 End Property

End Class

Here is the problem:

• This code may run most of the time.

However:

• You cannot use any obvious method of communicating from a secondary
thread back into a thread that created a GUI.

• Never write code that modifies controls in a GUI-based program from a
thread different than the one that created the GUI.

If you violate this rule:

• We guarantee that your multithreaded GUI-based programs will be
filled with subtle, almost undetectable bugs.

Still, you obviously have to have a way to communicate to a GUI-based appli-
cation from a thread different than the one that created it. The .NET Framework
gives you a thread-safe way to call into a GUI application from another thread.
You do this using a special kind of delegate called MethodInvoker, which is part of
the System.Windows.Forms namespace. This code modifies the GetEes method (the
lines in bold indicate what you have to do):

NOTE When an event is raised from one object to another object, the event han-
dler executes on the same thread that the RaiseEvent occurred in, so events will
not help you either.

Multithreading

421421

Private Sub GetEes()

 Dim I As Integer

 For I = 0 To m_length

 If m_Data.Chars(I) = CChar("E") Then

 m_count += 1

 End If

 Next

 m_CountDone = True

 Try

 Dim myInvoker As New MethodInvoker(AddressOf UpDateButton)

 myInvoker.Invoke()

 Catch e As ThreadInterruptedException

 'oops

 End Try

 End Sub

 Public Sub UpDateButton()

 m_Button.Enabled = True

End Sub

The call to the GUI button made across threads is done with a MethodInvoker,
rather than being done directly. The framework guarantees that this is thread-safe.

...

Why Is Multithreading Programming So Confusing?

Now that you have played a little with multithreading programming and have
been warned so often about its potential problems, we thought it fitting to end
this chapter with our answer to this question.

One reason is that multithreading is a nonlinear process, and we are much more
comfortable with linear programming models. The idea of code execution being
interrupted randomly so that other code can run is just plain hard to absorb.

But there is a more fundamental reason for the confusion caused by multi-
threaded programming: Most of us rarely program in assembly language any-
more or, for that matter, even look very often at the assembly language output of
the compilers we use! If we did, then it would be easier for all of us to keep in
mind that:

• A single instruction in a high-level language like VB .NET can correspond
to dozens of assembly language instructions. Thus, a thread can be inter-
rupted after any one of these instructions and hence during a high-level
instruction.

Chapter 10

422

It gets worse: Modern compilers are designed to optimize performance, and
hardware can manage memory as well. A consequence of this is that:

• The order of your original source code may, in effect, be rearranged by the
compiler or the hardware without you knowing it.3

We think both these points go a long way toward explaining why multithreading
programming is so confusing and so hard to think about correctly. But if you
keep these two points in mind, then you will at least be less surprised at the

...

behavior of your multithreaded programs!

3. Many compilers rearrange instructions like the ones in this loop for copying arrays : for i = 0
to n:b(i) = a(i):next. A compiler (or even special purpose memory management
hardware) may simply create the first array and then copy it with one block copy instead of
multiple individual copies!

423

CHAPTER 11

A Brief Introduction
to Database Access

with VB .NET

THIS BRIEF CHAPTER IS DESIGNED to orient you only; it is impossible in the space we
have to even briefly survey, let alone discuss, all the power that VB .NET brings to
database access. To go further with this important topic, we recommend Carsten
Thomsen’s Database Programming with Visual Basic .NET (Apress, 2001. ISBN:
1-893115-29-1). We think Thomsen’s book is the natural continuation of this
book—it is roughly the same length and written at about the same level. We also
think it covers all the essential topics you will need to know about programming
database access using VB .NET. Thomsen covers the advantages and disadvantages of
using data-bound controls to access a database, which is an interesting topic that
we do not have the space to address here. To see how to best combine classic ADO
with ADO .NET, we recommend the second edition of Bill Vaughn’s ADO Examples
and Best Practices (also from Apress) which should be available in early 2002.

Why ADO .NET Is Not ADO++

With each version of VB came a different model for accessing a database. VB .NET
follows in this tradition with a whole new way of accessing data: ADO .NET. This
means ADO .NET is horribly misnamed. Why? Because it is hardly the next gener-
ation of ADO! In fact, it is a completely different model for accessing data than
classic ADO. In particular, you must learn a new object model based on a DataSet
object for your results. (Because they are not tied to a single table, ADO .NET
DataSet objects are far more capable than ADO RecordSet objects, for example.)

TIP To see the data bound controls at work, we recommend running the Data
Form wizard. Also, looking at the code this wizard generates is a useful way to
understand more about the power VB .NET supplies in the database arena.

Chapter 11

424

In addition, ADO .NET:

• Is designed as a completely disconnected architecture (although
the DataAdapter, Connection, Command, and DataReader classes are still
connection-oriented).

• Does not support server-side cursors. ADO’s dynamic cursors are no
longer available.

• Is XML-based1 (which lets you work over the Internet, even if the client sits
behind a firewall).

• Is part of the .NET System.Data.DLL assembly, rather than being
language-based.

• Is unlikely to support legacy Windows 95 clients.

The other interesting point is that in order to have essential features such as
two-phase commit, you need to use Enterprise Services (which is basically
COM+/MTS with a .NET wrapper).

Disconnected Data Sets: The New Way to Use Databases

In VB6, a typical database application opened a connection to the database and
then used that connection for all queries for the life of the program. In VB .NET,
database access through ADO .NET usually depends on disconnected (detached)
data access. This is a fancy way of saying that you most often ask for the data from
a database and then, after your program retrieves the data, the connection is
dropped. With ADO .NET, you are very unlikely to have a persistent connection to
a data source. (You can continue to use persistent connections through “classic”
ADO using the COM/Interop facilities of .NET with the attendant scalability prob-
lems that classic ADO always had.)

Because data is usually disconnected, a typical .NET database application has
to reconnect to the database for each query it executes. At first, this seems like a
big step backward, but it really is not. The old way of maintaining a connection is
not really practical for a distributed world: if your application opens a connection
to a database and then leaves it open, the server has to maintain that connection
until the client closes it. With heavily loaded servers pushing googles of bits of data,
maintaining all those per-client connections is very costly in terms of bandwidth.

1. Internally, ADO .NET data classes use an optimized format, but XML is used for all data exchange.

A Brief Introduction to Database Access with VB .NET

425425

Furthermore, a different computer may handle each query you make of a Web
farm. (A Web farm is group of computers that handle traffic for a single URL—most
large sites use Web farms so they can be scalable.) Persistent connections to a
Web farm are useless, because you do not know which server you will be hitting
for subsequent requests.

The Classes in System.Data.DLL

The System.Data.DLL assembly contains a huge number of classes divided into five
data namespaces plus the System.Xml namespace. The System.Data.SqlTypes is a
utility namespace that contains the value types that correspond to the data types
in SQL Server, such as SqlMoney or SqlDateTime.

The other utility namespace, System.Data.Common, contains the common classes
you use to access a data source. In this chapter, we focus on the System.Data.OleDb and
System.Data.SqlClient namespaces, which actually do the work They access function-
ality in System.Data.Common, such as the DataAdapter class. The DataAdapter class
represents the data commands and the database connection used to fill data sets or
update the data source.

System.Data.OleDb

The System.Data.OleDb namespace contains the classes needed to communicate
with an OLE DB–compliant database, such as Microsoft Access or Microsoft Fox
Pro. Your program will usually work with the OleDbConnection, OleDbCommand, and
OleDbDataReader classes in this namespace. Here are brief descriptions of these
important classes:

NOTE Because SQL data types are implemented as value types, translation back
and forth into SQL is quite efficient compared to languages such as Java, in
which the corresponding SQL types are implemented as reference types.

NOTE System.Data.OleDb and System.Data.SqlClient are similar in function-
ality, except that the classes in the System.Data.OleDb namespace connect to
OLE DB data sources, whereas the ones in System.Data.SqlClient namespace
are for use with Microsoft SQL Server 7.0 or later.

Chapter 11

426

OleDbConnection class: Think of this class as representing a connection to
an OLE DB data source, including any properties necessary to connect to
the database, such as the OLE DB provider, username, and password. Once
connected, the instance of this class contains additional metadata about
the database to which it has been connected.

OleDbCommand class: This class represents SQL statements that you execute
against the OLE DB database, including the SQL statement itself plus any
parameters or additional information about how to execute the query.

OleDbDataReader class: This class is useful only after you have retrieved the
data from the data source using the two classes just described. It is a spe-
cialized form of read-only reader (see Chapter 9 on I/O) that knows how
to read data returned from an OleDbCommand object. Think of a DataReader
object as a read-only, forward movement only, server-side recordset in ADO.

Here is an example of these three classes in a simple application that con-
nects to the Northwind example database supplied with Access and current
versions of SQL Server:

1 Imports System.Data.OleDb

2 Module Module1

3 Sub Main()

4 Dim myAccessConn As OleDbConnection

5 Dim dbReader As OleDbDataReader

6 Dim dbCmd As OleDbCommand = New OleDbCommand(_

7 "SELECT Employees.FirstName, Employees.LastName FROM Employees")

8 Try

9 'open the connection

10 myAccessConn = New OleDbConnection(_

11 "Provider=Microsoft.Jet.OLEDB.4.0;" & _

12 "Data Source=C:\Program Files\Microsoft _

 Office\Office\Samples\Northwind.mdb")

13 myAccessConn.Open()

14 dbCmd.Connection = myAccessConn

15 dbReader = dbCmd.ExecuteReader(CommandBehavior.SingleResult)

16 Do While dbReader.Read()

17 Console.WriteLine(dbReader.GetString(0) & " " & _

 dbReader.GetString(1))

18 Loop

19 Console.ReadLine()

20 Catch e As Exception

21 MsgBox(e.Message)

22 End Try

23 End Sub

24 End Module

A Brief Introduction to Database Access with VB .NET

427427

After running this application, you will see the results shown in Figure 11-1.

Although this application merely lists the employees at Northwind, the code
is typical of connecting to a database using the OleDb .NET provider supplied
with VB .NET. We first Import the System.Data.OleDb namespace to simplify typing.
Lines 4 and 5 declare two object variables. An OleDbConnection object encapsulates
the current connection to the OleDb provider and thus eventually to the database
(lines 10–12). The OleDbDataReader object encapsulates the actual data. Unlike
Recordset objects, these need not be a single table, although that is, in effect, what
we get in this example. Line 6 sets up the SQL query, which is encapsulated in an
OleDbCommand object. The particular constructor we are using for this object takes a
String parameter, which is a SQL statement—in our case, about the simplest
query possible.

We open the connection to the database in line 10. Notice that we have to
pass the name of the OleDb provider for the database into the constructor. This value
is referenced in the Windows Registry and is not part of .NET. (The one we are using
here is for the standard provider for Access.) Note that we hardwired the location of
the Northwind database using the default location for an Office installation—
change this line if your Northwind database is in a different location.

Next, we open the connection. Because this connection could fail for various
reasons, we enclose the code that opens and reads from the database in a
Try-Catch block. Once the call to Open() is successful (line 13), we have a valid
connection to the database. (You can also do these steps in the constructor and
save a few lines of code.) We then set the connection property for the OleDbCommand
object to the newly opened database connection in line 14, because the OleDbCommand
object has no idea which connection to use until we give it one. One advantage
to this approach is that you can reuse the same command object with several
connections.

Figure 11-1. Results of a simple SQL query

Chapter 11

428

We execute the command using the ExecuteReader() method of the OleDbCommand
object (line 15). We use the ExecuteReader method because the other Execute
methods allow you to return data as XML and traditional record sets, which is less
efficient. In line 15 we pass the enum value CommandBehavior.SingleResult as a
parameter to the ExecuteReader method. The SingleResult flag tells the command
to get all of the results at once from the database. Other flags let you get a few rows
or only one row. We loop through all of the retrieved rows in lines 16–18.

Notice that the way the data reader uses the Read() method prevents the
common mistake VB6 ADO programmers often made: forgetting to advance the
recordset with the MoveNext(). You always work on the same record between calls
to Read(), which means that once you call Read(), you cannot go back to the pre-
vious record.

Next, inside the loop, we call a version of the various GetXXX() methods on the
OleDbDataReader object. These calls are used to retrieve the value in the column at
the specified index (which is zero-based). This is why

dbReader.GetString(1)

gets the second column’s value as a String. You can also use the column name instead
of the position in the call to GetString(), but using the ordinal position is likely to be
more efficient.

NOTE The code we use is analogous to the VB6/ADO code:

Do While Not rs.EOF

 Print rs(0)

 rs.MoveNext()

Loop

CAUTION You must specify the correct column type before you can retrieve its
value. This is because we always program with Option Strict On so lossy type
conversions will not be done without a call to a conversion function.

A Brief Introduction to Database Access with VB .NET

429429

System.Data.SqlClient

Retrieving data from a SQL Server database is similar: the syntax for the OleDb and
SqlClient namespaces is almost identical. Here is a version of the preceding program
that assumes we are working through SQL Server:

Imports System.Data.SqlClient

Module Module1

 Sub Main()

 Dim mySQLConnString As String

 Dim mySQLConn As SqlConnection

 Dim dbReader As SqlDataReader

 Dim dbCmd As SqlCommand = New SqlCommand(_

 "SELECT Employees.FirstName, Employees.LastName FROM Employees")

 Try

 mySQLConnString = _

 "uid=test;password=apress;database=northwind;server=Apress"

 mySQLConn = New SqlConnection(mySQLConnString)

 mySQLConn.Open()

 dbCmd.Connection = mySQLConn

 dbReader = dbCmd.ExecuteReader(CommandBehavior.SingleResult)

 Do While dbReader.Read()

 'write the data to the screen

 Console.WriteLine(dbReader.GetString(0) & "," & _

 dbReader.GetString(1))

 Loop

 Catch e As Exception

 MsgBox(e.Message)

 End Try

 Console.ReadLine()

 End Sub

End Module

The key difference (aside from the different class names) is the form of the
connection string, which assumes there is a test account with a password of
apress on a server named Apress. The SQL Server connection string requires the
user ID, password, server, and database name. We pass the connection string to
get a connection object. Finally, as you can imagine, more complicated SQL queries
are easy to construct: just build up the query string one piece at a time.

Chapter 11

430

Calling a Stored Procedure

Here is an example of how to use a stored procedure named getalbumbyname that takes
one parameter, the name of an album, to retrieve from a database we call albums:

create procedure getalbumbyname

 @albumname varchar(255)

As

 select * from albums where albumname = @albumname

We call this using code similar to what we used for querying the Northwind
database:

Dim dbCmd As SqlCommand = New SqlCommand(_

"execute getalbumbyname 'Operation Mindcrime'")

Try

 mySQLConn = New SqlConnection(

"user id=sa;password=password;" & _

"database=albums;server=i-ri3")

 mySQLConn.Open()

 dbCmd.Connection = mySQLConn

 dbReader = dbCmd.ExecuteReader(CommandBehavior.SingleResult)

'more code

End Try

As you can see, the code is pretty much the same as before, except the SQL
statement we use to create our SQLCommand object is an execute statement that calls
the getalbumbyname stored procedure and passes as a parameter the name of the
album we want to get information about. Of course, we need no loop after the call
to ExecuteReader(), because we know that there will only be one record returned.

TIP Although the connection strings are different, the coding model in ADO
.NET is the same for both SQL and OLE DB applications—an important advantage.
In particular, because of common interfaces such as IDbCOnnection, IdbCommand,
and so on, writing generic code is pretty easy in ADO .NET.

A Brief Introduction to Database Access with VB .NET

431431

A More Complete VB .NET Database Application

In this section, we present a GUI application that lets users connect to the SQL
database of their choice, execute a query on that database, and display the results
of their query in a listbox. For the sake of brevity, we ignore validation of user
entries. We use three separate files: two forms (frmMain and frmResults, shown in
Figures 11-2 and 11-3, respectively), and a standard module named Module1.

NOTE Instead of passing the parameter for the stored procedure in the state-
ment, you can use the Parameters collection of the SQLCommand object to load the
parameters. We find it much easier to pass them in the SQL statement itself. Of
course, this is only possible if you know the value when you write your code oth-
erwise you need to use the Parameters collection.

Figure 11-2. The Main form for our database application

Chapter 11

432

Although longwinded, this code uses nothing new. The main form has four
textboxes that let users enter server name, database name, user ID, and password.
When they click the Connect button, the code to dynamically execute the com-
mand string is built in the lines shown in bold:

'frmMain.vb

Imports System.Data.SqlClient

Public Class frmMain

 Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

Figure 11-3. The Result form for our database application

A Brief Introduction to Database Access with VB .NET

433433

 'Form overrides dispose to clean up the component list.

 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

 If Disposing Then

 If Not (components Is Nothing) Then

 components.Dispose()

 End If

 End If

 MyBase.Dispose(Disposing)

 End Sub

 Private WithEvents Label1 As System.Windows.Forms.Label

 Private WithEvents Label2 As System.Windows.Forms.Label

 Private WithEvents Label3 As System.Windows.Forms.Label

 Private WithEvents Label4 As System.Windows.Forms.Label

 Private WithEvents btnConnect As System.Windows.Forms.Button

 Private WithEvents txtUID As System.Windows.Forms.TextBox

 Private WithEvents txtPassword As System.Windows.Forms.TextBox

 Private WithEvents txtDatabase As System.Windows.Forms.TextBox

 Private WithEvents txtServer As System.Windows.Forms.TextBox

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.Container

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 Me.Label4 = New System.Windows.Forms.Label()

 Me.txtPassword = New System.Windows.Forms.TextBox()

 Me.Label1 = New System.Windows.Forms.Label()

 Me.txtServer = New System.Windows.Forms.TextBox()

 Me.Label2 = New System.Windows.Forms.Label()

 Me.Label3 = New System.Windows.Forms.Label()

 Me.txtUID = New System.Windows.Forms.TextBox()

 Me.txtDatabase = New System.Windows.Forms.TextBox()

 Me.btnConnect = New System.Windows.Forms.Button()

 Me.SuspendLayout()

 '

 'Label4

 Me.Label4.Location = New System.Drawing.Point(24, 176)

 Me.Label4.Name = "Label4"

 Me.Label4.Size = New System.Drawing.Size(82, 19)

 Me.Label4.TabIndex = 0

 Me.Label4.Text = "Password:"

 Me.Label4.TextAlign = System.Drawing.ContentAlignment.MiddleRight

 '

Chapter 11

434

 'txtPassword

 Me.txtPassword.Location = New System.Drawing.Point(168, 168)

 Me.txtPassword.Name = "txtPassword"

 Me.txtPassword.PasswordChar = ChrW(42)

 Me.txtPassword.Size = New System.Drawing.Size(205, 22)

 Me.txtPassword.TabIndex = 3

 Me.txtPassword.Text = ""

 '

 'Label1

 Me.Label1.Location = New System.Drawing.Point(24, 32)

 Me.Label1.Name = "Label1"

 Me.Label1.Size = New System.Drawing.Size(82, 20)

 Me.Label1.TabIndex = 0

 Me.Label1.Text = "Server:"

 Me.Label1.TextAlign = System.Drawing.ContentAlignment.MiddleRight

 '

 'txtServer

 Me.txtServer.Location = New System.Drawing.Point(168, 24)

 Me.txtServer.Name = "txtServer"

 Me.txtServer.Size = New System.Drawing.Size(205, 22)

 Me.txtServer.TabIndex = 0

 Me.txtServer.Text = ""

 '

 'Label2

 Me.Label2.Location = New System.Drawing.Point(24, 80)

 Me.Label2.Name = "Label2"

 Me.Label2.Size = New System.Drawing.Size(82, 20)

 Me.Label2.TabIndex = 0

 Me.Label2.Text = "Database:"

 Me.Label2.TextAlign = System.Drawing.ContentAlignment.MiddleRight

 '

 'Label3

 Me.Label3.Anchor = System.Windows.Forms.AnchorStyles.None

 Me.Label3.Location = New System.Drawing.Point(24, 128)

 Me.Label3.Name = "Label3"

 Me.Label3.Size = New System.Drawing.Size(82, 20)

 Me.Label3.TabIndex = 0

 Me.Label3.Text = "User ID:"

 Me.Label3.TextAlign = System.Drawing.ContentAlignment.MiddleRight

 '

A Brief Introduction to Database Access with VB .NET

435435

 'txtUID

 Me.txtUID.Location = New System.Drawing.Point(168, 120)

 Me.txtUID.Name = "txtUID"

 Me.txtUID.Size = New System.Drawing.Size(205, 22)

 Me.txtUID.TabIndex = 2

 Me.txtUID.Text = ""

 '

 'txtDatabase

 Me.txtDatabase.Location = New System.Drawing.Point(168, 72)

 Me.txtDatabase.Name = "txtDatabase"

 Me.txtDatabase.Size = New System.Drawing.Size(205, 22)

 Me.txtDatabase.TabIndex = 1

 Me.txtDatabase.Text = ""

 '

 'btnConnect

 Me.btnConnect.Location = New System.Drawing.Point(160, 232)

 Me.btnConnect.Name = "btnConnect"

 Me.btnConnect.Size = New System.Drawing.Size(92, 30)

 Me.btnConnect.TabIndex = 4

 Me.btnConnect.Text = "&Connect"

 '

 'frmMain

 Me.AutoScaleBaseSize = New System.Drawing.Size(6, 15)

 Me.ClientSize = New System.Drawing.Size(408, 280)

 Me.Controls.AddRange(New System.Windows.Forms.Control() {Me.btnConnect, _

 Me.txtPassword, Me.txtUID, Me.txtDatabase, Me.txtServer, Me.Label4, _

 Me.Label3, Me.Label2, Me.Label1})

 Me.Name = "frmMain"

 Me.Text = "DB Connector"

 Me.ResumeLayout(False)

 End Sub

#End Region

 Private Sub btnConnect_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnConnect.Click

 Try

 mySQLConn = New SqlConnection("user id=" & txtUID.Text & _

 ";password=" & txtPassword.Text & _

 ";database=" & txtDatabase.Text & _

 ";server=" & txtServer.Text)

 mySQLConn.Open()

 dbCmd.Connection = mySQLConn

 Dim frmChild As New frmResults()

 frmChild.Show()

Chapter 11

436

 Catch except As Exception

 MsgBox(_

"Failed to connect for the following reason: <" & _

except.Message & ">")

 End Try

 End Sub

End Class

The Module looks like this:

Imports System.Data.SqlClient

Module main

 'Global definitions

 Public mySQLConn As SqlConnection

 Public dbReader As SqlDataReader

 Public dbCmd As SqlCommand = New SqlCommand()

End Module

The frmResults form is probably the most interesting. Here is the code, which we
explain after you have a chance to look at it. The key code is the btnQuery_Click(),
shown in bold:

'frmResults.vb

Imports System.Data.SqlClient

Public Class frmResults

 Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

NOTE Module1 contains only global definitions for the various SQL objects that we
want to make available to both forms. Although you usually would not use global
data this way in production code, making these SQL objects global lets several forms
share them and lets you concentrate on the database part of this code.

A Brief Introduction to Database Access with VB .NET

437437

 'Form overrides dispose to clean up the component list.

 Public Overrides Sub Dispose()

 MyBase.Dispose()

 If Not (components Is Nothing) Then

 components.Dispose()

 End If

 End Sub

 Private WithEvents txtQuery As System.Windows.Forms.TextBox

 Private WithEvents btnQuery As System.Windows.Forms.Button

 Private WithEvents lstData As System.Windows.Forms.ListBox

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.Container

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 Me.btnQuery = New System.Windows.Forms.Button()

 Me.txtQuery = New System.Windows.Forms.TextBox()

 Me.lstData = New System.Windows.Forms.ListBox()

 Me.SuspendLayout()

 '

 'btnQuery

 Me.btnQuery.Font = New System.Drawing.Font("Microsoft Sans Serif", _

 8.5!, System.Drawing.FontStyle.Regular, _

 System.Drawing.GraphicsUnit.Point, CType(0, Byte))

 Me.btnQuery.Location = New System.Drawing.Point(440, 0)

 Me.btnQuery.Name = "btnQuery"

 Me.btnQuery.Size = New System.Drawing.Size(56, 24)

 Me.btnQuery.TabIndex = 2

 Me.btnQuery.Text = "&Execute"

 '

 'txtQuery

 Me.txtQuery.Font = New System.Drawing.Font("Microsoft Sans Serif", _

 8.5!, System.Drawing.FontStyle.Regular, _

 System.Drawing.GraphicsUnit.Point, CType(0, Byte))

 Me.txtQuery.Location = New System.Drawing.Point(8, 0)

 Me.txtQuery.Name = "txtQuery"

 Me.txtQuery.Size = New System.Drawing.Size(432, 20)

 Me.txtQuery.TabIndex = 1

 Me.txtQuery.Text = "TextBox1"

 '

Chapter 11

438

 'lstData

 Me.lstData.ColumnWidth = 120

 Me.lstData.Location = New System.Drawing.Point(8, 32)

 Me.lstData.MultiColumn = True

 Me.lstData.Name = "lstData"

 Me.lstData.Size = New System.Drawing.Size(488, 355)

 Me.lstData.TabIndex = 3

 '

 'frmResults

 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)

 Me.ClientSize = New System.Drawing.Size(504, 397)

 Me.Controls.AddRange(New System.Windows.Forms.Control() _

 {Me.lstData, Me.btnQuery, Me.txtQuery})

 Me.Name = "frmResults"

 Me.Text = "Query Window"

 Me.ResumeLayout(False)

 End Sub

#End Region

 Private Sub btnQuery_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnQuery.Click

 Try

 dbCmd.CommandText = txtQuery.Text

 dbReader = dbCmd.ExecuteReader(CommandBehavior.SingleResult)

 'get the schema of the table

 Dim dtblInfo As DataTable = dbReader.GetSchemaTable()

 'place holder variable while iterating rows

 Dim rwRow As DataRow

 Dim strHeaders As System.Text.StringBuilder = _

 New System.Text.StringBuilder()

 Dim strData As System.Text.StringBuilder = New _

 System.Text.StringBuilder()

 Dim typTypes(dtblInfo.Columns.Count) As Type

 Dim intCounter As Integer = 0

 'loop through each row in the metadata

 For Each rwRow In dtblInfo.Rows

 'get the type of the value in the row

 typTypes(intCounter) = rwRow("DataType")

 intCounter += 1

 'add the column heading to the string

 strHeaders.Append("<" & rwRow(0) & ">" & vbTab)

 Next

 'write the header to the listbox

 lstData.Items.Add(strHeaders.ToString())

 'loop through the rows of data that we really care about

A Brief Introduction to Database Access with VB .NET

439439

 Do While dbReader.Read()

 'read once for each column

 For intCounter = 0 To (dbReader.FieldCount - 1)

 'add the column data to the output string

 strData.Append(GetProperType(dbReader, intCounter, _

 typTypes(intCounter)) & vbTab)

 Next

 'write the data to the listbox

 lstData.Items.Add(strData.ToString())

 'clear the string builder

 strData = New System.Text.StringBuilder()

 Loop

 Catch except As Exception

 MsgBox("Error: " & except.Message)

 End Try

End Sub

 'this function gets the value of a specific column

 Private Function GetProperType(ByVal dr As SqlDataReader, _

 ByVal intPos As Integer, ByVal typType As Type) As Object

 'get the type of the field - then get the value

 Select Case typType.Name

 Case "String"

 'cast and return

 Return CType(dr.GetString(intPos), String)

 Case "Int32"

 'cast and return

 Return CType(dr.GetInt32(intPos), Int32)

 'here is where you could check for all other

 'types and return them as necessary. I just go the easy

 'route and check for the most common 2

 Case Else

 Return "<Unsupported Type>"

 End Select

 End Function

End Class

What we do in response to the button click is set the text of our SQL com-
mand to what is supplied by the user from a textbox via:

dbCmd.CommandText = txtQuery.Text

(In this example, we ignore the validation that would be necessary in a full-featured
program.)

Chapter 11

440

The next few lines include declarations to retrieve and display the database
column names and values:

Dim dtblInfo As DataTable = dbReader.GetSchemaTable()

Dim rwRow As DataRow

Dim strHeaders As System.Text.StringBuilder = New System.Text.StringBuilder()

Dim strData As System.Text.StringBuilder = New System.Text.StringBuilder()

Dim typTypes(dtblInfo.Columns.Count) As Type

For this application, because we cannot know the structure of the database
ahead of time, we make a call to GetSchemaTable() to tell us the structure of the
database. The GetSchemaTable() method returns a DataTable object that describes
the columns that make up each row in the retrieved data set. Having the metadata
lets us discover the number of columns in a row, the name of each column, and
the type of the data stored in each column. With these three pieces of information, we
can query and display data from any database to which we can connect. (Remember,
you need type information to call the proper GetXXX() function on the DataReader
when Option Strict is on (as it should be). We use the two StringBuilder variables
for efficiency, as we explain next.

This loop gives us the information we need to be able to present the data in
the listbox:

Dim intCounter As Integer = 0

For Each rwRow In dtblInfo.Rows

 typTypes(intCounter) = rwRow("DataType")

 intCounter += 1

 strHeaders.Append("<" & rwRow(0) & ">" & vbTab)

Next

Notice that we use the For Each construct to iterate all of the rows in the DataTable.
We also store the type of the column’s value in the typTypes array, and then append
the column’s name to the StringBuilder so we can write all of the column names
to the listbox at one time. (It is always faster to update a property once.) Also,
notice that we use the name of the column in the call to rwRow("DataType") instead
of the ordinal, because the structure of that table could change, and that would
change the column number for the DataType field. After the loop completes, we have
all of the column’s names and types stored, and we can move on to displaying the
records the user wants to see, using this slightly complicated looking nested loop:

A Brief Introduction to Database Access with VB .NET

441441

Do While dbReader.Read()

 For intCounter = 0 To (dbReader.FieldCount - 1)

 strData.Append(GetProperType(dbReader, intCounter, _

 typTypes(intCounter)) & vbTab)

 Nextp

 lstData.Items.Add(strData.ToString())

 strData = New System.Text.StringBuilder()

Loop

The first part of the loop is exactly like the ones in the preceding examples,
except that we loop once for each column in the row to discover the type of the
column and retrieve it, before making the next call to Read().We created the
GetProperType() helper function to accomplish this task.

Figure 11-4 shows the results of querying the Northwind database.

Figure 11-4. The results of querying the Northwind database

Chapter 11

442

We have tried to give you a taste of what you can do with ADO .NET. But we
have to reiterate that this chapter is only the briefest of surveys. We did not show
you how to use stored procedures to update data nor did we discuss data-bound
controls or the DataAdapter/DataSet objects. For all this and more, please consult
Thomsen’s book, which we mentioned in the introduction to this chapter.

443

CHAPTER 12

A Brief Overview
of ASP .NET

ON THE SURFACE IT MAY SEEM as if ASP .NET is nothing more then yet another way
to serve up Web pages dynamically, but it goes far beyond what could be done
with traditional ASP pages. Although ASP code will run under ASP .NET, ASP .NET
is really a totally different animal that was rebuilt from the ground up. For example,
ASP .NET comes with Web Form controls that promise to make browser-based
delivery as easy as the original VB controls made Windows development, whether
the client is a PC browser or a handheld device. ASP .NET is compiled so that it
runs much faster on the server. It scales well. It can use the security model of .NET.
It allows for multiple forms of authentication and much more.

We think it is fair to say that ASP .NET will be the first part of .NET that will be
used extensively in commercial applications. In fact, Microsoft is so proud of what
they have accomplished with ASP .NET that, in addition to running parts of their
own Web site on ASP .NET, they have made the unprecedented move of allowing
companies to deploy commercial ASP .NET apps based on beta 2!

This brief chapter is designed to give you a sense of what ASP .NET can do if
you have some familiarity with traditional ASP. It is not intended to replace any of
the thick books on ASP .NET that are already available.

Some History

ASP was introduced in 1997 to give Internet Information Server (IIS) a way to
serve up Web pages dynamically. The idea was that you wrote a combination of
HTML and script code, which was interpreted by IIS in response to client requests.
The end result was an HTML page that got sent back to the user. The trouble with
ASP was that it was:

• Slower than it had to be because it relied on server-side code that was
interpreted.

• Harder to develop and maintain, because it did not separate the presenta-
tion of the page from the code that drove the page.

Chapter 12

444

• Hard to scale because ASP pages essentially could not maintain state when
you tried to scale to multiple servers in a Web farm or after a restart.

• Did not have a good security model.

ASP .NET solves all these problems and more.

A Simple ASP .NET Web Application

We suggest starting up a new ASP .NET application from the New Project dialog
box so you can follow along with us.

After a short delay, the VS IDE will create a page with the default name of
WebForms1.aspx. This page contains the display code for an ASP .NET application.
The VS .NET IDE will look like Figure 12-1. Notice how many files have been cre-
ated to back up this simple page in Figure 12-1’s Solution Explorer. For example,
there is a cascading style sheet that determines the look and feel of the page that
you can modify. Next, notice that the designer looks very similar to the Windows
Forms designer shown in Chapter 8. There is a toolbox with controls on it and you
can drag and drop controls onto this Web page. (Of course, Web pages do not have
quite as much flexibility at design time as do Windows Form–based pages since
they ultimately must run inside a browser.)

Now add a label and a button to the page. Stretch the label to be the size of the
page and place the button centered directly below the label. Doing this generates
instances of classes that lie in the System.Web.UI.WebControl namespace. This
namespace is automatically referenced when you ask the IDE to create a new ASP
.NET application. Change the Text property of the label to be blank, and change
the Text property of the button to “Click me!”. These property changes will be
saved to the HTML contained in the .aspx page. You can see the underlying HTML
by choosing View|HTML Source (Ctrl+Page Down) or choosing the HTML tab in
the IDE. It looks something like this with the key lines in bold:

<%@ Page Language="vb" AutoEventWireup="false"

Codebehind="WebForm1.aspx.vb" Inherits="WebApplication1.WebForm1"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

 <title></title>

 <meta name="GENERATOR" content="Microsoft Visual Studio.NET 7.0">

 <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">

 <meta name="vs_defaultClientScript" content="JavaScript">

 <meta name="vs_targetSchema" content=

"http://schemas.microsoft.com/intellisense/ie5">

A Brief Overview of ASP .NET

445445

</HEAD>

 <body MS_POSITIONING="GridLayout">

 <form id="Form1" method="post" runat="server">

 <asp:Button id="Button1" style="Z-INDEX: 101; LEFT: 311px;

POSITION: absolute; TOP: 212px" runat="server" Text="Click me!"

Width="123px" Height="67px"></asp:Button>

 <asp:Label id="Label1" style="Z-INDEX: 102; LEFT: 15px; POSITION: absolute;

TOP: 40px" runat="server" Width="631px" Height="132px"></asp:Label>

 </form>

 </body>

</HTML>

Notice that the first bold line in the preceding code includes the runat attribute
with the server value, indicating that the control and its code will run on the
server rather than on the client. It is possible to run ASP .NET code on the client,
but this is very unusual and you lose a lot of the capabilities of ASP .NET if you do so.

Figure 12-1. A simple ASP .NET application in the IDE

Chapter 12

446

(Essentially, if you do this you are running a client-side script that has nothing to
do with ASP .NET.)

Next, notice that the controls on this page are all prefixed by <asp:. This is
because ASP .NET controls are not HTML controls. They lie on the server and only
the pages that get sent to the client use ordinary HTML-based controls (where
appropriate). For example, there are no HTML counterparts to ASP .NET controls,
such as the range valuator or the calendar. In this case, ASP .NET uses a necessary
combination of ordinary HTML controls, scripting, and server-side code to achieve
the effect you want.

Next, double-click on the button to go to the Click event in the code window.
Notice how you are taken to a page that looks just like the code behind a Windows
Form application, replete with lots of automatically generated code that we
explain shortly. ASP .NET applications usually keep the code separate from the
presentation layer via a feature Microsoft calls code behind. This is a fancy way of
saying you can separate your programming logic contained in the .aspx page from
the (HTML) code to display the page. The code behind an ASP .NET page is stored
in a separate file with a double extension of .aspx.vb.

Now add the following code to the Click event procedure so that it looks like this:

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

 Me.Label1.Font.Size = FontUnit.XLarge

 Me.Label1.Text = "Welcome to ASP .NET @" & Now

End Sub

Notice how similar this code is to the code you would place in a Window
Form’s click event, complete with sender and EventArgs parameters. Next, notice
how the Font property is a little different for Web controls than for Windows Forms.
This is natural because of the limitation on the fonts that HTML pages can display
compared to Windows Forms. Finally, notice how we can use a built-in function of
.NET, such as Now, in our ASP .NET code. An ASP .NET application has total access
to the .NET Framework. This means you can, for example, use all the database
controls or database code available to you from .NET and briefly described in
Chapter 11 to access data via ASP .NET.

If you have specified the default page, then after you hit F5, the VS .NET IDE will
generate a Web page and automatically run it in Internet Explorer. After you click on
the button, the results should look something like what you see in Figure 12-2.

NOTE An ASP .NET application is compiled into a DLL just like any .NET
application. The IDE will generate the assembly info file for the DLL, which will
live on the server. The ASP .NET application will also include an .aspx page and
associated other files as well.

A Brief Overview of ASP .NET

447447

Here is the full code behind this page with all regions expanded:

Public Class WebForm1

 Inherits System.Web.UI.Page

 Protected WithEvents Label1 As System.Web.UI.WebControls.Label

 Protected WithEvents Button1 As System.Web.UI.WebControls.Button

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.

 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub

 Private Sub Page_Init(ByVal sender As System.Object, _

ByVal e As System.EventArgs)

Handles MyBase.Init

 'CODEGEN: This method call is required by the Web Form Designer

 'Do not modify it using the code editor.

 InitializeComponent()

 End Sub

Figure 12-2. The result of a simple ASP .NET page

Chapter 12

448

#End Region

 Private Sub Page_Load(ByVal sender As System.Object,

ByVal e As System.EventArgs)

Handles MyBase.Load

 'Put user code to initialize the page here

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

 System.EventArgs) Handles Button1.Click

 Me.Label1.Font.Size = FontUnit.XLarge

 Me.Label1.Text = "Welcome to ASP .NET @" & Now

 End Sub

End Class

Finally, ASP .NET uses a file called global.asax, which works similarly to the
global.asa file used in ASP. The main differences are that the global.asax file is called:

• At the beginning of each request

• When an error occurs

• When an attempt is made to authenticate a user (more on authentication
later in this chapter)

What Gets Sent to the Client?

The magic of ASP .NET is that although you write in normal VB .NET style, different
kinds of HTML get generated, depending on the nature of the browser client. If the
browser is a late version of Internet Explorer, you will get a lot of dynamic HTML
with client-state validation for things like the built-in range validation control.
However, if the browser is a WAP (Wireless Application Protocol)-enabled mobile
phone, then you will get WML, the version of HTML that works on this platform,
and any verifications needed will be done by the server. All of this is transparent to
the programmer!1

1. Except of course if you want to write custom Web Form controls; then you have a lot of work
ahead of you. It is the job of the Web Form control to know how to render HTML for different
platforms.

NOTE If you want to add any application initialization code to global.asax,
you will need to put it in the InitializeComponent() function, because this is
what is called when the application is first loaded.

A Brief Overview of ASP .NET

449449

For example, on the version of Internet Explorer running on Windows XP, the
HTML generated for the client in the preceding example looks like this with the
most important lines in bold:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

 <HEAD>

 <title></title>

 <meta name="GENERATOR" content="Microsoft Visual Studio.NET 7.0">

 <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">

 <meta name="vs_defaultClientScript" content="JavaScript">

 <meta name="vs_targetSchema"

content="http://schemas.microsoft.com/intellisense/ie5">

 </HEAD>

 <body MS_POSITIONING="GridLayout">

 <form name="Form1" method="post" action="WebForm1.aspx" id="Form1">

<input type="hidden" name="__VIEWSTATE" value="dDwxMDA3MzE2MzEyOzs+" />

 <input type="submit" name="Button1" value="Click me!" id="Button1"

style="height:67px;width:123px;Z-INDEX: 101; LEFT: 311px;

POSITION: absolute; TOP: 212px" />

 <span id="Label1" style="height:132px;width:631px;Z-INDEX: 102;

LEFT: 15px; POSITION: absolute; TOP: 40px">

 </form>

 </body>

</HTML>

As the bold lines in the code indicate, the client-side HTML that was auto-
matically generated includes an HTML form with a post attribute and a hidden
field named __VIEWSTATE. These lines enable ASP .NET to maintain state without
needing any direct storage of the state by the client. The post attribute tells the
server which page it should view on subsequent requests. The hidden __VIEWSTATE
holds the data in an encrypted form. ASP .NET can use this data to regenerate the
page and its state. Essentially, it is a specialized form of serialization that you can
turn off by setting a control’s EnableViewState property to be False.

The best way to see all this at work is to click on the button and then look at
the source again. If you do, the key lines in the HTML source you get will now look
something like this:

Chapter 12

450

<form name="Form1" method="post" action="WebForm1.aspx" id="Form1">

<input type="hidden" name="__VIEWSTATE"

value="dDwxMDA3MzE2MzEyO3Q8O2w8aTwxPjs+O2w8dDw7bDxpPDM+Oz47bDx0PHA

8cDxsPEZvbnRfU2l6ZTtUZXh0O18hU0I7PjtsPFN5c3RlbS5XZWIuVUkuV2ViQ29udHJvbH

MuRm9udFVuaXQsIFN5c3RlbS5XZWIsIFZlcnNpb249MS4wLjI0MTEuMCwgQ3VsdHVyZT

1uZXV0cmFsLCBQdWJsaWNLZXlUb2tlbj1iMDNmNWY3ZjExZDUwYTNhPFgtTGFyZ2U+O

1dlbGNvbWUgdG8gQVNQLk5FVCBAOC8xOS8yMDAxIDEyOjM2OjAwIFBNO2k8MTQwOT

47Pj47Pjs7Pjs+Pjs+Pjs+" />

Although the underlying .aspx page given in the <form> attribute is unchanged,
the __VIEWSTATE hidden variable has changed quite a bit. In fact, the data in this
field is a compressed representation of the complete state of the HTML controls
and data. One benefit to this approach to maintaining state is that it is now trans-
parent to the ASP .NET developer. All you have to worry about is making sure the
EnableViewState property is true and writing the VB code for the underlying logic.
The minor drawback is that extra data has to be sent with every page. In most
cases, this is a relatively small amount of data and so the negatives are few.

Finally, each .aspx page has a property called Session that returns a Session
object that encapsulates information about the user of the current page. We like
to think of a Session object is a sort of a super cookie on the server that you can
use like a hashtable to store information via keys. For example:

Session("user name") = TextBox1.Text

would store the contents of TextBox1 in a item indexed by the string "user name".

NOTE Input controls on the client side always remember their current state,
even after a trip to the server and back. You cannot turn off the automatic main-
taining of state for input controls on the client that is done in ASP .NET.

TIP Although we do not have space to cover it here, we do want to point out that
for complicated situations where you do not want to store everything in the Session
object in server memory, you can store session state in a SQL server database. You
can even specify that this information be stored on a specific machine when your
Web site is being served up by a Web farm. Both these features greatly increase the
scalability of ASP .NET!

A Brief Overview of ASP .NET

451451

The Web.config File

Configuration files under Windows have always been in flux: first there were var-
ious kind of .ini files, then we went to a globally maintained Registry. An ASP .NET
application essentially returns to the era of text-based .ini files by using a text file
called “Web.config” in its application directory for its configuration information.
This file controls the environment that the ASP .NET application runs in, such as
debug settings and security. Configuration files are quite complex. Here is what
the Web.config file looks like for the simple example given previously; we explain
its major pieces after you have a chance to look over the whole thing:

1 <?xml version="1.0" encoding="utf-8" ?>

2 <configuration>

3 <system.web>

4 <!-- DYNAMIC DEBUG COMPILATION

5 Set compilation debug="true" to insert debugging symbols (.pdb

6 information) into the compiled page. Because this creates a larger file

7 that executes more slowly, you should set this value to true only when

8 debugging, and to false at all other times. For more information, refer

9 to the documentation about debugging ASP .NET files.

10 -->

11 <compilation defaultLanguage="vb" debug="true" />

12 <!-- CUSTOM ERROR MESSAGES

13 Set customErrors mode="On" or "RemoteOnly" to enable custom error

14 messages, "Off" to disable. Add <error> tags for each of the errors

15 you want to handle.

16 -->

17 <customErrors mode="RemoteOnly" />

18 <!-- AUTHENTICATION

19 This section sets the authentication policies of the application.

20 Possible modes are "Windows", "Forms", "Passport" and "None"

21 -->

22 <authentication mode="Windows" />

23 <!-- AUTHORIZATION

24 This section sets the authorization policies of the application. You can

25 allow or deny access to application resources by user or role.

26 Wildcards: "*" mean everyone, "?" means anonymous (unauthenticated)

27 users.

28 -->

Chapter 12

452

29 <authorization>

30 <allow users="*" /> <!-- Allow all users -->

31 <!-- <allow users="[comma separated list of users]"

32 roles="[comma separated list of roles]"/>

33 <deny users="[comma separated list of users]"

34 roles="[comma separated list of roles]"/>

35 -->

36 </authorization>

37 <!-- APPLICATION-LEVEL TRACE LOGGING

38 Application-level tracing enables trace log output for every page within

39 an application. Set trace enabled="true" to enable application trace

40 logging. If pageOutput="true", the trace information will be displayed at

41 the bottom of each page. Otherwise, you can view the application trace

42 log by browsing the "trace.axd" page from your Web application root.

43 -->

44 <trace enabled="false" requestLimit="10"

45 pageOutput="false"traceMode="SortByTime"

46 localOnly="true" />

47 !-- SESSION STATE SETTINGS

48 By default ASP .NET uses cookies to identify which requests belong to a

49 particular session. If cookies are not available, a session can be

50 tracked by adding a session identifier session. To disable cookies, set

51 sessionState cookieless="true".

52 -->

53 <sessionState

54 mode="InProc"

55 stateConnectionString="tcpip=127.0.0.1:42424"

56 sqlConnectionString="data source=127.0.0.1;user id=sa;password="

57 cookieless="false"

58 timeout="20"

59 />

60 <!-- PREVENT SOURCE CODE DOWNLOAD

61 This section sets the types of files that will not be downloaded. As

62 well as entering a httphandler for a file type, you must also

63 associate that file type with the xspisapi.dll in the App Mappings

64 property of the Web site, or the file can be downloaded. It is

65 recommended that you use this section to prevent your sources from

66 being downloaded.

67 -->

A Brief Overview of ASP .NET

453453

68 <httpHandlers>

69 <add verb="*" path="*.vb"

70 type="System.Web.HttpNotFoundHandler,System.Web" />

71 <add verb="*" path="*.cs"

72 type="System.Web.HttpNotFoundHandler,System.Web" />

73 <add verb="*" path="*.vbproj"

74 type="System.Web.HttpNotFoundHandler,System.Web" />

75 <add verb="*" path="*.csproj"

76 type="System.Web.HttpNotFoundHandler,System.Web" />

77 <add verb="*" path="*.webinfo"

78 type="System.Web.HttpNotFoundHandler,System.Web" />

79 </httpHandlers>

80 <!-- GLOBALIZATION

81 This section sets the globalization settings of the application.

82 -->

83 <globalization requestEncoding="utf-8" responseEncoding="utf-8" />

84 </system.web>

85 </configuration>

Line 1 shows that, like many things in .NET, ASP .NET pages are built on XML.
Lines 2–11 comprise the section of the config file that controls the language and
determines whether this page is used for testing and development or for production.
This part of the file also gives the languages being used for the page. (VB in our
case, as you can see in line 11.)

The next interesting section is the authorization section contained in lines
18–36. We currently have authorization set to “*”, which allows any user to use the
application. As you can see in the automatically generated comments in this sec-
tion, you can also specify or deny a group of people access using the allow or deny
keywords.

A good authentication scheme is a key to programming in a distributed
world: How does a page know who you are? There are three type of authentication
schemes possible in ASP .NET, as shown in Table 12-1.

TIP Set debug=false in the Web.config file when you deploy the application.
Although having it on is vital when developing an application, leaving it on
during the production phase can lead to serious degradation of your ASP .NET
application performance—sometimes by as much as an order of magnitude.

Chapter 12

454

Keep in mind that, regardless of the authentication scheme you choose, because
HTTP is a text-based protocol, the information sent back to the client is “in the
clear” and can be retrieved via packet sniffing. You need to use a secure socket
layer (SSL) transport mechanism to stop this.

Lines 47–59 control session state, and most of the time you will want to leave
this to ASP .NET default mechanisms because they are so robust. Lines 60 to the
end of this file implement a nifty feature of ASP .NET that is of great interest if you
want to keep your intellectual property secure. This section allows you to add a
list of file types that can never be downloaded from the server.

Table 12-1. Authentication Schemes for ASP .NET

AUTHENTICATION SCHEME DESCRIPTION

Windows Uses the authentication built into IIS (pops up a dialog

box that accepts a username and password). Requires the

user to have an account on the machine.

Forms Is the most common form of authentication. After a

successful login, the server generates a cookie that will be

included as a header sent to the server for the duration.

You set up forms-based authentication by giving the

name of the login form and the ASP .NET page that will

control it.

Passport This is the new authentication scheme championed

by Microsoft.

NOTE The first two authentication schemes are standard; only the third is contro-
versial. A search on Google shows that, as we write this, there are many thousands of
Web pages devoted to the pros and cons of Microsoft’s Passport authentication sys-
tem—we will leave it to you to make up your mind about its worth!

TIP The built-in WebRequest and WebResponse classes in .NET automatically use
SSL if the URL begins with “https.”

A Brief Overview of ASP .NET

455455

A Simple Web Service

As we mention in Chapter 9, using screen scraping to get information from Web
pages is slow (because the whole page must be parsed) and potentially problematic
(because of the way the layout of the page may change). The solution is for a Web
site to provide this kind of useful information is a Web Service. This is a fancy way
of saying that Web sites will expose their functionality in way we can program
against. (VB programmers should just shut their eyes an imagine that an Internet
rich with Web Services means every site that uses Web Services is potentially a
component with which you can program!)

In .NET, creating a Web Service that clients can program against is almost
trivial. Essentially, all you have to do is build a .NET class and mark the members
you want to be usable as a Web Service with the <WebMethod()> attribute. As a simple
example, suppose we want to build a Web Service that can expose weather data.

To follow along with us, simply start up a new Web Service project by choosing
ASP .NET Web Service in the New Project dialog box. The screen is shown in
Figure 12-3.

Double-click on the designer and notice the code behind starts out by
displaying:

Public Class Service1

 Inherits System.Web.Services.WebService

because the System.Web.Services.WebService class is the base class for all .NET
Web Services. Through the magic of inheritance, you get all the functionality,
such as the Context property, which allows you to retrieve the http request that
was used to request your service via the Web.

NOTE More precisely, a Web Service is functionality exposed by a server that
can be called by a client using HTML, XML, and standard Web protocols.

NOTE Because we are not the weather service, we will simply hardwire example
text into the code as the value of a function we call GetWeather.

Chapter 12

456

Now add the following code right before the End Class statement:

<WebMethod()>Public Function GetWeather(ByVal City As String) As String

 Select Case City

 'get the weather for seattle

 Case "Seattle"

 Return "The current temperature is 64 degrees, and raining of course."

 Case Else

 Return "Can't find data for " & City & "."

 End Select

End Function

If you hit F5, the VS .NET IDE will automatically generate a Web page like the
one in Figure 12-4. This Web page tells us which Web Service we are supporting.

Figure 12-3. The IDE for a Web Service

A Brief Overview of ASP .NET

457457

Figure 12-4. The automatically generated discover page for a Web Service

NOTE Every time you build a Web Service, the VS .NET IDE automatically
generates an XML file that is written in the Web Services Descriptor Language
(WSDL). These files use XML to describe which services you are exposing.
(COM programmers should think of them as analogous to type libraries.) These
descriptor files can even be stored in repositories unattached to your site if you so
choose. You can control what the WSDL tells about your Web Service by working
with the .vsdisco file that is automatically generated. Figure 12-4 is generated
from the WSDL code.

Chapter 12

458

Client-Side Use of a Web Service

If you click on the GetWeather link in Figure 12-4, you are taken to a page that looks
like Figure 12-5. This page contains the code you can use to access this Web Ser-
vice. The first item listed in the figure describes how to use the XML-based SOAP
protocol, which is the most flexible protocol, although it is also somewhat compli-
cated to implement. The simplest way to use this Web Service is to use a simple
HTTP GET whose prototype code looks like this:

/WebService1/Service1.asmx/GetWeather?city=string HTTP/1.1

Host: LocalHost

Figure 12-5. The simplest way to use our Web Service

A Brief Overview of ASP .NET

459459

For example, if you type Seattle into the textbox and click on the Invoke
button, you will see something like Figure 12-6.

Notice that the result is XML, so you can easily write code to parse it. Finally,
notice that the automatically generated code shows you how to programmatically
access Web functionality away from the IDE. All you need to do is to generate the
correct GET or SOAP request. Here is how to generate the GET programmatically
with a simple console application that uses the WebRequest and WebResponse classes
in System.Net to send the correct GET request:

1 Imports System.Net

2 Imports System.IO

3 Module Module1

4 Sub Main()

5 Dim myResponse As WebResponse

6 Try

7 Dim myWebServiceRequest As WebRequest

8 myWebServiceRequest = WebRequest.Create _

9 ("http://localhost/WebService1/Service1.asmx/GetWeather?city=Seattle")

10 myResponse = _

11 myWebServiceRequest.GetResponse()

12 Dim theAnswer As String

13 Dim aStream As New StreamReader(myResponse.GetResponseStream)

14 theAnswer = aStream.ReadToEnd

15 MsgBox(theAnswer)

Figure 12-6. The results of using our simple Web Service

Chapter 12

460

16 Catch e As Exception

17 Console.WriteLine(e.Message)

18 Finally

19 myResponse.Close()

20 End Try

21 End Sub

22 End Module

Line 8 (which continues onto line 9) is the key. We simply send the correct
GET string to the server. The result, as you saw in Chapter 9, is a stream that we
pipe into a StreamReader (line 13). Line 14 picks up all the text in the stream. Line
19 closes the HTTP request to release any resources we were using. (By the way, if
you are wondering why we declared the myResponse variable in line 5, it is because
declaring it in the Try block in lines 6–15 would have made it invisible to the Finally
clause.) The result of this little program is shown in Figure 12-7.

Generating a SOAP request by hand is not something that one would really do
willingly. Instead, you have two choices, choose Project|Add Web Reference or use
a command line tool called wsdl.exe, which is supplied with the .NET Framework.
Both give you the same result: a proxy class that you can code against.

We find the command line tool a little more flexible. In our case, the command
line call to use this tool looks like this (we broke it up into two lines but you need
to type it on one):

"C:\Program Files\Microsoft.NET\FrameworkSDK\Bin\wsdl” /language:VB"

http://localhost/WebService1/Service1.asmx?wsdl

Using this tool with the /language switch set to VB generates the code for a VB
proxy class with the name Service1.vb, which by default is stored in the same
directory as wsdl.exe. (Use the out flag to change the output directory.) The working
parts of the proxy class look like this with the key lines in bold:

Figure 12-7. Result of calling a simple Web Service via a GET

A Brief Overview of ASP .NET

461461

Option Strict Off

Option Explicit On

Imports System

Imports System.Diagnostics

Imports System.Web.Services

Imports System.Web.Services.Protocols

Imports System.Xml.Serialization

'This source code was auto-generated by wsdl, Version=1.0.2914.16.

<System.Web.Services.WebServiceBindingAttribute(Name:="Service1Soap",

[Namespace]:="http://tempuri.org/")> _

Public Class Service1

 Inherits System.Web.Services.Protocols.SoapHttpClientProtocol

 <System.Diagnostics.DebuggerStepThroughAttribute()> _

 Public Sub New()

 MyBase.New

 Me.Url = "http://localhost/WebService1/Service1.asmx"

 End Sub

 <System.Diagnostics.DebuggerStepThroughAttribute(), _

System.Web.Services.Protocols.SoapDocumentMethodAttribute _

("http://tempuri.org/GetWeather", _

Use:=System.Web.Services.Description.SoapBindingUse.Literal, _

ParameterStyle:=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)> _

 Public Function GetWeather(ByVal city As String) As String

 Dim results() As Object = Me.Invoke("GetWeather", New Object() {city})

 Return CType(results(0),String)

 End Function

 <System.Diagnostics.DebuggerStepThroughAttribute()> _

 Public Function BeginGetWeather(ByVal city As String, ByVal callback As

System.AsyncCallback, ByVal asyncState As Object) As System.IAsyncResult

 Return Me.BeginInvoke("GetWeather", New Object() {city}, callback, asyncState)

 End Function

 <System.Diagnostics.DebuggerStepThroughAttribute()> _

 Public Function EndGetWeather(ByVal asyncResult As System.IAsyncResult) As

String

 Dim results() As Object = Me.EndInvoke(asyncResult)

 Return CType(results(0),String)

 End Function

End Class

At this point, you can add or reference this class in your project and add refer-
ences to the System.Web, System.XML, and System.Web.Services assemblies. Once
you do this, you can make objects from this proxy class. Once you have an
instance of this proxy class, just call the GetWeather function!

Chapter 12

462

Finally, we want to end this chapter by pointing out that now that you know
how to grab the result of a Web Service request, we hope that it is an easy step to
imagine:

• Aggregating the results of many Web Service calls into one file.

• Applying a custom XSL transform against the result to generate a new page
of HTML whose data is based on the services exposed by multiple sites.

This is precisely the vision that Microsoft is pushing: an interconnected world
where you can mine data stored on the Web almost effortlessly.

463

CHAPTER 13

.NET Assemblies,
Deployment, and
COM Interop

IT SEEMS TO US THAT the right way to end the book is to explain a little bit more
about deployment and the use of the existing legacy, Component Object Model
(COM) code. It is possible to write a whole book on these topics but we hope this
short survey is enough to get you started!

For most .NET applications you build, deploying it can be as simple as copying
the directory that contains the files for the applications to any user’s machine that
has the .NET runtime installed. The user can just double-click on the .exe filename
in Explorer to run the program.

Still, there are times even under .NET when this kind of XCopy deployment of
an application will not work and using a Wizard is too restrictive. To go further
with .NET deployment you have to have an idea of what goes on under the hood
in .NET assemblies. This is because .NET applications are ultimately packaged for
deployment using assemblies.

Many applications you deploy will use traditional COM objects for at least
some of their work, so we also want to explain briefly how you can use COM
objects under .NET.1 And since .NET was developed in part in an attempt to make

1. You can actually use .NET objects under COM as well but we find that combination strange
at best.

TIP By choosing Setup and Deployment Projects in the New Project dialog box
you will have access to some pretty sophisticated installation options. The Setup
Wizard option is both powerful enough for most situations and ridiculously easy
to use.

Chapter 13

464

a better COM, we will start with a brief overview of how COM works and what its
problems are.2

How COM Works

COM makes it easier to create software that is compatible across various versions
of the Windows platform in a more or less language-independent way. COM com-
ponents can be created in languages including plain vanilla C (if you are a
masochist), C++, Delphi, and VB5 and 6. COM allows objects such as VB OCX controls
to be created with packaged functionality in a wildly successful way.

COM was introduced as a way for software components to discover the capa-
bilities of other components and then request services from them without ever
having to worry about implementation details.3 It did this by coming up with a
standard way for components to discover the interfaces that the other components
supported, along with a standardized way to call the specific implementation of
an interface inside an object instance.

However, COM has its problems. First, COM as implemented in Windows
requires the Registry to hold pretty much all of the information about all of the
components on a system. You have to register components in order to install
programs and unregister them to remove the programs. When you try to uninstall a
program, you run the risk that the changes the uninstaller might make to the Registry
might affect lots of other programs. If you trash the Registry, nothing works. Also, if
someone registers a different version of the component, it can (and way too often did)
break programs that depend on earlier versions of the component.

2. VB programmers who want more information on COM should run, not walk, to their bookstore
and buy a copy of Dan Appleman’s book Dan Appleman's Developing COM/ActiveX Components
with Visual Basic 6 from Sams.

3. Although many competing approaches to discovering and reusing code such as CORBA were
attempted, COM was the most successful by far.

NOTE Windows 98 introduced the idea of side-by-side execution, which meant
that an application could use a local copy of a COM component in the application’s
directory instead of one that was already registered. It is fair to say, however, that
side-by-side execution never really took off as a solution to DLL hell. (And in any
case, it works only under Windows 98, 2000, and XP—and only if the vendor
takes extra care.)

.NET Assemblies, Deployment, and COM Interop

465465

Still, it is worth going a little deeper into what happens at the Registry level
when you register a COM component:

1. The developer creates a Globally Unique Identifier (GUID) for
the component.

2. The developer creates a Programmatic Identifier (ProgID) for
the component.

3. A registration tool associates the component’s ProgID with its GUID by
putting an entry in the Registry.

4. The registration tool lists the full path of the binary file that implements
the component into the Registry and also associates it with the compo-
nent’s GUID.

5. The registration tool can put additional information about the component
in the Registry, such as the component’s threading model.

Now consider what happens when someone wants to use the component:

1. The application developer creates an instance of the component using
the ProgID.

2. COM looks up the GUID for the component in the Registry.

3. COM finds the binary file that implements the component.

4. COM creates an instance of the component.

Although this is a lot of work, the problems really arise when a new version of the
binary file that implements the component somehow gets copied onto a system
without the Registry being updated, or if you change the GUID for the ProgID. Your
previously working application just stops. This is because COM installation is ulti-
mately order-dependent and has no good way to version its components.

.NET Assemblies

One of the marketing phrases for .NET is XCopy deployment which, as we mentioned
in the introduction to this chapter, is a fancy way of saying you simply copy files
and the program runs. Delete the files and only that program stops working.
There are no Registry entries and no dependencies. To make XCopy deployment

Chapter 13

466

work .NET uses the idea of an assembly to make programs self-contained and
self-describing.

Technically, an assembly in .NET is nothing more the smallest deployable unit
of code in .NET.4 An assembly will function either as a standalone EXE or as a DLL
you can reference and use in other .NET applications. But an assembly contains a
lot more than MSIL code that will be compiled and run by the .NET runtime. At its
absolute minimum, an assembly is one or more modules and classes compiled
into MSIL and metadata (or data about data5) that describes the assembly itself,
as well as the functionality of the classes in the assembly. The metadata contained
in an assembly is why the documentation says assemblies are self-describing.
Often, an assembly will be a single file, but assemblies can be made up of several
files. For example, an assembly can contain resource files or images. An assembly
can even span multiple EXEs and DLLs. In any case, an assembly is the smallest
.NET object where you can define types, do versioning, or set permissions.6

Assemblies are either private or shared. Private assemblies are always located
in either the application’s directory or a subdirectory. Shared assemblies are more
complicated, and are stored in the global assembly cache (GAC). We discuss pri-
vate assemblies first because they are the default for solutions built into the VS
.NET IDE. Shared assemblies are quite a bit more complicated, and we survey
them later in this chapter.

Generally speaking, private assemblies have much better versioning but can
require more hard disk space to deploy if you end up having multiple copies of
files sitting in different directories.7 When you reference an assembly using
Project|Add Reference, by default you get a copy in your own application directory
as a private assembly! We recommend that you use private assemblies in most cases.

4. Assemblies have nothing to do with assembly language.

5. As best we can tell, the prefix meta for this kind of second order abstraction comes from
metamathematics, which is an area of mathematics that talks about mathematics objects
themselves.

6. As we write this, VS .NET can only create single file assemblies.

7. Hard disk space is so cheap that we think the convenience of using private assemblies is
worth the wasted space.

NOTE Most of the time, you will create single file assemblies that will reside in a
single DLL or EXE file.6

.NET Assemblies, Deployment, and COM Interop

467467

The Manifest

An assembly is a potentially complicated beast. Therefore, an assembly contains a
manifest, which contains all the information the CLR needs to know about the
assembly. The manifest is what gives the runtime (CLR) the information it needs
to load, compile (if necessary), and run the assembly. The manifest includes:

• Information needed to locate the code upon which the assembly depends

• The names of all of the files that make up the assembly

• The names and metadata of all assemblies and files on which the current
assembly depends

• Version information for the assembly

• Type information that the runtime uses to export types from the assembly
(much like the information found in a COM type library)

The manifest is what ultimately makes it possible for an assembly to be made
up of multiple files. The manifest also takes the place of a complicated registry-
based deployment system. The first window you have into an assembly and its
manifest is the AssemblyInfo.vb file, which you can look at by double-clicking on
it in VS .NET's Solution Explorer. As you can see in the following code, this text file
contains numerous attributes, such as company name, which you can customize
directly. (You can also usually set these via dialog boxes in the various project
Property dialog boxes in the IDE.)

NOTE Assemblies can also be controlled by an XML-based config file. This file must
be in the same directory as the entry point for the assembly. The config file can be
used to control permissions, search directories for dependent DLLs, as well as search
pretty for much any information needed for loading of the assembly. Consult
Andrew Troelsen’s book, VB .NET and the .NET Platform (Apress, 2002. ISBN:
1-893115-26-7) for more on using a config file, or check the online documentation.

Chapter 13

468

Imports System.Reflection

Imports System.Runtime.InteropServices

' General Information about an assembly is controlled through the following

' set of attributes. Change these attribute values to modify the information

' associated with an assembly.

' Review the values of the assembly attributes

<Assembly: AssemblyTitle("Sample")>

<Assembly: AssemblyDescription("")>

<Assembly: AssemblyCompany("Apress")>

<Assembly: AssemblyProduct("")>

<Assembly: AssemblyCopyright("2001")>

<Assembly: AssemblyTrademark("")>

<Assembly: CLSCompliant(True)>

'The following GUID is for the ID of the typelib if this project is exposed to COM

<Assembly: Guid("5D7BAFDE-EACA-4653-9C55-BA619E13D447")>

' Version information for an assembly consists of the following four values:

'

' Major Version

' Minor Version

' Build Number

' Revision

'

' You can specify all the values or you can default the Build and Revision Numbers

' by using the '*' as shown below:

<Assembly: AssemblyVersion("1.0.*")>

The ILDASM program found in the SDK’s \bin directory is a useful tool that
you can use to drill down into an assembly and its manifest. Figure 13-1 shows
you what you get running ILDASM on the Employee program from Chapter 4.

NOTE If you set these properties and then build the assembly you can see this
information from Windows Explorer. For this, right-click on the EXE in Windows
Explorer, choose Properties from the context menu, and go to the Version tab.

.NET Assemblies, Deployment, and COM Interop

469469

Drilling Down into a Manifest

If you double-click on the line marked Manifest in Figure 13-1, you should see
something similar to Figure 13-2. Notice how all the assemblies on which this
application depends are here, as well as description of the employee class.

An assembly manifest always has two required pieces. You can see these
toward the bottom of Figure 13-2. The required pieces are the:

• Assembly name

• Major and minor version numbers

Figure 13-1. ILDASM at work

Chapter 13

470

The assembly name is any legal filename. You usually set this by choosing
Project Properties and then working with the General Property page under
Common Properties.

The major, minor, revision, and build numbers are stored in the form:

<MajorVersion>.<MinorVersion>.<RevisionNumber>.<BuildNumber>.

You can set these directly in the AssemblyInfo.vb file. To activate the autoin-
crement, feature, leave the version as x.y.*, where the * indicates to VS that it
should generate the build and revision number automatically.

Figure 13-2. The manifest for the employee class

NOTE Version checking is not done on private assemblies, only on
shared assemblies.

.NET Assemblies, Deployment, and COM Interop

471471

Two optional pieces that many assemblies have that are also stored in the
Manifest are the:

• Culture of the assembly

• Strong name information

The culture of an assembly is information about the locales that the assembly
supports. Note that locales are not languages. For example, both Britain and the
U.S. use English, but they have different cultures in both a real and a .NET sense,
and an assembly can be set to reflect these differences. (For example, differences
in how dates or currency are displayed.)

Think of a strong name as roughly equivalent to a GUID, although it is quite a
bit more sophisticated. They are only required if the assembly is going to be shared.
We explain more about strong names in the following section.

...

Multiple File Assemblies

As we write this, no development environment supports creating assemblies
with multiple file assemblies. If you want to create them, you will have to consult
the documentation and then use the appropriate .NET SDK utilities. All of the
.NET command line compilers are capable of creating multiple file assemblies.
Although we will not cover multiple file assemblies in this book, we do want to
point out one cool thing about them: multiple file assemblies can still work via
XCopy deployment, only you do not have to load all of the files in the assembly
onto the end user’s computer at the same time—you can actually load compo-
nents as they are needed. This makes them potentially very useful for Internet-
based deployment, where bandwidth is an issue. For example, in a multiple file
assembly, you could delay the download of the Help file component until the

...

user asks for help.

Shared Assemblies and the GAC

The GAC (Global Assembly Cache) is where shared .NET assemblies live. It has the
advantage of saving both hard disk space and real memory, because only one
copy needs to be stored on the disk or in memory at runtime. This sharing of
course can potentially lead to some of the disadvantages of the old registry-based
solution to sharing DLLs. Luckily, the versioning capabilities of .NET mean that
you can have multiple copies of different versions of the same assembly in the

Chapter 13

472

GAC, and each application will use the correct one. We strongly suggest not using
the GAC unless you absolutely must. The GAC is best used for those assemblies
that either:

• Absolutely must be shared amongst several applications; yet for space
reasons, keeping multiple local copies is impractical, or

• Need special protection (because only administrators can remove
assemblies from the GAC).

The GAC, as its name suggests, is essentially a cache of the currently loaded
and shared assemblies. You can view a list of assemblies in the GAC by using the
gacutil.exe program found in the \bin directory of the .NET SDK. The command
line is:

gacutil.exe –l

Here is the beginning of the GAC list on one of our boxes (it is actually quite
large, even at this stage of .NET it runs to around three pages):

Microsoft (R) .NET Global Assembly Cache Utility. Version 1.0.2914.16

Copyright (C) Microsoft Corp. 1998-2001. All rights reserved.

The Global Assembly Cache contains the following assemblies:

 Accessibility, Version=1.0.2411.0, Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a, Custom=null

 ADODB, Version=2.7.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a,

Custom=null

 CRVsPackageLib, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=4f3430cff154c24c, Custom=null

 CrystalDecisions.CrystalReports.Engine, Version=9.1.0.0, Culture=neutral,

PublicKeyToken=4f3430cff154c24c, Custom=null

Versioning is much more important for GAC assemblies than for private
assemblies, and you can see the version number indicated in the GAC. Reading
from right to left, the last of the four numbers in the version number is for daily
builds, which are assumed to be nonbreaking changes. Next is a revision number
change, which presumably is used to indicate a larger change than a build change.
This number is also presumed to be nonbreaking. The next two numbers are for
minor and major changes, and both are presumed to be breaking. What all this
means is that if you request version 2.0.0.0 and the GAC has version 2.5.0.0 only,
your program will not run unless you override this with a config file.8 On the other

8. See Andrew Troelsen’s, VB .NET and the .NET Platform (Apress, 2002. ISBN: 1-893115-26-7),
for more on how to do this.

.NET Assemblies, Deployment, and COM Interop

473473

hand, a version 2.0.0/37 is assumed to be compatible with a version 2.0.0.0 and
will be loaded.

Adding and Removing Assemblies from the GAC

The best way to add an assembly to the GAC when you deploy a shared assembly
is to use a GAC-friendly installer such as the latest version of the Microsoft
Installer (MSI) package. Explaining the installer is beyond the scope of this book
but we do want to point out it is a free download from Microsoft’s MSDN site
(http://msdn.microsoft.com/).

During development, however, you will usually not use an installer but
gacutil instead. The syntax is

gacutil –i <assembly_name>

This will add the named assembly to the GAC.

Strong Names = Shared Names

A strong name, such as a GUID, is supposed to be a name that is unique throughout
all space and time. Unlike GUIDs, which in theory can be stolen, strong names
use public key cryptography to ensure9 that the strong name is secure from
spoofing. The math behind a specific version of public key cryptography (PKC)
can be pretty sophisticated, but the idea behind basic public key cryptography is
actually pretty simple.10

Although there are many forms of public key cryptography, they each depend
on the fact that in certain circumstances getting the parts from the whole can be
really, really difficult.

9. Well, as long as you keep the private key secure.

10. Look at the end of the book The Code Book : The Science of Secrecy from Ancient Egypt to
Quantum Cryptography by Simon Singh for a popular account. If you know C, you can look at
the book Cryptography in C and C++ by Michael Welschenbach (Apress, 2001. ISBN: 1-893115-
95-X) for implementations and details on, for example, the RSA algorithm, which was recently
released from patent protection and is among the most popular public key systems.

NOTE Only strongly named assemblies (see following section on “Strong Names
= Shared Names”) can be added to the GAC. This is because the GAC can have
two different versions of the same assembly stored. The strong name is what
helps the GAC differentiate between the two versions.

Chapter 13

474

More precisely, they all depend on trap door functions. With these functions,
it is easy to go one direction but really hard to go back (as with an ordinary trap
door), at least without special knowledge. For example, with current knowledge it is
really easy to multiply two large integers together to make a really big number; but
once you have the really big number, getting the two pieces that were multiplied
together is practically impossible, unless you know one of the pieces (factors).11 The
trap door is sprung after the multiplication is done.

All versions of PKC have the keys coming in pairs, one public and one private.
The public key can be made public because without knowledge of the private key,
you cannot undo the encryption done with the private key to encrypt in a reasonable
amount of time. For example, you can sign and verify data by applying your private
key to the data in your manifest. Others can then use the public key to verify that
you are the source of the assembly provided. And, through something like Verisign,
they even have a way of knowing that the public key belongs to you and not to
someone else. (PKC can protect the integrity of data, but an external agency is
needed to verify from whom the public key comes from.)

Generating a Key Pair

In .NET you do not have to worry about which PKC algorithm others choose.12

You most often get a public and private key pair using the sn.exe (sn =strong
name) utility that comes with the .NET SDK.

11. This is the basis of RSA, the popular public key algorithm. RSA also depends on raising numbers
to a power and a few other bits of number theory, because multiplication alone is not secure. (You
can always get the first factor from the second factor and the answer by dividing.)

12. It seems to be a version of the industry standard (and now off patent) RSA algorithm
(www.rsa.com).

NOTE Actually, what goes on under the hood is that .NET calculates a number
(called a hash) in a standard way from all the information in your assembly. It
then applies the private key you generated to that hash number to obtain an
encrypted hash. Since the point of PKC is to allow the reversal of encryption
using the opposite key, the published public key can then be used to decrypt the
encrypted hash to get back the original hash. The final step is to recompute the
hash from the information contained in the manifest to see if the numbers
match. If they do not then .NET knows the files have been tampered with and
will not load the assembly.

.NET Assemblies, Deployment, and COM Interop

475475

The keys are stored in a binary file. The command line syntax to generate the
pair is:

sn –k <filename>

These files should have a .snk extension, so we created a key pair with the following
command line:

sn –k c:\keys\pair.snk

which creates a file like the one shown in Figure 13-3. As you can see, this file is
basically unreadable (although at the very top you can see the cursor pointing to the
keyword RSA, which probably indicates that RSA is the algorithm used). In any case,
the .snk file does contain a private and public key pair.

Figure 13-3. A public and private key .snk file

Chapter 13

476

Signing an Assembly

Once you have a public and private key pair in the form of a .snk file, you can sign
your assembly using the private key. When you do this, .NET will essentially publish
the public key13 in the assembly manifest and use your private key to create a
hash from all the information in the assembly and then publish that. This creates
a way for other assemblies that use our code to verify that they are getting exactly
what they expect, and that no one has tampered with the assembly. This is done
by applying the public key to the encrypted hash and checking the result against
what the manifest is advertising.

To sign an assembly, use the AssemblyKeyFileAttribute attribute in your source
code with the name of the .snk file after any imports, or use the Sharing tab in
Project Settings dialog box. Here is an example:

Imports System.Reflection

<Assembly: AssemblyKeyFileAttribute("c:\keys\pair.snk")> \

COM Interoperability and Native DLL Function Calls

Legacy COM code is not going away and luckily the interoperability layer for COM
code works very well. Using it can cause both performance and maintenance
problems so we do not think you will want to mix legacy COM code into a .NET

13. Actually, what it publishes is a hashed version of it which .NET calls the public key token.
It uses a hashed version to save space presumably, although we think they should simply
publish the public key.

NOTE You can also use the VS .NET IDE to generate a .snk file by looking under
Strong Name in the Project Properties dialog box, but most people prefer to generate
keys as a separate process done only under tight security. You must keep the .snk
file secure from unauthorized access; the private key must remain unknown or it
is useless. (The IDE suggests using a Key Container to avoid having the .snk file
as part of your project.)

CAUTION Many companies do not give people access to their private key, so
.NET has a way to delay signing assemblies to allow for this. (For more on this
please see the documentation.)

.NET Assemblies, Deployment, and COM Interop

477477

application unless you have to! Still, COM interoperability is almost automatic in
Visual Studio .NET. Simply choose COM objects from the COM tab in the References
dialog box, and this will allow you to treat COM objects as if they were .NET
classes. The IDE does this by reading the COM type library, and then creating a
.NET wrapper class. The wrapper class exposes as public members all the public
members of the COM object, and IntelliSense will work on objects you instantiate
from these wrappers.

DLL Function Calls

Although you can still use the older Declare syntax to use functions in a DLL, the
preferred way in .NET is to use the DllImport attribute since it allows you to create
shared entry points. To use the DllImport attribute, define an empty function that
has the signature of the API that you want to call. Here is an example of how to use
the DllImport attribute:

Imports System.Drawing

Imports System.Runtime.InteropServices

Module Module1

 'import the CreateDC function from the Win32 API

 <DllImport("gdi32.dll")> Public Function CreateDC(ByVal strDriver As String, _

 ByVal strDeviceName As String, _

 ByVal strOutput As String, _

 ByVal nullDEVICE As Integer _

) As IntPtr

 End Function

 Sub Main()

 'create a rectangle

 Dim rctWindow As Rectangle = New Rectangle(100, 100, 200, 200)

 Dim penBlack As Pen = New Pen(Color.Black)

 penBlack.Brush = Brushes.DarkKhaki

 Dim grfx As Graphics

 Dim hDC As IntPtr = CreateDC("DISPLAY", vbNullString, _

NOTE The tlbimp.exe tool that ships with the .NET SDK also creates this wrap-
per class for you. This is useful if you want to create a bunch of .NET wrappers
via a script at one time for future use.

Chapter 13

478

vbNullString, vbNullString)

 grfx = Graphics.FromHdc(hDC)

 Do While (True)

 grfx.FillRectangle(penBlack.Brush, rctWindow)

 System.Threading.Thread.Sleep(0)

 Loop

 End Sub

End Module

The other main difference between using DllImport and the Declare keyword
is that with DllImport, you have finer control over certain parts of the call. For
instance, you can pass the calling convention that you want to use when you call
the function, and you can control the character set that is used to marshal strings
to the function.

479

Index

Symbols
" " (double quotes)

for Character data type, 59

assigning strings to variables with, 64

" (quotation marks), purpose of, 52

$ (dollar sign), identifying string variables with, 64

& (ampersand), concatenating strings with, 64

' (single quotation mark)

using with comments, 52

 () (parentheses)

and precedence, 72–73

using with nonempty parameter lists, 89

* (asterisk)

as multiplication operator, 69–70

setting authorization in Web.config file with, 453

using with assemblies, 470

+ (addition) operator, 69, 167

+ (plus sign) next to code lines, 21, 64

, (comma), separating named arguments with, 94

- (subtraction) operator, 69

... (ellipses) after code lines, 21

. (period)

accessing IntelliSense feature with, 19

purpose of, 50

using at end of string variables, 115

using with namespaces, 168–169

using with object variables, 135

/ (division) operator, 69–71

: (colon), combining statements on one line with, 52

:= (colon plus equals sign), using with named
arguments, 93–94

< (less than) relational operator, 78

<= (less than or equal to) relational operator, 78

<> (not equal to) relational operator, 78

= (equal sign)

performing variable name assignments with,
53

role in declaring variables, 59

> (greater-than)

relational operator, 78

typing in Command window, 27–28

>= (greater than or equal to) relational operator, 78

@ (at sign), role in performing numeric
conversions, 63

[] (brackets), using with variable names, 53

\ (integer division) operator, 69–70, 72

^ (exponentiation) operator, 69

_ (underscore) character

in automatically generated code, 244–245

beginning variable names with, 52

extending lines with, 52

A
Abort() method, advisory about, 393

Abs math function, 74

abstract base classes, 195–201

abstraction in OOP, 103

access control attributes

instancing and, 143–144

public keyword as, 141

Acos math function, 74

Activate event, change to, 294

Add As Integer() method of IList interface, 229

Add() method

of ArrayList collection class, 129

in Hashtable collection class, 132

of IDictionary interface, 231

role in CollectionBase class, 200

AddHandler keyword, adding listening classes to
event handlers with, 250–251

addition (+) operator, 69, 167

AddRange member of ArrayList collection class, 129

ADO .NET. See also database entries

versus ADO++, 423–424

using disconnected data sets with, 424–425

aFileStream object, passing into BinaryWriter
constructor, 356

Index

480

aggregation, using with method delegation,
102–103

albums database, retrieving from, 430

Align property versus Dock property, 285

aLink variable, debugging, 174–175

Amazon.com screen scraping example, 370–375

ampersand (&), concatenating strings with, 64

Analyze helper function, parsing strings with,
372–373

Anchor property, using with Windows Form,
284–286

And keyword, combining conditions in loops
with, 79

AndAlso keyword, role in short circuiting, 81

apartment threading in VB5, 379

Append FileMode enum member, 351

application domains and threads, 382

arguments, using procedures with, 93–94

arithmetic operators, 69–72

array list of persistent employees, 365–370

ArrayList collection class, 128–131

capturing text in, 361

default property of, 130

Item property of, 130

members of, 129–130

using in Java, 162

ArrayList.Sort, sorting multiple orders with,
234–235

arrays, 84–86

with multiple dimensions, 87

passing to procedures by value, 138–139

serializing, 362–363

using with functions and procedures, 92

Array.Sort, sorting multiple orders with, 234–235

As keyword, role in declaring variables, 59

Asc string function, 65

Asin math function, 74

ASP .NET

authentication schemes for, 453–454

client-side use of Web services in, 458–462

code behind feature of, 446

creating simple Web service with, 455–462

history of, 443–444

maintaining state with, 449

managing clients with, 448–450

sample Web application, 444–454

<asp: prefix before ASP .NET controls, 446

assemblies in .NET, 466–471

adding to GAC, 473

listing, 26

performing version checking on, 470

removing from GAC, 473

signing, 476

assembly cultures, 471

assignment statements, shortcuts for combining
operations with, 72–73

assignments, performing for variable names, 53

asterisk (*)

setting authorization in Web.config file
with, 453

using with assemblies, 470

asynchronous calls, using with multithreading, 397

at sign (@), role in performing numeric
conversions, 63

Atan math function, 74

atomicity, resolving race conditions with, 401

Attributes property of FileSystemInfo base
class, 345

authentication schemes for ASP .NET Web
applications, 453–454

automatic garbage collection, 160–161

AutoRedraw property, advisory about, 318–319

AutoScroll property,

for creating scrolling forms, 315–316

B
background threads, 394. See also threads

BadDataEntered event, raising, 309–310

base classes in OOP, 104–105, 180

Batch Build feature, performing multiple
compilations with, 36–38

behavior, determining for objects, 109–110

bin subdirectory in vb_ide_01 sample solution, 28

binary data

getting in and out of streams, 355–358

reading with PeekChar() method, 357

writing to files, 351–352

binary digits, using logical operators with, 83–84

binary file, viewing in hex, 356–357

Index

481481

BinaryReader and BinaryWriter classes, 355–358

BinarySearch member of ArrayList collection
class, 129

bit level, using logical operators on, 83

BitArray collection class, 128

black box reuse in objects, 215

book updates, registering for, 39

Boolean data type, 58–59

Boolean functions, using with object variables, 201

Bounds property, 293, 329

brackets ([]), using with variable names, 53

break mode, activating Threads window in, 390

breakpoints, adding for debugging, 173, 175

BringToFront() method, 294

Browsable attribute, viewing custom properties
with, 311

btnQuery_Click() in frmResults form, 436–439

BufferedStream class derived from Stream
class, 349

build errors, displaying, 35–36

build options, 38–39

Build Solution feature, performing multiple
compilations with, 36–38

builds

displaying directory structure after, 40

output of, 35

performing, 36–38

buttons in forms

adding to labels with ASP .NET, 444

adding at run time, 304

advisory about, 9–11

disabling, 418–419

byte primitive numeric type, 55, 61, 353

C
C# versus VB .NET, 11

CalculateFICA shared member in Employee
class, 157–158

calculator, docking group boxes in, 285–286

Call keyword, using with Sub calls, 91

callback notification scheme, 238–239

callbacks and delegates, 254–255

camel casing, 52-53

Cancel button, troubleshooting in GUI
programs, 418

CanRead property of Stream class, 348

CanSeek property of Stream class, 348

CanWrite property of Stream class, 348

Capacity member of ArrayList collection class, 129

capacity of StringBuilder class, 116

capitalization, 52

cast functions for conversions, 62

Catch blocks, matching, 270–271

Catch clauses, 269–272

Catch e As Exception, advisory about, 271

Catch section of Try block, purpose of, 268

C* conversion functions, 62

Ceiling math function, 74

Celsius to Fahrenheit converter, 63

Changed File System Monitor event, 376

ChangeExtension() member of Path class, 336

Char data type, 59, 63

characters, getting or setting in StringBuilder
class, 117

Chars string() method, 66

child class variables, storing in parent class
variables, 190

child classes in OOP, 104–105

assigning constructors to, 180

inheriting parent classes from, 180

using protected access modifiers with, 182

Chr string function, 65

CInt conversion function, 62

circular references, 8, 161

class definitions, nesting, 152–154

class members. See shared members

Class View window, sorting information in,
169–170

Class_Initialize event versus New() method, 158

classes

access constants in, 157

adding custom properties to, 310–312

adding default properties to, 149

advisory about testing of, 140

building, 140–144

building functionality into, 113

describing relationships between, 109

finding and documenting in programs, 109

locating in OOP, 108

managing in OOP, 102

as methods, 50

Index

482

namespaces for, 168–169

in OOP, 101

relationship to OOP, 98

relationships between, 101–103

shared data and shared members inside of,
155–157

shared members belonging to, 157–158

as user-defined types, 99–101

Clear member of ArrayList collection class, 129

Clear() method

in Hashtable collection class, 132

of IDictionary interface, 231

of IList interface, 229

Click event procedure, adding code with ASP
.NET, 446

click events, connecting with Menu Editor, 297

client-side use of ASP .NET Web services,
458–462

clients, managing with ASP .NET, 448–450

ClientSize property, accessing usable form area
with, 293

Clipboard Ring, 22

CLng conversion function, 62

clone,

definition of, 206

subtleties of, 209-211

using Serialization to do, 365

Close member

of TextReader class, 358

of TextWriter class, 358

Close() method, 294, 349

of FileStream class, 354

of Stream class, 348

Closing event, 294

CLR (Common Language Runtime), 6

code

collapsing to view headers only, 21

managed versus unmanaged, 45

timing, 119

code behind feature of ASP .NET, 446

code comparisons, making case insensitive, 78

code editor, 19–21

code fragments, storing, 22

code in ASP .NET, running on server, 445

code lines

extending, 52

labeling for use with GoTo control structure,
82–83

collection classes, 127–133, 226

CollectionBase class, 199–201

collections, 225

colon (:), combining statements on one line
with, 52

colon plus equals sign (:=), using with named
arguments, 93–94

Color property of PageSettings, 329

ColorDialog box, 301

COM (Component Object Model), fundamentals
of, 464–465

COM components, using in .NET apps, 26

COM interoperability and native DLL function
calls, 476–478

comma (,), separating named arguments with, 94

Command window, 27–28

commands

copying into current action lines, 28

navigating, 28

Comment Block tool, 19

comments

indicating, 52

listing special keywords in, 23–24

CommonDialog class, 301

Compare() methods, performing special sorts
with, 258

Compare string() method, 66

CompareTo member of IComparable interface,
232

compilation options, determining, 38–39

compiler, availability of, 5

compiling projects, 34–40

complex numbers, creating structure type for,
166–167

Component class in System.Windows.Forms
assembly, 314

Components tab, adding custom controls to, 308

condition variables, checking with threads, 392

conditionals, making decisions with, 79–80

conditions, combining in loops, 79

configuration files for sample ASP .NET Web
application, 451–454

Index

483483

Console applications, 14, 48–51

Console.In and Console.Out classes, 359

constants, 75

accessing in classes, 157

using enum value types with, 163–164

using with String class, 115–119

constructors, 147–148. See also shared
constructors

for child classes, 180, 182-183

defining for LinkedList class, 154

defining to create instances of classes, 142

for FileStream class, 350

New() method as, 111

overloading, 147–148

parameterized type of, 114

privatizing, 159

of StringBuilder class, 116

consumer idiom, pseudo code for, 411–413

Container property, change to, 294

containers, filling with controls, 285

containment relationship between classes in
OOP, 101–102

Contains As Boolean() method of IDictionary
interface, 229, 231

Contains member of ArrayList collection class, 129

ContainsKey() method in Hashtable collection
class, 132

ContainsValue() method in Hashtable collection
class, 132

context menus

accessing in Visual Studio .NET IDE, 17–18

managing, 297

context-sensitive help, obtaining, 15–16

Control class functionality, 316–318

Control class in System.Windows.Forms
assembly, 314

control inheritance, customizing controls with,
306–309

controls

adding at run time, 303–304

adding custom events to, 309–310

adding to Form window, 281-287

as classes, 281

customizing, 306–309

managing groups of, 284

repositioning and resizing, 283

using Anchor property with, 284–286

using Dock property with, 284–286

conversion functions, 62

Copy() method of File class, 339

Copy string() method, 66

CopyTo() method, 66

of ArrayList collection class, 129

of FileInfo class, 347

in Hashtable collection class, 132

of ICollection interface, 228

Cos math function, 74

cosmic base class, 201

Count() method

of ArrayList collection class, 129

of Hashtable collection class, 132

Count property of ICollection interface, 228

counters

decrementing in threads, 383–388

role in setting up determinate loops, 76

Create FileMode enum member, 351

Create member of FileInfo class, 347

Create property of DirectoryInfo class, 346

Created File System Monitor event, 376, 378

CreateDirectory() member of Directory class, 337

CreateNew FileMode enum member, 351

CreateSubdirectory() method of DirectoryInfo
class, 346

CreationTime property of FileSystemInfo base
class, 345

cryptography, using strong names with, 473–474

CryptoStream class derived from Stream class, 349

CSng conversion function, 62

CStr conversion function, 62

CType function

troubleshooting, 199

using with conversions of variable types, 219

cultures of assemblies in .NET, 471

Currency type versus Decimal type, 57

Cursor form element, 294

custom controls

adding to Components tab, 308

adding to Toolbox, 308–309

building, 306–309

custom events, adding to controls, 309–310

custom properties, adding to classes, 310–312

CustomEventArgExample class, 247–248

cut feature, accessing, 19

Index

484

D
daemon threads, 394

data

formatting, 68–69

getting random access to, 131–134

data bound controls, examining, 423

data hiding, 103–104

data structures

accessing with collection classes, 127–133

using nested classes with, 152

data types associated with literals, 54–58

database applications. See also ADO .NET

GUI example, 431–442

OLE DB example, 425–428

SQL Server example, 429–430

database connections, opening in Northwind
database, 427

databases, using disconnected data sets with,
424–425

Date data type, 59

date primitive numeric type, widening
conversions for, 56

DblClick event, change to, 294

Deactivate event, change to, 294

deadlocks, 404–410

analyzing, 409–410

avoiding in multithreaded code, 409

confirming in Threads window, 409

detecting, 405–408

deadly embrace. See deadlocks

Debug configuration option, 39–40

DEBUG constant, defining, 39

Debug Symbols, creating .pdb file with, 41

debug=false, setting in Web.config file, 453

debugging, 40–45

debugging tools, 170–175

Decimal type, 57, 63, 71

declarations, combining on single line, 60

default constructors, 147

default events, 310. See also events

default properties, uses of, 149

Deftype and DefInt statements, advisory about, 60

delegates. See also multicast delegates

advantages of, 257

building up, 255–257

and callbacks, 254–255

and events, 264

using with threads, 382

delegation processes, 7, 102

Delete () method

of Directory class, 337

of DirectoryInfo class, 346

of File class, 339

of FileInfo class, 347

of FileSystemInfo base class, 345

Deleted File System Monitor event, 376

derived classes, inheriting parent classes from,
180–181

deserialization of objects, 361, 364–365

designers, setting properties of, 25

determinate loops, setting up, 75–77

deterministic finalization, 160

dialog boxes, creating, 303

dialog forms and dialog boxes, 300–301

dictionaries, advisory about, 231

Dictionary data structure, 131

DictionaryBase collection class, 128

Dim keyword, role in declaring variables, 59

directories, listing, 336–337

Directory and DirectoryInfo classes, 334

Directory class, 336–338

members of, 337–338

using with FileSystemMonitor control, 377

Directory property of FileInfo class, 346

directory trees, working through recursively,
341–344

DirectoryInfo class, 340–341, 345–346

DirectoryInfo example

getting help for, 125–126

using Imports statement with, 123–124

DirectorySeparatorChar member of Path class, 335

disconnected data sets in ADO .NET, using with
databases, 424

Dispose() method, 160–161

role in simple drawing example, 320

using in Windows Form application, 290

using to throw exceptions, 272–273

division (/) operator, 69–71

DLL function calls, 477–478

DLL hell and versioning, 209–215

Index

485485

DLLs (dynamic link libraries), role in form
inheritance, 305

Dock property, using with Windows.Forms,
284–286

dollar sign ($), identifying string variables with, 64

double floating-point value type, 56

double quotes (" "), assigning strings to variables
with, 64

double values

returned by division (/) operator, 70–71

troubleshooting, 71

down casting, 193

drawing, 319, 320–325

DrawRectangle, 320–321

DrawString() method, displaying text with,
321–322

dynamic event handling, 249–253

dynamic help, obtaining, 15–16

E
Edit Names feature, using with context menu

items, 297

editor, obtaining help for, 21

ellipses (...) after code lines, 21

Else statements, 80

ElseIf statement, using with multiple Else
statements, 80

EmbeddedObjects class, adding methods for
cloning internal arrays, 224

Employee class

assigning consecutive ID numbers to
employees in, 155–157

defining, 141

implementing IEnumerable and
IComparable with, 232–234

overriding methods in, 185–186

raising events in, 241–242

using compiled form of, 210–211

using RaiseSalary() method in, 144–146

using ReadOnly keyword with, 142

employee ID, implementing, 155–157

employee list serialization example, 365–367

employee management system, handling
promotions with, 188

Employees collection, enumerable type of,
226–227

empty solutions, creating, 25

Empty() string method, 66

encapsulated members, calling, 256

encapsulation in OOP, 103–104, 150

End Sub, role in modules, 49

EndsWith() string method, 66

entry point for Console applications, 48

Entry property of IDictionary interface, 230

enum value types, 163–164

environment variables and values, reporting
with Hashtable collection class, 132–133

equals sign (=)

performing variable name assignments
with, 53

role in declaring variables, 59

Equals() method

using with Object class, 203–204

using with StringBuilder class, 118

equals operator, using with value type objects, 163

error checking versus exception handling,
266–272

error code, accessing, 36

errors, using structured exception handling
with, 266

event classes, building, 247–249

event handlers

adding in response to type names, 251

adding listening classes for, 249–250

automatic code generation for, 243–244

handling multiple events with, 240–241

event handling

dynamic type of, 249–253

in inheritance chains, 253–254

from OOP perspective, 237–239

event handling code, cleaning up, 253

event objects in member functions of listener
classes, 239

event procedures, sender object variables in,
239–240

event raising, 241–242, 246, 248

event source objects, connecting listener objects
to, 243–247

EventArgs parameter, role in Windows Form
applications, 291

events. See also default events

declaring, 246

and delegates, 264

Index

486

overriding in custom controls, 306–309

validating, 318

exception flow management, 8, 44, 267–268

exception handling versus error checking,
266–272. See also structured exception
handling

exception hierarchy, splitting, 275–276

exceptions

advisory about, 275

analyzing, 269

throwing, 272–275

tips for usage of, 278

executables, creating from solutions, 34–35

Exists() method

of Directory class, 337

of File class, 339

Exists property

of DirectoryInfo class, 345

of FileInfo class, 346

of FileSystemInfo base class, 345

Exit Sub statement, role in using GoTo control
structure, 82–83

Exp math function, 74

exponentiation (^) operator, 69

Extension property of FileSystemInfo base
class, 345

F
factoring, 196

False, representation of, 58

File and FileInfo classes, 334

File class, 338–340

file extensions, 25

File menu levels, creating with Menu Editor, 296

file monitoring, 378

file streams, writing to files with, 350–355

FileAccess modes for FileStream class, 350

FileAttribute enum class, 339–340

FileDialog class, 302–303

FileInfo class, 340–341, 346–347

FileMode enum members, 350–351

files

browsing in solutions, 24–25

using on byte level, 354

writing to, 350–355

FileStream class

derived from Stream class, 349–355

members of, 354–355

using WriteByte() and Write() methods with,
351–352

FileSystemInfo base class, 344–345

FileSystemMonitor control, writing, 375–378

Filter property, monitoring files and directories
with, 378

Filter string function, 65

final classes, role in inheritance, 187

Finalize() method

advisory about overriding of, 202

role in object death, 160

Finally blocks, using with exceptions, 277

FindForm() method, 294

floating-point division compliance with IEE
standard, 71–72

floating-point value types, 56

Floor math function, 74

Flush property

of FileStream class, 354

of Stream class, 348

Focus form element, 294

Font class, 292–293

FontDialog box, 302

fonts, rendering in picture box, 322–325

For Each collection, 226–228

For Each construct

iterating through array elements with, 86

using with arrays, functions, and
procedures, 92

using with GUI database example, 440

for-each loop, role in polymorphism in OOP, 107

form designer basics, 281–287

form events, changes to, 294

form inheritance, 305–306

form methods, changes to, 294

form properties, 292–294

Form1 Public class, creating, 288–290

formatting functions, 68–69

forms. See also MDI (Multiple Document
Interface) forms, Windows forms

accessing usable area in, 293

as classes, 281

Index

487487

encapsulating menus of, 295

encapsulating width and height of, 293

formatting controls on, 283

inheritance of, 315

for recursive directory search, 341–344

specifying sizes of, 293

using ContextMenu control with, 297

fragile base class problem

identifying source of, 214

solving, 177, 209–215

Friend access modifier for inheritance, 182

Friend default access level, 143

frmMain form, using with GUI database
application, 431

frmResults form, using with GUI database
application, 431, 436–439

FullName property of FileSystemInfo base
class, 345

function addresses, passing to multicast
delegates, 261–263

function definitions, form of, 89–90

function pointers in VB6, 255

functions

calling, 90

leaving prematurely, 91–92

starting in code window, 88

using arrays with, 92

functions called by events, contents of, 239–241

functions versus subs, 87

G
g_ prefix for global variables, 193

GAC (global assembly cache), 466

adding assemblies to, 473

adding strong names to, 473

removing assemblies from, 473

and shared assemblies, 471–476

gacutil.exe -1 command line, 472

garbage collection, 8, 160–161

GCD (greatest common divisor) of two integers,
in recursion example, 95

GDI+, 318–325

GefFiles() method of DirectoryInfo class, 346

getalbumbyname stored procedure, 430

GetAttributes() method of File class, 339

GetChar string function, 65

GetCreationTime() member of Directory class, 338

GetCreationTime() method of File class, 339

GetCurrentDirectory member of Directory
class, 338

GetDirectories() method

of Directory class, 338

of DirectoryInfo class, 346

getting help for, 125–126

GetDirectoryName() member of Path class, 336

GetDirectoryRoot() member of Directory class, 338

GetEnumerator() method of IDictionary
interface, 231

GetExtension() member of Path class, 336

GetFileName() member of Path class, 336

GetFiles() member of Directory class, 338

GetFileSystemInfos() method of DirectoryInfo
class, 346

GetFullPath() member of Path class, 336

GetLastAccessTime() member of Directory
class, 338

GetLastAccessTime() method of File class, 339

GetLastWriteTime() member of Directory
class, 338

GetLastWriteTime() method of File class, 339

GetLogicalDrives member of Directory class, 338

GetParent() member of Directory class, 338

GetPathRoot() member of Path class, 336

GetRange member of ArrayList collection class, 129

GetTempFileName() member of Path class, 336

GetTempPath() member of Path class, 336

GetType() method

returning human-readable type names with, 70

using with Object class, 204–206

global.asax file in ASP .NET, 448

GoTo control structure, 82–83

eliminating with exceptions, 276–277

exception handling as, 272

graphics context, 319

graphics programming, 318–325

greater than (>)

relational operator, 78

typing in Command window, 27–28

greater than or equal to (>=) relational operator, 78

GUI programs, multithreading, 415–421

GUID as strong name, 471, 473

Index

488

H
HACK Task comment, 23

Handle form element, 294

Handle property of FileStream class, 354

Handles keyword, defining event procedures
with, 240–241, 245

Handles MyBase statement, handling events in
inheritance chains with, 253–254

hashes, generation of, 474

Hashtable collection class, 128, 131–134

hashtables as tables, 149

headers

displaying, 21

using with Sub procedures, 91

Hello World program, role of Sub Main and End
Sub in, 49–50

helper classes, nested classes as, 152

hexadecimal encoding

using with integral literals, 56

viewing binary writer file in, 356–357

House You Get Cooked In example, 398–401

Hungarian notation versus camel casing for
variable names, 53

hWnd property, change to, 294

I
I before interface names, 217

ICloneable interface, 223–224

ICollection interface, members of, 228

IComparable interface, 231–233

IComparer interface, 234–235

icon mini menus in Visual Studio .NET IDE, 18

icons, in Properties window, 25

IDE Start page, accessing, 17

identity, determining for objects, 109–110

IDictionary interface, members of, 230–231

IDisposable interface, 225

IEEE standard, floating-point division
conformity to, 71–72

IEnumerable collection, 226–228

If-Then blocks, processing multiple statements
with, 79

IL. See MSIL

ILDASM program in SDK, drilling down to
assemblies and manifests with, 468–469

ILead interface, components of, 218

IList interface, members of, 229–230

Immediate window versus Command window,
27–28

immutable object types, 139–140

implementation inheritance, 177

Imports statement

reducing superfluous verbiage with, 120–122

simplifying typing with, 122–123

using with DirectoryInfo example, 123–124

indentation, changing, 20

indeterminate loops, setting up, 77–79

IndexOf As Integer() method of IList interface, 229

IndexOf member of ArrayList collection class, 129

IndexOf() string method, 66

inheritance, 7–8

access modifiers for, 182

advisory about, 105, 217

basics of, 178–179

versus interfaces, 222

main goal of, 190

in OOP, 104–105

relationship between classes in OOP, 101

solving versioning problems related to, 214

specializing, 307

inheritance chains

handling events in, 253–254

rules for conversions and accessing
members in, 190

in System.Windows.Forms assembly,
313–316

viewing, 189

inherited methods, overriding, 193–194

InitializeComponent() method in Windows
Form application, 288–290

Insert() method

of ArrayList collection class, 129

of IList interface, 229

Insert string() method, 66

InsertRange member of ArrayList collection
class, 129

instance variables in OOP, 103

instances of classes in OOP, 101, 154

instancing properties and access-control
attributes, 144

InStr string function, 65

InStrRev string function, 65

Index

489489

integer division (\) operator, 69–70, 72

integer overflow checks, turning off, 39

integer primitive numeric type, 55–56, 61

integer variables, using with counters for
determinate loops, 76

integers, treatment in .NET Framework, 162

integral arithmetic operators, 72

IntelliSense feature, 19–20, 52

displaying inherited classes with, 180

using Imports statement with, 121

using with Random class, 112

interface inheritance, 177, 222

interface polymorphism, 5

interfaces, 221–222

determining object implementations of, 220

implementation mechanics of, 217–221

implementing, 215

implementing in classes, 218

versus inheritance, 222

inheriting from other interfaces, 221–222

overview of, 215–217

Internet Explorer, running ASP .NET Web pages
in, 446

InvalidPathChars member of Path class, 335

Invoke() method, using with delegates, 256

IOException base class

advisory about, 275

extending, 335

is a relationships

advisory about, 105

and inheritance, 178

Is operator, 136

IsArray Boolean function, using with objects, 201

ISBN, using as URI in Amazon.com screen
scraping example, 371–372

IsDate Boolean function, using with objects, 201

IsFixedSize property

of IDictionary interface, 231

of IList interface, 229

IsNumeric Boolean function, using with
objects, 201

IsReadOnly property

of IDictionary interface, 231

of IList interface, 229

IsSynchronized property of ICollection
interface, 228

Item() method

of ArrayList collection class, 129

in Hashtable collection class, 132

Item property

of ArrayList collection class, 130

of IDictionary interface, 231

of IList interface, 229

role in CollectionBase class, 200

J
Join string function, 65–66

K
Key events, triggering in Control class, 316–318

key pairs, generating, 474–476

Key property of IDictionary interface, 230

keyboard input, using Console.In and
Console.Out classes with, 359

keyboard shortcuts, accessing, 19

keys in PKC versions, 474

Keys() method in Hashtable collection class, 132

Keys property of IDictionary interface, 231

keywords

list in VB .NET, 53–54

using in comments, 23–24

L
labels

adding to buttons with ASP .NET, 444

role in using GoTo control structure, 82–83

Landscape property of PageSettings, 329

LastAccessTime property of FileSystemInfo base
class, 345

LastIndexOf member of ArrayList collection
class, 129

LastIndexOf() string method, 66

LastWriteTime property of FileSystemInfo base
class, 345

late binding, 217

layering streams, 354, 355

LCase string function, 65

LeadProgrammer class, 220–221

Left string function, 65

Len string function, 65

Index

490

Length() method

of ArrayList collection class, 129

role in array class, 92

using in base Stream class, 353

Length property

of FileInfo class, 346

of FileStream class, 354

in Stream class, 348

Length string() method, 66

less than (<) relational operator, 78

less than or equal to (<=) relational operator, 78

lines

extending, 52

labeling for use with GoTo control structure,
82–83

linked lists, using nested classes with, 152–154

listeners

connecting to event source objects, 243–247

member functions in, 239

registering for event handlers, 249–250

subscribe/publish model of, 237–238

literals

and associated data types, 54–58

storing as Decimal types, 57

storing as doubles, 56

storing as floating points, 56

storing as integers, 55

storing as longs, 56

storing as shorts, 55

Location property, using struct as value for, 290

Lock() member of FileStream class, 354

Log math function, 74

Log10 math function, 74

logical operators, using on binary level, 83

long primitive numeric type, 56, 61

loops

managing, 80

nesting, 77

setting up, 75–79

using If-Then statements with, 80

lossy versus lossless conversions, 61

lower bounds, building arrays with, 85–86

LTrim string function, 65

M
m_ prefix for module-level variables, 193

main menu instance, creating with Menu Editor,
296

main threads, running, 384

managed code, debugging, 45

Mandelbrot Set fractal, scrolling through, 315–316

manifests in .NET assemblies, 467–471

contents of, 469, 471

drilling down to, 469–471

MarginBounds property of PrintPageEventArgs
object, 328

Margins property of PageSettings, 329

masking, 83

math functions, 73–75

MaximumSize property, specifying form size
with, 293

MaxValue property, adding to controls, 311–312

MDI (Multiple Document Interface) forms,
298–304. See also Forms, Windows forms

Me keyword

referring to current instance of running code
with, 144

role in raising events in Employee class, 242

using with linked lists, 154

MeasureString function, role in rendering fonts
in picture box, 325

member functions in listener classes,
parameters in, 239

member variables in OOP, 103

members of classes

listing, 125

in OOP, 101

or modules, 87

MemberWiseClone() method, advisory about,
205–209

Memory window, debugging with, 41

MemoryStream class derived from Stream
class, 349

Menu Editor, building menus with, 294–297

menu items, creating with Menu Editor, 296–297

message boxes, adding to event procedures,
245, 247

messages, displaying status of, 27–28

MethodInvoker delegate, role in multithreading
GUI programs, 420

Index

491491

methods, 87

classes as, 50

overriding, 184–188

scope of, 80

Mid string function, 65

Min math function, 74

MinimumSize property, specifying form size
with, 293

MinValue property, adding to controls, 311–312

Mod function, role in recursion, 95–96

Mod operator, 72

module-level variables, advisory about, 151

module names, changing after creation, 48–49

Module1.vb file

setting properties of, 25

using for GUI database example, 431

in vb_ide_01 sample solution, 28–29

Monitor class and SyncLock statement, 403–404

MouseCursor property, change to, 294

Move() method

of Directory class, 338

of File class, 339

MoveTo() method

of DirectoryInfo class, 346

of FileInfo class, 347

MsgBox versus MessageBox class, 291

MSIL (Microsoft Intermediate Language), 6

multicast delegates, 261–264. See also delegates

multiple file assemblies, 471

multiple pages, printing, 327–328

multiplication (.) operator, 69

multithreaded code, avoiding deadlocks in, 409

multithreaded programs

stopping while running, 385

switching between threads in, 386

multithreading, 8

basics of, 380–383

complexities of, 421–422

definition of, 379

GUI programs, 415–421

MustInherit class, using with abstract base
classes, 198–199

MustOverride keyword, using with abstract base
classes, 196

MyBase keyword, limitations of, 187

MyClass keyword, 148, 188

MyCompare delegate, role in performing special
sort, 259–260

N
Name property

of DirectoryInfo class, 345

of FileStream class, 354

of FileSystemInfo base class, 345

named arguments, 93–94

namespaces, 120–124

creating for classes, 168–169

finding descriptions of, 124–125

for GDI+, 319

getting or changing list of, 121

nested classes, 152–154

.NET assemblies, 464–471

.NET Framework

collection classes in, 127–133

help system, 124–127

treatment of integers, 162

.NET integers, using with literals, 55–56

.NET mentality shift, 5–8

network streams, 370–375. See also stream
entries

NetworkStream class derived from Stream class,
349

New keyword

advisory about, 159

creating objects with, 111–112

New() method versus Class_Initialize event, 158

no-arg constructors, 147

non-numeric literals, 58–59

nonblocked threads, interrupting, 393

nondeterministic finalization, 160

<NonSerialized()> attribute, marking instance
fields in classes with, 363

Northwind database, query results, 441

Northwind employees, listing, 426–427

not equal to (<>) relational operator, 78

Not keyword, combining conditions in loops
with, 79

Notepad, process debugging of, 43

Nothing, declaring object variables as, 136

NotifyFilter property, monitoring files with, 378

NotOverridable keyword, using with methods, 187

Index

492

numeric conversions, advisory about, 63

numeric expressions, using for constants, 75

numeric primitive types, 55

O
obj subdirectory in vb_ide_01 sample solution, 28

object-based languages, 4

object-based programs, debugging, 170–175

Object Browser

displaying namespaces in, 121–122

for simple Windows Form application, 288–289

Object class

using Equals() method with, 203–204

using GetType() method with, 204–205

using ReferenceEquals() method with,
203–204

using ToString() method with, 204–205

object composition, 215

object death, 160–161

object instances, creating, 111–113

object life cycle, 158–163

object-oriented languages, 4, 7

object streams, 361

Object types

converting between implemented
interfaces, 219

as ultimate base class, 201–209

useful members of, 202–209

and variants, 64

object variables, 134–136

passing by value, 138–140

using TypeName function with, 137

objects

adding to StringBuilder class, 117

building models of, 103

cloning with serialization, 365

creating with New keyword, 111

determining state, identity, and behavior of,
109–110

interacting with other objects in OOP, 100–101

OLE DB databases, retrieving data from, 425–428

OleDb* classes, 426

On Error syntax, advisory about, 266

OOP (object-oriented programming)

abstraction in, 103

advantages of, 110

base classes in, 104–105

child classes in, 104–105

describing relationships between classes
in, 109

encapsulation in, 103–104

event handling from perspective of, 237–239

inheritance in, 104–105

interaction of objects in, 100–101

introduction to, 98–101

parent classes in, 104–105

versus procedure-oriented programming, 108

role of classes in, 101

vocabulary of, 101–107

Open FileMode enum member, 351

OpenOrCreate FileMode enum member, 351

operations

hierarchy of, 72–73

shortcuts for combining with assignment
statements, 72–73

Option Compare Text statement, making
comparisons in code case insensitive
with, 78

Option Explicit option, 19

Option Strict feature, performing safe type
conversions with, 61–64

Option Strict off, advisory about, 193

Options dialog box, 20

Or keyword, combining conditions in loops
with, 79

order of precedence for operations, 72–73

orders, sorting by, 234–235

OrElse keyword, role in short circuiting, 81

Output window, 27–28, 35–36

overloading, 114

constructors, 147–148

default properties, 149

impact on StringBuilder class, 117

shared members, 144–146

overridden parent classes, accessing, 187. See
also parent classes

overriding

events in custom controls, 306–309

inherited methods, 193–194

properties and methods, 184–188

Index

493493

P
p-code, 6

PadLeft() and PadRight() string methods, 67

PageBounds property of PrintPageEventArgs
object, 328

pages, pages, 327–328

PageSettings property, object properties of, 329

Paint procedure, 319–320

PaperSize property of PageSettings, 329

PaperSource property of PageSettings, 329

parameterized constructors, 7, 114

parameters, loading for stored procedures, 431

parent classes in OOP, 104–105. See also
overridden parent classes

accessing functionality of, 182–184

inheriting from, 180

Parent form element, 294

parent forms, sending notification to, 299–300

parent members, overriding, 187

Parent property, change to, 294

Parent property of DirectoryInfo class, 346

parentheses (())

and precedence, 72–73

using with nonempty parameter lists, 89

passing by value versus passing by reference,
138–139

passing variable arguments by value or by
reference, 87–88

paste feature, accessing, 19

Path class, 335–336

PathSeparator member of Path class, 335

PayableEntity class, using with abstract base
classes, 196–198

PayableEntityExample DLL, 210–211

.pdb file, using with debugger, 41

Peek() method

determining reading of characters with, 360

of TextReader class, 358

PeekChar() method, displaying binary data
with, 357

period (.)

accessing IntelliSense feature with, 19

purpose of, 50

using at end of string variables, 115

using with namespaces, 168–169

using with object variables, 135

persistent employees array list, 365–370

persisting objects, 361

picture boxes, rendering fonts in, 322–325

Picture property, change to, 294

pictures, scrolling through, 315–316

PKC (public key cryptography), using strong
names with, 473–474

plus sign (+) next to code lines, 21, 64

pointers versus object variables, 135

polymorphism in OOP, 106–107, 190–193, 216

Position property

of FileStream class, 354

of Stream class, 348

positive integers, entering for custom controls, 307

preemptive multithreading through time slicing,
385–386

primitive types, 55

Print() method of PrintDocument class,
calling, 327

PrintDialog control, 329–330

PrintDocument object, getting, 325–326

PrinterResolution property of PageSettings, 329

PrinterSettings property of PageSettings, 329

printing, 325–331

PrintPage event, 326–327

PrintPageEventArgs class, 328–329

PrintPreviewDialog control, 330–331

Private access modifier for inheritance, 182

private assemblies, 466

private constructors, use of, 143

private keys, signing assemblies with, 476

Private members of classes, effect of implementing
interface members with, 219

procedure-oriented programming versus OOP, 108

procedures, 87–94

leaving prematurely, 91–92

running with threads, 381

using arrays with, 92

with variables or optional number of
arguments, 93–94

process debugging, 42–43

ProcessFile application, using Try-Catch block
with, 268

Index

494

producer-consumer problem with sharing data
in multithreaded code, 411

producer idiom, pseudo code for, 413–415

program requirements, 265

Programmer objects, storage of, 193

programs, objectifying, 107–109

project file, sample in text form, 30–32

project types for solutions, 13

projects

adding to solutions, 33–34

compiling individually, 38–39

determining compilation options for, 37

selecting for builds, 36–38

projects in solutions, types of, 12–13

properties

differences between VB6 and VB .NET, 148–149

and encapsulation, 150

hiding in Properties window, 311–312

making appear in Properties window, 311–312

overriding, 184–188

Properties window, 25

Property Pages screen, opening to compile
projects, 37–38

Protected access modifier for inheritance, 182, 184

Protected Friend access modifier for inheritance,
183, 184

proxy classes, generating code for, 460–461

Public access modifier for inheritance, 183

public events, declaring, 241–242

public interface of objects, 98

public keys for PKC versions, 474

public read-only properties, defining for
Employee class, 142

Pulse-Pulse All primitive, role in producer-
consumer thraded relationships, 411

Q
Queue collection class, 128

quotation marks ("), purpose of, 52

R
race condition in House You Get Cooked In

example, 401

RaiseSalary() method, using in Employee class,
144–146, 186

Random class

accessing, 112–113

advisory about, 111

constructors available to, 114

Read() method

of FileStream class, 355

role in System.Data.OleDb namespace, 428

of Stream class, 348

of TextReader class, 358

ReadByte() method, 354

of FileStream class, 355

in Stream class, 348

ReadLine() method, 50, 358

ReadOnly() method

of ArrayList collection class, 129

using in Employee class, 142–143

ReadToEnd member of TextReader class, 358

Rectangle structure class in System.Drawing, 293

recursion, 94–96

ReDim clause, changes to, 84, 87

reference controls for g, 283

reference objects versus structures, 167

reference semantics versus value semantics,
162–163

ReferenceEquals() method, using with Object
class, 203–204

references, object variables as, 134

References window, 26–27

reflection, 204–205

Refresh member of FileSystemInfo base class, 345

regions

expanding, 21

naming, 21

relational operators, using with indeterminate
loops, 78

Release configuration option, 39–40

Remove() method, 67

of ArrayList collection class, 129

of Hashtable collection class, 132

of IDictionary interface, 231

using with StringBuilder class, 118

RemoveAt() method

of ArrayList collection class, 129

of IList interface, 230

Index

495495

RemoveHandler, cleaning up event handling
code with, 253

RemoveRange member of ArrayList collection
class, 129

Renamed File System Monitor event, 376

Repeat member of ArrayList collection class, 130

replace feature, accessing, 19

Replace() method, using with StringBuilder
class, 118

Replace string function, 65, 67

Return keyword, using with functions, 89

Reverse member of ArrayList collection class,
130

RichTextbox() method, opening and saving files
with, 302–303

Right string function, 65

Root Namespace, advisory about default name
for, 37

Root property of DirectoryInfo class, 346

Round math function, 74

RTrim string function, 65

Ruby Forms engine, 280

runtime libraries, 6

runtime type identification, 204–205

S
sample.bmp drawing example, 320–321

scope of variables, 150–151

scoping changes, 80

screen scraping example

using network streams with, 370–375

using threads with, 394–401

ScrollableControl, inheritance of forms from, 315

sealed classes, role in inheritance, 187

Seek() member of FileStream class, 355

Select Case statement, using as alternative to
ElseIfs, 81

sender object variables in event procedures,
239–240

SendToBack() method, 294

serialization, 361–364

cloning objects with, 365

of employee list, 365–367

Session property on .aspx pages, 450

session state, controlling in ASP .NET Web
applications, 454

Set keyword, advisory about, 111

SetAttributes() method of File class, 339

SetCurrentDirectory() member of Directory
class, 338

SetFocus() method, change to, 294

SetRange member of ArrayList collection class, 130

shadowing, 193–195

shallow compares, performing with Equals()
method, 165

shared assemblies and GAC, 471–476. See also
assemblies

shared constructors, 158. See also constructors

shared data

advisory about, 397–401

guarding when used with threads, 403

and shared members inside classes, 155–157

versus static data, 157

shared instance fields, 155–157

shared members, 157–158

multicast delegates as, 263–264

overloading, 144–146

role in creating object instances, 113

shared methods, 49–50

determining maximum and minimum
values of types with, 57

using with Directory and File classes, 334

shared names, strong names as, 473–474

sharing data, in multithreaded code, 410–415

short circuiting, 81

short primitive numeric type, 55

widening conversions for, 61

shortcuts for combining operations with
assignment statements, 72–73

Show Count button, adding to GUI programs,
418–419

ShowDialog member in CommonDialog class, 301

side-by-side execution in Windows 98, 464

Sign math function, 74

signing data in private keys, 474

Sin math function, 74

single floating-point value type, 56

single primitive numeric type, 56, 61

single quotation mark (') for comments, 52

Size property, using struct as value for, 290

Sleep() method for threads, syntax for, 391

sleeping threads, troubleshooting, 392

Smalltalk, treatment of objects, 162

Index

496

smart arrays, implementing with ArrayList
collection class, 128–131

smart pointers, object variables as, 134

Smart setting for indentation, 20

Smart tabs, 20

sn k <filename> syntax for generating key
pairs, 475

.snk files for public and private keys, 475–476

SOAP format, using for serialization, 362–364

SOAP requests, generating with wsdl.exe
command line tool, 460–461

Solution Explorer, 24–26

solutions

adding projects to, 33–34

browsing files in, 24–25

creating, 13–17, 25

creating executables from, 34–35

projects as part of, 12–13

selecting projects for builds, 36–38

storing user settings for, 32

Sort() method, 130, 257–261

sorting by multiple orders, 234–235

Space string function, 66

spaghetti code, definition of, 82

specialization via inheritance, 307

SpecialSort class, 259–261

Split string function, 66–67

SQL query example, 427

SQL Server data types, value types
corresponding to, 425

SQL Server databases, retrieving data from,
429–430

Sqrt math function, 74

Stack collection class, 128

StackTrace() method, printing out stack traces
with, 271

Start() method and threads, advisory about, 385

Start page for IDE, accessing, 17

StartPosition property, 294

StartsWith() string method, 67

Startup property, change to, 294

state, determining for objects, 109–110

statements, 51–52

static data versus shared data, 157

static members. See shared members

Step keyword, counting with, 76–77

stored procedures, calling, 430–431

Str* functions, 66

Stream class, 348–349. See also network streams

stream writers, creating, 360

StreamReader and StreamWriter classes versus
BinaryReader-BinaryWriter pair, 358

StreamReader object, creating, 359

streams, 333, 355–358. See also network streams

StreamWriter object, creating, 359

string classes, advisory about, 64

String classes

appending to, 119

as immutable object type, 139–140

using multiple constructors with, 115–119

string constants, setting up, 75

string functions, 65–66

String string function, 66

string variables, character limitations of, 64

StringBuilder class, 115–119

appending to, 119

constructors of, 116

getting or setting characters in, 117

getting or setting length of, 117

using Equals() method with, 118

using Remove() method with, 118

using Replace() method with, 118

using ToString() method with, 118

using with GUI database example, 440

strings

assigning to variables, 64

dotting, 68

first position in, 67

parsing, 372–373

strong names, using with assemblies, 471, 473–474

strongly typed collections, 199

structs, using as values of Location and Size
properties, 290

structure types, 165–168

structured exception handling, 8, 266. See also
exception handling

Sub Main

creating instance of delegates in, 256

role in modules, 49

in thread for decrementing counters, 384

using as startup object, 141

Index

497497

using with abstract base classes, 198

using with EmbeddedObjects public class,
207–208

using with IComparer interface, 234–235

using with Programmer class, 194–195

Sub New() FileStream constructors, 350

Sub procedures

versus functions, 87

starting in code window, 88

using headers with, 91

Sub WriteByte() method in Stream class, 348

Subs. See Sub procedures

subscribe/publish model of interested listeners,
237–238

Substring() string method, 67

subtraction (-) operator, 69

.suo files, 32

supports a relationship between classes in
OOP, 102

Suspend() method, advisory about, 393

synchronization, 401–410

SyncLock statement

enforcing atomicity with, 401–403

and Monitor class, 403–404

SyncRoot property of ICollection interface, 228

System.Data.Common utility namespace, 425

System.Data.DLL classes in, 425–430

System.Data.OleDb namespace, 425–428

System.Data.SqlClient namespace, 429–430

System.Data.SqlTypes utility namespace, 425

System.Drawing assembly in Windows Form
applications, 287–288, 293

System.Drawing namespace, using in Windows
Form application, 290

System.EventArgs class, 247

System.GC.Collect() method, advisory about, 160

System.IO.IOException, building exception class
that inherits from, 274

System.Runtime.Serialization namespace,
importing to save typing, 362

System.Web.UI.WebControl namespace in ASP
.NET, 444

System.Windows.Forms assembly in Windows
Form applications, 287–288, 313–316

T
tab order, changing, 287

tab stops, setting, 20

tables as hashtables, 149

tabs, viewing hidden windows as, 17

Tan math function, 74

Task List feature, 23–24

Terminate event, role in object death, 160

text, drawing, 321–325

text files, pseudo code for printing contents of, 328

textboxes, pseudo code for printing contents
of, 328

TextReader and TextWriter classes, 358–361

TextReader class, 360–361

thread creation, mechanics of, 383–388

thread of execution, determining context of,
380–381

ThreadAbort Exception, throwing, 393

threading problems in House You Get Cooked In
example, 398–401

threads. See also background threads

advisories about using Abort and Suspend
methods with, 393

advisory about, 381

advisory about changing shared data with,
397–401

advisory about waking up, 389

and application domains, 382

blocking, 388

controlling via context menus, 390

counting with, 418

debugging, 390

decrementing counters in, 383–388

ending or interrupting, 392–393

getting references to, 389–390

guidelines for usage of, 394

joining, 388–389

naming, 389

prioritizing, 387

putting to sleep, 391

screen scraping with, 394–401

starting, 384

stopping temporarily, 388

Index

498

suspending or killing, 393

switching between, 385–386

viewing with debugger, 43

Threads window, 390

ThreadStart delegate, 382

Throw keyword, sending exceptions back to
calling code with, 272–275

time slicing and preemptive multithreading,
385–386

timing operations, 119

tlbimp.exe too, creating wrapper class for COM
objects with, 476–478

ToArray member of ArrayList collection class, 130

ToCharArray() string method, 67

TODO Task comment, 23

ToLower() string method, 67

tool tips, accessing in Visual Studio .NET IDE, 18

Toolbox

adding custom controls to, 308–309

as advantage to OOP, 110

storing code fragments in, 22

using with PrintDocument control, 326

ToolTip property, change to, 294

ToString() method

role in analyzing exceptions, 269

using with Object class, 204–205

using with StringBuilder class, 118

ToUpper() string method, 67

TRACE constant, defining, 39

trap door functions and PKC (public key
cryptography), 473–474

Treading namespace, 382

Treat warning as errors feature, advisory about, 40

Trim string function, 66

Trim*() string methods, 67

TrimToSize member of ArrayList collection
class, 130

True, representation of, 58

Truncate FileMode enum member, 351

Try blocks, exiting from, 268

Try-Catch blocks

role in exception handling, 267–268, 276–277

using with sleeping threads, 391

Try-Catch-Finally blocks, closing streams in, 349

type names, adding event handlers in response
to, 251

TypeName function, using with object
variables, 137

TypeOf...Is operator, using with object variables,
137–138

types

converting values between, 61–64

determining maximum and minimum
values for, 57

typing

saving with object variables, 135–136

saving with System.Runtime.Serialization
namespace, 362

U
UBound function, using with arrays, functions,

and procedures, 92

UCase string function, 66

UML (uniform modeling language), 109

UNC (Universal Naming Convention),
interpreting path strings as, 336

Uncomment Block tool, 19

underscore (_) character

in automatically generated code, 244–245

beginning variable names with, 52

extending lines with, 52

UNDONE Task comment, 23

Unicode

character limitations of, 59

getting help for, 52

Unicode order, using with relational operators, 78

Unload command, change to, 294

Unload event, change to, 294

Unlock() member of FileStream class, 355

unmanaged code, debugging, 45

Until keyword, using with While keyword in
loops, 78–79

up casting, 193

upper bounds, building arrays with, 85–86

URI (Universal Resource Indicator), role in
Amazon.com screen scraping example,
371–372

use relationship between classes in OOP,
101–102

user-defined types, classes as, 99–101

Index

499499

V
Validating and Validated events, 318

Value property of IDictionary interface, 230

value semantics versus reference semantics,
162–163

value types, 140, 161–165

values, converting for different types, 61–64

Values() method in Hashtable collection class, 132

Values property of IDictionary interface, 231

variable arguments, passing to procedures or
functions, 87

variable declaration inside blocks, advisory
about, 80

variable names, managing, 52–54

variables

assigning strings to, 64

declaring, 59–60

establishing naming conventions for, 60

formatting, 69

procedures with, 93–94

scope of, 80, 150–151

using declare-and-initialize syntax with, 60

variables at module level, advisory about, 151

variants and object types, 64

.vb file extension, 25

VB forms, history of, 280–281

VB .NET integrated development environment
(IDE),

versus C#, 11–12

description of, 11

keywords list, 53–54

list of numeric types, 58

maximizing effectiveness of, 9

vb_ide_01 sample solution, 14, 28

vb_ide_01.suo binary file, 32

vb_ide_01.vbproj file, 30

VB5

apartment threading in, 379

object-oriented features in, 7

VB6

comparing numeric types to VB .NET, 58

function pointers in, 255

object-oriented features in, 7

VB6 IDE, configuring Visual Studio .NET IDE to
match, 12–13

.vbp project file versus vb_ide_01.sln file, 29

vbproj.user file versus vb_ide_01.suo file, 32–33

verifying data in private keys, 474

version checking assemblies, 470

versioning problem, solving, 209–215

versioning, role in GAC, 472

_VIEWSTATE field, holding encrypted data in,
449–450

viewing windows, 16

virtual methods, 191

Visual Basic

then and now, 3–4

versions of, 4–5

visual inheritance of GUI applications, 179,
305–306

Visual Studio .NET IDE

accessing context menus in, 17–18

accessing tool tips in, 18

changing profile in, 12

configuring VB6 IDE for, 12

customizing keyboard and window layout
in, 12

home page, 12

icon mini menus in, 18

introduction to, 11

main windows in, 17–28

VolumeSeparatorChar member of Path class, 335

W
Wait primitive, role in producer-consumer

threading relationships, 411–412

Web applications, developing with ASP .NET,
444–454

Web farms, definition of, 425

Web services

client-side use of, 458–462

creating with ASP .NET, 455–462

Web.config file, 451–454

Wend keyword, replacement of, 79

When clause, adding to Catch clause, 272

white space within code lines, advisory about, 52

widening conversions, 61

Win32 process and application domains, 382

windows

combining, 17

viewing, 16–17

Index

500

Windows 98, side-by-side execution in, 464

Windows Form applications

component hierarchy, 313

references to assemblies in, 287–288

returning, 287–291

starting from Sub Main, 291

Windows menu, creating in MDI applications, 299

Windows.Forms.Form class, using reflection
with, 205–206

WithEvents syntax, advisory about, 247, 249

wrapper class for COM objects, creating with
tlbimp.exe tool, 476–478

Write() method

of FileStream class, 355

of Stream class, 348

of TextWriter class, 358

using with FileStream class, 351–352

versus WriteLine() method, role in fixing
return of double values, 71

WriteByte() method

of FileStream class, 355

using with FileStream class, 351–352

WriteLine() method 50, 358

WriteOnly keyword, 143

WSDL (Web Services Descriptor Language),
automatic generation of XML files in, 457

wsdl.exe command line tool, generating SOAP
requests with, 460–461

X
XCopy deployment, 463, 465–466

XML (eXtensible Markup Language), presence in
.NET, 30, 457, 459–460

Z
ZOrder() method, change to, 294

